Properties

Label 567.2.g.l.541.4
Level $567$
Weight $2$
Character 567.541
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(109,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.4
Root \(1.04779 - 0.949812i\) of defining polynomial
Character \(\chi\) \(=\) 567.541
Dual form 567.2.g.l.109.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.298668 - 0.517308i) q^{2} +(0.821595 - 1.42304i) q^{4} -2.09557 q^{5} +(-1.51053 - 2.17216i) q^{7} -2.17621 q^{8} +(0.625881 + 1.08406i) q^{10} -1.65141 q^{11} +(0.213022 + 0.368965i) q^{13} +(-0.672530 + 1.43017i) q^{14} +(-0.993225 - 1.72032i) q^{16} +(3.03819 + 5.26230i) q^{17} +(-2.70625 + 4.68736i) q^{19} +(-1.72171 + 2.98209i) q^{20} +(0.493225 + 0.854291i) q^{22} -7.63457 q^{23} -0.608573 q^{25} +(0.127246 - 0.220396i) q^{26} +(-4.33213 + 0.364918i) q^{28} +(1.82688 - 3.16426i) q^{29} +(2.65372 - 4.59638i) q^{31} +(-2.76950 + 4.79691i) q^{32} +(1.81482 - 3.14336i) q^{34} +(3.16543 + 4.55193i) q^{35} +(2.33890 - 4.05110i) q^{37} +3.23308 q^{38} +4.56041 q^{40} +(-0.742827 - 1.28661i) q^{41} +(-4.24499 + 7.35253i) q^{43} +(-1.35679 + 2.35004i) q^{44} +(2.28020 + 3.94943i) q^{46} +(-5.66624 - 9.81422i) q^{47} +(-2.43658 + 6.56225i) q^{49} +(0.181761 + 0.314820i) q^{50} +0.700071 q^{52} +(-2.74496 - 4.75441i) q^{53} +3.46066 q^{55} +(3.28724 + 4.72708i) q^{56} -2.18253 q^{58} +(0.779098 - 1.34944i) q^{59} +(-2.52408 - 4.37184i) q^{61} -3.17033 q^{62} -0.664256 q^{64} +(-0.446403 - 0.773193i) q^{65} +(2.61498 - 4.52928i) q^{67} +9.98464 q^{68} +(1.40933 - 2.99702i) q^{70} -12.5604 q^{71} +(-0.793753 - 1.37482i) q^{73} -2.79422 q^{74} +(4.44688 + 7.70222i) q^{76} +(2.49452 + 3.58714i) q^{77} +(3.81482 + 6.60746i) q^{79} +(2.08138 + 3.60505i) q^{80} +(-0.443717 + 0.768541i) q^{82} +(-2.62806 + 4.55193i) q^{83} +(-6.36674 - 11.0275i) q^{85} +5.07137 q^{86} +3.59382 q^{88} +(9.27808 - 16.0701i) q^{89} +(0.479675 - 1.02005i) q^{91} +(-6.27252 + 10.8643i) q^{92} +(-3.38465 + 5.86239i) q^{94} +(5.67114 - 9.82270i) q^{95} +(-6.87728 + 11.9118i) q^{97} +(4.12243 - 0.699472i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} - 14 q^{10} - 6 q^{13} - 6 q^{16} - 24 q^{19} - 2 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} + 72 q^{40} - 10 q^{43} + 36 q^{46} + 4 q^{49} + 68 q^{52} + 8 q^{55} - 44 q^{58} - 36 q^{61} + 76 q^{64}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.298668 0.517308i −0.211190 0.365792i 0.740897 0.671619i \(-0.234401\pi\)
−0.952087 + 0.305826i \(0.901067\pi\)
\(3\) 0 0
\(4\) 0.821595 1.42304i 0.410797 0.711522i
\(5\) −2.09557 −0.937169 −0.468584 0.883419i \(-0.655236\pi\)
−0.468584 + 0.883419i \(0.655236\pi\)
\(6\) 0 0
\(7\) −1.51053 2.17216i −0.570928 0.821000i
\(8\) −2.17621 −0.769406
\(9\) 0 0
\(10\) 0.625881 + 1.08406i 0.197921 + 0.342809i
\(11\) −1.65141 −0.497920 −0.248960 0.968514i \(-0.580089\pi\)
−0.248960 + 0.968514i \(0.580089\pi\)
\(12\) 0 0
\(13\) 0.213022 + 0.368965i 0.0590817 + 0.102333i 0.894053 0.447960i \(-0.147849\pi\)
−0.834972 + 0.550293i \(0.814516\pi\)
\(14\) −0.672530 + 1.43017i −0.179741 + 0.382228i
\(15\) 0 0
\(16\) −0.993225 1.72032i −0.248306 0.430079i
\(17\) 3.03819 + 5.26230i 0.736869 + 1.27629i 0.953899 + 0.300129i \(0.0970298\pi\)
−0.217030 + 0.976165i \(0.569637\pi\)
\(18\) 0 0
\(19\) −2.70625 + 4.68736i −0.620856 + 1.07535i 0.368471 + 0.929639i \(0.379881\pi\)
−0.989327 + 0.145714i \(0.953452\pi\)
\(20\) −1.72171 + 2.98209i −0.384986 + 0.666816i
\(21\) 0 0
\(22\) 0.493225 + 0.854291i 0.105156 + 0.182135i
\(23\) −7.63457 −1.59192 −0.795959 0.605351i \(-0.793033\pi\)
−0.795959 + 0.605351i \(0.793033\pi\)
\(24\) 0 0
\(25\) −0.608573 −0.121715
\(26\) 0.127246 0.220396i 0.0249550 0.0432233i
\(27\) 0 0
\(28\) −4.33213 + 0.364918i −0.818695 + 0.0689631i
\(29\) 1.82688 3.16426i 0.339244 0.587588i −0.645047 0.764143i \(-0.723162\pi\)
0.984291 + 0.176555i \(0.0564955\pi\)
\(30\) 0 0
\(31\) 2.65372 4.59638i 0.476623 0.825535i −0.523018 0.852321i \(-0.675194\pi\)
0.999641 + 0.0267866i \(0.00852747\pi\)
\(32\) −2.76950 + 4.79691i −0.489583 + 0.847982i
\(33\) 0 0
\(34\) 1.81482 3.14336i 0.311239 0.539082i
\(35\) 3.16543 + 4.55193i 0.535056 + 0.769416i
\(36\) 0 0
\(37\) 2.33890 4.05110i 0.384513 0.665997i −0.607188 0.794558i \(-0.707703\pi\)
0.991702 + 0.128561i \(0.0410360\pi\)
\(38\) 3.23308 0.524475
\(39\) 0 0
\(40\) 4.56041 0.721063
\(41\) −0.742827 1.28661i −0.116010 0.200935i 0.802173 0.597092i \(-0.203677\pi\)
−0.918183 + 0.396156i \(0.870344\pi\)
\(42\) 0 0
\(43\) −4.24499 + 7.35253i −0.647354 + 1.12125i 0.336398 + 0.941720i \(0.390791\pi\)
−0.983752 + 0.179531i \(0.942542\pi\)
\(44\) −1.35679 + 2.35004i −0.204544 + 0.354281i
\(45\) 0 0
\(46\) 2.28020 + 3.94943i 0.336198 + 0.582311i
\(47\) −5.66624 9.81422i −0.826506 1.43155i −0.900763 0.434312i \(-0.856992\pi\)
0.0742560 0.997239i \(-0.476342\pi\)
\(48\) 0 0
\(49\) −2.43658 + 6.56225i −0.348083 + 0.937464i
\(50\) 0.181761 + 0.314820i 0.0257049 + 0.0445222i
\(51\) 0 0
\(52\) 0.700071 0.0970824
\(53\) −2.74496 4.75441i −0.377050 0.653069i 0.613582 0.789631i \(-0.289728\pi\)
−0.990632 + 0.136562i \(0.956395\pi\)
\(54\) 0 0
\(55\) 3.46066 0.466635
\(56\) 3.28724 + 4.72708i 0.439275 + 0.631683i
\(57\) 0 0
\(58\) −2.18253 −0.286580
\(59\) 0.779098 1.34944i 0.101430 0.175682i −0.810844 0.585262i \(-0.800992\pi\)
0.912274 + 0.409581i \(0.134325\pi\)
\(60\) 0 0
\(61\) −2.52408 4.37184i −0.323176 0.559757i 0.657966 0.753048i \(-0.271417\pi\)
−0.981141 + 0.193291i \(0.938084\pi\)
\(62\) −3.17033 −0.402632
\(63\) 0 0
\(64\) −0.664256 −0.0830320
\(65\) −0.446403 0.773193i −0.0553695 0.0959028i
\(66\) 0 0
\(67\) 2.61498 4.52928i 0.319471 0.553340i −0.660907 0.750468i \(-0.729828\pi\)
0.980378 + 0.197128i \(0.0631615\pi\)
\(68\) 9.98464 1.21081
\(69\) 0 0
\(70\) 1.40933 2.99702i 0.168448 0.358212i
\(71\) −12.5604 −1.49065 −0.745324 0.666703i \(-0.767705\pi\)
−0.745324 + 0.666703i \(0.767705\pi\)
\(72\) 0 0
\(73\) −0.793753 1.37482i −0.0929017 0.160911i 0.815829 0.578293i \(-0.196281\pi\)
−0.908731 + 0.417382i \(0.862948\pi\)
\(74\) −2.79422 −0.324822
\(75\) 0 0
\(76\) 4.44688 + 7.70222i 0.510092 + 0.883505i
\(77\) 2.49452 + 3.58714i 0.284277 + 0.408793i
\(78\) 0 0
\(79\) 3.81482 + 6.60746i 0.429201 + 0.743398i 0.996802 0.0799058i \(-0.0254620\pi\)
−0.567602 + 0.823303i \(0.692129\pi\)
\(80\) 2.08138 + 3.60505i 0.232705 + 0.403057i
\(81\) 0 0
\(82\) −0.443717 + 0.768541i −0.0490004 + 0.0848711i
\(83\) −2.62806 + 4.55193i −0.288467 + 0.499639i −0.973444 0.228926i \(-0.926479\pi\)
0.684977 + 0.728564i \(0.259812\pi\)
\(84\) 0 0
\(85\) −6.36674 11.0275i −0.690570 1.19610i
\(86\) 5.07137 0.546860
\(87\) 0 0
\(88\) 3.59382 0.383103
\(89\) 9.27808 16.0701i 0.983474 1.70343i 0.334946 0.942237i \(-0.391282\pi\)
0.648528 0.761191i \(-0.275385\pi\)
\(90\) 0 0
\(91\) 0.479675 1.02005i 0.0502836 0.106931i
\(92\) −6.27252 + 10.8643i −0.653956 + 1.13268i
\(93\) 0 0
\(94\) −3.38465 + 5.86239i −0.349100 + 0.604659i
\(95\) 5.67114 9.82270i 0.581847 1.00779i
\(96\) 0 0
\(97\) −6.87728 + 11.9118i −0.698282 + 1.20946i 0.270780 + 0.962641i \(0.412718\pi\)
−0.969062 + 0.246818i \(0.920615\pi\)
\(98\) 4.12243 0.699472i 0.416429 0.0706574i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) 15.9885 1.59091 0.795456 0.606011i \(-0.207231\pi\)
0.795456 + 0.606011i \(0.207231\pi\)
\(102\) 0 0
\(103\) −2.36313 −0.232846 −0.116423 0.993200i \(-0.537143\pi\)
−0.116423 + 0.993200i \(0.537143\pi\)
\(104\) −0.463581 0.802945i −0.0454578 0.0787353i
\(105\) 0 0
\(106\) −1.63967 + 2.83998i −0.159258 + 0.275844i
\(107\) 2.27104 3.93356i 0.219550 0.380272i −0.735120 0.677936i \(-0.762874\pi\)
0.954670 + 0.297665i \(0.0962078\pi\)
\(108\) 0 0
\(109\) −8.62227 14.9342i −0.825863 1.43044i −0.901258 0.433283i \(-0.857355\pi\)
0.0753945 0.997154i \(-0.475978\pi\)
\(110\) −1.03359 1.79023i −0.0985489 0.170692i
\(111\) 0 0
\(112\) −2.23651 + 4.75604i −0.211330 + 0.449404i
\(113\) −5.33760 9.24499i −0.502119 0.869695i −0.999997 0.00244827i \(-0.999221\pi\)
0.497878 0.867247i \(-0.334113\pi\)
\(114\) 0 0
\(115\) 15.9988 1.49190
\(116\) −3.00192 5.19947i −0.278721 0.482759i
\(117\) 0 0
\(118\) −0.930766 −0.0856840
\(119\) 6.84128 14.5483i 0.627139 1.33364i
\(120\) 0 0
\(121\) −8.27283 −0.752075
\(122\) −1.50773 + 2.61146i −0.136503 + 0.236430i
\(123\) 0 0
\(124\) −4.36057 7.55273i −0.391591 0.678255i
\(125\) 11.7532 1.05124
\(126\) 0 0
\(127\) 14.4060 1.27833 0.639163 0.769072i \(-0.279281\pi\)
0.639163 + 0.769072i \(0.279281\pi\)
\(128\) 5.73739 + 9.93745i 0.507118 + 0.878355i
\(129\) 0 0
\(130\) −0.266653 + 0.461856i −0.0233870 + 0.0405075i
\(131\) 10.1852 0.889884 0.444942 0.895559i \(-0.353224\pi\)
0.444942 + 0.895559i \(0.353224\pi\)
\(132\) 0 0
\(133\) 14.2696 1.20200i 1.23733 0.104227i
\(134\) −3.12405 −0.269877
\(135\) 0 0
\(136\) −6.61173 11.4519i −0.566951 0.981989i
\(137\) 2.06231 0.176195 0.0880976 0.996112i \(-0.471921\pi\)
0.0880976 + 0.996112i \(0.471921\pi\)
\(138\) 0 0
\(139\) −3.31894 5.74858i −0.281509 0.487588i 0.690248 0.723573i \(-0.257502\pi\)
−0.971757 + 0.235985i \(0.924168\pi\)
\(140\) 9.07829 0.764713i 0.767256 0.0646300i
\(141\) 0 0
\(142\) 3.75140 + 6.49761i 0.314810 + 0.545267i
\(143\) −0.351788 0.609314i −0.0294180 0.0509534i
\(144\) 0 0
\(145\) −3.82837 + 6.63093i −0.317929 + 0.550669i
\(146\) −0.474137 + 0.821230i −0.0392399 + 0.0679655i
\(147\) 0 0
\(148\) −3.84326 6.65672i −0.315914 0.547179i
\(149\) 9.51701 0.779664 0.389832 0.920886i \(-0.372533\pi\)
0.389832 + 0.920886i \(0.372533\pi\)
\(150\) 0 0
\(151\) −11.0978 −0.903128 −0.451564 0.892239i \(-0.649134\pi\)
−0.451564 + 0.892239i \(0.649134\pi\)
\(152\) 5.88936 10.2007i 0.477690 0.827384i
\(153\) 0 0
\(154\) 1.11063 2.36180i 0.0894967 0.190319i
\(155\) −5.56107 + 9.63206i −0.446676 + 0.773665i
\(156\) 0 0
\(157\) −12.1264 + 21.0035i −0.967791 + 1.67626i −0.265870 + 0.964009i \(0.585659\pi\)
−0.701921 + 0.712255i \(0.747674\pi\)
\(158\) 2.27873 3.94688i 0.181286 0.313997i
\(159\) 0 0
\(160\) 5.80369 10.0523i 0.458822 0.794703i
\(161\) 11.5323 + 16.5835i 0.908870 + 1.30696i
\(162\) 0 0
\(163\) 5.54515 9.60448i 0.434330 0.752281i −0.562911 0.826518i \(-0.690319\pi\)
0.997241 + 0.0742364i \(0.0236520\pi\)
\(164\) −2.44121 −0.190626
\(165\) 0 0
\(166\) 3.13967 0.243685
\(167\) −1.22550 2.12263i −0.0948321 0.164254i 0.814706 0.579874i \(-0.196898\pi\)
−0.909539 + 0.415620i \(0.863565\pi\)
\(168\) 0 0
\(169\) 6.40924 11.1011i 0.493019 0.853933i
\(170\) −3.80309 + 6.58714i −0.291684 + 0.505211i
\(171\) 0 0
\(172\) 6.97532 + 12.0816i 0.531863 + 0.921214i
\(173\) −4.64053 8.03763i −0.352813 0.611090i 0.633928 0.773392i \(-0.281441\pi\)
−0.986741 + 0.162302i \(0.948108\pi\)
\(174\) 0 0
\(175\) 0.919269 + 1.32192i 0.0694902 + 0.0999276i
\(176\) 1.64023 + 2.84096i 0.123637 + 0.214145i
\(177\) 0 0
\(178\) −11.0843 −0.830801
\(179\) −9.27808 16.0701i −0.693476 1.20114i −0.970692 0.240328i \(-0.922745\pi\)
0.277215 0.960808i \(-0.410588\pi\)
\(180\) 0 0
\(181\) 13.2382 0.983989 0.491994 0.870598i \(-0.336268\pi\)
0.491994 + 0.870598i \(0.336268\pi\)
\(182\) −0.670945 + 0.0565173i −0.0497338 + 0.00418934i
\(183\) 0 0
\(184\) 16.6144 1.22483
\(185\) −4.90134 + 8.48937i −0.360354 + 0.624151i
\(186\) 0 0
\(187\) −5.01731 8.69023i −0.366902 0.635493i
\(188\) −18.6214 −1.35811
\(189\) 0 0
\(190\) −6.77515 −0.491521
\(191\) 5.29867 + 9.17757i 0.383399 + 0.664066i 0.991546 0.129759i \(-0.0414202\pi\)
−0.608147 + 0.793824i \(0.708087\pi\)
\(192\) 0 0
\(193\) 4.05981 7.03179i 0.292231 0.506159i −0.682106 0.731254i \(-0.738936\pi\)
0.974337 + 0.225094i \(0.0722690\pi\)
\(194\) 8.21610 0.589881
\(195\) 0 0
\(196\) 7.33649 + 8.85886i 0.524035 + 0.632776i
\(197\) −9.05534 −0.645166 −0.322583 0.946541i \(-0.604551\pi\)
−0.322583 + 0.946541i \(0.604551\pi\)
\(198\) 0 0
\(199\) −3.71302 6.43114i −0.263209 0.455892i 0.703884 0.710315i \(-0.251448\pi\)
−0.967093 + 0.254424i \(0.918114\pi\)
\(200\) 1.32438 0.0936479
\(201\) 0 0
\(202\) −4.77525 8.27097i −0.335985 0.581943i
\(203\) −9.63285 + 0.811426i −0.676093 + 0.0569509i
\(204\) 0 0
\(205\) 1.55665 + 2.69619i 0.108721 + 0.188310i
\(206\) 0.705791 + 1.22247i 0.0491748 + 0.0851733i
\(207\) 0 0
\(208\) 0.423158 0.732931i 0.0293407 0.0508196i
\(209\) 4.46914 7.74077i 0.309137 0.535440i
\(210\) 0 0
\(211\) −1.33890 2.31905i −0.0921739 0.159650i 0.816252 0.577696i \(-0.196048\pi\)
−0.908426 + 0.418047i \(0.862715\pi\)
\(212\) −9.02099 −0.619564
\(213\) 0 0
\(214\) −2.71315 −0.185467
\(215\) 8.89568 15.4078i 0.606680 1.05080i
\(216\) 0 0
\(217\) −13.9926 + 1.17867i −0.949881 + 0.0800136i
\(218\) −5.15039 + 8.92074i −0.348829 + 0.604189i
\(219\) 0 0
\(220\) 2.84326 4.92467i 0.191693 0.332021i
\(221\) −1.29440 + 2.24197i −0.0870709 + 0.150811i
\(222\) 0 0
\(223\) −10.7685 + 18.6515i −0.721110 + 1.24900i 0.239445 + 0.970910i \(0.423035\pi\)
−0.960555 + 0.278090i \(0.910299\pi\)
\(224\) 14.6031 1.23010i 0.975710 0.0821892i
\(225\) 0 0
\(226\) −3.18834 + 5.52237i −0.212085 + 0.367342i
\(227\) −13.1010 −0.869546 −0.434773 0.900540i \(-0.643171\pi\)
−0.434773 + 0.900540i \(0.643171\pi\)
\(228\) 0 0
\(229\) 16.8245 1.11180 0.555898 0.831251i \(-0.312375\pi\)
0.555898 + 0.831251i \(0.312375\pi\)
\(230\) −4.77833 8.27631i −0.315074 0.545724i
\(231\) 0 0
\(232\) −3.97568 + 6.88608i −0.261016 + 0.452094i
\(233\) −11.3842 + 19.7180i −0.745804 + 1.29177i 0.204014 + 0.978968i \(0.434601\pi\)
−0.949818 + 0.312803i \(0.898732\pi\)
\(234\) 0 0
\(235\) 11.8740 + 20.5664i 0.774576 + 1.34161i
\(236\) −1.28020 2.21738i −0.0833342 0.144339i
\(237\) 0 0
\(238\) −9.56923 + 0.806067i −0.620281 + 0.0522496i
\(239\) −4.75905 8.24292i −0.307837 0.533190i 0.670052 0.742314i \(-0.266272\pi\)
−0.977889 + 0.209125i \(0.932939\pi\)
\(240\) 0 0
\(241\) 1.17308 0.0755650 0.0377825 0.999286i \(-0.487971\pi\)
0.0377825 + 0.999286i \(0.487971\pi\)
\(242\) 2.47083 + 4.27960i 0.158831 + 0.275103i
\(243\) 0 0
\(244\) −8.29509 −0.531039
\(245\) 5.10603 13.7517i 0.326212 0.878562i
\(246\) 0 0
\(247\) −2.30596 −0.146725
\(248\) −5.77506 + 10.0027i −0.366716 + 0.635171i
\(249\) 0 0
\(250\) −3.51030 6.08002i −0.222011 0.384534i
\(251\) −7.59042 −0.479103 −0.239552 0.970884i \(-0.577000\pi\)
−0.239552 + 0.970884i \(0.577000\pi\)
\(252\) 0 0
\(253\) 12.6078 0.792648
\(254\) −4.30261 7.45234i −0.269970 0.467601i
\(255\) 0 0
\(256\) 2.76289 4.78547i 0.172681 0.299092i
\(257\) −23.2862 −1.45255 −0.726277 0.687402i \(-0.758751\pi\)
−0.726277 + 0.687402i \(0.758751\pi\)
\(258\) 0 0
\(259\) −12.3326 + 1.03884i −0.766313 + 0.0645506i
\(260\) −1.46705 −0.0909826
\(261\) 0 0
\(262\) −3.04199 5.26888i −0.187935 0.325513i
\(263\) −10.4446 −0.644042 −0.322021 0.946733i \(-0.604362\pi\)
−0.322021 + 0.946733i \(0.604362\pi\)
\(264\) 0 0
\(265\) 5.75227 + 9.96322i 0.353359 + 0.612036i
\(266\) −4.88367 7.02277i −0.299437 0.430594i
\(267\) 0 0
\(268\) −4.29691 7.44247i −0.262476 0.454621i
\(269\) 14.2349 + 24.6556i 0.867917 + 1.50328i 0.864122 + 0.503283i \(0.167875\pi\)
0.00379485 + 0.999993i \(0.498792\pi\)
\(270\) 0 0
\(271\) −13.6962 + 23.7226i −0.831986 + 1.44104i 0.0644746 + 0.997919i \(0.479463\pi\)
−0.896461 + 0.443123i \(0.853870\pi\)
\(272\) 6.03521 10.4533i 0.365938 0.633824i
\(273\) 0 0
\(274\) −0.615947 1.06685i −0.0372107 0.0644508i
\(275\) 1.00501 0.0606041
\(276\) 0 0
\(277\) 4.11257 0.247100 0.123550 0.992338i \(-0.460572\pi\)
0.123550 + 0.992338i \(0.460572\pi\)
\(278\) −1.98252 + 3.43383i −0.118904 + 0.205948i
\(279\) 0 0
\(280\) −6.88865 9.90594i −0.411675 0.591993i
\(281\) −3.63063 + 6.28843i −0.216585 + 0.375136i −0.953762 0.300564i \(-0.902825\pi\)
0.737177 + 0.675700i \(0.236159\pi\)
\(282\) 0 0
\(283\) 0.640173 1.10881i 0.0380543 0.0659120i −0.846371 0.532594i \(-0.821217\pi\)
0.884425 + 0.466682i \(0.154551\pi\)
\(284\) −10.3196 + 17.8740i −0.612354 + 1.06063i
\(285\) 0 0
\(286\) −0.210136 + 0.363966i −0.0124256 + 0.0215217i
\(287\) −1.67267 + 3.55701i −0.0987345 + 0.209964i
\(288\) 0 0
\(289\) −9.96117 + 17.2532i −0.585951 + 1.01490i
\(290\) 4.57365 0.268574
\(291\) 0 0
\(292\) −2.60857 −0.152655
\(293\) 10.0067 + 17.3321i 0.584598 + 1.01255i 0.994925 + 0.100615i \(0.0320812\pi\)
−0.410327 + 0.911938i \(0.634586\pi\)
\(294\) 0 0
\(295\) −1.63266 + 2.82784i −0.0950569 + 0.164643i
\(296\) −5.08994 + 8.81604i −0.295847 + 0.512422i
\(297\) 0 0
\(298\) −2.84243 4.92323i −0.164657 0.285195i
\(299\) −1.62633 2.81689i −0.0940532 0.162905i
\(300\) 0 0
\(301\) 22.3831 1.88545i 1.29014 0.108675i
\(302\) 3.31456 + 5.74099i 0.190732 + 0.330357i
\(303\) 0 0
\(304\) 10.7516 0.616649
\(305\) 5.28940 + 9.16151i 0.302870 + 0.524587i
\(306\) 0 0
\(307\) −2.19415 −0.125227 −0.0626134 0.998038i \(-0.519944\pi\)
−0.0626134 + 0.998038i \(0.519944\pi\)
\(308\) 7.15414 0.602631i 0.407645 0.0343381i
\(309\) 0 0
\(310\) 6.64366 0.377334
\(311\) −4.25439 + 7.36882i −0.241244 + 0.417847i −0.961069 0.276309i \(-0.910889\pi\)
0.719825 + 0.694156i \(0.244222\pi\)
\(312\) 0 0
\(313\) −1.51731 2.62806i −0.0857633 0.148546i 0.819953 0.572431i \(-0.194000\pi\)
−0.905716 + 0.423885i \(0.860666\pi\)
\(314\) 14.4871 0.817552
\(315\) 0 0
\(316\) 12.5369 0.705258
\(317\) 2.64225 + 4.57652i 0.148404 + 0.257043i 0.930638 0.365942i \(-0.119253\pi\)
−0.782234 + 0.622985i \(0.785920\pi\)
\(318\) 0 0
\(319\) −3.01694 + 5.22550i −0.168916 + 0.292572i
\(320\) 1.39200 0.0778150
\(321\) 0 0
\(322\) 5.13447 10.9187i 0.286133 0.608476i
\(323\) −32.8883 −1.82996
\(324\) 0 0
\(325\) −0.129639 0.224542i −0.00719110 0.0124554i
\(326\) −6.62464 −0.366905
\(327\) 0 0
\(328\) 1.61655 + 2.79994i 0.0892588 + 0.154601i
\(329\) −12.7590 + 27.1327i −0.703428 + 1.49587i
\(330\) 0 0
\(331\) −10.6008 18.3612i −0.582675 1.00922i −0.995161 0.0982581i \(-0.968673\pi\)
0.412486 0.910964i \(-0.364660\pi\)
\(332\) 4.31839 + 7.47968i 0.237003 + 0.410500i
\(333\) 0 0
\(334\) −0.732036 + 1.26792i −0.0400552 + 0.0693777i
\(335\) −5.47989 + 9.49145i −0.299398 + 0.518573i
\(336\) 0 0
\(337\) 7.02483 + 12.1674i 0.382667 + 0.662798i 0.991442 0.130544i \(-0.0416725\pi\)
−0.608776 + 0.793342i \(0.708339\pi\)
\(338\) −7.65695 −0.416483
\(339\) 0 0
\(340\) −20.9235 −1.13474
\(341\) −4.38240 + 7.59053i −0.237320 + 0.411051i
\(342\) 0 0
\(343\) 17.9348 4.61985i 0.968388 0.249449i
\(344\) 9.23798 16.0007i 0.498078 0.862697i
\(345\) 0 0
\(346\) −2.77196 + 4.80117i −0.149021 + 0.258112i
\(347\) 10.0290 17.3707i 0.538385 0.932510i −0.460606 0.887605i \(-0.652368\pi\)
0.998991 0.0449055i \(-0.0142987\pi\)
\(348\) 0 0
\(349\) 13.9647 24.1876i 0.747513 1.29473i −0.201499 0.979489i \(-0.564581\pi\)
0.949012 0.315241i \(-0.102085\pi\)
\(350\) 0.409283 0.870361i 0.0218771 0.0465227i
\(351\) 0 0
\(352\) 4.57359 7.92169i 0.243773 0.422228i
\(353\) 5.99251 0.318949 0.159475 0.987202i \(-0.449020\pi\)
0.159475 + 0.987202i \(0.449020\pi\)
\(354\) 0 0
\(355\) 26.3213 1.39699
\(356\) −15.2456 26.4062i −0.808017 1.39953i
\(357\) 0 0
\(358\) −5.54213 + 9.59926i −0.292911 + 0.507337i
\(359\) 8.30710 14.3883i 0.438432 0.759386i −0.559137 0.829075i \(-0.688867\pi\)
0.997569 + 0.0696890i \(0.0222007\pi\)
\(360\) 0 0
\(361\) −5.14755 8.91581i −0.270924 0.469253i
\(362\) −3.95383 6.84824i −0.207809 0.359935i
\(363\) 0 0
\(364\) −1.05748 1.52067i −0.0554271 0.0797047i
\(365\) 1.66337 + 2.88104i 0.0870646 + 0.150800i
\(366\) 0 0
\(367\) 6.49528 0.339051 0.169525 0.985526i \(-0.445777\pi\)
0.169525 + 0.985526i \(0.445777\pi\)
\(368\) 7.58285 + 13.1339i 0.395283 + 0.684651i
\(369\) 0 0
\(370\) 5.85550 0.304413
\(371\) −6.18100 + 13.1442i −0.320902 + 0.682413i
\(372\) 0 0
\(373\) −20.1610 −1.04390 −0.521949 0.852977i \(-0.674795\pi\)
−0.521949 + 0.852977i \(0.674795\pi\)
\(374\) −2.99702 + 5.19099i −0.154972 + 0.268420i
\(375\) 0 0
\(376\) 12.3309 + 21.3578i 0.635919 + 1.10144i
\(377\) 1.55667 0.0801724
\(378\) 0 0
\(379\) −15.3014 −0.785981 −0.392990 0.919543i \(-0.628559\pi\)
−0.392990 + 0.919543i \(0.628559\pi\)
\(380\) −9.31876 16.1406i −0.478042 0.827993i
\(381\) 0 0
\(382\) 3.16509 5.48210i 0.161940 0.280488i
\(383\) −6.78591 −0.346744 −0.173372 0.984856i \(-0.555466\pi\)
−0.173372 + 0.984856i \(0.555466\pi\)
\(384\) 0 0
\(385\) −5.22744 7.51712i −0.266415 0.383108i
\(386\) −4.85014 −0.246866
\(387\) 0 0
\(388\) 11.3007 + 19.5733i 0.573705 + 0.993686i
\(389\) 5.75913 0.292000 0.146000 0.989285i \(-0.453360\pi\)
0.146000 + 0.989285i \(0.453360\pi\)
\(390\) 0 0
\(391\) −23.1953 40.1754i −1.17303 2.03176i
\(392\) 5.30250 14.2808i 0.267817 0.721290i
\(393\) 0 0
\(394\) 2.70454 + 4.68440i 0.136253 + 0.235997i
\(395\) −7.99423 13.8464i −0.402234 0.696689i
\(396\) 0 0
\(397\) 0.247873 0.429329i 0.0124404 0.0215474i −0.859738 0.510735i \(-0.829373\pi\)
0.872179 + 0.489188i \(0.162707\pi\)
\(398\) −2.21792 + 3.84155i −0.111174 + 0.192560i
\(399\) 0 0
\(400\) 0.604450 + 1.04694i 0.0302225 + 0.0523469i
\(401\) −10.3829 −0.518500 −0.259250 0.965810i \(-0.583475\pi\)
−0.259250 + 0.965810i \(0.583475\pi\)
\(402\) 0 0
\(403\) 2.26121 0.112639
\(404\) 13.1360 22.7523i 0.653542 1.13197i
\(405\) 0 0
\(406\) 3.29678 + 4.74081i 0.163617 + 0.235282i
\(407\) −3.86250 + 6.69005i −0.191457 + 0.331613i
\(408\) 0 0
\(409\) 15.0097 25.9976i 0.742182 1.28550i −0.209318 0.977848i \(-0.567124\pi\)
0.951500 0.307649i \(-0.0995423\pi\)
\(410\) 0.929842 1.61053i 0.0459216 0.0795386i
\(411\) 0 0
\(412\) −1.94153 + 3.36284i −0.0956525 + 0.165675i
\(413\) −4.10805 + 0.346043i −0.202144 + 0.0170276i
\(414\) 0 0
\(415\) 5.50728 9.53889i 0.270342 0.468246i
\(416\) −2.35986 −0.115702
\(417\) 0 0
\(418\) −5.33916 −0.261147
\(419\) 13.8248 + 23.9452i 0.675384 + 1.16980i 0.976357 + 0.216166i \(0.0693553\pi\)
−0.300973 + 0.953633i \(0.597311\pi\)
\(420\) 0 0
\(421\) −6.23107 + 10.7925i −0.303684 + 0.525996i −0.976967 0.213388i \(-0.931550\pi\)
0.673284 + 0.739384i \(0.264883\pi\)
\(422\) −0.799775 + 1.38525i −0.0389325 + 0.0674330i
\(423\) 0 0
\(424\) 5.97361 + 10.3466i 0.290104 + 0.502475i
\(425\) −1.84896 3.20249i −0.0896876 0.155344i
\(426\) 0 0
\(427\) −5.68363 + 12.0865i −0.275050 + 0.584908i
\(428\) −3.73175 6.46359i −0.180381 0.312429i
\(429\) 0 0
\(430\) −10.6274 −0.512500
\(431\) −7.05162 12.2138i −0.339665 0.588316i 0.644705 0.764431i \(-0.276980\pi\)
−0.984370 + 0.176115i \(0.943647\pi\)
\(432\) 0 0
\(433\) −15.3684 −0.738560 −0.369280 0.929318i \(-0.620396\pi\)
−0.369280 + 0.929318i \(0.620396\pi\)
\(434\) 4.78889 + 6.88647i 0.229874 + 0.330561i
\(435\) 0 0
\(436\) −28.3360 −1.35705
\(437\) 20.6610 35.7860i 0.988351 1.71187i
\(438\) 0 0
\(439\) −9.62286 16.6673i −0.459274 0.795486i 0.539648 0.841890i \(-0.318557\pi\)
−0.998923 + 0.0464041i \(0.985224\pi\)
\(440\) −7.53112 −0.359032
\(441\) 0 0
\(442\) 1.54639 0.0735541
\(443\) 12.2849 + 21.2781i 0.583673 + 1.01095i 0.995039 + 0.0994811i \(0.0317183\pi\)
−0.411367 + 0.911470i \(0.634948\pi\)
\(444\) 0 0
\(445\) −19.4429 + 33.6761i −0.921682 + 1.59640i
\(446\) 12.8648 0.609166
\(447\) 0 0
\(448\) 1.00338 + 1.44287i 0.0474053 + 0.0681693i
\(449\) 40.0045 1.88793 0.943965 0.330046i \(-0.107064\pi\)
0.943965 + 0.330046i \(0.107064\pi\)
\(450\) 0 0
\(451\) 1.22671 + 2.12473i 0.0577637 + 0.100050i
\(452\) −17.5414 −0.825076
\(453\) 0 0
\(454\) 3.91286 + 6.77727i 0.183640 + 0.318073i
\(455\) −1.00519 + 2.13760i −0.0471242 + 0.100212i
\(456\) 0 0
\(457\) 5.31807 + 9.21117i 0.248769 + 0.430880i 0.963184 0.268841i \(-0.0866407\pi\)
−0.714416 + 0.699722i \(0.753307\pi\)
\(458\) −5.02495 8.70347i −0.234800 0.406686i
\(459\) 0 0
\(460\) 13.1445 22.7670i 0.612867 1.06152i
\(461\) −8.20458 + 14.2107i −0.382125 + 0.661860i −0.991366 0.131125i \(-0.958141\pi\)
0.609241 + 0.792986i \(0.291474\pi\)
\(462\) 0 0
\(463\) −3.03196 5.25152i −0.140907 0.244059i 0.786931 0.617041i \(-0.211669\pi\)
−0.927839 + 0.372982i \(0.878335\pi\)
\(464\) −7.25803 −0.336946
\(465\) 0 0
\(466\) 13.6004 0.630027
\(467\) −12.6433 + 21.8988i −0.585062 + 1.01336i 0.409805 + 0.912173i \(0.365597\pi\)
−0.994868 + 0.101185i \(0.967737\pi\)
\(468\) 0 0
\(469\) −13.7884 + 1.16147i −0.636687 + 0.0536315i
\(470\) 7.09279 12.2851i 0.327166 0.566668i
\(471\) 0 0
\(472\) −1.69548 + 2.93666i −0.0780408 + 0.135171i
\(473\) 7.01023 12.1421i 0.322331 0.558294i
\(474\) 0 0
\(475\) 1.64695 2.85260i 0.0755671 0.130886i
\(476\) −15.0821 21.6882i −0.691288 0.994079i
\(477\) 0 0
\(478\) −2.84275 + 4.92379i −0.130025 + 0.225209i
\(479\) −3.34249 −0.152722 −0.0763611 0.997080i \(-0.524330\pi\)
−0.0763611 + 0.997080i \(0.524330\pi\)
\(480\) 0 0
\(481\) 1.99295 0.0908708
\(482\) −0.350363 0.606846i −0.0159586 0.0276411i
\(483\) 0 0
\(484\) −6.79691 + 11.7726i −0.308951 + 0.535118i
\(485\) 14.4118 24.9620i 0.654408 1.13347i
\(486\) 0 0
\(487\) −3.63943 6.30368i −0.164918 0.285647i 0.771708 0.635977i \(-0.219403\pi\)
−0.936626 + 0.350330i \(0.886069\pi\)
\(488\) 5.49293 + 9.51404i 0.248653 + 0.430680i
\(489\) 0 0
\(490\) −8.63886 + 1.46580i −0.390264 + 0.0662179i
\(491\) 1.48565 + 2.57323i 0.0670466 + 0.116128i 0.897600 0.440811i \(-0.145309\pi\)
−0.830553 + 0.556939i \(0.811976\pi\)
\(492\) 0 0
\(493\) 22.2017 0.999913
\(494\) 0.688717 + 1.19289i 0.0309869 + 0.0536708i
\(495\) 0 0
\(496\) −10.5430 −0.473394
\(497\) 18.9729 + 27.2833i 0.851052 + 1.22382i
\(498\) 0 0
\(499\) 12.4859 0.558944 0.279472 0.960154i \(-0.409841\pi\)
0.279472 + 0.960154i \(0.409841\pi\)
\(500\) 9.65635 16.7253i 0.431845 0.747977i
\(501\) 0 0
\(502\) 2.26702 + 3.92659i 0.101182 + 0.175252i
\(503\) −17.4657 −0.778755 −0.389377 0.921078i \(-0.627310\pi\)
−0.389377 + 0.921078i \(0.627310\pi\)
\(504\) 0 0
\(505\) −33.5050 −1.49095
\(506\) −3.76556 6.52214i −0.167400 0.289945i
\(507\) 0 0
\(508\) 11.8359 20.5004i 0.525133 0.909556i
\(509\) 27.5341 1.22043 0.610215 0.792236i \(-0.291083\pi\)
0.610215 + 0.792236i \(0.291083\pi\)
\(510\) 0 0
\(511\) −1.78734 + 3.80087i −0.0790674 + 0.168141i
\(512\) 19.6488 0.868363
\(513\) 0 0
\(514\) 6.95485 + 12.0462i 0.306765 + 0.531333i
\(515\) 4.95211 0.218216
\(516\) 0 0
\(517\) 9.35732 + 16.2074i 0.411534 + 0.712798i
\(518\) 4.22077 + 6.06951i 0.185450 + 0.266679i
\(519\) 0 0
\(520\) 0.971467 + 1.68263i 0.0426017 + 0.0737882i
\(521\) 3.46252 + 5.99726i 0.151696 + 0.262745i 0.931851 0.362841i \(-0.118193\pi\)
−0.780155 + 0.625586i \(0.784860\pi\)
\(522\) 0 0
\(523\) 20.7968 36.0211i 0.909381 1.57509i 0.0944561 0.995529i \(-0.469889\pi\)
0.814925 0.579566i \(-0.196778\pi\)
\(524\) 8.36810 14.4940i 0.365562 0.633172i
\(525\) 0 0
\(526\) 3.11947 + 5.40308i 0.136015 + 0.235586i
\(527\) 32.2500 1.40483
\(528\) 0 0
\(529\) 35.2867 1.53420
\(530\) 3.43604 5.95139i 0.149252 0.258512i
\(531\) 0 0
\(532\) 10.0133 21.2938i 0.434132 0.923203i
\(533\) 0.316477 0.548154i 0.0137081 0.0237432i
\(534\) 0 0
\(535\) −4.75914 + 8.24307i −0.205755 + 0.356379i
\(536\) −5.69075 + 9.85667i −0.245803 + 0.425743i
\(537\) 0 0
\(538\) 8.50302 14.7277i 0.366591 0.634954i
\(539\) 4.02380 10.8370i 0.173317 0.466782i
\(540\) 0 0
\(541\) 16.8944 29.2619i 0.726345 1.25807i −0.232073 0.972698i \(-0.574551\pi\)
0.958418 0.285368i \(-0.0921158\pi\)
\(542\) 16.3625 0.702830
\(543\) 0 0
\(544\) −33.6570 −1.44303
\(545\) 18.0686 + 31.2957i 0.773973 + 1.34056i
\(546\) 0 0
\(547\) 7.06548 12.2378i 0.302098 0.523249i −0.674513 0.738263i \(-0.735646\pi\)
0.976611 + 0.215014i \(0.0689797\pi\)
\(548\) 1.69438 2.93476i 0.0723805 0.125367i
\(549\) 0 0
\(550\) −0.300163 0.519898i −0.0127990 0.0221685i
\(551\) 9.88800 + 17.1265i 0.421243 + 0.729614i
\(552\) 0 0
\(553\) 8.59007 18.2672i 0.365287 0.776800i
\(554\) −1.22829 2.12746i −0.0521851 0.0903873i
\(555\) 0 0
\(556\) −10.9073 −0.462573
\(557\) −3.74784 6.49145i −0.158801 0.275051i 0.775636 0.631181i \(-0.217429\pi\)
−0.934437 + 0.356130i \(0.884096\pi\)
\(558\) 0 0
\(559\) −3.61710 −0.152987
\(560\) 4.68676 9.96663i 0.198052 0.421167i
\(561\) 0 0
\(562\) 4.33741 0.182963
\(563\) 5.21120 9.02606i 0.219626 0.380403i −0.735068 0.677994i \(-0.762850\pi\)
0.954694 + 0.297591i \(0.0961830\pi\)
\(564\) 0 0
\(565\) 11.1853 + 19.3735i 0.470570 + 0.815051i
\(566\) −0.764797 −0.0321468
\(567\) 0 0
\(568\) 27.3341 1.14691
\(569\) −14.9832 25.9517i −0.628130 1.08795i −0.987927 0.154923i \(-0.950487\pi\)
0.359796 0.933031i \(-0.382846\pi\)
\(570\) 0 0
\(571\) −15.7168 + 27.2223i −0.657727 + 1.13922i 0.323476 + 0.946236i \(0.395149\pi\)
−0.981203 + 0.192980i \(0.938185\pi\)
\(572\) −1.15611 −0.0483393
\(573\) 0 0
\(574\) 2.33964 0.197081i 0.0976549 0.00822599i
\(575\) 4.64619 0.193760
\(576\) 0 0
\(577\) 1.35570 + 2.34815i 0.0564387 + 0.0977547i 0.892864 0.450326i \(-0.148692\pi\)
−0.836426 + 0.548080i \(0.815359\pi\)
\(578\) 11.9003 0.494989
\(579\) 0 0
\(580\) 6.29074 + 10.8959i 0.261209 + 0.452427i
\(581\) 13.8573 1.16727i 0.574897 0.0484266i
\(582\) 0 0
\(583\) 4.53307 + 7.85151i 0.187741 + 0.325176i
\(584\) 1.72737 + 2.99190i 0.0714792 + 0.123806i
\(585\) 0 0
\(586\) 5.97737 10.3531i 0.246923 0.427683i
\(587\) 5.35198 9.26990i 0.220900 0.382610i −0.734182 0.678953i \(-0.762434\pi\)
0.955081 + 0.296343i \(0.0957672\pi\)
\(588\) 0 0
\(589\) 14.3633 + 24.8779i 0.591828 + 1.02508i
\(590\) 1.95049 0.0803004
\(591\) 0 0
\(592\) −9.29223 −0.381908
\(593\) −14.8489 + 25.7191i −0.609773 + 1.05616i 0.381505 + 0.924367i \(0.375406\pi\)
−0.991278 + 0.131791i \(0.957927\pi\)
\(594\) 0 0
\(595\) −14.3364 + 30.4870i −0.587735 + 1.24985i
\(596\) 7.81912 13.5431i 0.320284 0.554748i
\(597\) 0 0
\(598\) −0.971467 + 1.68263i −0.0397262 + 0.0688079i
\(599\) 7.19914 12.4693i 0.294149 0.509481i −0.680638 0.732620i \(-0.738297\pi\)
0.974787 + 0.223140i \(0.0716305\pi\)
\(600\) 0 0
\(601\) −8.85598 + 15.3390i −0.361243 + 0.625691i −0.988166 0.153390i \(-0.950981\pi\)
0.626923 + 0.779081i \(0.284314\pi\)
\(602\) −7.66047 11.0158i −0.312218 0.448972i
\(603\) 0 0
\(604\) −9.11791 + 15.7927i −0.371002 + 0.642595i
\(605\) 17.3363 0.704822
\(606\) 0 0
\(607\) −5.15543 −0.209252 −0.104626 0.994512i \(-0.533365\pi\)
−0.104626 + 0.994512i \(0.533365\pi\)
\(608\) −14.9899 25.9633i −0.607921 1.05295i
\(609\) 0 0
\(610\) 3.15955 5.47250i 0.127927 0.221575i
\(611\) 2.41407 4.18129i 0.0976628 0.169157i
\(612\) 0 0
\(613\) −5.62940 9.75042i −0.227370 0.393816i 0.729658 0.683812i \(-0.239679\pi\)
−0.957028 + 0.289996i \(0.906346\pi\)
\(614\) 0.655323 + 1.13505i 0.0264467 + 0.0458070i
\(615\) 0 0
\(616\) −5.42859 7.80637i −0.218724 0.314528i
\(617\) −0.260152 0.450597i −0.0104733 0.0181403i 0.860741 0.509043i \(-0.170000\pi\)
−0.871215 + 0.490902i \(0.836667\pi\)
\(618\) 0 0
\(619\) −37.4740 −1.50621 −0.753104 0.657901i \(-0.771444\pi\)
−0.753104 + 0.657901i \(0.771444\pi\)
\(620\) 9.13789 + 15.8273i 0.366987 + 0.635639i
\(621\) 0 0
\(622\) 5.08260 0.203794
\(623\) −48.9217 + 4.12094i −1.96001 + 0.165102i
\(624\) 0 0
\(625\) −21.5868 −0.863471
\(626\) −0.906343 + 1.56983i −0.0362248 + 0.0627431i
\(627\) 0 0
\(628\) 19.9260 + 34.5128i 0.795132 + 1.37721i
\(629\) 28.4241 1.13334
\(630\) 0 0
\(631\) 0.502795 0.0200159 0.0100080 0.999950i \(-0.496814\pi\)
0.0100080 + 0.999950i \(0.496814\pi\)
\(632\) −8.30185 14.3792i −0.330230 0.571975i
\(633\) 0 0
\(634\) 1.57831 2.73372i 0.0626828 0.108570i
\(635\) −30.1888 −1.19801
\(636\) 0 0
\(637\) −2.94029 + 0.498892i −0.116498 + 0.0197668i
\(638\) 3.60426 0.142694
\(639\) 0 0
\(640\) −12.0231 20.8247i −0.475256 0.823167i
\(641\) 9.96117 0.393442 0.196721 0.980459i \(-0.436971\pi\)
0.196721 + 0.980459i \(0.436971\pi\)
\(642\) 0 0
\(643\) −10.8118 18.7266i −0.426376 0.738505i 0.570172 0.821525i \(-0.306877\pi\)
−0.996548 + 0.0830207i \(0.973543\pi\)
\(644\) 33.0739 2.78599i 1.30330 0.109784i
\(645\) 0 0
\(646\) 9.82270 + 17.0134i 0.386469 + 0.669384i
\(647\) −19.3679 33.5462i −0.761430 1.31884i −0.942113 0.335294i \(-0.891164\pi\)
0.180683 0.983541i \(-0.442169\pi\)
\(648\) 0 0
\(649\) −1.28661 + 2.22848i −0.0505040 + 0.0874755i
\(650\) −0.0774383 + 0.134127i −0.00303738 + 0.00526090i
\(651\) 0 0
\(652\) −9.11173 15.7820i −0.356843 0.618070i
\(653\) 21.7978 0.853013 0.426506 0.904485i \(-0.359744\pi\)
0.426506 + 0.904485i \(0.359744\pi\)
\(654\) 0 0
\(655\) −21.3438 −0.833972
\(656\) −1.47559 + 2.55579i −0.0576120 + 0.0997870i
\(657\) 0 0
\(658\) 17.8467 1.50332i 0.695737 0.0586056i
\(659\) 2.56810 4.44807i 0.100039 0.173272i −0.811662 0.584128i \(-0.801437\pi\)
0.911700 + 0.410856i \(0.134770\pi\)
\(660\) 0 0
\(661\) −6.58087 + 11.3984i −0.255966 + 0.443347i −0.965158 0.261670i \(-0.915727\pi\)
0.709191 + 0.705016i \(0.249060\pi\)
\(662\) −6.33226 + 10.9678i −0.246110 + 0.426276i
\(663\) 0 0
\(664\) 5.71920 9.90594i 0.221948 0.384425i
\(665\) −29.9029 + 2.51888i −1.15959 + 0.0976781i
\(666\) 0 0
\(667\) −13.9475 + 24.1577i −0.540048 + 0.935391i
\(668\) −4.02746 −0.155827
\(669\) 0 0
\(670\) 6.54667 0.252920
\(671\) 4.16831 + 7.21972i 0.160916 + 0.278714i
\(672\) 0 0
\(673\) 3.50605 6.07265i 0.135148 0.234083i −0.790506 0.612454i \(-0.790182\pi\)
0.925654 + 0.378371i \(0.123516\pi\)
\(674\) 4.19618 7.26800i 0.161631 0.279953i
\(675\) 0 0
\(676\) −10.5316 18.2413i −0.405062 0.701587i
\(677\) 18.4481 + 31.9531i 0.709018 + 1.22806i 0.965222 + 0.261433i \(0.0841951\pi\)
−0.256203 + 0.966623i \(0.582472\pi\)
\(678\) 0 0
\(679\) 36.2627 3.05460i 1.39164 0.117225i
\(680\) 13.8554 + 23.9982i 0.531329 + 0.920289i
\(681\) 0 0
\(682\) 5.23553 0.200479
\(683\) −2.79970 4.84921i −0.107127 0.185550i 0.807478 0.589898i \(-0.200832\pi\)
−0.914605 + 0.404348i \(0.867499\pi\)
\(684\) 0 0
\(685\) −4.32172 −0.165125
\(686\) −7.74644 7.89802i −0.295760 0.301548i
\(687\) 0 0
\(688\) 16.8649 0.642969
\(689\) 1.16948 2.02559i 0.0445535 0.0771689i
\(690\) 0 0
\(691\) 3.19219 + 5.52903i 0.121437 + 0.210334i 0.920334 0.391132i \(-0.127917\pi\)
−0.798898 + 0.601467i \(0.794583\pi\)
\(692\) −15.2505 −0.579738
\(693\) 0 0
\(694\) −11.9814 −0.454807
\(695\) 6.95509 + 12.0466i 0.263822 + 0.456952i
\(696\) 0 0
\(697\) 4.51369 7.81795i 0.170968 0.296126i
\(698\) −16.6832 −0.631470
\(699\) 0 0
\(700\) 2.63641 0.222079i 0.0996471 0.00839380i
\(701\) 10.9860 0.414937 0.207468 0.978242i \(-0.433478\pi\)
0.207468 + 0.978242i \(0.433478\pi\)
\(702\) 0 0
\(703\) 12.6593 + 21.9265i 0.477455 + 0.826975i
\(704\) 1.09696 0.0413433
\(705\) 0 0
\(706\) −1.78977 3.09998i −0.0673590 0.116669i
\(707\) −24.1511 34.7295i −0.908296 1.30614i
\(708\) 0 0
\(709\) −13.2658 22.9771i −0.498208 0.862922i 0.501790 0.864990i \(-0.332675\pi\)
−0.999998 + 0.00206764i \(0.999342\pi\)
\(710\) −7.86133 13.6162i −0.295030 0.511008i
\(711\) 0 0
\(712\) −20.1910 + 34.9719i −0.756691 + 1.31063i
\(713\) −20.2600 + 35.0914i −0.758744 + 1.31418i
\(714\) 0 0
\(715\) 0.737197 + 1.27686i 0.0275696 + 0.0477520i
\(716\) −30.4913 −1.13951
\(717\) 0 0
\(718\) −9.92426 −0.370370
\(719\) −10.4980 + 18.1831i −0.391510 + 0.678116i −0.992649 0.121029i \(-0.961381\pi\)
0.601139 + 0.799145i \(0.294714\pi\)
\(720\) 0 0
\(721\) 3.56959 + 5.13310i 0.132938 + 0.191167i
\(722\) −3.07482 + 5.32574i −0.114433 + 0.198203i
\(723\) 0 0
\(724\) 10.8764 18.8386i 0.404220 0.700129i
\(725\) −1.11179 + 1.92568i −0.0412909 + 0.0715179i
\(726\) 0 0
\(727\) −8.53160 + 14.7772i −0.316420 + 0.548055i −0.979738 0.200282i \(-0.935814\pi\)
0.663319 + 0.748337i \(0.269147\pi\)
\(728\) −1.04387 + 2.21985i −0.0386885 + 0.0822730i
\(729\) 0 0
\(730\) 0.993590 1.72095i 0.0367744 0.0636951i
\(731\) −51.5883 −1.90806
\(732\) 0 0
\(733\) −34.4805 −1.27357 −0.636784 0.771042i \(-0.719736\pi\)
−0.636784 + 0.771042i \(0.719736\pi\)
\(734\) −1.93993 3.36006i −0.0716042 0.124022i
\(735\) 0 0
\(736\) 21.1439 36.6224i 0.779376 1.34992i
\(737\) −4.31842 + 7.47973i −0.159071 + 0.275519i
\(738\) 0 0
\(739\) 0.685922 + 1.18805i 0.0252321 + 0.0437032i 0.878366 0.477989i \(-0.158634\pi\)
−0.853134 + 0.521692i \(0.825301\pi\)
\(740\) 8.05383 + 13.9497i 0.296065 + 0.512799i
\(741\) 0 0
\(742\) 8.64568 0.728271i 0.317393 0.0267357i
\(743\) −4.47124 7.74442i −0.164034 0.284115i 0.772278 0.635285i \(-0.219117\pi\)
−0.936312 + 0.351170i \(0.885784\pi\)
\(744\) 0 0
\(745\) −19.9436 −0.730676
\(746\) 6.02145 + 10.4295i 0.220461 + 0.381850i
\(747\) 0 0
\(748\) −16.4888 −0.602889
\(749\) −11.9748 + 1.00870i −0.437550 + 0.0368572i
\(750\) 0 0
\(751\) 50.5711 1.84537 0.922683 0.385559i \(-0.125991\pi\)
0.922683 + 0.385559i \(0.125991\pi\)
\(752\) −11.2557 + 19.4955i −0.410453 + 0.710926i
\(753\) 0 0
\(754\) −0.464927 0.805277i −0.0169316 0.0293265i
\(755\) 23.2563 0.846383
\(756\) 0 0
\(757\) 9.56041 0.347479 0.173739 0.984792i \(-0.444415\pi\)
0.173739 + 0.984792i \(0.444415\pi\)
\(758\) 4.57004 + 7.91555i 0.165991 + 0.287506i
\(759\) 0 0
\(760\) −12.3416 + 21.3763i −0.447676 + 0.775398i
\(761\) −37.8812 −1.37319 −0.686595 0.727040i \(-0.740896\pi\)
−0.686595 + 0.727040i \(0.740896\pi\)
\(762\) 0 0
\(763\) −19.4153 + 41.2876i −0.702881 + 1.49471i
\(764\) 17.4134 0.629996
\(765\) 0 0
\(766\) 2.02674 + 3.51041i 0.0732289 + 0.126836i
\(767\) 0.663860 0.0239706
\(768\) 0 0
\(769\) 14.2794 + 24.7326i 0.514928 + 0.891881i 0.999850 + 0.0173236i \(0.00551456\pi\)
−0.484922 + 0.874557i \(0.661152\pi\)
\(770\) −2.32740 + 4.94932i −0.0838736 + 0.178361i
\(771\) 0 0
\(772\) −6.67103 11.5546i −0.240096 0.415858i
\(773\) −5.35149 9.26905i −0.192480 0.333385i 0.753592 0.657343i \(-0.228320\pi\)
−0.946071 + 0.323958i \(0.894986\pi\)
\(774\) 0 0
\(775\) −1.61498 + 2.79723i −0.0580119 + 0.100480i
\(776\) 14.9664 25.9226i 0.537262 0.930566i
\(777\) 0 0
\(778\) −1.72007 2.97925i −0.0616675 0.106811i
\(779\) 8.04109 0.288102
\(780\) 0 0
\(781\) 20.7425 0.742224
\(782\) −13.8554 + 23.9982i −0.495467 + 0.858174i
\(783\) 0 0
\(784\) 13.7092 2.32610i 0.489615 0.0830752i
\(785\) 25.4117 44.0144i 0.906984 1.57094i
\(786\) 0 0
\(787\) 18.3183 31.7283i 0.652978 1.13099i −0.329418 0.944184i \(-0.606853\pi\)
0.982397 0.186808i \(-0.0598141\pi\)
\(788\) −7.43982 + 12.8861i −0.265033 + 0.459050i
\(789\) 0 0
\(790\) −4.77525 + 8.27097i −0.169896 + 0.294268i
\(791\) −12.0190 + 25.5590i −0.427346 + 0.908773i
\(792\) 0 0
\(793\) 1.07537 1.86260i 0.0381875 0.0661428i
\(794\) −0.296128 −0.0105092
\(795\) 0 0
\(796\) −12.2024 −0.432502
\(797\) 9.52403 + 16.4961i 0.337359 + 0.584322i 0.983935 0.178527i \(-0.0571332\pi\)
−0.646576 + 0.762849i \(0.723800\pi\)
\(798\) 0 0
\(799\) 34.4302 59.6349i 1.21805 2.10973i
\(800\) 1.68544 2.91927i 0.0595893 0.103212i
\(801\) 0 0
\(802\) 3.10106 + 5.37119i 0.109502 + 0.189663i
\(803\) 1.31082 + 2.27040i 0.0462577 + 0.0801206i
\(804\) 0 0
\(805\) −24.1667 34.7520i −0.851765 1.22485i
\(806\) −0.675350 1.16974i −0.0237882 0.0412024i
\(807\) 0 0
\(808\) −34.7943 −1.22406
\(809\) 9.24567 + 16.0140i 0.325060 + 0.563021i 0.981525 0.191336i \(-0.0612820\pi\)
−0.656464 + 0.754357i \(0.727949\pi\)
\(810\) 0 0
\(811\) 41.5033 1.45738 0.728690 0.684844i \(-0.240130\pi\)
0.728690 + 0.684844i \(0.240130\pi\)
\(812\) −6.75960 + 14.3746i −0.237216 + 0.504450i
\(813\) 0 0
\(814\) 4.61442 0.161735
\(815\) −11.6203 + 20.1269i −0.407040 + 0.705014i
\(816\) 0 0
\(817\) −22.9760 39.7955i −0.803827 1.39227i
\(818\) −17.9317 −0.626966
\(819\) 0 0
\(820\) 5.11573 0.178649
\(821\) −16.2444 28.1360i −0.566932 0.981955i −0.996867 0.0790951i \(-0.974797\pi\)
0.429935 0.902860i \(-0.358536\pi\)
\(822\) 0 0
\(823\) 7.86963 13.6306i 0.274318 0.475133i −0.695645 0.718386i \(-0.744881\pi\)
0.969963 + 0.243253i \(0.0782145\pi\)
\(824\) 5.14266 0.179153
\(825\) 0 0
\(826\) 1.40595 + 2.02178i 0.0489194 + 0.0703466i
\(827\) 40.6095 1.41213 0.706066 0.708146i \(-0.250468\pi\)
0.706066 + 0.708146i \(0.250468\pi\)
\(828\) 0 0
\(829\) −12.7290 22.0473i −0.442097 0.765734i 0.555748 0.831351i \(-0.312432\pi\)
−0.997845 + 0.0656169i \(0.979098\pi\)
\(830\) −6.57940 −0.228374
\(831\) 0 0
\(832\) −0.141501 0.245087i −0.00490567 0.00849688i
\(833\) −41.9353 + 7.11535i −1.45297 + 0.246532i
\(834\) 0 0
\(835\) 2.56813 + 4.44813i 0.0888737 + 0.153934i
\(836\) −7.34364 12.7196i −0.253985 0.439915i
\(837\) 0 0
\(838\) 8.25803 14.3033i 0.285269 0.494100i
\(839\) 24.1746 41.8717i 0.834600 1.44557i −0.0597550 0.998213i \(-0.519032\pi\)
0.894355 0.447357i \(-0.147635\pi\)
\(840\) 0 0
\(841\) 7.82499 + 13.5533i 0.269827 + 0.467354i
\(842\) 7.44409 0.256540
\(843\) 0 0
\(844\) −4.40014 −0.151459
\(845\) −13.4310 + 23.2632i −0.462042 + 0.800280i
\(846\) 0 0
\(847\) 12.4964 + 17.9699i 0.429381 + 0.617454i
\(848\) −5.45273 + 9.44441i −0.187248 + 0.324322i
\(849\) 0 0
\(850\) −1.10445 + 1.91296i −0.0378823 + 0.0656141i
\(851\) −17.8565 + 30.9284i −0.612114 + 1.06021i
\(852\) 0 0
\(853\) 1.32933 2.30247i 0.0455155 0.0788352i −0.842370 0.538899i \(-0.818840\pi\)
0.887886 + 0.460064i \(0.152174\pi\)
\(854\) 7.94998 0.669669i 0.272043 0.0229156i
\(855\) 0 0
\(856\) −4.94226 + 8.56025i −0.168923 + 0.292583i
\(857\) −14.0664 −0.480498 −0.240249 0.970711i \(-0.577229\pi\)
−0.240249 + 0.970711i \(0.577229\pi\)
\(858\) 0 0
\(859\) −19.2927 −0.658258 −0.329129 0.944285i \(-0.606755\pi\)
−0.329129 + 0.944285i \(0.606755\pi\)
\(860\) −14.6173 25.3179i −0.498445 0.863333i
\(861\) 0 0
\(862\) −4.21219 + 7.29572i −0.143468 + 0.248493i
\(863\) −21.1692 + 36.6661i −0.720608 + 1.24813i 0.240149 + 0.970736i \(0.422804\pi\)
−0.960756 + 0.277393i \(0.910530\pi\)
\(864\) 0 0
\(865\) 9.72457 + 16.8434i 0.330645 + 0.572694i
\(866\) 4.59006 + 7.95022i 0.155977 + 0.270159i
\(867\) 0 0
\(868\) −9.81896 + 20.8805i −0.333277 + 0.708731i
\(869\) −6.29985 10.9117i −0.213708 0.370153i
\(870\) 0 0
\(871\) 2.22820 0.0754996
\(872\) 18.7639 + 32.4999i 0.635424 + 1.10059i
\(873\) 0 0
\(874\) −24.6832 −0.834921
\(875\) −17.7536 25.5298i −0.600180 0.863065i
\(876\) 0 0
\(877\) −10.0508 −0.339393 −0.169697 0.985496i \(-0.554279\pi\)
−0.169697 + 0.985496i \(0.554279\pi\)
\(878\) −5.74809 + 9.95598i −0.193989 + 0.335998i
\(879\) 0 0
\(880\) −3.43722 5.95343i −0.115868 0.200690i
\(881\) 25.7602 0.867885 0.433942 0.900941i \(-0.357122\pi\)
0.433942 + 0.900941i \(0.357122\pi\)
\(882\) 0 0
\(883\) −53.1876 −1.78991 −0.894953 0.446160i \(-0.852791\pi\)
−0.894953 + 0.446160i \(0.852791\pi\)
\(884\) 2.12695 + 3.68398i 0.0715370 + 0.123906i
\(885\) 0 0
\(886\) 7.33821 12.7102i 0.246532 0.427006i
\(887\) −20.9517 −0.703489 −0.351745 0.936096i \(-0.614411\pi\)
−0.351745 + 0.936096i \(0.614411\pi\)
\(888\) 0 0
\(889\) −21.7607 31.2922i −0.729832 1.04951i
\(890\) 23.2279 0.778601
\(891\) 0 0
\(892\) 17.6946 + 30.6480i 0.592460 + 1.02617i
\(893\) 61.3370 2.05256
\(894\) 0 0
\(895\) 19.4429 + 33.6761i 0.649904 + 1.12567i
\(896\) 12.9192 27.4734i 0.431601 0.917822i
\(897\) 0 0
\(898\) −11.9481 20.6947i −0.398712 0.690590i
\(899\) −9.69609 16.7941i −0.323383 0.560115i
\(900\) 0 0
\(901\) 16.6794 28.8896i 0.555672 0.962452i
\(902\) 0.732761 1.26918i 0.0243983 0.0422591i
\(903\) 0 0
\(904\) 11.6157 + 20.1190i 0.386333 + 0.669149i
\(905\) −27.7416 −0.922163
\(906\) 0 0
\(907\) 47.5854 1.58005 0.790024 0.613077i \(-0.210068\pi\)
0.790024 + 0.613077i \(0.210068\pi\)
\(908\) −10.7637 + 18.6433i −0.357207 + 0.618701i
\(909\) 0 0
\(910\) 1.40602 0.118436i 0.0466090 0.00392612i
\(911\) −14.8860 + 25.7833i −0.493194 + 0.854238i −0.999969 0.00784062i \(-0.997504\pi\)
0.506775 + 0.862078i \(0.330838\pi\)
\(912\) 0 0
\(913\) 4.34001 7.51712i 0.143633 0.248780i
\(914\) 3.17668 5.50217i 0.105075 0.181995i
\(915\) 0 0
\(916\) 13.8229 23.9420i 0.456723 0.791067i
\(917\) −15.3851 22.1239i −0.508060 0.730595i
\(918\) 0 0
\(919\) −15.2293 + 26.3779i −0.502367 + 0.870126i 0.497629 + 0.867390i \(0.334204\pi\)
−0.999996 + 0.00273583i \(0.999129\pi\)
\(920\) −34.8167 −1.14787
\(921\) 0 0
\(922\) 9.80179 0.322805
\(923\) −2.67565 4.63436i −0.0880700 0.152542i
\(924\) 0 0
\(925\) −1.42339 + 2.46539i −0.0468009 + 0.0810615i
\(926\) −1.81110 + 3.13692i −0.0595165 + 0.103086i
\(927\) 0 0
\(928\) 10.1191 + 17.5268i 0.332176 + 0.575346i
\(929\) −10.5830 18.3304i −0.347218 0.601400i 0.638536 0.769592i \(-0.279540\pi\)
−0.985754 + 0.168192i \(0.946207\pi\)
\(930\) 0 0
\(931\) −24.1656 29.1802i −0.791996 0.956342i
\(932\) 18.7064 + 32.4005i 0.612749 + 1.06131i
\(933\) 0 0
\(934\) 15.1046 0.494238
\(935\) 10.5141 + 18.2110i 0.343849 + 0.595564i
\(936\) 0 0
\(937\) 40.2779 1.31582 0.657912 0.753095i \(-0.271440\pi\)
0.657912 + 0.753095i \(0.271440\pi\)
\(938\) 4.71898 + 6.78594i 0.154080 + 0.221569i
\(939\) 0 0
\(940\) 39.0226 1.27278
\(941\) 0.910476 1.57699i 0.0296807 0.0514084i −0.850804 0.525484i \(-0.823884\pi\)
0.880484 + 0.474076i \(0.157218\pi\)
\(942\) 0 0
\(943\) 5.67116 + 9.82274i 0.184678 + 0.319872i
\(944\) −3.09528 −0.100743
\(945\) 0 0
\(946\) −8.37494 −0.272293
\(947\) 6.74590 + 11.6842i 0.219212 + 0.379687i 0.954567 0.297995i \(-0.0963180\pi\)
−0.735355 + 0.677682i \(0.762985\pi\)
\(948\) 0 0
\(949\) 0.338174 0.585734i 0.0109776 0.0190137i
\(950\) −1.96756 −0.0638362
\(951\) 0 0
\(952\) −14.8880 + 31.6602i −0.482524 + 1.02611i
\(953\) 4.95309 0.160446 0.0802232 0.996777i \(-0.474437\pi\)
0.0802232 + 0.996777i \(0.474437\pi\)
\(954\) 0 0
\(955\) −11.1038 19.2323i −0.359309 0.622342i
\(956\) −15.6400 −0.505835
\(957\) 0 0
\(958\) 0.998294 + 1.72910i 0.0322534 + 0.0558646i
\(959\) −3.11519 4.47968i −0.100595 0.144656i
\(960\) 0 0
\(961\) 1.41551 + 2.45174i 0.0456616 + 0.0790883i
\(962\) −0.595231 1.03097i −0.0191910 0.0332398i
\(963\) 0 0
\(964\) 0.963800 1.66935i 0.0310419 0.0537661i
\(965\) −8.50762 + 14.7356i −0.273870 + 0.474357i
\(966\) 0 0
\(967\) −8.62831 14.9447i −0.277468 0.480588i 0.693287 0.720662i \(-0.256162\pi\)
−0.970755 + 0.240073i \(0.922829\pi\)
\(968\) 18.0034 0.578651
\(969\) 0 0
\(970\) −17.2174 −0.552818
\(971\) −23.4532 + 40.6221i −0.752649 + 1.30363i 0.193886 + 0.981024i \(0.437891\pi\)
−0.946535 + 0.322602i \(0.895442\pi\)
\(972\) 0 0
\(973\) −7.47347 + 15.8927i −0.239588 + 0.509497i
\(974\) −2.17396 + 3.76542i −0.0696583 + 0.120652i
\(975\) 0 0
\(976\) −5.01397 + 8.68444i −0.160493 + 0.277982i
\(977\) −17.5817 + 30.4524i −0.562488 + 0.974257i 0.434791 + 0.900531i \(0.356822\pi\)
−0.997279 + 0.0737259i \(0.976511\pi\)
\(978\) 0 0
\(979\) −15.3220 + 26.5384i −0.489692 + 0.848171i
\(980\) −15.3741 18.5644i −0.491109 0.593018i
\(981\) 0 0
\(982\) 0.887434 1.53708i 0.0283192 0.0490502i
\(983\) −12.0860 −0.385482 −0.192741 0.981250i \(-0.561738\pi\)
−0.192741 + 0.981250i \(0.561738\pi\)
\(984\) 0 0
\(985\) 18.9761 0.604630
\(986\) −6.63093 11.4851i −0.211172 0.365760i
\(987\) 0 0
\(988\) −1.89457 + 3.28148i −0.0602742 + 0.104398i
\(989\) 32.4087 56.1334i 1.03054 1.78494i
\(990\) 0 0
\(991\) −16.1874 28.0374i −0.514209 0.890636i −0.999864 0.0164855i \(-0.994752\pi\)
0.485655 0.874150i \(-0.338581\pi\)
\(992\) 14.6990 + 25.4594i 0.466693 + 0.808335i
\(993\) 0 0
\(994\) 8.44725 17.9635i 0.267931 0.569768i
\(995\) 7.78091 + 13.4769i 0.246671 + 0.427247i
\(996\) 0 0
\(997\) −14.7332 −0.466605 −0.233303 0.972404i \(-0.574953\pi\)
−0.233303 + 0.972404i \(0.574953\pi\)
\(998\) −3.72913 6.45904i −0.118044 0.204457i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.l.541.4 16
3.2 odd 2 inner 567.2.g.l.541.5 16
7.4 even 3 567.2.h.l.298.5 16
9.2 odd 6 567.2.e.g.163.5 yes 16
9.4 even 3 567.2.h.l.352.5 16
9.5 odd 6 567.2.h.l.352.4 16
9.7 even 3 567.2.e.g.163.4 16
21.11 odd 6 567.2.h.l.298.4 16
63.2 odd 6 3969.2.a.bg.1.4 8
63.4 even 3 inner 567.2.g.l.109.4 16
63.11 odd 6 567.2.e.g.487.5 yes 16
63.16 even 3 3969.2.a.bg.1.5 8
63.25 even 3 567.2.e.g.487.4 yes 16
63.32 odd 6 inner 567.2.g.l.109.5 16
63.47 even 6 3969.2.a.bf.1.4 8
63.61 odd 6 3969.2.a.bf.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.4 16 9.7 even 3
567.2.e.g.163.5 yes 16 9.2 odd 6
567.2.e.g.487.4 yes 16 63.25 even 3
567.2.e.g.487.5 yes 16 63.11 odd 6
567.2.g.l.109.4 16 63.4 even 3 inner
567.2.g.l.109.5 16 63.32 odd 6 inner
567.2.g.l.541.4 16 1.1 even 1 trivial
567.2.g.l.541.5 16 3.2 odd 2 inner
567.2.h.l.298.4 16 21.11 odd 6
567.2.h.l.298.5 16 7.4 even 3
567.2.h.l.352.4 16 9.5 odd 6
567.2.h.l.352.5 16 9.4 even 3
3969.2.a.bf.1.4 8 63.47 even 6
3969.2.a.bf.1.5 8 63.61 odd 6
3969.2.a.bg.1.4 8 63.2 odd 6
3969.2.a.bg.1.5 8 63.16 even 3