Properties

Label 567.2.g.l.541.5
Level $567$
Weight $2$
Character 567.541
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [567,2,Mod(109,567)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("567.109"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(567, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-6,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.5
Root \(-1.04779 + 0.949812i\) of defining polynomial
Character \(\chi\) \(=\) 567.541
Dual form 567.2.g.l.109.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.298668 + 0.517308i) q^{2} +(0.821595 - 1.42304i) q^{4} +2.09557 q^{5} +(-1.51053 - 2.17216i) q^{7} +2.17621 q^{8} +(0.625881 + 1.08406i) q^{10} +1.65141 q^{11} +(0.213022 + 0.368965i) q^{13} +(0.672530 - 1.43017i) q^{14} +(-0.993225 - 1.72032i) q^{16} +(-3.03819 - 5.26230i) q^{17} +(-2.70625 + 4.68736i) q^{19} +(1.72171 - 2.98209i) q^{20} +(0.493225 + 0.854291i) q^{22} +7.63457 q^{23} -0.608573 q^{25} +(-0.127246 + 0.220396i) q^{26} +(-4.33213 + 0.364918i) q^{28} +(-1.82688 + 3.16426i) q^{29} +(2.65372 - 4.59638i) q^{31} +(2.76950 - 4.79691i) q^{32} +(1.81482 - 3.14336i) q^{34} +(-3.16543 - 4.55193i) q^{35} +(2.33890 - 4.05110i) q^{37} -3.23308 q^{38} +4.56041 q^{40} +(0.742827 + 1.28661i) q^{41} +(-4.24499 + 7.35253i) q^{43} +(1.35679 - 2.35004i) q^{44} +(2.28020 + 3.94943i) q^{46} +(5.66624 + 9.81422i) q^{47} +(-2.43658 + 6.56225i) q^{49} +(-0.181761 - 0.314820i) q^{50} +0.700071 q^{52} +(2.74496 + 4.75441i) q^{53} +3.46066 q^{55} +(-3.28724 - 4.72708i) q^{56} -2.18253 q^{58} +(-0.779098 + 1.34944i) q^{59} +(-2.52408 - 4.37184i) q^{61} +3.17033 q^{62} -0.664256 q^{64} +(0.446403 + 0.773193i) q^{65} +(2.61498 - 4.52928i) q^{67} -9.98464 q^{68} +(1.40933 - 2.99702i) q^{70} +12.5604 q^{71} +(-0.793753 - 1.37482i) q^{73} +2.79422 q^{74} +(4.44688 + 7.70222i) q^{76} +(-2.49452 - 3.58714i) q^{77} +(3.81482 + 6.60746i) q^{79} +(-2.08138 - 3.60505i) q^{80} +(-0.443717 + 0.768541i) q^{82} +(2.62806 - 4.55193i) q^{83} +(-6.36674 - 11.0275i) q^{85} -5.07137 q^{86} +3.59382 q^{88} +(-9.27808 + 16.0701i) q^{89} +(0.479675 - 1.02005i) q^{91} +(6.27252 - 10.8643i) q^{92} +(-3.38465 + 5.86239i) q^{94} +(-5.67114 + 9.82270i) q^{95} +(-6.87728 + 11.9118i) q^{97} +(-4.12243 + 0.699472i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} - 14 q^{10} - 6 q^{13} - 6 q^{16} - 24 q^{19} - 2 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} + 72 q^{40} - 10 q^{43} + 36 q^{46} + 4 q^{49} + 68 q^{52} + 8 q^{55} - 44 q^{58} - 36 q^{61} + 76 q^{64}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.298668 + 0.517308i 0.211190 + 0.365792i 0.952087 0.305826i \(-0.0989327\pi\)
−0.740897 + 0.671619i \(0.765599\pi\)
\(3\) 0 0
\(4\) 0.821595 1.42304i 0.410797 0.711522i
\(5\) 2.09557 0.937169 0.468584 0.883419i \(-0.344764\pi\)
0.468584 + 0.883419i \(0.344764\pi\)
\(6\) 0 0
\(7\) −1.51053 2.17216i −0.570928 0.821000i
\(8\) 2.17621 0.769406
\(9\) 0 0
\(10\) 0.625881 + 1.08406i 0.197921 + 0.342809i
\(11\) 1.65141 0.497920 0.248960 0.968514i \(-0.419911\pi\)
0.248960 + 0.968514i \(0.419911\pi\)
\(12\) 0 0
\(13\) 0.213022 + 0.368965i 0.0590817 + 0.102333i 0.894053 0.447960i \(-0.147849\pi\)
−0.834972 + 0.550293i \(0.814516\pi\)
\(14\) 0.672530 1.43017i 0.179741 0.382228i
\(15\) 0 0
\(16\) −0.993225 1.72032i −0.248306 0.430079i
\(17\) −3.03819 5.26230i −0.736869 1.27629i −0.953899 0.300129i \(-0.902970\pi\)
0.217030 0.976165i \(-0.430363\pi\)
\(18\) 0 0
\(19\) −2.70625 + 4.68736i −0.620856 + 1.07535i 0.368471 + 0.929639i \(0.379881\pi\)
−0.989327 + 0.145714i \(0.953452\pi\)
\(20\) 1.72171 2.98209i 0.384986 0.666816i
\(21\) 0 0
\(22\) 0.493225 + 0.854291i 0.105156 + 0.182135i
\(23\) 7.63457 1.59192 0.795959 0.605351i \(-0.206967\pi\)
0.795959 + 0.605351i \(0.206967\pi\)
\(24\) 0 0
\(25\) −0.608573 −0.121715
\(26\) −0.127246 + 0.220396i −0.0249550 + 0.0432233i
\(27\) 0 0
\(28\) −4.33213 + 0.364918i −0.818695 + 0.0689631i
\(29\) −1.82688 + 3.16426i −0.339244 + 0.587588i −0.984291 0.176555i \(-0.943505\pi\)
0.645047 + 0.764143i \(0.276838\pi\)
\(30\) 0 0
\(31\) 2.65372 4.59638i 0.476623 0.825535i −0.523018 0.852321i \(-0.675194\pi\)
0.999641 + 0.0267866i \(0.00852747\pi\)
\(32\) 2.76950 4.79691i 0.489583 0.847982i
\(33\) 0 0
\(34\) 1.81482 3.14336i 0.311239 0.539082i
\(35\) −3.16543 4.55193i −0.535056 0.769416i
\(36\) 0 0
\(37\) 2.33890 4.05110i 0.384513 0.665997i −0.607188 0.794558i \(-0.707703\pi\)
0.991702 + 0.128561i \(0.0410360\pi\)
\(38\) −3.23308 −0.524475
\(39\) 0 0
\(40\) 4.56041 0.721063
\(41\) 0.742827 + 1.28661i 0.116010 + 0.200935i 0.918183 0.396156i \(-0.129656\pi\)
−0.802173 + 0.597092i \(0.796323\pi\)
\(42\) 0 0
\(43\) −4.24499 + 7.35253i −0.647354 + 1.12125i 0.336398 + 0.941720i \(0.390791\pi\)
−0.983752 + 0.179531i \(0.942542\pi\)
\(44\) 1.35679 2.35004i 0.204544 0.354281i
\(45\) 0 0
\(46\) 2.28020 + 3.94943i 0.336198 + 0.582311i
\(47\) 5.66624 + 9.81422i 0.826506 + 1.43155i 0.900763 + 0.434312i \(0.143008\pi\)
−0.0742560 + 0.997239i \(0.523658\pi\)
\(48\) 0 0
\(49\) −2.43658 + 6.56225i −0.348083 + 0.937464i
\(50\) −0.181761 0.314820i −0.0257049 0.0445222i
\(51\) 0 0
\(52\) 0.700071 0.0970824
\(53\) 2.74496 + 4.75441i 0.377050 + 0.653069i 0.990632 0.136562i \(-0.0436053\pi\)
−0.613582 + 0.789631i \(0.710272\pi\)
\(54\) 0 0
\(55\) 3.46066 0.466635
\(56\) −3.28724 4.72708i −0.439275 0.631683i
\(57\) 0 0
\(58\) −2.18253 −0.286580
\(59\) −0.779098 + 1.34944i −0.101430 + 0.175682i −0.912274 0.409581i \(-0.865675\pi\)
0.810844 + 0.585262i \(0.199008\pi\)
\(60\) 0 0
\(61\) −2.52408 4.37184i −0.323176 0.559757i 0.657966 0.753048i \(-0.271417\pi\)
−0.981141 + 0.193291i \(0.938084\pi\)
\(62\) 3.17033 0.402632
\(63\) 0 0
\(64\) −0.664256 −0.0830320
\(65\) 0.446403 + 0.773193i 0.0553695 + 0.0959028i
\(66\) 0 0
\(67\) 2.61498 4.52928i 0.319471 0.553340i −0.660907 0.750468i \(-0.729828\pi\)
0.980378 + 0.197128i \(0.0631615\pi\)
\(68\) −9.98464 −1.21081
\(69\) 0 0
\(70\) 1.40933 2.99702i 0.168448 0.358212i
\(71\) 12.5604 1.49065 0.745324 0.666703i \(-0.232295\pi\)
0.745324 + 0.666703i \(0.232295\pi\)
\(72\) 0 0
\(73\) −0.793753 1.37482i −0.0929017 0.160911i 0.815829 0.578293i \(-0.196281\pi\)
−0.908731 + 0.417382i \(0.862948\pi\)
\(74\) 2.79422 0.324822
\(75\) 0 0
\(76\) 4.44688 + 7.70222i 0.510092 + 0.883505i
\(77\) −2.49452 3.58714i −0.284277 0.408793i
\(78\) 0 0
\(79\) 3.81482 + 6.60746i 0.429201 + 0.743398i 0.996802 0.0799058i \(-0.0254620\pi\)
−0.567602 + 0.823303i \(0.692129\pi\)
\(80\) −2.08138 3.60505i −0.232705 0.403057i
\(81\) 0 0
\(82\) −0.443717 + 0.768541i −0.0490004 + 0.0848711i
\(83\) 2.62806 4.55193i 0.288467 0.499639i −0.684977 0.728564i \(-0.740188\pi\)
0.973444 + 0.228926i \(0.0735213\pi\)
\(84\) 0 0
\(85\) −6.36674 11.0275i −0.690570 1.19610i
\(86\) −5.07137 −0.546860
\(87\) 0 0
\(88\) 3.59382 0.383103
\(89\) −9.27808 + 16.0701i −0.983474 + 1.70343i −0.334946 + 0.942237i \(0.608718\pi\)
−0.648528 + 0.761191i \(0.724615\pi\)
\(90\) 0 0
\(91\) 0.479675 1.02005i 0.0502836 0.106931i
\(92\) 6.27252 10.8643i 0.653956 1.13268i
\(93\) 0 0
\(94\) −3.38465 + 5.86239i −0.349100 + 0.604659i
\(95\) −5.67114 + 9.82270i −0.581847 + 1.00779i
\(96\) 0 0
\(97\) −6.87728 + 11.9118i −0.698282 + 1.20946i 0.270780 + 0.962641i \(0.412718\pi\)
−0.969062 + 0.246818i \(0.920615\pi\)
\(98\) −4.12243 + 0.699472i −0.416429 + 0.0706574i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −15.9885 −1.59091 −0.795456 0.606011i \(-0.792769\pi\)
−0.795456 + 0.606011i \(0.792769\pi\)
\(102\) 0 0
\(103\) −2.36313 −0.232846 −0.116423 0.993200i \(-0.537143\pi\)
−0.116423 + 0.993200i \(0.537143\pi\)
\(104\) 0.463581 + 0.802945i 0.0454578 + 0.0787353i
\(105\) 0 0
\(106\) −1.63967 + 2.83998i −0.159258 + 0.275844i
\(107\) −2.27104 + 3.93356i −0.219550 + 0.380272i −0.954670 0.297665i \(-0.903792\pi\)
0.735120 + 0.677936i \(0.237126\pi\)
\(108\) 0 0
\(109\) −8.62227 14.9342i −0.825863 1.43044i −0.901258 0.433283i \(-0.857355\pi\)
0.0753945 0.997154i \(-0.475978\pi\)
\(110\) 1.03359 + 1.79023i 0.0985489 + 0.170692i
\(111\) 0 0
\(112\) −2.23651 + 4.75604i −0.211330 + 0.449404i
\(113\) 5.33760 + 9.24499i 0.502119 + 0.869695i 0.999997 + 0.00244827i \(0.000779310\pi\)
−0.497878 + 0.867247i \(0.665887\pi\)
\(114\) 0 0
\(115\) 15.9988 1.49190
\(116\) 3.00192 + 5.19947i 0.278721 + 0.482759i
\(117\) 0 0
\(118\) −0.930766 −0.0856840
\(119\) −6.84128 + 14.5483i −0.627139 + 1.33364i
\(120\) 0 0
\(121\) −8.27283 −0.752075
\(122\) 1.50773 2.61146i 0.136503 0.236430i
\(123\) 0 0
\(124\) −4.36057 7.55273i −0.391591 0.678255i
\(125\) −11.7532 −1.05124
\(126\) 0 0
\(127\) 14.4060 1.27833 0.639163 0.769072i \(-0.279281\pi\)
0.639163 + 0.769072i \(0.279281\pi\)
\(128\) −5.73739 9.93745i −0.507118 0.878355i
\(129\) 0 0
\(130\) −0.266653 + 0.461856i −0.0233870 + 0.0405075i
\(131\) −10.1852 −0.889884 −0.444942 0.895559i \(-0.646776\pi\)
−0.444942 + 0.895559i \(0.646776\pi\)
\(132\) 0 0
\(133\) 14.2696 1.20200i 1.23733 0.104227i
\(134\) 3.12405 0.269877
\(135\) 0 0
\(136\) −6.61173 11.4519i −0.566951 0.981989i
\(137\) −2.06231 −0.176195 −0.0880976 0.996112i \(-0.528079\pi\)
−0.0880976 + 0.996112i \(0.528079\pi\)
\(138\) 0 0
\(139\) −3.31894 5.74858i −0.281509 0.487588i 0.690248 0.723573i \(-0.257502\pi\)
−0.971757 + 0.235985i \(0.924168\pi\)
\(140\) −9.07829 + 0.764713i −0.767256 + 0.0646300i
\(141\) 0 0
\(142\) 3.75140 + 6.49761i 0.314810 + 0.545267i
\(143\) 0.351788 + 0.609314i 0.0294180 + 0.0509534i
\(144\) 0 0
\(145\) −3.82837 + 6.63093i −0.317929 + 0.550669i
\(146\) 0.474137 0.821230i 0.0392399 0.0679655i
\(147\) 0 0
\(148\) −3.84326 6.65672i −0.315914 0.547179i
\(149\) −9.51701 −0.779664 −0.389832 0.920886i \(-0.627467\pi\)
−0.389832 + 0.920886i \(0.627467\pi\)
\(150\) 0 0
\(151\) −11.0978 −0.903128 −0.451564 0.892239i \(-0.649134\pi\)
−0.451564 + 0.892239i \(0.649134\pi\)
\(152\) −5.88936 + 10.2007i −0.477690 + 0.827384i
\(153\) 0 0
\(154\) 1.11063 2.36180i 0.0894967 0.190319i
\(155\) 5.56107 9.63206i 0.446676 0.773665i
\(156\) 0 0
\(157\) −12.1264 + 21.0035i −0.967791 + 1.67626i −0.265870 + 0.964009i \(0.585659\pi\)
−0.701921 + 0.712255i \(0.747674\pi\)
\(158\) −2.27873 + 3.94688i −0.181286 + 0.313997i
\(159\) 0 0
\(160\) 5.80369 10.0523i 0.458822 0.794703i
\(161\) −11.5323 16.5835i −0.908870 1.30696i
\(162\) 0 0
\(163\) 5.54515 9.60448i 0.434330 0.752281i −0.562911 0.826518i \(-0.690319\pi\)
0.997241 + 0.0742364i \(0.0236520\pi\)
\(164\) 2.44121 0.190626
\(165\) 0 0
\(166\) 3.13967 0.243685
\(167\) 1.22550 + 2.12263i 0.0948321 + 0.164254i 0.909539 0.415620i \(-0.136435\pi\)
−0.814706 + 0.579874i \(0.803102\pi\)
\(168\) 0 0
\(169\) 6.40924 11.1011i 0.493019 0.853933i
\(170\) 3.80309 6.58714i 0.291684 0.505211i
\(171\) 0 0
\(172\) 6.97532 + 12.0816i 0.531863 + 0.921214i
\(173\) 4.64053 + 8.03763i 0.352813 + 0.611090i 0.986741 0.162302i \(-0.0518919\pi\)
−0.633928 + 0.773392i \(0.718559\pi\)
\(174\) 0 0
\(175\) 0.919269 + 1.32192i 0.0694902 + 0.0999276i
\(176\) −1.64023 2.84096i −0.123637 0.214145i
\(177\) 0 0
\(178\) −11.0843 −0.830801
\(179\) 9.27808 + 16.0701i 0.693476 + 1.20114i 0.970692 + 0.240328i \(0.0772551\pi\)
−0.277215 + 0.960808i \(0.589412\pi\)
\(180\) 0 0
\(181\) 13.2382 0.983989 0.491994 0.870598i \(-0.336268\pi\)
0.491994 + 0.870598i \(0.336268\pi\)
\(182\) 0.670945 0.0565173i 0.0497338 0.00418934i
\(183\) 0 0
\(184\) 16.6144 1.22483
\(185\) 4.90134 8.48937i 0.360354 0.624151i
\(186\) 0 0
\(187\) −5.01731 8.69023i −0.366902 0.635493i
\(188\) 18.6214 1.35811
\(189\) 0 0
\(190\) −6.77515 −0.491521
\(191\) −5.29867 9.17757i −0.383399 0.664066i 0.608147 0.793824i \(-0.291913\pi\)
−0.991546 + 0.129759i \(0.958580\pi\)
\(192\) 0 0
\(193\) 4.05981 7.03179i 0.292231 0.506159i −0.682106 0.731254i \(-0.738936\pi\)
0.974337 + 0.225094i \(0.0722690\pi\)
\(194\) −8.21610 −0.589881
\(195\) 0 0
\(196\) 7.33649 + 8.85886i 0.524035 + 0.632776i
\(197\) 9.05534 0.645166 0.322583 0.946541i \(-0.395449\pi\)
0.322583 + 0.946541i \(0.395449\pi\)
\(198\) 0 0
\(199\) −3.71302 6.43114i −0.263209 0.455892i 0.703884 0.710315i \(-0.251448\pi\)
−0.967093 + 0.254424i \(0.918114\pi\)
\(200\) −1.32438 −0.0936479
\(201\) 0 0
\(202\) −4.77525 8.27097i −0.335985 0.581943i
\(203\) 9.63285 0.811426i 0.676093 0.0569509i
\(204\) 0 0
\(205\) 1.55665 + 2.69619i 0.108721 + 0.188310i
\(206\) −0.705791 1.22247i −0.0491748 0.0851733i
\(207\) 0 0
\(208\) 0.423158 0.732931i 0.0293407 0.0508196i
\(209\) −4.46914 + 7.74077i −0.309137 + 0.535440i
\(210\) 0 0
\(211\) −1.33890 2.31905i −0.0921739 0.159650i 0.816252 0.577696i \(-0.196048\pi\)
−0.908426 + 0.418047i \(0.862715\pi\)
\(212\) 9.02099 0.619564
\(213\) 0 0
\(214\) −2.71315 −0.185467
\(215\) −8.89568 + 15.4078i −0.606680 + 1.05080i
\(216\) 0 0
\(217\) −13.9926 + 1.17867i −0.949881 + 0.0800136i
\(218\) 5.15039 8.92074i 0.348829 0.604189i
\(219\) 0 0
\(220\) 2.84326 4.92467i 0.191693 0.332021i
\(221\) 1.29440 2.24197i 0.0870709 0.150811i
\(222\) 0 0
\(223\) −10.7685 + 18.6515i −0.721110 + 1.24900i 0.239445 + 0.970910i \(0.423035\pi\)
−0.960555 + 0.278090i \(0.910299\pi\)
\(224\) −14.6031 + 1.23010i −0.975710 + 0.0821892i
\(225\) 0 0
\(226\) −3.18834 + 5.52237i −0.212085 + 0.367342i
\(227\) 13.1010 0.869546 0.434773 0.900540i \(-0.356829\pi\)
0.434773 + 0.900540i \(0.356829\pi\)
\(228\) 0 0
\(229\) 16.8245 1.11180 0.555898 0.831251i \(-0.312375\pi\)
0.555898 + 0.831251i \(0.312375\pi\)
\(230\) 4.77833 + 8.27631i 0.315074 + 0.545724i
\(231\) 0 0
\(232\) −3.97568 + 6.88608i −0.261016 + 0.452094i
\(233\) 11.3842 19.7180i 0.745804 1.29177i −0.204014 0.978968i \(-0.565399\pi\)
0.949818 0.312803i \(-0.101268\pi\)
\(234\) 0 0
\(235\) 11.8740 + 20.5664i 0.774576 + 1.34161i
\(236\) 1.28020 + 2.21738i 0.0833342 + 0.144339i
\(237\) 0 0
\(238\) −9.56923 + 0.806067i −0.620281 + 0.0522496i
\(239\) 4.75905 + 8.24292i 0.307837 + 0.533190i 0.977889 0.209125i \(-0.0670614\pi\)
−0.670052 + 0.742314i \(0.733728\pi\)
\(240\) 0 0
\(241\) 1.17308 0.0755650 0.0377825 0.999286i \(-0.487971\pi\)
0.0377825 + 0.999286i \(0.487971\pi\)
\(242\) −2.47083 4.27960i −0.158831 0.275103i
\(243\) 0 0
\(244\) −8.29509 −0.531039
\(245\) −5.10603 + 13.7517i −0.326212 + 0.878562i
\(246\) 0 0
\(247\) −2.30596 −0.146725
\(248\) 5.77506 10.0027i 0.366716 0.635171i
\(249\) 0 0
\(250\) −3.51030 6.08002i −0.222011 0.384534i
\(251\) 7.59042 0.479103 0.239552 0.970884i \(-0.423000\pi\)
0.239552 + 0.970884i \(0.423000\pi\)
\(252\) 0 0
\(253\) 12.6078 0.792648
\(254\) 4.30261 + 7.45234i 0.269970 + 0.467601i
\(255\) 0 0
\(256\) 2.76289 4.78547i 0.172681 0.299092i
\(257\) 23.2862 1.45255 0.726277 0.687402i \(-0.241249\pi\)
0.726277 + 0.687402i \(0.241249\pi\)
\(258\) 0 0
\(259\) −12.3326 + 1.03884i −0.766313 + 0.0645506i
\(260\) 1.46705 0.0909826
\(261\) 0 0
\(262\) −3.04199 5.26888i −0.187935 0.325513i
\(263\) 10.4446 0.644042 0.322021 0.946733i \(-0.395638\pi\)
0.322021 + 0.946733i \(0.395638\pi\)
\(264\) 0 0
\(265\) 5.75227 + 9.96322i 0.353359 + 0.612036i
\(266\) 4.88367 + 7.02277i 0.299437 + 0.430594i
\(267\) 0 0
\(268\) −4.29691 7.44247i −0.262476 0.454621i
\(269\) −14.2349 24.6556i −0.867917 1.50328i −0.864122 0.503283i \(-0.832125\pi\)
−0.00379485 0.999993i \(-0.501208\pi\)
\(270\) 0 0
\(271\) −13.6962 + 23.7226i −0.831986 + 1.44104i 0.0644746 + 0.997919i \(0.479463\pi\)
−0.896461 + 0.443123i \(0.853870\pi\)
\(272\) −6.03521 + 10.4533i −0.365938 + 0.633824i
\(273\) 0 0
\(274\) −0.615947 1.06685i −0.0372107 0.0644508i
\(275\) −1.00501 −0.0606041
\(276\) 0 0
\(277\) 4.11257 0.247100 0.123550 0.992338i \(-0.460572\pi\)
0.123550 + 0.992338i \(0.460572\pi\)
\(278\) 1.98252 3.43383i 0.118904 0.205948i
\(279\) 0 0
\(280\) −6.88865 9.90594i −0.411675 0.591993i
\(281\) 3.63063 6.28843i 0.216585 0.375136i −0.737177 0.675700i \(-0.763841\pi\)
0.953762 + 0.300564i \(0.0971748\pi\)
\(282\) 0 0
\(283\) 0.640173 1.10881i 0.0380543 0.0659120i −0.846371 0.532594i \(-0.821217\pi\)
0.884425 + 0.466682i \(0.154551\pi\)
\(284\) 10.3196 17.8740i 0.612354 1.06063i
\(285\) 0 0
\(286\) −0.210136 + 0.363966i −0.0124256 + 0.0215217i
\(287\) 1.67267 3.55701i 0.0987345 0.209964i
\(288\) 0 0
\(289\) −9.96117 + 17.2532i −0.585951 + 1.01490i
\(290\) −4.57365 −0.268574
\(291\) 0 0
\(292\) −2.60857 −0.152655
\(293\) −10.0067 17.3321i −0.584598 1.01255i −0.994925 0.100615i \(-0.967919\pi\)
0.410327 0.911938i \(-0.365414\pi\)
\(294\) 0 0
\(295\) −1.63266 + 2.82784i −0.0950569 + 0.164643i
\(296\) 5.08994 8.81604i 0.295847 0.512422i
\(297\) 0 0
\(298\) −2.84243 4.92323i −0.164657 0.285195i
\(299\) 1.62633 + 2.81689i 0.0940532 + 0.162905i
\(300\) 0 0
\(301\) 22.3831 1.88545i 1.29014 0.108675i
\(302\) −3.31456 5.74099i −0.190732 0.330357i
\(303\) 0 0
\(304\) 10.7516 0.616649
\(305\) −5.28940 9.16151i −0.302870 0.524587i
\(306\) 0 0
\(307\) −2.19415 −0.125227 −0.0626134 0.998038i \(-0.519944\pi\)
−0.0626134 + 0.998038i \(0.519944\pi\)
\(308\) −7.15414 + 0.602631i −0.407645 + 0.0343381i
\(309\) 0 0
\(310\) 6.64366 0.377334
\(311\) 4.25439 7.36882i 0.241244 0.417847i −0.719825 0.694156i \(-0.755778\pi\)
0.961069 + 0.276309i \(0.0891112\pi\)
\(312\) 0 0
\(313\) −1.51731 2.62806i −0.0857633 0.148546i 0.819953 0.572431i \(-0.194000\pi\)
−0.905716 + 0.423885i \(0.860666\pi\)
\(314\) −14.4871 −0.817552
\(315\) 0 0
\(316\) 12.5369 0.705258
\(317\) −2.64225 4.57652i −0.148404 0.257043i 0.782234 0.622985i \(-0.214080\pi\)
−0.930638 + 0.365942i \(0.880747\pi\)
\(318\) 0 0
\(319\) −3.01694 + 5.22550i −0.168916 + 0.292572i
\(320\) −1.39200 −0.0778150
\(321\) 0 0
\(322\) 5.13447 10.9187i 0.286133 0.608476i
\(323\) 32.8883 1.82996
\(324\) 0 0
\(325\) −0.129639 0.224542i −0.00719110 0.0124554i
\(326\) 6.62464 0.366905
\(327\) 0 0
\(328\) 1.61655 + 2.79994i 0.0892588 + 0.154601i
\(329\) 12.7590 27.1327i 0.703428 1.49587i
\(330\) 0 0
\(331\) −10.6008 18.3612i −0.582675 1.00922i −0.995161 0.0982581i \(-0.968673\pi\)
0.412486 0.910964i \(-0.364660\pi\)
\(332\) −4.31839 7.47968i −0.237003 0.410500i
\(333\) 0 0
\(334\) −0.732036 + 1.26792i −0.0400552 + 0.0693777i
\(335\) 5.47989 9.49145i 0.299398 0.518573i
\(336\) 0 0
\(337\) 7.02483 + 12.1674i 0.382667 + 0.662798i 0.991442 0.130544i \(-0.0416725\pi\)
−0.608776 + 0.793342i \(0.708339\pi\)
\(338\) 7.65695 0.416483
\(339\) 0 0
\(340\) −20.9235 −1.13474
\(341\) 4.38240 7.59053i 0.237320 0.411051i
\(342\) 0 0
\(343\) 17.9348 4.61985i 0.968388 0.249449i
\(344\) −9.23798 + 16.0007i −0.498078 + 0.862697i
\(345\) 0 0
\(346\) −2.77196 + 4.80117i −0.149021 + 0.258112i
\(347\) −10.0290 + 17.3707i −0.538385 + 0.932510i 0.460606 + 0.887605i \(0.347632\pi\)
−0.998991 + 0.0449055i \(0.985701\pi\)
\(348\) 0 0
\(349\) 13.9647 24.1876i 0.747513 1.29473i −0.201499 0.979489i \(-0.564581\pi\)
0.949012 0.315241i \(-0.102085\pi\)
\(350\) −0.409283 + 0.870361i −0.0218771 + 0.0465227i
\(351\) 0 0
\(352\) 4.57359 7.92169i 0.243773 0.422228i
\(353\) −5.99251 −0.318949 −0.159475 0.987202i \(-0.550980\pi\)
−0.159475 + 0.987202i \(0.550980\pi\)
\(354\) 0 0
\(355\) 26.3213 1.39699
\(356\) 15.2456 + 26.4062i 0.808017 + 1.39953i
\(357\) 0 0
\(358\) −5.54213 + 9.59926i −0.292911 + 0.507337i
\(359\) −8.30710 + 14.3883i −0.438432 + 0.759386i −0.997569 0.0696890i \(-0.977799\pi\)
0.559137 + 0.829075i \(0.311133\pi\)
\(360\) 0 0
\(361\) −5.14755 8.91581i −0.270924 0.469253i
\(362\) 3.95383 + 6.84824i 0.207809 + 0.359935i
\(363\) 0 0
\(364\) −1.05748 1.52067i −0.0554271 0.0797047i
\(365\) −1.66337 2.88104i −0.0870646 0.150800i
\(366\) 0 0
\(367\) 6.49528 0.339051 0.169525 0.985526i \(-0.445777\pi\)
0.169525 + 0.985526i \(0.445777\pi\)
\(368\) −7.58285 13.1339i −0.395283 0.684651i
\(369\) 0 0
\(370\) 5.85550 0.304413
\(371\) 6.18100 13.1442i 0.320902 0.682413i
\(372\) 0 0
\(373\) −20.1610 −1.04390 −0.521949 0.852977i \(-0.674795\pi\)
−0.521949 + 0.852977i \(0.674795\pi\)
\(374\) 2.99702 5.19099i 0.154972 0.268420i
\(375\) 0 0
\(376\) 12.3309 + 21.3578i 0.635919 + 1.10144i
\(377\) −1.55667 −0.0801724
\(378\) 0 0
\(379\) −15.3014 −0.785981 −0.392990 0.919543i \(-0.628559\pi\)
−0.392990 + 0.919543i \(0.628559\pi\)
\(380\) 9.31876 + 16.1406i 0.478042 + 0.827993i
\(381\) 0 0
\(382\) 3.16509 5.48210i 0.161940 0.280488i
\(383\) 6.78591 0.346744 0.173372 0.984856i \(-0.444534\pi\)
0.173372 + 0.984856i \(0.444534\pi\)
\(384\) 0 0
\(385\) −5.22744 7.51712i −0.266415 0.383108i
\(386\) 4.85014 0.246866
\(387\) 0 0
\(388\) 11.3007 + 19.5733i 0.573705 + 0.993686i
\(389\) −5.75913 −0.292000 −0.146000 0.989285i \(-0.546640\pi\)
−0.146000 + 0.989285i \(0.546640\pi\)
\(390\) 0 0
\(391\) −23.1953 40.1754i −1.17303 2.03176i
\(392\) −5.30250 + 14.2808i −0.267817 + 0.721290i
\(393\) 0 0
\(394\) 2.70454 + 4.68440i 0.136253 + 0.235997i
\(395\) 7.99423 + 13.8464i 0.402234 + 0.696689i
\(396\) 0 0
\(397\) 0.247873 0.429329i 0.0124404 0.0215474i −0.859738 0.510735i \(-0.829373\pi\)
0.872179 + 0.489188i \(0.162707\pi\)
\(398\) 2.21792 3.84155i 0.111174 0.192560i
\(399\) 0 0
\(400\) 0.604450 + 1.04694i 0.0302225 + 0.0523469i
\(401\) 10.3829 0.518500 0.259250 0.965810i \(-0.416525\pi\)
0.259250 + 0.965810i \(0.416525\pi\)
\(402\) 0 0
\(403\) 2.26121 0.112639
\(404\) −13.1360 + 22.7523i −0.653542 + 1.13197i
\(405\) 0 0
\(406\) 3.29678 + 4.74081i 0.163617 + 0.235282i
\(407\) 3.86250 6.69005i 0.191457 0.331613i
\(408\) 0 0
\(409\) 15.0097 25.9976i 0.742182 1.28550i −0.209318 0.977848i \(-0.567124\pi\)
0.951500 0.307649i \(-0.0995423\pi\)
\(410\) −0.929842 + 1.61053i −0.0459216 + 0.0795386i
\(411\) 0 0
\(412\) −1.94153 + 3.36284i −0.0956525 + 0.165675i
\(413\) 4.10805 0.346043i 0.202144 0.0170276i
\(414\) 0 0
\(415\) 5.50728 9.53889i 0.270342 0.468246i
\(416\) 2.35986 0.115702
\(417\) 0 0
\(418\) −5.33916 −0.261147
\(419\) −13.8248 23.9452i −0.675384 1.16980i −0.976357 0.216166i \(-0.930645\pi\)
0.300973 0.953633i \(-0.402689\pi\)
\(420\) 0 0
\(421\) −6.23107 + 10.7925i −0.303684 + 0.525996i −0.976967 0.213388i \(-0.931550\pi\)
0.673284 + 0.739384i \(0.264883\pi\)
\(422\) 0.799775 1.38525i 0.0389325 0.0674330i
\(423\) 0 0
\(424\) 5.97361 + 10.3466i 0.290104 + 0.502475i
\(425\) 1.84896 + 3.20249i 0.0896876 + 0.155344i
\(426\) 0 0
\(427\) −5.68363 + 12.0865i −0.275050 + 0.584908i
\(428\) 3.73175 + 6.46359i 0.180381 + 0.312429i
\(429\) 0 0
\(430\) −10.6274 −0.512500
\(431\) 7.05162 + 12.2138i 0.339665 + 0.588316i 0.984370 0.176115i \(-0.0563531\pi\)
−0.644705 + 0.764431i \(0.723020\pi\)
\(432\) 0 0
\(433\) −15.3684 −0.738560 −0.369280 0.929318i \(-0.620396\pi\)
−0.369280 + 0.929318i \(0.620396\pi\)
\(434\) −4.78889 6.88647i −0.229874 0.330561i
\(435\) 0 0
\(436\) −28.3360 −1.35705
\(437\) −20.6610 + 35.7860i −0.988351 + 1.71187i
\(438\) 0 0
\(439\) −9.62286 16.6673i −0.459274 0.795486i 0.539648 0.841890i \(-0.318557\pi\)
−0.998923 + 0.0464041i \(0.985224\pi\)
\(440\) 7.53112 0.359032
\(441\) 0 0
\(442\) 1.54639 0.0735541
\(443\) −12.2849 21.2781i −0.583673 1.01095i −0.995039 0.0994811i \(-0.968282\pi\)
0.411367 0.911470i \(-0.365052\pi\)
\(444\) 0 0
\(445\) −19.4429 + 33.6761i −0.921682 + 1.59640i
\(446\) −12.8648 −0.609166
\(447\) 0 0
\(448\) 1.00338 + 1.44287i 0.0474053 + 0.0681693i
\(449\) −40.0045 −1.88793 −0.943965 0.330046i \(-0.892936\pi\)
−0.943965 + 0.330046i \(0.892936\pi\)
\(450\) 0 0
\(451\) 1.22671 + 2.12473i 0.0577637 + 0.100050i
\(452\) 17.5414 0.825076
\(453\) 0 0
\(454\) 3.91286 + 6.77727i 0.183640 + 0.318073i
\(455\) 1.00519 2.13760i 0.0471242 0.100212i
\(456\) 0 0
\(457\) 5.31807 + 9.21117i 0.248769 + 0.430880i 0.963184 0.268841i \(-0.0866407\pi\)
−0.714416 + 0.699722i \(0.753307\pi\)
\(458\) 5.02495 + 8.70347i 0.234800 + 0.406686i
\(459\) 0 0
\(460\) 13.1445 22.7670i 0.612867 1.06152i
\(461\) 8.20458 14.2107i 0.382125 0.661860i −0.609241 0.792986i \(-0.708526\pi\)
0.991366 + 0.131125i \(0.0418589\pi\)
\(462\) 0 0
\(463\) −3.03196 5.25152i −0.140907 0.244059i 0.786931 0.617041i \(-0.211669\pi\)
−0.927839 + 0.372982i \(0.878335\pi\)
\(464\) 7.25803 0.336946
\(465\) 0 0
\(466\) 13.6004 0.630027
\(467\) 12.6433 21.8988i 0.585062 1.01336i −0.409805 0.912173i \(-0.634403\pi\)
0.994868 0.101185i \(-0.0322632\pi\)
\(468\) 0 0
\(469\) −13.7884 + 1.16147i −0.636687 + 0.0536315i
\(470\) −7.09279 + 12.2851i −0.327166 + 0.566668i
\(471\) 0 0
\(472\) −1.69548 + 2.93666i −0.0780408 + 0.135171i
\(473\) −7.01023 + 12.1421i −0.322331 + 0.558294i
\(474\) 0 0
\(475\) 1.64695 2.85260i 0.0755671 0.130886i
\(476\) 15.0821 + 21.6882i 0.691288 + 0.994079i
\(477\) 0 0
\(478\) −2.84275 + 4.92379i −0.130025 + 0.225209i
\(479\) 3.34249 0.152722 0.0763611 0.997080i \(-0.475670\pi\)
0.0763611 + 0.997080i \(0.475670\pi\)
\(480\) 0 0
\(481\) 1.99295 0.0908708
\(482\) 0.350363 + 0.606846i 0.0159586 + 0.0276411i
\(483\) 0 0
\(484\) −6.79691 + 11.7726i −0.308951 + 0.535118i
\(485\) −14.4118 + 24.9620i −0.654408 + 1.13347i
\(486\) 0 0
\(487\) −3.63943 6.30368i −0.164918 0.285647i 0.771708 0.635977i \(-0.219403\pi\)
−0.936626 + 0.350330i \(0.886069\pi\)
\(488\) −5.49293 9.51404i −0.248653 0.430680i
\(489\) 0 0
\(490\) −8.63886 + 1.46580i −0.390264 + 0.0662179i
\(491\) −1.48565 2.57323i −0.0670466 0.116128i 0.830553 0.556939i \(-0.188024\pi\)
−0.897600 + 0.440811i \(0.854691\pi\)
\(492\) 0 0
\(493\) 22.2017 0.999913
\(494\) −0.688717 1.19289i −0.0309869 0.0536708i
\(495\) 0 0
\(496\) −10.5430 −0.473394
\(497\) −18.9729 27.2833i −0.851052 1.22382i
\(498\) 0 0
\(499\) 12.4859 0.558944 0.279472 0.960154i \(-0.409841\pi\)
0.279472 + 0.960154i \(0.409841\pi\)
\(500\) −9.65635 + 16.7253i −0.431845 + 0.747977i
\(501\) 0 0
\(502\) 2.26702 + 3.92659i 0.101182 + 0.175252i
\(503\) 17.4657 0.778755 0.389377 0.921078i \(-0.372690\pi\)
0.389377 + 0.921078i \(0.372690\pi\)
\(504\) 0 0
\(505\) −33.5050 −1.49095
\(506\) 3.76556 + 6.52214i 0.167400 + 0.289945i
\(507\) 0 0
\(508\) 11.8359 20.5004i 0.525133 0.909556i
\(509\) −27.5341 −1.22043 −0.610215 0.792236i \(-0.708917\pi\)
−0.610215 + 0.792236i \(0.708917\pi\)
\(510\) 0 0
\(511\) −1.78734 + 3.80087i −0.0790674 + 0.168141i
\(512\) −19.6488 −0.868363
\(513\) 0 0
\(514\) 6.95485 + 12.0462i 0.306765 + 0.531333i
\(515\) −4.95211 −0.218216
\(516\) 0 0
\(517\) 9.35732 + 16.2074i 0.411534 + 0.712798i
\(518\) −4.22077 6.06951i −0.185450 0.266679i
\(519\) 0 0
\(520\) 0.971467 + 1.68263i 0.0426017 + 0.0737882i
\(521\) −3.46252 5.99726i −0.151696 0.262745i 0.780155 0.625586i \(-0.215140\pi\)
−0.931851 + 0.362841i \(0.881807\pi\)
\(522\) 0 0
\(523\) 20.7968 36.0211i 0.909381 1.57509i 0.0944561 0.995529i \(-0.469889\pi\)
0.814925 0.579566i \(-0.196778\pi\)
\(524\) −8.36810 + 14.4940i −0.365562 + 0.633172i
\(525\) 0 0
\(526\) 3.11947 + 5.40308i 0.136015 + 0.235586i
\(527\) −32.2500 −1.40483
\(528\) 0 0
\(529\) 35.2867 1.53420
\(530\) −3.43604 + 5.95139i −0.149252 + 0.258512i
\(531\) 0 0
\(532\) 10.0133 21.2938i 0.434132 0.923203i
\(533\) −0.316477 + 0.548154i −0.0137081 + 0.0237432i
\(534\) 0 0
\(535\) −4.75914 + 8.24307i −0.205755 + 0.356379i
\(536\) 5.69075 9.85667i 0.245803 0.425743i
\(537\) 0 0
\(538\) 8.50302 14.7277i 0.366591 0.634954i
\(539\) −4.02380 + 10.8370i −0.173317 + 0.466782i
\(540\) 0 0
\(541\) 16.8944 29.2619i 0.726345 1.25807i −0.232073 0.972698i \(-0.574551\pi\)
0.958418 0.285368i \(-0.0921158\pi\)
\(542\) −16.3625 −0.702830
\(543\) 0 0
\(544\) −33.6570 −1.44303
\(545\) −18.0686 31.2957i −0.773973 1.34056i
\(546\) 0 0
\(547\) 7.06548 12.2378i 0.302098 0.523249i −0.674513 0.738263i \(-0.735646\pi\)
0.976611 + 0.215014i \(0.0689797\pi\)
\(548\) −1.69438 + 2.93476i −0.0723805 + 0.125367i
\(549\) 0 0
\(550\) −0.300163 0.519898i −0.0127990 0.0221685i
\(551\) −9.88800 17.1265i −0.421243 0.729614i
\(552\) 0 0
\(553\) 8.59007 18.2672i 0.365287 0.776800i
\(554\) 1.22829 + 2.12746i 0.0521851 + 0.0903873i
\(555\) 0 0
\(556\) −10.9073 −0.462573
\(557\) 3.74784 + 6.49145i 0.158801 + 0.275051i 0.934437 0.356130i \(-0.115904\pi\)
−0.775636 + 0.631181i \(0.782571\pi\)
\(558\) 0 0
\(559\) −3.61710 −0.152987
\(560\) −4.68676 + 9.96663i −0.198052 + 0.421167i
\(561\) 0 0
\(562\) 4.33741 0.182963
\(563\) −5.21120 + 9.02606i −0.219626 + 0.380403i −0.954694 0.297591i \(-0.903817\pi\)
0.735068 + 0.677994i \(0.237150\pi\)
\(564\) 0 0
\(565\) 11.1853 + 19.3735i 0.470570 + 0.815051i
\(566\) 0.764797 0.0321468
\(567\) 0 0
\(568\) 27.3341 1.14691
\(569\) 14.9832 + 25.9517i 0.628130 + 1.08795i 0.987927 + 0.154923i \(0.0495129\pi\)
−0.359796 + 0.933031i \(0.617154\pi\)
\(570\) 0 0
\(571\) −15.7168 + 27.2223i −0.657727 + 1.13922i 0.323476 + 0.946236i \(0.395149\pi\)
−0.981203 + 0.192980i \(0.938185\pi\)
\(572\) 1.15611 0.0483393
\(573\) 0 0
\(574\) 2.33964 0.197081i 0.0976549 0.00822599i
\(575\) −4.64619 −0.193760
\(576\) 0 0
\(577\) 1.35570 + 2.34815i 0.0564387 + 0.0977547i 0.892864 0.450326i \(-0.148692\pi\)
−0.836426 + 0.548080i \(0.815359\pi\)
\(578\) −11.9003 −0.494989
\(579\) 0 0
\(580\) 6.29074 + 10.8959i 0.261209 + 0.452427i
\(581\) −13.8573 + 1.16727i −0.574897 + 0.0484266i
\(582\) 0 0
\(583\) 4.53307 + 7.85151i 0.187741 + 0.325176i
\(584\) −1.72737 2.99190i −0.0714792 0.123806i
\(585\) 0 0
\(586\) 5.97737 10.3531i 0.246923 0.427683i
\(587\) −5.35198 + 9.26990i −0.220900 + 0.382610i −0.955081 0.296343i \(-0.904233\pi\)
0.734182 + 0.678953i \(0.237566\pi\)
\(588\) 0 0
\(589\) 14.3633 + 24.8779i 0.591828 + 1.02508i
\(590\) −1.95049 −0.0803004
\(591\) 0 0
\(592\) −9.29223 −0.381908
\(593\) 14.8489 25.7191i 0.609773 1.05616i −0.381505 0.924367i \(-0.624594\pi\)
0.991278 0.131791i \(-0.0420727\pi\)
\(594\) 0 0
\(595\) −14.3364 + 30.4870i −0.587735 + 1.24985i
\(596\) −7.81912 + 13.5431i −0.320284 + 0.554748i
\(597\) 0 0
\(598\) −0.971467 + 1.68263i −0.0397262 + 0.0688079i
\(599\) −7.19914 + 12.4693i −0.294149 + 0.509481i −0.974787 0.223140i \(-0.928369\pi\)
0.680638 + 0.732620i \(0.261703\pi\)
\(600\) 0 0
\(601\) −8.85598 + 15.3390i −0.361243 + 0.625691i −0.988166 0.153390i \(-0.950981\pi\)
0.626923 + 0.779081i \(0.284314\pi\)
\(602\) 7.66047 + 11.0158i 0.312218 + 0.448972i
\(603\) 0 0
\(604\) −9.11791 + 15.7927i −0.371002 + 0.642595i
\(605\) −17.3363 −0.704822
\(606\) 0 0
\(607\) −5.15543 −0.209252 −0.104626 0.994512i \(-0.533365\pi\)
−0.104626 + 0.994512i \(0.533365\pi\)
\(608\) 14.9899 + 25.9633i 0.607921 + 1.05295i
\(609\) 0 0
\(610\) 3.15955 5.47250i 0.127927 0.221575i
\(611\) −2.41407 + 4.18129i −0.0976628 + 0.169157i
\(612\) 0 0
\(613\) −5.62940 9.75042i −0.227370 0.393816i 0.729658 0.683812i \(-0.239679\pi\)
−0.957028 + 0.289996i \(0.906346\pi\)
\(614\) −0.655323 1.13505i −0.0264467 0.0458070i
\(615\) 0 0
\(616\) −5.42859 7.80637i −0.218724 0.314528i
\(617\) 0.260152 + 0.450597i 0.0104733 + 0.0181403i 0.871215 0.490902i \(-0.163333\pi\)
−0.860741 + 0.509043i \(0.830000\pi\)
\(618\) 0 0
\(619\) −37.4740 −1.50621 −0.753104 0.657901i \(-0.771444\pi\)
−0.753104 + 0.657901i \(0.771444\pi\)
\(620\) −9.13789 15.8273i −0.366987 0.635639i
\(621\) 0 0
\(622\) 5.08260 0.203794
\(623\) 48.9217 4.12094i 1.96001 0.165102i
\(624\) 0 0
\(625\) −21.5868 −0.863471
\(626\) 0.906343 1.56983i 0.0362248 0.0627431i
\(627\) 0 0
\(628\) 19.9260 + 34.5128i 0.795132 + 1.37721i
\(629\) −28.4241 −1.13334
\(630\) 0 0
\(631\) 0.502795 0.0200159 0.0100080 0.999950i \(-0.496814\pi\)
0.0100080 + 0.999950i \(0.496814\pi\)
\(632\) 8.30185 + 14.3792i 0.330230 + 0.571975i
\(633\) 0 0
\(634\) 1.57831 2.73372i 0.0626828 0.108570i
\(635\) 30.1888 1.19801
\(636\) 0 0
\(637\) −2.94029 + 0.498892i −0.116498 + 0.0197668i
\(638\) −3.60426 −0.142694
\(639\) 0 0
\(640\) −12.0231 20.8247i −0.475256 0.823167i
\(641\) −9.96117 −0.393442 −0.196721 0.980459i \(-0.563029\pi\)
−0.196721 + 0.980459i \(0.563029\pi\)
\(642\) 0 0
\(643\) −10.8118 18.7266i −0.426376 0.738505i 0.570172 0.821525i \(-0.306877\pi\)
−0.996548 + 0.0830207i \(0.973543\pi\)
\(644\) −33.0739 + 2.78599i −1.30330 + 0.109784i
\(645\) 0 0
\(646\) 9.82270 + 17.0134i 0.386469 + 0.669384i
\(647\) 19.3679 + 33.5462i 0.761430 + 1.31884i 0.942113 + 0.335294i \(0.108836\pi\)
−0.180683 + 0.983541i \(0.557831\pi\)
\(648\) 0 0
\(649\) −1.28661 + 2.22848i −0.0505040 + 0.0874755i
\(650\) 0.0774383 0.134127i 0.00303738 0.00526090i
\(651\) 0 0
\(652\) −9.11173 15.7820i −0.356843 0.618070i
\(653\) −21.7978 −0.853013 −0.426506 0.904485i \(-0.640256\pi\)
−0.426506 + 0.904485i \(0.640256\pi\)
\(654\) 0 0
\(655\) −21.3438 −0.833972
\(656\) 1.47559 2.55579i 0.0576120 0.0997870i
\(657\) 0 0
\(658\) 17.8467 1.50332i 0.695737 0.0586056i
\(659\) −2.56810 + 4.44807i −0.100039 + 0.173272i −0.911700 0.410856i \(-0.865230\pi\)
0.811662 + 0.584128i \(0.198563\pi\)
\(660\) 0 0
\(661\) −6.58087 + 11.3984i −0.255966 + 0.443347i −0.965158 0.261670i \(-0.915727\pi\)
0.709191 + 0.705016i \(0.249060\pi\)
\(662\) 6.33226 10.9678i 0.246110 0.426276i
\(663\) 0 0
\(664\) 5.71920 9.90594i 0.221948 0.384425i
\(665\) 29.9029 2.51888i 1.15959 0.0976781i
\(666\) 0 0
\(667\) −13.9475 + 24.1577i −0.540048 + 0.935391i
\(668\) 4.02746 0.155827
\(669\) 0 0
\(670\) 6.54667 0.252920
\(671\) −4.16831 7.21972i −0.160916 0.278714i
\(672\) 0 0
\(673\) 3.50605 6.07265i 0.135148 0.234083i −0.790506 0.612454i \(-0.790182\pi\)
0.925654 + 0.378371i \(0.123516\pi\)
\(674\) −4.19618 + 7.26800i −0.161631 + 0.279953i
\(675\) 0 0
\(676\) −10.5316 18.2413i −0.405062 0.701587i
\(677\) −18.4481 31.9531i −0.709018 1.22806i −0.965222 0.261433i \(-0.915805\pi\)
0.256203 0.966623i \(-0.417528\pi\)
\(678\) 0 0
\(679\) 36.2627 3.05460i 1.39164 0.117225i
\(680\) −13.8554 23.9982i −0.531329 0.920289i
\(681\) 0 0
\(682\) 5.23553 0.200479
\(683\) 2.79970 + 4.84921i 0.107127 + 0.185550i 0.914605 0.404348i \(-0.132501\pi\)
−0.807478 + 0.589898i \(0.799168\pi\)
\(684\) 0 0
\(685\) −4.32172 −0.165125
\(686\) 7.74644 + 7.89802i 0.295760 + 0.301548i
\(687\) 0 0
\(688\) 16.8649 0.642969
\(689\) −1.16948 + 2.02559i −0.0445535 + 0.0771689i
\(690\) 0 0
\(691\) 3.19219 + 5.52903i 0.121437 + 0.210334i 0.920334 0.391132i \(-0.127917\pi\)
−0.798898 + 0.601467i \(0.794583\pi\)
\(692\) 15.2505 0.579738
\(693\) 0 0
\(694\) −11.9814 −0.454807
\(695\) −6.95509 12.0466i −0.263822 0.456952i
\(696\) 0 0
\(697\) 4.51369 7.81795i 0.170968 0.296126i
\(698\) 16.6832 0.631470
\(699\) 0 0
\(700\) 2.63641 0.222079i 0.0996471 0.00839380i
\(701\) −10.9860 −0.414937 −0.207468 0.978242i \(-0.566522\pi\)
−0.207468 + 0.978242i \(0.566522\pi\)
\(702\) 0 0
\(703\) 12.6593 + 21.9265i 0.477455 + 0.826975i
\(704\) −1.09696 −0.0413433
\(705\) 0 0
\(706\) −1.78977 3.09998i −0.0673590 0.116669i
\(707\) 24.1511 + 34.7295i 0.908296 + 1.30614i
\(708\) 0 0
\(709\) −13.2658 22.9771i −0.498208 0.862922i 0.501790 0.864990i \(-0.332675\pi\)
−0.999998 + 0.00206764i \(0.999342\pi\)
\(710\) 7.86133 + 13.6162i 0.295030 + 0.511008i
\(711\) 0 0
\(712\) −20.1910 + 34.9719i −0.756691 + 1.31063i
\(713\) 20.2600 35.0914i 0.758744 1.31418i
\(714\) 0 0
\(715\) 0.737197 + 1.27686i 0.0275696 + 0.0477520i
\(716\) 30.4913 1.13951
\(717\) 0 0
\(718\) −9.92426 −0.370370
\(719\) 10.4980 18.1831i 0.391510 0.678116i −0.601139 0.799145i \(-0.705286\pi\)
0.992649 + 0.121029i \(0.0386194\pi\)
\(720\) 0 0
\(721\) 3.56959 + 5.13310i 0.132938 + 0.191167i
\(722\) 3.07482 5.32574i 0.114433 0.198203i
\(723\) 0 0
\(724\) 10.8764 18.8386i 0.404220 0.700129i
\(725\) 1.11179 1.92568i 0.0412909 0.0715179i
\(726\) 0 0
\(727\) −8.53160 + 14.7772i −0.316420 + 0.548055i −0.979738 0.200282i \(-0.935814\pi\)
0.663319 + 0.748337i \(0.269147\pi\)
\(728\) 1.04387 2.21985i 0.0386885 0.0822730i
\(729\) 0 0
\(730\) 0.993590 1.72095i 0.0367744 0.0636951i
\(731\) 51.5883 1.90806
\(732\) 0 0
\(733\) −34.4805 −1.27357 −0.636784 0.771042i \(-0.719736\pi\)
−0.636784 + 0.771042i \(0.719736\pi\)
\(734\) 1.93993 + 3.36006i 0.0716042 + 0.124022i
\(735\) 0 0
\(736\) 21.1439 36.6224i 0.779376 1.34992i
\(737\) 4.31842 7.47973i 0.159071 0.275519i
\(738\) 0 0
\(739\) 0.685922 + 1.18805i 0.0252321 + 0.0437032i 0.878366 0.477989i \(-0.158634\pi\)
−0.853134 + 0.521692i \(0.825301\pi\)
\(740\) −8.05383 13.9497i −0.296065 0.512799i
\(741\) 0 0
\(742\) 8.64568 0.728271i 0.317393 0.0267357i
\(743\) 4.47124 + 7.74442i 0.164034 + 0.284115i 0.936312 0.351170i \(-0.114216\pi\)
−0.772278 + 0.635285i \(0.780883\pi\)
\(744\) 0 0
\(745\) −19.9436 −0.730676
\(746\) −6.02145 10.4295i −0.220461 0.381850i
\(747\) 0 0
\(748\) −16.4888 −0.602889
\(749\) 11.9748 1.00870i 0.437550 0.0368572i
\(750\) 0 0
\(751\) 50.5711 1.84537 0.922683 0.385559i \(-0.125991\pi\)
0.922683 + 0.385559i \(0.125991\pi\)
\(752\) 11.2557 19.4955i 0.410453 0.710926i
\(753\) 0 0
\(754\) −0.464927 0.805277i −0.0169316 0.0293265i
\(755\) −23.2563 −0.846383
\(756\) 0 0
\(757\) 9.56041 0.347479 0.173739 0.984792i \(-0.444415\pi\)
0.173739 + 0.984792i \(0.444415\pi\)
\(758\) −4.57004 7.91555i −0.165991 0.287506i
\(759\) 0 0
\(760\) −12.3416 + 21.3763i −0.447676 + 0.775398i
\(761\) 37.8812 1.37319 0.686595 0.727040i \(-0.259104\pi\)
0.686595 + 0.727040i \(0.259104\pi\)
\(762\) 0 0
\(763\) −19.4153 + 41.2876i −0.702881 + 1.49471i
\(764\) −17.4134 −0.629996
\(765\) 0 0
\(766\) 2.02674 + 3.51041i 0.0732289 + 0.126836i
\(767\) −0.663860 −0.0239706
\(768\) 0 0
\(769\) 14.2794 + 24.7326i 0.514928 + 0.891881i 0.999850 + 0.0173236i \(0.00551456\pi\)
−0.484922 + 0.874557i \(0.661152\pi\)
\(770\) 2.32740 4.94932i 0.0838736 0.178361i
\(771\) 0 0
\(772\) −6.67103 11.5546i −0.240096 0.415858i
\(773\) 5.35149 + 9.26905i 0.192480 + 0.333385i 0.946071 0.323958i \(-0.105014\pi\)
−0.753592 + 0.657343i \(0.771680\pi\)
\(774\) 0 0
\(775\) −1.61498 + 2.79723i −0.0580119 + 0.100480i
\(776\) −14.9664 + 25.9226i −0.537262 + 0.930566i
\(777\) 0 0
\(778\) −1.72007 2.97925i −0.0616675 0.106811i
\(779\) −8.04109 −0.288102
\(780\) 0 0
\(781\) 20.7425 0.742224
\(782\) 13.8554 23.9982i 0.495467 0.858174i
\(783\) 0 0
\(784\) 13.7092 2.32610i 0.489615 0.0830752i
\(785\) −25.4117 + 44.0144i −0.906984 + 1.57094i
\(786\) 0 0
\(787\) 18.3183 31.7283i 0.652978 1.13099i −0.329418 0.944184i \(-0.606853\pi\)
0.982397 0.186808i \(-0.0598141\pi\)
\(788\) 7.43982 12.8861i 0.265033 0.459050i
\(789\) 0 0
\(790\) −4.77525 + 8.27097i −0.169896 + 0.294268i
\(791\) 12.0190 25.5590i 0.427346 0.908773i
\(792\) 0 0
\(793\) 1.07537 1.86260i 0.0381875 0.0661428i
\(794\) 0.296128 0.0105092
\(795\) 0 0
\(796\) −12.2024 −0.432502
\(797\) −9.52403 16.4961i −0.337359 0.584322i 0.646576 0.762849i \(-0.276200\pi\)
−0.983935 + 0.178527i \(0.942867\pi\)
\(798\) 0 0
\(799\) 34.4302 59.6349i 1.21805 2.10973i
\(800\) −1.68544 + 2.91927i −0.0595893 + 0.103212i
\(801\) 0 0
\(802\) 3.10106 + 5.37119i 0.109502 + 0.189663i
\(803\) −1.31082 2.27040i −0.0462577 0.0801206i
\(804\) 0 0
\(805\) −24.1667 34.7520i −0.851765 1.22485i
\(806\) 0.675350 + 1.16974i 0.0237882 + 0.0412024i
\(807\) 0 0
\(808\) −34.7943 −1.22406
\(809\) −9.24567 16.0140i −0.325060 0.563021i 0.656464 0.754357i \(-0.272051\pi\)
−0.981525 + 0.191336i \(0.938718\pi\)
\(810\) 0 0
\(811\) 41.5033 1.45738 0.728690 0.684844i \(-0.240130\pi\)
0.728690 + 0.684844i \(0.240130\pi\)
\(812\) 6.75960 14.3746i 0.237216 0.504450i
\(813\) 0 0
\(814\) 4.61442 0.161735
\(815\) 11.6203 20.1269i 0.407040 0.705014i
\(816\) 0 0
\(817\) −22.9760 39.7955i −0.803827 1.39227i
\(818\) 17.9317 0.626966
\(819\) 0 0
\(820\) 5.11573 0.178649
\(821\) 16.2444 + 28.1360i 0.566932 + 0.981955i 0.996867 + 0.0790951i \(0.0252031\pi\)
−0.429935 + 0.902860i \(0.641464\pi\)
\(822\) 0 0
\(823\) 7.86963 13.6306i 0.274318 0.475133i −0.695645 0.718386i \(-0.744881\pi\)
0.969963 + 0.243253i \(0.0782145\pi\)
\(824\) −5.14266 −0.179153
\(825\) 0 0
\(826\) 1.40595 + 2.02178i 0.0489194 + 0.0703466i
\(827\) −40.6095 −1.41213 −0.706066 0.708146i \(-0.749532\pi\)
−0.706066 + 0.708146i \(0.749532\pi\)
\(828\) 0 0
\(829\) −12.7290 22.0473i −0.442097 0.765734i 0.555748 0.831351i \(-0.312432\pi\)
−0.997845 + 0.0656169i \(0.979098\pi\)
\(830\) 6.57940 0.228374
\(831\) 0 0
\(832\) −0.141501 0.245087i −0.00490567 0.00849688i
\(833\) 41.9353 7.11535i 1.45297 0.246532i
\(834\) 0 0
\(835\) 2.56813 + 4.44813i 0.0888737 + 0.153934i
\(836\) 7.34364 + 12.7196i 0.253985 + 0.439915i
\(837\) 0 0
\(838\) 8.25803 14.3033i 0.285269 0.494100i
\(839\) −24.1746 + 41.8717i −0.834600 + 1.44557i 0.0597550 + 0.998213i \(0.480968\pi\)
−0.894355 + 0.447357i \(0.852365\pi\)
\(840\) 0 0
\(841\) 7.82499 + 13.5533i 0.269827 + 0.467354i
\(842\) −7.44409 −0.256540
\(843\) 0 0
\(844\) −4.40014 −0.151459
\(845\) 13.4310 23.2632i 0.462042 0.800280i
\(846\) 0 0
\(847\) 12.4964 + 17.9699i 0.429381 + 0.617454i
\(848\) 5.45273 9.44441i 0.187248 0.324322i
\(849\) 0 0
\(850\) −1.10445 + 1.91296i −0.0378823 + 0.0656141i
\(851\) 17.8565 30.9284i 0.612114 1.06021i
\(852\) 0 0
\(853\) 1.32933 2.30247i 0.0455155 0.0788352i −0.842370 0.538899i \(-0.818840\pi\)
0.887886 + 0.460064i \(0.152174\pi\)
\(854\) −7.94998 + 0.669669i −0.272043 + 0.0229156i
\(855\) 0 0
\(856\) −4.94226 + 8.56025i −0.168923 + 0.292583i
\(857\) 14.0664 0.480498 0.240249 0.970711i \(-0.422771\pi\)
0.240249 + 0.970711i \(0.422771\pi\)
\(858\) 0 0
\(859\) −19.2927 −0.658258 −0.329129 0.944285i \(-0.606755\pi\)
−0.329129 + 0.944285i \(0.606755\pi\)
\(860\) 14.6173 + 25.3179i 0.498445 + 0.863333i
\(861\) 0 0
\(862\) −4.21219 + 7.29572i −0.143468 + 0.248493i
\(863\) 21.1692 36.6661i 0.720608 1.24813i −0.240149 0.970736i \(-0.577196\pi\)
0.960756 0.277393i \(-0.0894705\pi\)
\(864\) 0 0
\(865\) 9.72457 + 16.8434i 0.330645 + 0.572694i
\(866\) −4.59006 7.95022i −0.155977 0.270159i
\(867\) 0 0
\(868\) −9.81896 + 20.8805i −0.333277 + 0.708731i
\(869\) 6.29985 + 10.9117i 0.213708 + 0.370153i
\(870\) 0 0
\(871\) 2.22820 0.0754996
\(872\) −18.7639 32.4999i −0.635424 1.10059i
\(873\) 0 0
\(874\) −24.6832 −0.834921
\(875\) 17.7536 + 25.5298i 0.600180 + 0.863065i
\(876\) 0 0
\(877\) −10.0508 −0.339393 −0.169697 0.985496i \(-0.554279\pi\)
−0.169697 + 0.985496i \(0.554279\pi\)
\(878\) 5.74809 9.95598i 0.193989 0.335998i
\(879\) 0 0
\(880\) −3.43722 5.95343i −0.115868 0.200690i
\(881\) −25.7602 −0.867885 −0.433942 0.900941i \(-0.642878\pi\)
−0.433942 + 0.900941i \(0.642878\pi\)
\(882\) 0 0
\(883\) −53.1876 −1.78991 −0.894953 0.446160i \(-0.852791\pi\)
−0.894953 + 0.446160i \(0.852791\pi\)
\(884\) −2.12695 3.68398i −0.0715370 0.123906i
\(885\) 0 0
\(886\) 7.33821 12.7102i 0.246532 0.427006i
\(887\) 20.9517 0.703489 0.351745 0.936096i \(-0.385589\pi\)
0.351745 + 0.936096i \(0.385589\pi\)
\(888\) 0 0
\(889\) −21.7607 31.2922i −0.729832 1.04951i
\(890\) −23.2279 −0.778601
\(891\) 0 0
\(892\) 17.6946 + 30.6480i 0.592460 + 1.02617i
\(893\) −61.3370 −2.05256
\(894\) 0 0
\(895\) 19.4429 + 33.6761i 0.649904 + 1.12567i
\(896\) −12.9192 + 27.4734i −0.431601 + 0.917822i
\(897\) 0 0
\(898\) −11.9481 20.6947i −0.398712 0.690590i
\(899\) 9.69609 + 16.7941i 0.323383 + 0.560115i
\(900\) 0 0
\(901\) 16.6794 28.8896i 0.555672 0.962452i
\(902\) −0.732761 + 1.26918i −0.0243983 + 0.0422591i
\(903\) 0 0
\(904\) 11.6157 + 20.1190i 0.386333 + 0.669149i
\(905\) 27.7416 0.922163
\(906\) 0 0
\(907\) 47.5854 1.58005 0.790024 0.613077i \(-0.210068\pi\)
0.790024 + 0.613077i \(0.210068\pi\)
\(908\) 10.7637 18.6433i 0.357207 0.618701i
\(909\) 0 0
\(910\) 1.40602 0.118436i 0.0466090 0.00392612i
\(911\) 14.8860 25.7833i 0.493194 0.854238i −0.506775 0.862078i \(-0.669162\pi\)
0.999969 + 0.00784062i \(0.00249577\pi\)
\(912\) 0 0
\(913\) 4.34001 7.51712i 0.143633 0.248780i
\(914\) −3.17668 + 5.50217i −0.105075 + 0.181995i
\(915\) 0 0
\(916\) 13.8229 23.9420i 0.456723 0.791067i
\(917\) 15.3851 + 22.1239i 0.508060 + 0.730595i
\(918\) 0 0
\(919\) −15.2293 + 26.3779i −0.502367 + 0.870126i 0.497629 + 0.867390i \(0.334204\pi\)
−0.999996 + 0.00273583i \(0.999129\pi\)
\(920\) 34.8167 1.14787
\(921\) 0 0
\(922\) 9.80179 0.322805
\(923\) 2.67565 + 4.63436i 0.0880700 + 0.152542i
\(924\) 0 0
\(925\) −1.42339 + 2.46539i −0.0468009 + 0.0810615i
\(926\) 1.81110 3.13692i 0.0595165 0.103086i
\(927\) 0 0
\(928\) 10.1191 + 17.5268i 0.332176 + 0.575346i
\(929\) 10.5830 + 18.3304i 0.347218 + 0.601400i 0.985754 0.168192i \(-0.0537930\pi\)
−0.638536 + 0.769592i \(0.720460\pi\)
\(930\) 0 0
\(931\) −24.1656 29.1802i −0.791996 0.956342i
\(932\) −18.7064 32.4005i −0.612749 1.06131i
\(933\) 0 0
\(934\) 15.1046 0.494238
\(935\) −10.5141 18.2110i −0.343849 0.595564i
\(936\) 0 0
\(937\) 40.2779 1.31582 0.657912 0.753095i \(-0.271440\pi\)
0.657912 + 0.753095i \(0.271440\pi\)
\(938\) −4.71898 6.78594i −0.154080 0.221569i
\(939\) 0 0
\(940\) 39.0226 1.27278
\(941\) −0.910476 + 1.57699i −0.0296807 + 0.0514084i −0.880484 0.474076i \(-0.842782\pi\)
0.850804 + 0.525484i \(0.176116\pi\)
\(942\) 0 0
\(943\) 5.67116 + 9.82274i 0.184678 + 0.319872i
\(944\) 3.09528 0.100743
\(945\) 0 0
\(946\) −8.37494 −0.272293
\(947\) −6.74590 11.6842i −0.219212 0.379687i 0.735355 0.677682i \(-0.237015\pi\)
−0.954567 + 0.297995i \(0.903682\pi\)
\(948\) 0 0
\(949\) 0.338174 0.585734i 0.0109776 0.0190137i
\(950\) 1.96756 0.0638362
\(951\) 0 0
\(952\) −14.8880 + 31.6602i −0.482524 + 1.02611i
\(953\) −4.95309 −0.160446 −0.0802232 0.996777i \(-0.525563\pi\)
−0.0802232 + 0.996777i \(0.525563\pi\)
\(954\) 0 0
\(955\) −11.1038 19.2323i −0.359309 0.622342i
\(956\) 15.6400 0.505835
\(957\) 0 0
\(958\) 0.998294 + 1.72910i 0.0322534 + 0.0558646i
\(959\) 3.11519 + 4.47968i 0.100595 + 0.144656i
\(960\) 0 0
\(961\) 1.41551 + 2.45174i 0.0456616 + 0.0790883i
\(962\) 0.595231 + 1.03097i 0.0191910 + 0.0332398i
\(963\) 0 0
\(964\) 0.963800 1.66935i 0.0310419 0.0537661i
\(965\) 8.50762 14.7356i 0.273870 0.474357i
\(966\) 0 0
\(967\) −8.62831 14.9447i −0.277468 0.480588i 0.693287 0.720662i \(-0.256162\pi\)
−0.970755 + 0.240073i \(0.922829\pi\)
\(968\) −18.0034 −0.578651
\(969\) 0 0
\(970\) −17.2174 −0.552818
\(971\) 23.4532 40.6221i 0.752649 1.30363i −0.193886 0.981024i \(-0.562109\pi\)
0.946535 0.322602i \(-0.104558\pi\)
\(972\) 0 0
\(973\) −7.47347 + 15.8927i −0.239588 + 0.509497i
\(974\) 2.17396 3.76542i 0.0696583 0.120652i
\(975\) 0 0
\(976\) −5.01397 + 8.68444i −0.160493 + 0.277982i
\(977\) 17.5817 30.4524i 0.562488 0.974257i −0.434791 0.900531i \(-0.643178\pi\)
0.997279 0.0737259i \(-0.0234890\pi\)
\(978\) 0 0
\(979\) −15.3220 + 26.5384i −0.489692 + 0.848171i
\(980\) 15.3741 + 18.5644i 0.491109 + 0.593018i
\(981\) 0 0
\(982\) 0.887434 1.53708i 0.0283192 0.0490502i
\(983\) 12.0860 0.385482 0.192741 0.981250i \(-0.438262\pi\)
0.192741 + 0.981250i \(0.438262\pi\)
\(984\) 0 0
\(985\) 18.9761 0.604630
\(986\) 6.63093 + 11.4851i 0.211172 + 0.365760i
\(987\) 0 0
\(988\) −1.89457 + 3.28148i −0.0602742 + 0.104398i
\(989\) −32.4087 + 56.1334i −1.03054 + 1.78494i
\(990\) 0 0
\(991\) −16.1874 28.0374i −0.514209 0.890636i −0.999864 0.0164855i \(-0.994752\pi\)
0.485655 0.874150i \(-0.338581\pi\)
\(992\) −14.6990 25.4594i −0.466693 0.808335i
\(993\) 0 0
\(994\) 8.44725 17.9635i 0.267931 0.569768i
\(995\) −7.78091 13.4769i −0.246671 0.427247i
\(996\) 0 0
\(997\) −14.7332 −0.466605 −0.233303 0.972404i \(-0.574953\pi\)
−0.233303 + 0.972404i \(0.574953\pi\)
\(998\) 3.72913 + 6.45904i 0.118044 + 0.204457i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.l.541.5 16
3.2 odd 2 inner 567.2.g.l.541.4 16
7.4 even 3 567.2.h.l.298.4 16
9.2 odd 6 567.2.e.g.163.4 16
9.4 even 3 567.2.h.l.352.4 16
9.5 odd 6 567.2.h.l.352.5 16
9.7 even 3 567.2.e.g.163.5 yes 16
21.11 odd 6 567.2.h.l.298.5 16
63.2 odd 6 3969.2.a.bg.1.5 8
63.4 even 3 inner 567.2.g.l.109.5 16
63.11 odd 6 567.2.e.g.487.4 yes 16
63.16 even 3 3969.2.a.bg.1.4 8
63.25 even 3 567.2.e.g.487.5 yes 16
63.32 odd 6 inner 567.2.g.l.109.4 16
63.47 even 6 3969.2.a.bf.1.5 8
63.61 odd 6 3969.2.a.bf.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.4 16 9.2 odd 6
567.2.e.g.163.5 yes 16 9.7 even 3
567.2.e.g.487.4 yes 16 63.11 odd 6
567.2.e.g.487.5 yes 16 63.25 even 3
567.2.g.l.109.4 16 63.32 odd 6 inner
567.2.g.l.109.5 16 63.4 even 3 inner
567.2.g.l.541.4 16 3.2 odd 2 inner
567.2.g.l.541.5 16 1.1 even 1 trivial
567.2.h.l.298.4 16 7.4 even 3
567.2.h.l.298.5 16 21.11 odd 6
567.2.h.l.352.4 16 9.4 even 3
567.2.h.l.352.5 16 9.5 odd 6
3969.2.a.bf.1.4 8 63.61 odd 6
3969.2.a.bf.1.5 8 63.47 even 6
3969.2.a.bg.1.4 8 63.16 even 3
3969.2.a.bg.1.5 8 63.2 odd 6