Properties

Label 567.2.g.l.541.3
Level $567$
Weight $2$
Character 567.541
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(109,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.3
Root \(0.776749 - 1.18180i\) of defining polynomial
Character \(\chi\) \(=\) 567.541
Dual form 567.2.g.l.109.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.635098 - 1.10002i) q^{2} +(0.193301 - 0.334806i) q^{4} -1.55350 q^{5} +(2.63869 - 0.193156i) q^{7} -3.03145 q^{8} +(0.986623 + 1.70888i) q^{10} +3.21001 q^{11} +(-2.39335 - 4.14540i) q^{13} +(-1.88830 - 2.77995i) q^{14} +(1.53867 + 2.66505i) q^{16} +(-1.05918 - 1.83456i) q^{17} +(2.43201 - 4.21237i) q^{19} +(-0.300292 + 0.520121i) q^{20} +(-2.03867 - 3.53108i) q^{22} -3.70758 q^{23} -2.58665 q^{25} +(-3.04002 + 5.26547i) q^{26} +(0.445391 - 0.920788i) q^{28} +(3.68972 - 6.39078i) q^{29} +(-2.75209 + 4.76676i) q^{31} +(-1.07704 + 1.86549i) q^{32} +(-1.34537 + 2.33025i) q^{34} +(-4.09920 + 0.300067i) q^{35} +(0.0932782 - 0.161563i) q^{37} -6.17827 q^{38} +4.70935 q^{40} +(-5.39860 - 9.35065i) q^{41} +(-2.43458 + 4.21681i) q^{43} +(0.620496 - 1.07473i) q^{44} +(2.35468 + 4.07842i) q^{46} +(0.885937 + 1.53449i) q^{47} +(6.92538 - 1.01936i) q^{49} +(1.64277 + 2.84537i) q^{50} -1.85054 q^{52} +(0.834432 + 1.44528i) q^{53} -4.98674 q^{55} +(-7.99907 + 0.585543i) q^{56} -9.37334 q^{58} +(2.91297 - 5.04541i) q^{59} +(-3.43865 - 5.95591i) q^{61} +6.99139 q^{62} +8.89078 q^{64} +(3.71806 + 6.43986i) q^{65} +(-6.11868 + 10.5979i) q^{67} -0.818961 q^{68} +(2.93347 + 4.31864i) q^{70} +13.8101 q^{71} +(-5.93201 - 10.2745i) q^{73} -0.236963 q^{74} +(-0.940219 - 1.62851i) q^{76} +(8.47021 - 0.620031i) q^{77} +(0.654632 + 1.13386i) q^{79} +(-2.39032 - 4.14015i) q^{80} +(-6.85728 + 11.8772i) q^{82} +(-0.173244 + 0.300067i) q^{83} +(1.64544 + 2.84998i) q^{85} +6.18478 q^{86} -9.73098 q^{88} +(-8.70319 + 15.0744i) q^{89} +(-7.11601 - 10.4761i) q^{91} +(-0.716677 + 1.24132i) q^{92} +(1.12531 - 1.94910i) q^{94} +(-3.77813 + 6.54391i) q^{95} +(5.28413 - 9.15238i) q^{97} +(-5.51961 - 6.97068i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} - 14 q^{10} - 6 q^{13} - 6 q^{16} - 24 q^{19} - 2 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} + 72 q^{40} - 10 q^{43} + 36 q^{46} + 4 q^{49} + 68 q^{52} + 8 q^{55} - 44 q^{58} - 36 q^{61} + 76 q^{64}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.635098 1.10002i −0.449082 0.777833i 0.549244 0.835662i \(-0.314916\pi\)
−0.998327 + 0.0578286i \(0.981582\pi\)
\(3\) 0 0
\(4\) 0.193301 0.334806i 0.0966503 0.167403i
\(5\) −1.55350 −0.694745 −0.347373 0.937727i \(-0.612926\pi\)
−0.347373 + 0.937727i \(0.612926\pi\)
\(6\) 0 0
\(7\) 2.63869 0.193156i 0.997331 0.0730060i
\(8\) −3.03145 −1.07178
\(9\) 0 0
\(10\) 0.986623 + 1.70888i 0.311998 + 0.540396i
\(11\) 3.21001 0.967853 0.483927 0.875109i \(-0.339210\pi\)
0.483927 + 0.875109i \(0.339210\pi\)
\(12\) 0 0
\(13\) −2.39335 4.14540i −0.663795 1.14973i −0.979611 0.200905i \(-0.935612\pi\)
0.315816 0.948820i \(-0.397722\pi\)
\(14\) −1.88830 2.77995i −0.504670 0.742972i
\(15\) 0 0
\(16\) 1.53867 + 2.66505i 0.384667 + 0.666263i
\(17\) −1.05918 1.83456i −0.256889 0.444945i 0.708518 0.705693i \(-0.249364\pi\)
−0.965407 + 0.260748i \(0.916031\pi\)
\(18\) 0 0
\(19\) 2.43201 4.21237i 0.557942 0.966384i −0.439726 0.898132i \(-0.644924\pi\)
0.997668 0.0682523i \(-0.0217423\pi\)
\(20\) −0.300292 + 0.520121i −0.0671473 + 0.116303i
\(21\) 0 0
\(22\) −2.03867 3.53108i −0.434646 0.752828i
\(23\) −3.70758 −0.773084 −0.386542 0.922272i \(-0.626330\pi\)
−0.386542 + 0.922272i \(0.626330\pi\)
\(24\) 0 0
\(25\) −2.58665 −0.517329
\(26\) −3.04002 + 5.26547i −0.596197 + 1.03264i
\(27\) 0 0
\(28\) 0.445391 0.920788i 0.0841709 0.174013i
\(29\) 3.68972 6.39078i 0.685164 1.18674i −0.288222 0.957564i \(-0.593064\pi\)
0.973385 0.229175i \(-0.0736027\pi\)
\(30\) 0 0
\(31\) −2.75209 + 4.76676i −0.494290 + 0.856135i −0.999978 0.00658088i \(-0.997905\pi\)
0.505688 + 0.862716i \(0.331239\pi\)
\(32\) −1.07704 + 1.86549i −0.190396 + 0.329775i
\(33\) 0 0
\(34\) −1.34537 + 2.33025i −0.230729 + 0.399634i
\(35\) −4.09920 + 0.300067i −0.692891 + 0.0507206i
\(36\) 0 0
\(37\) 0.0932782 0.161563i 0.0153348 0.0265607i −0.858256 0.513222i \(-0.828452\pi\)
0.873591 + 0.486661i \(0.161785\pi\)
\(38\) −6.17827 −1.00225
\(39\) 0 0
\(40\) 4.70935 0.744614
\(41\) −5.39860 9.35065i −0.843120 1.46033i −0.887244 0.461300i \(-0.847383\pi\)
0.0441242 0.999026i \(-0.485950\pi\)
\(42\) 0 0
\(43\) −2.43458 + 4.21681i −0.371270 + 0.643058i −0.989761 0.142734i \(-0.954411\pi\)
0.618491 + 0.785792i \(0.287744\pi\)
\(44\) 0.620496 1.07473i 0.0935433 0.162022i
\(45\) 0 0
\(46\) 2.35468 + 4.07842i 0.347178 + 0.601330i
\(47\) 0.885937 + 1.53449i 0.129227 + 0.223828i 0.923377 0.383893i \(-0.125417\pi\)
−0.794150 + 0.607722i \(0.792084\pi\)
\(48\) 0 0
\(49\) 6.92538 1.01936i 0.989340 0.145622i
\(50\) 1.64277 + 2.84537i 0.232323 + 0.402396i
\(51\) 0 0
\(52\) −1.85054 −0.256624
\(53\) 0.834432 + 1.44528i 0.114618 + 0.198524i 0.917627 0.397443i \(-0.130102\pi\)
−0.803009 + 0.595967i \(0.796769\pi\)
\(54\) 0 0
\(55\) −4.98674 −0.672411
\(56\) −7.99907 + 0.585543i −1.06892 + 0.0782464i
\(57\) 0 0
\(58\) −9.37334 −1.23078
\(59\) 2.91297 5.04541i 0.379236 0.656857i −0.611715 0.791078i \(-0.709520\pi\)
0.990951 + 0.134221i \(0.0428534\pi\)
\(60\) 0 0
\(61\) −3.43865 5.95591i −0.440274 0.762576i 0.557436 0.830220i \(-0.311785\pi\)
−0.997710 + 0.0676438i \(0.978452\pi\)
\(62\) 6.99139 0.887907
\(63\) 0 0
\(64\) 8.89078 1.11135
\(65\) 3.71806 + 6.43986i 0.461168 + 0.798766i
\(66\) 0 0
\(67\) −6.11868 + 10.5979i −0.747516 + 1.29474i 0.201494 + 0.979490i \(0.435420\pi\)
−0.949010 + 0.315246i \(0.897913\pi\)
\(68\) −0.818961 −0.0993136
\(69\) 0 0
\(70\) 2.93347 + 4.31864i 0.350617 + 0.516176i
\(71\) 13.8101 1.63895 0.819477 0.573112i \(-0.194264\pi\)
0.819477 + 0.573112i \(0.194264\pi\)
\(72\) 0 0
\(73\) −5.93201 10.2745i −0.694290 1.20255i −0.970420 0.241425i \(-0.922385\pi\)
0.276130 0.961120i \(-0.410948\pi\)
\(74\) −0.236963 −0.0275464
\(75\) 0 0
\(76\) −0.940219 1.62851i −0.107851 0.186803i
\(77\) 8.47021 0.620031i 0.965270 0.0706591i
\(78\) 0 0
\(79\) 0.654632 + 1.13386i 0.0736518 + 0.127569i 0.900499 0.434858i \(-0.143201\pi\)
−0.826847 + 0.562426i \(0.809868\pi\)
\(80\) −2.39032 4.14015i −0.267246 0.462883i
\(81\) 0 0
\(82\) −6.85728 + 11.8772i −0.757260 + 1.31161i
\(83\) −0.173244 + 0.300067i −0.0190160 + 0.0329366i −0.875377 0.483441i \(-0.839387\pi\)
0.856361 + 0.516378i \(0.172720\pi\)
\(84\) 0 0
\(85\) 1.64544 + 2.84998i 0.178473 + 0.309123i
\(86\) 6.18478 0.666922
\(87\) 0 0
\(88\) −9.73098 −1.03733
\(89\) −8.70319 + 15.0744i −0.922537 + 1.59788i −0.127061 + 0.991895i \(0.540554\pi\)
−0.795476 + 0.605985i \(0.792779\pi\)
\(90\) 0 0
\(91\) −7.11601 10.4761i −0.745960 1.09820i
\(92\) −0.716677 + 1.24132i −0.0747187 + 0.129417i
\(93\) 0 0
\(94\) 1.12531 1.94910i 0.116067 0.201035i
\(95\) −3.77813 + 6.54391i −0.387628 + 0.671391i
\(96\) 0 0
\(97\) 5.28413 9.15238i 0.536522 0.929283i −0.462566 0.886585i \(-0.653071\pi\)
0.999088 0.0426982i \(-0.0135954\pi\)
\(98\) −5.51961 6.97068i −0.557565 0.704145i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) 2.03394 0.202384 0.101192 0.994867i \(-0.467734\pi\)
0.101192 + 0.994867i \(0.467734\pi\)
\(102\) 0 0
\(103\) 19.9816 1.96885 0.984423 0.175816i \(-0.0562562\pi\)
0.984423 + 0.175816i \(0.0562562\pi\)
\(104\) 7.25531 + 12.5666i 0.711442 + 1.23225i
\(105\) 0 0
\(106\) 1.05989 1.83579i 0.102946 0.178307i
\(107\) 8.45322 14.6414i 0.817204 1.41544i −0.0905308 0.995894i \(-0.528856\pi\)
0.907735 0.419545i \(-0.137810\pi\)
\(108\) 0 0
\(109\) 5.34955 + 9.26569i 0.512394 + 0.887492i 0.999897 + 0.0143707i \(0.00457451\pi\)
−0.487503 + 0.873121i \(0.662092\pi\)
\(110\) 3.16707 + 5.48552i 0.301968 + 0.523024i
\(111\) 0 0
\(112\) 4.57484 + 6.73505i 0.432282 + 0.636402i
\(113\) 4.29236 + 7.43458i 0.403791 + 0.699386i 0.994180 0.107733i \(-0.0343590\pi\)
−0.590389 + 0.807119i \(0.701026\pi\)
\(114\) 0 0
\(115\) 5.75971 0.537096
\(116\) −1.42645 2.47068i −0.132442 0.229397i
\(117\) 0 0
\(118\) −7.40009 −0.681233
\(119\) −3.14921 4.63624i −0.288687 0.425003i
\(120\) 0 0
\(121\) −0.695865 −0.0632604
\(122\) −4.36776 + 7.56518i −0.395438 + 0.684919i
\(123\) 0 0
\(124\) 1.06396 + 1.84283i 0.0955465 + 0.165491i
\(125\) 11.7858 1.05416
\(126\) 0 0
\(127\) 1.95162 0.173178 0.0865892 0.996244i \(-0.472403\pi\)
0.0865892 + 0.996244i \(0.472403\pi\)
\(128\) −3.49244 6.04908i −0.308691 0.534668i
\(129\) 0 0
\(130\) 4.72266 8.17989i 0.414205 0.717424i
\(131\) 11.7443 1.02610 0.513051 0.858358i \(-0.328515\pi\)
0.513051 + 0.858358i \(0.328515\pi\)
\(132\) 0 0
\(133\) 5.60369 11.5849i 0.485902 1.00454i
\(134\) 15.5439 1.34278
\(135\) 0 0
\(136\) 3.21086 + 5.56137i 0.275329 + 0.476883i
\(137\) 16.1321 1.37826 0.689128 0.724639i \(-0.257994\pi\)
0.689128 + 0.724639i \(0.257994\pi\)
\(138\) 0 0
\(139\) −6.72127 11.6416i −0.570091 0.987426i −0.996556 0.0829220i \(-0.973575\pi\)
0.426465 0.904504i \(-0.359759\pi\)
\(140\) −0.691913 + 1.43044i −0.0584773 + 0.120894i
\(141\) 0 0
\(142\) −8.77075 15.1914i −0.736025 1.27483i
\(143\) −7.68265 13.3067i −0.642456 1.11277i
\(144\) 0 0
\(145\) −5.73197 + 9.92806i −0.476014 + 0.824481i
\(146\) −7.53482 + 13.0507i −0.623586 + 1.08008i
\(147\) 0 0
\(148\) −0.0360614 0.0624602i −0.00296423 0.00513420i
\(149\) 3.21174 0.263116 0.131558 0.991308i \(-0.458002\pi\)
0.131558 + 0.991308i \(0.458002\pi\)
\(150\) 0 0
\(151\) 17.0322 1.38606 0.693030 0.720909i \(-0.256275\pi\)
0.693030 + 0.720909i \(0.256275\pi\)
\(152\) −7.37253 + 12.7696i −0.597991 + 1.03575i
\(153\) 0 0
\(154\) −6.06147 8.92364i −0.488447 0.719088i
\(155\) 4.27536 7.40515i 0.343406 0.594796i
\(156\) 0 0
\(157\) −4.71709 + 8.17024i −0.376465 + 0.652056i −0.990545 0.137188i \(-0.956194\pi\)
0.614080 + 0.789243i \(0.289527\pi\)
\(158\) 0.831511 1.44022i 0.0661515 0.114578i
\(159\) 0 0
\(160\) 1.67318 2.89803i 0.132276 0.229110i
\(161\) −9.78315 + 0.716140i −0.771021 + 0.0564398i
\(162\) 0 0
\(163\) −1.83874 + 3.18478i −0.144021 + 0.249452i −0.929007 0.370062i \(-0.879337\pi\)
0.784986 + 0.619513i \(0.212670\pi\)
\(164\) −4.17421 −0.325951
\(165\) 0 0
\(166\) 0.440107 0.0341590
\(167\) 0.805085 + 1.39445i 0.0622994 + 0.107906i 0.895493 0.445076i \(-0.146823\pi\)
−0.833193 + 0.552982i \(0.813490\pi\)
\(168\) 0 0
\(169\) −4.95620 + 8.58440i −0.381246 + 0.660338i
\(170\) 2.09003 3.62003i 0.160298 0.277644i
\(171\) 0 0
\(172\) 0.941210 + 1.63022i 0.0717666 + 0.124303i
\(173\) 8.09213 + 14.0160i 0.615233 + 1.06562i 0.990344 + 0.138635i \(0.0442716\pi\)
−0.375110 + 0.926980i \(0.622395\pi\)
\(174\) 0 0
\(175\) −6.82536 + 0.499626i −0.515949 + 0.0377682i
\(176\) 4.93914 + 8.55483i 0.372301 + 0.644845i
\(177\) 0 0
\(178\) 22.1095 1.65718
\(179\) 8.70319 + 15.0744i 0.650507 + 1.12671i 0.983000 + 0.183606i \(0.0587770\pi\)
−0.332493 + 0.943106i \(0.607890\pi\)
\(180\) 0 0
\(181\) 8.89591 0.661228 0.330614 0.943766i \(-0.392744\pi\)
0.330614 + 0.943766i \(0.392744\pi\)
\(182\) −7.00461 + 14.4811i −0.519217 + 1.07341i
\(183\) 0 0
\(184\) 11.2393 0.828576
\(185\) −0.144907 + 0.250987i −0.0106538 + 0.0184529i
\(186\) 0 0
\(187\) −3.39998 5.88893i −0.248631 0.430642i
\(188\) 0.685009 0.0499594
\(189\) 0 0
\(190\) 9.59793 0.696307
\(191\) −7.39609 12.8104i −0.535163 0.926929i −0.999155 0.0410898i \(-0.986917\pi\)
0.463993 0.885839i \(-0.346416\pi\)
\(192\) 0 0
\(193\) −0.910790 + 1.57753i −0.0655601 + 0.113553i −0.896942 0.442148i \(-0.854217\pi\)
0.831382 + 0.555701i \(0.187550\pi\)
\(194\) −13.4238 −0.963770
\(195\) 0 0
\(196\) 0.997393 2.51570i 0.0712423 0.179693i
\(197\) 7.71970 0.550006 0.275003 0.961443i \(-0.411321\pi\)
0.275003 + 0.961443i \(0.411321\pi\)
\(198\) 0 0
\(199\) −1.10665 1.91678i −0.0784487 0.135877i 0.824132 0.566398i \(-0.191663\pi\)
−0.902581 + 0.430521i \(0.858330\pi\)
\(200\) 7.84129 0.554463
\(201\) 0 0
\(202\) −1.29175 2.23738i −0.0908872 0.157421i
\(203\) 8.50161 17.5760i 0.596696 1.23359i
\(204\) 0 0
\(205\) 8.38671 + 14.5262i 0.585753 + 1.01455i
\(206\) −12.6903 21.9802i −0.884174 1.53143i
\(207\) 0 0
\(208\) 7.36513 12.7568i 0.510680 0.884524i
\(209\) 7.80678 13.5217i 0.540006 0.935318i
\(210\) 0 0
\(211\) 0.906722 + 1.57049i 0.0624213 + 0.108117i 0.895547 0.444967i \(-0.146784\pi\)
−0.833126 + 0.553083i \(0.813451\pi\)
\(212\) 0.645185 0.0443115
\(213\) 0 0
\(214\) −21.4745 −1.46797
\(215\) 3.78211 6.55081i 0.257938 0.446761i
\(216\) 0 0
\(217\) −6.34119 + 13.1096i −0.430468 + 0.889937i
\(218\) 6.79498 11.7692i 0.460214 0.797114i
\(219\) 0 0
\(220\) −0.963939 + 1.66959i −0.0649887 + 0.112564i
\(221\) −5.06997 + 8.78145i −0.341043 + 0.590704i
\(222\) 0 0
\(223\) −4.75308 + 8.23258i −0.318290 + 0.551294i −0.980131 0.198350i \(-0.936442\pi\)
0.661841 + 0.749644i \(0.269775\pi\)
\(224\) −2.48165 + 5.13049i −0.165812 + 0.342795i
\(225\) 0 0
\(226\) 5.45213 9.44337i 0.362671 0.628164i
\(227\) −10.8329 −0.719006 −0.359503 0.933144i \(-0.617054\pi\)
−0.359503 + 0.933144i \(0.617054\pi\)
\(228\) 0 0
\(229\) 12.5197 0.827322 0.413661 0.910431i \(-0.364250\pi\)
0.413661 + 0.910431i \(0.364250\pi\)
\(230\) −3.65798 6.33581i −0.241200 0.417771i
\(231\) 0 0
\(232\) −11.1852 + 19.3733i −0.734345 + 1.27192i
\(233\) −7.64044 + 13.2336i −0.500542 + 0.866964i 0.499458 + 0.866338i \(0.333533\pi\)
−1.00000 0.000625732i \(0.999801\pi\)
\(234\) 0 0
\(235\) −1.37630 2.38382i −0.0897800 0.155504i
\(236\) −1.12616 1.95056i −0.0733066 0.126971i
\(237\) 0 0
\(238\) −3.09991 + 6.40867i −0.200937 + 0.415412i
\(239\) −5.35791 9.28017i −0.346574 0.600284i 0.639064 0.769153i \(-0.279322\pi\)
−0.985638 + 0.168869i \(0.945988\pi\)
\(240\) 0 0
\(241\) −15.0002 −0.966249 −0.483125 0.875552i \(-0.660498\pi\)
−0.483125 + 0.875552i \(0.660498\pi\)
\(242\) 0.441942 + 0.765467i 0.0284091 + 0.0492061i
\(243\) 0 0
\(244\) −2.65877 −0.170210
\(245\) −10.7586 + 1.58357i −0.687339 + 0.101170i
\(246\) 0 0
\(247\) −23.2826 −1.48144
\(248\) 8.34283 14.4502i 0.529770 0.917589i
\(249\) 0 0
\(250\) −7.48516 12.9647i −0.473403 0.819958i
\(251\) −16.5665 −1.04567 −0.522833 0.852435i \(-0.675125\pi\)
−0.522833 + 0.852435i \(0.675125\pi\)
\(252\) 0 0
\(253\) −11.9013 −0.748231
\(254\) −1.23947 2.14683i −0.0777714 0.134704i
\(255\) 0 0
\(256\) 4.45470 7.71576i 0.278419 0.482235i
\(257\) −22.5772 −1.40833 −0.704163 0.710038i \(-0.748678\pi\)
−0.704163 + 0.710038i \(0.748678\pi\)
\(258\) 0 0
\(259\) 0.214926 0.444331i 0.0133548 0.0276094i
\(260\) 2.87481 0.178288
\(261\) 0 0
\(262\) −7.45877 12.9190i −0.460804 0.798136i
\(263\) −22.3461 −1.37792 −0.688959 0.724800i \(-0.741932\pi\)
−0.688959 + 0.724800i \(0.741932\pi\)
\(264\) 0 0
\(265\) −1.29629 2.24524i −0.0796303 0.137924i
\(266\) −16.3025 + 1.19337i −0.999573 + 0.0731702i
\(267\) 0 0
\(268\) 2.36549 + 4.09715i 0.144495 + 0.250273i
\(269\) 13.9475 + 24.1577i 0.850392 + 1.47292i 0.880855 + 0.473387i \(0.156969\pi\)
−0.0304623 + 0.999536i \(0.509698\pi\)
\(270\) 0 0
\(271\) −4.93714 + 8.55138i −0.299910 + 0.519459i −0.976115 0.217254i \(-0.930290\pi\)
0.676205 + 0.736713i \(0.263623\pi\)
\(272\) 3.25946 5.64555i 0.197634 0.342312i
\(273\) 0 0
\(274\) −10.2455 17.7457i −0.618951 1.07205i
\(275\) −8.30315 −0.500699
\(276\) 0 0
\(277\) −8.71457 −0.523608 −0.261804 0.965121i \(-0.584317\pi\)
−0.261804 + 0.965121i \(0.584317\pi\)
\(278\) −8.53733 + 14.7871i −0.512035 + 0.886871i
\(279\) 0 0
\(280\) 12.4265 0.909639i 0.742627 0.0543613i
\(281\) −3.10321 + 5.37491i −0.185122 + 0.320640i −0.943618 0.331038i \(-0.892601\pi\)
0.758496 + 0.651678i \(0.225935\pi\)
\(282\) 0 0
\(283\) −9.82943 + 17.0251i −0.584299 + 1.01204i 0.410664 + 0.911787i \(0.365297\pi\)
−0.994962 + 0.100248i \(0.968036\pi\)
\(284\) 2.66949 4.62370i 0.158405 0.274366i
\(285\) 0 0
\(286\) −9.75848 + 16.9022i −0.577031 + 0.999447i
\(287\) −16.0514 23.6307i −0.947483 1.39488i
\(288\) 0 0
\(289\) 6.25627 10.8362i 0.368016 0.637422i
\(290\) 14.5615 0.855078
\(291\) 0 0
\(292\) −4.58665 −0.268413
\(293\) −7.24841 12.5546i −0.423456 0.733448i 0.572818 0.819682i \(-0.305850\pi\)
−0.996275 + 0.0862342i \(0.972517\pi\)
\(294\) 0 0
\(295\) −4.52529 + 7.83804i −0.263473 + 0.456348i
\(296\) −0.282768 + 0.489769i −0.0164356 + 0.0284672i
\(297\) 0 0
\(298\) −2.03977 3.53299i −0.118161 0.204661i
\(299\) 8.87352 + 15.3694i 0.513169 + 0.888834i
\(300\) 0 0
\(301\) −5.60960 + 11.5971i −0.323332 + 0.668447i
\(302\) −10.8171 18.7358i −0.622455 1.07812i
\(303\) 0 0
\(304\) 14.9683 0.858488
\(305\) 5.34193 + 9.25249i 0.305878 + 0.529796i
\(306\) 0 0
\(307\) 22.2776 1.27145 0.635725 0.771916i \(-0.280701\pi\)
0.635725 + 0.771916i \(0.280701\pi\)
\(308\) 1.42971 2.95573i 0.0814651 0.168419i
\(309\) 0 0
\(310\) −10.8611 −0.616869
\(311\) 8.70027 15.0693i 0.493347 0.854502i −0.506623 0.862167i \(-0.669107\pi\)
0.999971 + 0.00766509i \(0.00243990\pi\)
\(312\) 0 0
\(313\) 0.100022 + 0.173244i 0.00565360 + 0.00979232i 0.868838 0.495096i \(-0.164867\pi\)
−0.863185 + 0.504888i \(0.831534\pi\)
\(314\) 11.9833 0.676254
\(315\) 0 0
\(316\) 0.506163 0.0284739
\(317\) 4.11706 + 7.13096i 0.231237 + 0.400514i 0.958172 0.286192i \(-0.0923894\pi\)
−0.726935 + 0.686706i \(0.759056\pi\)
\(318\) 0 0
\(319\) 11.8440 20.5144i 0.663138 1.14859i
\(320\) −13.8118 −0.772103
\(321\) 0 0
\(322\) 7.00103 + 10.3069i 0.390152 + 0.574379i
\(323\) −10.3038 −0.573317
\(324\) 0 0
\(325\) 6.19074 + 10.7227i 0.343400 + 0.594787i
\(326\) 4.67111 0.258709
\(327\) 0 0
\(328\) 16.3656 + 28.3461i 0.903639 + 1.56515i
\(329\) 2.63411 + 3.87792i 0.145223 + 0.213797i
\(330\) 0 0
\(331\) 8.31616 + 14.4040i 0.457098 + 0.791716i 0.998806 0.0488501i \(-0.0155557\pi\)
−0.541708 + 0.840566i \(0.682222\pi\)
\(332\) 0.0669762 + 0.116006i 0.00367580 + 0.00636667i
\(333\) 0 0
\(334\) 1.02262 1.77122i 0.0559551 0.0969170i
\(335\) 9.50536 16.4638i 0.519333 0.899511i
\(336\) 0 0
\(337\) −7.95474 13.7780i −0.433322 0.750536i 0.563835 0.825888i \(-0.309326\pi\)
−0.997157 + 0.0753513i \(0.975992\pi\)
\(338\) 12.5907 0.684844
\(339\) 0 0
\(340\) 1.27225 0.0689977
\(341\) −8.83422 + 15.3013i −0.478400 + 0.828613i
\(342\) 0 0
\(343\) 18.0770 4.02745i 0.976069 0.217462i
\(344\) 7.38031 12.7831i 0.397919 0.689217i
\(345\) 0 0
\(346\) 10.2786 17.8031i 0.552581 0.957098i
\(347\) 3.14462 5.44665i 0.168812 0.292391i −0.769190 0.639020i \(-0.779340\pi\)
0.938003 + 0.346628i \(0.112674\pi\)
\(348\) 0 0
\(349\) −0.809776 + 1.40257i −0.0433463 + 0.0750781i −0.886885 0.461991i \(-0.847135\pi\)
0.843538 + 0.537069i \(0.180469\pi\)
\(350\) 4.88437 + 7.19074i 0.261081 + 0.384361i
\(351\) 0 0
\(352\) −3.45731 + 5.98823i −0.184275 + 0.319174i
\(353\) −32.5118 −1.73043 −0.865213 0.501405i \(-0.832817\pi\)
−0.865213 + 0.501405i \(0.832817\pi\)
\(354\) 0 0
\(355\) −21.4539 −1.13866
\(356\) 3.36466 + 5.82777i 0.178327 + 0.308871i
\(357\) 0 0
\(358\) 11.0548 19.1474i 0.584262 1.01197i
\(359\) 5.59588 9.69235i 0.295339 0.511543i −0.679724 0.733468i \(-0.737901\pi\)
0.975064 + 0.221925i \(0.0712340\pi\)
\(360\) 0 0
\(361\) −2.32938 4.03461i −0.122599 0.212348i
\(362\) −5.64978 9.78570i −0.296946 0.514325i
\(363\) 0 0
\(364\) −4.88300 + 0.357443i −0.255939 + 0.0187351i
\(365\) 9.21537 + 15.9615i 0.482354 + 0.835462i
\(366\) 0 0
\(367\) −5.18678 −0.270748 −0.135374 0.990795i \(-0.543224\pi\)
−0.135374 + 0.990795i \(0.543224\pi\)
\(368\) −5.70474 9.88089i −0.297380 0.515077i
\(369\) 0 0
\(370\) 0.368122 0.0191377
\(371\) 2.48097 + 3.65247i 0.128806 + 0.189627i
\(372\) 0 0
\(373\) 32.8643 1.70165 0.850825 0.525448i \(-0.176102\pi\)
0.850825 + 0.525448i \(0.176102\pi\)
\(374\) −4.31864 + 7.48010i −0.223312 + 0.386787i
\(375\) 0 0
\(376\) −2.68568 4.65173i −0.138503 0.239895i
\(377\) −35.3231 −1.81923
\(378\) 0 0
\(379\) 13.9362 0.715856 0.357928 0.933749i \(-0.383483\pi\)
0.357928 + 0.933749i \(0.383483\pi\)
\(380\) 1.46063 + 2.52988i 0.0749286 + 0.129780i
\(381\) 0 0
\(382\) −9.39449 + 16.2717i −0.480664 + 0.832534i
\(383\) 1.71520 0.0876427 0.0438214 0.999039i \(-0.486047\pi\)
0.0438214 + 0.999039i \(0.486047\pi\)
\(384\) 0 0
\(385\) −13.1585 + 0.963217i −0.670617 + 0.0490901i
\(386\) 2.31376 0.117768
\(387\) 0 0
\(388\) −2.04285 3.53832i −0.103710 0.179631i
\(389\) 3.14856 0.159638 0.0798191 0.996809i \(-0.474566\pi\)
0.0798191 + 0.996809i \(0.474566\pi\)
\(390\) 0 0
\(391\) 3.92700 + 6.80176i 0.198597 + 0.343980i
\(392\) −20.9940 + 3.09013i −1.06036 + 0.156075i
\(393\) 0 0
\(394\) −4.90277 8.49184i −0.246998 0.427813i
\(395\) −1.01697 1.76144i −0.0511693 0.0886277i
\(396\) 0 0
\(397\) −13.7172 + 23.7590i −0.688449 + 1.19243i 0.283891 + 0.958857i \(0.408375\pi\)
−0.972340 + 0.233572i \(0.924959\pi\)
\(398\) −1.40567 + 2.43469i −0.0704598 + 0.122040i
\(399\) 0 0
\(400\) −3.97999 6.89355i −0.199000 0.344677i
\(401\) −29.0370 −1.45004 −0.725020 0.688728i \(-0.758170\pi\)
−0.725020 + 0.688728i \(0.758170\pi\)
\(402\) 0 0
\(403\) 26.3468 1.31243
\(404\) 0.393161 0.680975i 0.0195605 0.0338798i
\(405\) 0 0
\(406\) −24.7333 + 1.81051i −1.22750 + 0.0898543i
\(407\) 0.299423 0.518617i 0.0148419 0.0257069i
\(408\) 0 0
\(409\) 13.8650 24.0149i 0.685581 1.18746i −0.287673 0.957729i \(-0.592882\pi\)
0.973254 0.229732i \(-0.0737851\pi\)
\(410\) 10.6528 18.4511i 0.526103 0.911237i
\(411\) 0 0
\(412\) 3.86246 6.68997i 0.190290 0.329591i
\(413\) 6.71188 13.8759i 0.330270 0.682791i
\(414\) 0 0
\(415\) 0.269134 0.466153i 0.0132113 0.0228826i
\(416\) 10.3109 0.505534
\(417\) 0 0
\(418\) −19.8323 −0.970029
\(419\) 15.1799 + 26.2924i 0.741586 + 1.28447i 0.951773 + 0.306804i \(0.0992596\pi\)
−0.210186 + 0.977661i \(0.567407\pi\)
\(420\) 0 0
\(421\) 13.8868 24.0526i 0.676799 1.17225i −0.299140 0.954209i \(-0.596700\pi\)
0.975940 0.218041i \(-0.0699668\pi\)
\(422\) 1.15171 1.99483i 0.0560646 0.0971067i
\(423\) 0 0
\(424\) −2.52954 4.38129i −0.122845 0.212774i
\(425\) 2.73973 + 4.74535i 0.132896 + 0.230183i
\(426\) 0 0
\(427\) −10.2239 15.0516i −0.494771 0.728399i
\(428\) −3.26802 5.66038i −0.157966 0.273605i
\(429\) 0 0
\(430\) −9.60805 −0.463341
\(431\) −3.62965 6.28673i −0.174834 0.302821i 0.765270 0.643710i \(-0.222606\pi\)
−0.940104 + 0.340888i \(0.889272\pi\)
\(432\) 0 0
\(433\) 15.0375 0.722658 0.361329 0.932438i \(-0.382323\pi\)
0.361329 + 0.932438i \(0.382323\pi\)
\(434\) 18.4481 1.35043i 0.885538 0.0648226i
\(435\) 0 0
\(436\) 4.13628 0.198092
\(437\) −9.01688 + 15.6177i −0.431336 + 0.747096i
\(438\) 0 0
\(439\) −0.770595 1.33471i −0.0367785 0.0637022i 0.847050 0.531513i \(-0.178376\pi\)
−0.883829 + 0.467811i \(0.845043\pi\)
\(440\) 15.1170 0.720677
\(441\) 0 0
\(442\) 12.8797 0.612626
\(443\) −10.1689 17.6131i −0.483141 0.836824i 0.516672 0.856183i \(-0.327171\pi\)
−0.999813 + 0.0193593i \(0.993837\pi\)
\(444\) 0 0
\(445\) 13.5204 23.4180i 0.640928 1.11012i
\(446\) 12.0747 0.571753
\(447\) 0 0
\(448\) 23.4600 1.71731i 1.10838 0.0811351i
\(449\) 26.4527 1.24838 0.624190 0.781272i \(-0.285429\pi\)
0.624190 + 0.781272i \(0.285429\pi\)
\(450\) 0 0
\(451\) −17.3295 30.0156i −0.816016 1.41338i
\(452\) 3.31886 0.156106
\(453\) 0 0
\(454\) 6.87997 + 11.9165i 0.322893 + 0.559267i
\(455\) 11.0547 + 16.2746i 0.518252 + 0.762967i
\(456\) 0 0
\(457\) 3.24681 + 5.62363i 0.151879 + 0.263063i 0.931918 0.362668i \(-0.118134\pi\)
−0.780039 + 0.625731i \(0.784801\pi\)
\(458\) −7.95121 13.7719i −0.371536 0.643518i
\(459\) 0 0
\(460\) 1.11336 1.92839i 0.0519105 0.0899116i
\(461\) −7.79582 + 13.5028i −0.363088 + 0.628886i −0.988467 0.151434i \(-0.951611\pi\)
0.625380 + 0.780321i \(0.284944\pi\)
\(462\) 0 0
\(463\) −3.82792 6.63016i −0.177899 0.308130i 0.763262 0.646089i \(-0.223597\pi\)
−0.941161 + 0.337960i \(0.890263\pi\)
\(464\) 22.7090 1.05424
\(465\) 0 0
\(466\) 19.4097 0.899138
\(467\) 20.8137 36.0503i 0.963142 1.66821i 0.248615 0.968602i \(-0.420024\pi\)
0.714526 0.699608i \(-0.246642\pi\)
\(468\) 0 0
\(469\) −14.0983 + 29.1464i −0.650998 + 1.34585i
\(470\) −1.74817 + 3.02792i −0.0806372 + 0.139668i
\(471\) 0 0
\(472\) −8.83053 + 15.2949i −0.406458 + 0.704006i
\(473\) −7.81501 + 13.5360i −0.359335 + 0.622386i
\(474\) 0 0
\(475\) −6.29076 + 10.8959i −0.288640 + 0.499939i
\(476\) −2.16099 + 0.158187i −0.0990486 + 0.00725050i
\(477\) 0 0
\(478\) −6.80560 + 11.7876i −0.311281 + 0.539154i
\(479\) 2.31579 0.105811 0.0529055 0.998600i \(-0.483152\pi\)
0.0529055 + 0.998600i \(0.483152\pi\)
\(480\) 0 0
\(481\) −0.892987 −0.0407167
\(482\) 9.52662 + 16.5006i 0.433925 + 0.751581i
\(483\) 0 0
\(484\) −0.134511 + 0.232980i −0.00611414 + 0.0105900i
\(485\) −8.20888 + 14.2182i −0.372746 + 0.645615i
\(486\) 0 0
\(487\) −9.06396 15.6992i −0.410727 0.711401i 0.584242 0.811579i \(-0.301392\pi\)
−0.994969 + 0.100179i \(0.968058\pi\)
\(488\) 10.4241 + 18.0551i 0.471876 + 0.817314i
\(489\) 0 0
\(490\) 8.57470 + 10.8289i 0.387366 + 0.489202i
\(491\) 10.7972 + 18.7013i 0.487271 + 0.843978i 0.999893 0.0146364i \(-0.00465909\pi\)
−0.512622 + 0.858614i \(0.671326\pi\)
\(492\) 0 0
\(493\) −15.6323 −0.704045
\(494\) 14.7867 + 25.6114i 0.665287 + 1.15231i
\(495\) 0 0
\(496\) −16.9382 −0.760549
\(497\) 36.4405 2.66750i 1.63458 0.119654i
\(498\) 0 0
\(499\) 27.1654 1.21609 0.608045 0.793903i \(-0.291954\pi\)
0.608045 + 0.793903i \(0.291954\pi\)
\(500\) 2.27821 3.94597i 0.101885 0.176469i
\(501\) 0 0
\(502\) 10.5213 + 18.2235i 0.469590 + 0.813354i
\(503\) −11.8850 −0.529927 −0.264964 0.964258i \(-0.585360\pi\)
−0.264964 + 0.964258i \(0.585360\pi\)
\(504\) 0 0
\(505\) −3.15972 −0.140606
\(506\) 7.55852 + 13.0917i 0.336017 + 0.581999i
\(507\) 0 0
\(508\) 0.377250 0.653415i 0.0167377 0.0289906i
\(509\) 41.4595 1.83766 0.918829 0.394656i \(-0.129136\pi\)
0.918829 + 0.394656i \(0.129136\pi\)
\(510\) 0 0
\(511\) −17.6373 25.9656i −0.780230 1.14865i
\(512\) −25.2864 −1.11751
\(513\) 0 0
\(514\) 14.3387 + 24.8354i 0.632455 + 1.09544i
\(515\) −31.0414 −1.36785
\(516\) 0 0
\(517\) 2.84386 + 4.92572i 0.125073 + 0.216633i
\(518\) −0.625273 + 0.0457708i −0.0274729 + 0.00201105i
\(519\) 0 0
\(520\) −11.2711 19.5221i −0.494271 0.856102i
\(521\) 1.65221 + 2.86171i 0.0723846 + 0.125374i 0.899946 0.436002i \(-0.143606\pi\)
−0.827561 + 0.561375i \(0.810272\pi\)
\(522\) 0 0
\(523\) 1.24483 2.15611i 0.0544327 0.0942803i −0.837525 0.546399i \(-0.815998\pi\)
0.891958 + 0.452119i \(0.149332\pi\)
\(524\) 2.27017 3.93206i 0.0991730 0.171773i
\(525\) 0 0
\(526\) 14.1920 + 24.5812i 0.618798 + 1.07179i
\(527\) 11.6598 0.507911
\(528\) 0 0
\(529\) −9.25386 −0.402342
\(530\) −1.64654 + 2.85189i −0.0715211 + 0.123878i
\(531\) 0 0
\(532\) −2.79550 4.11552i −0.121200 0.178430i
\(533\) −25.8414 + 44.7587i −1.11932 + 1.93871i
\(534\) 0 0
\(535\) −13.1321 + 22.7454i −0.567748 + 0.983369i
\(536\) 18.5485 32.1269i 0.801173 1.38767i
\(537\) 0 0
\(538\) 17.7160 30.6851i 0.763792 1.32293i
\(539\) 22.2305 3.27214i 0.957536 0.140941i
\(540\) 0 0
\(541\) 11.2397 19.4677i 0.483233 0.836984i −0.516582 0.856238i \(-0.672796\pi\)
0.999815 + 0.0192542i \(0.00612919\pi\)
\(542\) 12.5423 0.538737
\(543\) 0 0
\(544\) 4.56312 0.195642
\(545\) −8.31051 14.3942i −0.355983 0.616581i
\(546\) 0 0
\(547\) 7.27727 12.6046i 0.311154 0.538934i −0.667459 0.744647i \(-0.732618\pi\)
0.978612 + 0.205713i \(0.0659513\pi\)
\(548\) 3.11834 5.40112i 0.133209 0.230725i
\(549\) 0 0
\(550\) 5.27331 + 9.13365i 0.224855 + 0.389460i
\(551\) −17.9469 31.0849i −0.764564 1.32426i
\(552\) 0 0
\(553\) 1.94638 + 2.86545i 0.0827686 + 0.121851i
\(554\) 5.53461 + 9.58622i 0.235143 + 0.407279i
\(555\) 0 0
\(556\) −5.19690 −0.220398
\(557\) 7.77331 + 13.4638i 0.329366 + 0.570478i 0.982386 0.186862i \(-0.0598318\pi\)
−0.653021 + 0.757340i \(0.726498\pi\)
\(558\) 0 0
\(559\) 23.3071 0.985787
\(560\) −7.10701 10.4629i −0.300326 0.442137i
\(561\) 0 0
\(562\) 7.88336 0.332539
\(563\) −7.36914 + 12.7637i −0.310572 + 0.537927i −0.978486 0.206312i \(-0.933854\pi\)
0.667914 + 0.744238i \(0.267187\pi\)
\(564\) 0 0
\(565\) −6.66816 11.5496i −0.280532 0.485895i
\(566\) 24.9706 1.04959
\(567\) 0 0
\(568\) −41.8646 −1.75660
\(569\) 6.48539 + 11.2330i 0.271882 + 0.470913i 0.969344 0.245709i \(-0.0790207\pi\)
−0.697462 + 0.716622i \(0.745687\pi\)
\(570\) 0 0
\(571\) −6.42929 + 11.1359i −0.269058 + 0.466021i −0.968619 0.248551i \(-0.920046\pi\)
0.699561 + 0.714573i \(0.253379\pi\)
\(572\) −5.94024 −0.248374
\(573\) 0 0
\(574\) −15.8001 + 32.6647i −0.659484 + 1.36340i
\(575\) 9.59019 0.399939
\(576\) 0 0
\(577\) 5.26279 + 9.11542i 0.219093 + 0.379480i 0.954531 0.298112i \(-0.0963569\pi\)
−0.735438 + 0.677592i \(0.763024\pi\)
\(578\) −15.8934 −0.661078
\(579\) 0 0
\(580\) 2.21599 + 3.83820i 0.0920138 + 0.159373i
\(581\) −0.399177 + 0.825247i −0.0165607 + 0.0342370i
\(582\) 0 0
\(583\) 2.67853 + 4.63935i 0.110933 + 0.192142i
\(584\) 17.9826 + 31.1468i 0.744126 + 1.28886i
\(585\) 0 0
\(586\) −9.20690 + 15.9468i −0.380334 + 0.658757i
\(587\) −3.10009 + 5.36951i −0.127954 + 0.221624i −0.922884 0.385078i \(-0.874174\pi\)
0.794930 + 0.606702i \(0.207508\pi\)
\(588\) 0 0
\(589\) 13.3862 + 23.1857i 0.551571 + 0.955348i
\(590\) 11.4960 0.473284
\(591\) 0 0
\(592\) 0.574097 0.0235952
\(593\) 18.7629 32.4984i 0.770502 1.33455i −0.166787 0.985993i \(-0.553339\pi\)
0.937288 0.348555i \(-0.113327\pi\)
\(594\) 0 0
\(595\) 4.89229 + 7.20239i 0.200564 + 0.295269i
\(596\) 0.620832 1.07531i 0.0254302 0.0440465i
\(597\) 0 0
\(598\) 11.2711 19.5221i 0.460910 0.798319i
\(599\) −17.5460 + 30.3905i −0.716909 + 1.24172i 0.245309 + 0.969445i \(0.421111\pi\)
−0.962218 + 0.272279i \(0.912223\pi\)
\(600\) 0 0
\(601\) −13.1171 + 22.7195i −0.535058 + 0.926748i 0.464102 + 0.885782i \(0.346377\pi\)
−0.999161 + 0.0409662i \(0.986956\pi\)
\(602\) 16.3197 1.19463i 0.665143 0.0486894i
\(603\) 0 0
\(604\) 3.29233 5.70249i 0.133963 0.232031i
\(605\) 1.08102 0.0439499
\(606\) 0 0
\(607\) −2.21866 −0.0900527 −0.0450263 0.998986i \(-0.514337\pi\)
−0.0450263 + 0.998986i \(0.514337\pi\)
\(608\) 5.23876 + 9.07379i 0.212460 + 0.367991i
\(609\) 0 0
\(610\) 6.78530 11.7525i 0.274729 0.475844i
\(611\) 4.24071 7.34512i 0.171561 0.297152i
\(612\) 0 0
\(613\) −7.43312 12.8745i −0.300221 0.519998i 0.675965 0.736934i \(-0.263727\pi\)
−0.976186 + 0.216936i \(0.930394\pi\)
\(614\) −14.1485 24.5059i −0.570986 0.988976i
\(615\) 0 0
\(616\) −25.6770 + 1.87960i −1.03456 + 0.0757311i
\(617\) −11.6023 20.0958i −0.467091 0.809024i 0.532203 0.846617i \(-0.321364\pi\)
−0.999293 + 0.0375925i \(0.988031\pi\)
\(618\) 0 0
\(619\) −8.31125 −0.334057 −0.167029 0.985952i \(-0.553417\pi\)
−0.167029 + 0.985952i \(0.553417\pi\)
\(620\) −1.65286 2.86284i −0.0663805 0.114974i
\(621\) 0 0
\(622\) −22.1021 −0.886214
\(623\) −20.0533 + 41.4577i −0.803420 + 1.66097i
\(624\) 0 0
\(625\) −5.37603 −0.215041
\(626\) 0.127048 0.220054i 0.00507786 0.00879511i
\(627\) 0 0
\(628\) 1.82363 + 3.15862i 0.0727708 + 0.126043i
\(629\) −0.395194 −0.0157574
\(630\) 0 0
\(631\) −24.5415 −0.976982 −0.488491 0.872569i \(-0.662452\pi\)
−0.488491 + 0.872569i \(0.662452\pi\)
\(632\) −1.98448 3.43723i −0.0789386 0.136726i
\(633\) 0 0
\(634\) 5.22947 9.05771i 0.207689 0.359728i
\(635\) −3.03184 −0.120315
\(636\) 0 0
\(637\) −20.8005 26.2688i −0.824145 1.04081i
\(638\) −30.0885 −1.19121
\(639\) 0 0
\(640\) 5.42549 + 9.39723i 0.214461 + 0.371458i
\(641\) 7.97525 0.315003 0.157502 0.987519i \(-0.449656\pi\)
0.157502 + 0.987519i \(0.449656\pi\)
\(642\) 0 0
\(643\) 1.56140 + 2.70442i 0.0615755 + 0.106652i 0.895170 0.445725i \(-0.147054\pi\)
−0.833594 + 0.552377i \(0.813721\pi\)
\(644\) −1.65132 + 3.41389i −0.0650711 + 0.134526i
\(645\) 0 0
\(646\) 6.54391 + 11.3344i 0.257467 + 0.445945i
\(647\) 6.13273 + 10.6222i 0.241102 + 0.417602i 0.961029 0.276449i \(-0.0891577\pi\)
−0.719926 + 0.694051i \(0.755824\pi\)
\(648\) 0 0
\(649\) 9.35065 16.1958i 0.367045 0.635741i
\(650\) 7.86345 13.6199i 0.308430 0.534216i
\(651\) 0 0
\(652\) 0.710857 + 1.23124i 0.0278393 + 0.0482191i
\(653\) 16.5095 0.646067 0.323034 0.946387i \(-0.395297\pi\)
0.323034 + 0.946387i \(0.395297\pi\)
\(654\) 0 0
\(655\) −18.2447 −0.712879
\(656\) 16.6133 28.7751i 0.648641 1.12348i
\(657\) 0 0
\(658\) 2.59288 5.36044i 0.101081 0.208972i
\(659\) −5.36940 + 9.30007i −0.209162 + 0.362279i −0.951451 0.307801i \(-0.900407\pi\)
0.742289 + 0.670080i \(0.233740\pi\)
\(660\) 0 0
\(661\) 6.68817 11.5843i 0.260140 0.450575i −0.706139 0.708073i \(-0.749565\pi\)
0.966279 + 0.257498i \(0.0828980\pi\)
\(662\) 10.5632 18.2959i 0.410549 0.711092i
\(663\) 0 0
\(664\) 0.525180 0.909639i 0.0203810 0.0353008i
\(665\) −8.70532 + 17.9971i −0.337578 + 0.697898i
\(666\) 0 0
\(667\) −13.6799 + 23.6943i −0.529689 + 0.917448i
\(668\) 0.622494 0.0240850
\(669\) 0 0
\(670\) −24.1473 −0.932893
\(671\) −11.0381 19.1185i −0.426120 0.738062i
\(672\) 0 0
\(673\) −20.4493 + 35.4193i −0.788264 + 1.36531i 0.138766 + 0.990325i \(0.455686\pi\)
−0.927030 + 0.374987i \(0.877647\pi\)
\(674\) −10.1041 + 17.5008i −0.389195 + 0.674105i
\(675\) 0 0
\(676\) 1.91607 + 3.31874i 0.0736951 + 0.127644i
\(677\) 10.6250 + 18.4031i 0.408353 + 0.707288i 0.994705 0.102768i \(-0.0327700\pi\)
−0.586353 + 0.810056i \(0.699437\pi\)
\(678\) 0 0
\(679\) 12.1753 25.1710i 0.467247 0.965972i
\(680\) −4.98806 8.63957i −0.191283 0.331312i
\(681\) 0 0
\(682\) 22.4424 0.859364
\(683\) −20.6708 35.8029i −0.790948 1.36996i −0.925381 0.379039i \(-0.876255\pi\)
0.134433 0.990923i \(-0.457079\pi\)
\(684\) 0 0
\(685\) −25.0612 −0.957537
\(686\) −15.9110 17.3273i −0.607484 0.661561i
\(687\) 0 0
\(688\) −14.9840 −0.571261
\(689\) 3.99417 6.91810i 0.152166 0.263559i
\(690\) 0 0
\(691\) 0.760183 + 1.31668i 0.0289187 + 0.0500887i 0.880123 0.474747i \(-0.157460\pi\)
−0.851204 + 0.524835i \(0.824127\pi\)
\(692\) 6.25685 0.237850
\(693\) 0 0
\(694\) −7.98858 −0.303242
\(695\) 10.4415 + 18.0852i 0.396068 + 0.686009i
\(696\) 0 0
\(697\) −11.4362 + 19.8081i −0.433177 + 0.750284i
\(698\) 2.05715 0.0778643
\(699\) 0 0
\(700\) −1.15207 + 2.38175i −0.0435441 + 0.0900217i
\(701\) −32.5344 −1.22881 −0.614404 0.788991i \(-0.710604\pi\)
−0.614404 + 0.788991i \(0.710604\pi\)
\(702\) 0 0
\(703\) −0.453708 0.785845i −0.0171119 0.0296387i
\(704\) 28.5395 1.07562
\(705\) 0 0
\(706\) 20.6482 + 35.7637i 0.777104 + 1.34598i
\(707\) 5.36693 0.392867i 0.201844 0.0147753i
\(708\) 0 0
\(709\) −11.2810 19.5394i −0.423669 0.733816i 0.572626 0.819816i \(-0.305925\pi\)
−0.996295 + 0.0860007i \(0.972591\pi\)
\(710\) 13.6253 + 23.5998i 0.511350 + 0.885684i
\(711\) 0 0
\(712\) 26.3833 45.6972i 0.988756 1.71258i
\(713\) 10.2036 17.6731i 0.382127 0.661864i
\(714\) 0 0
\(715\) 11.9350 + 20.6720i 0.446343 + 0.773089i
\(716\) 6.72933 0.251487
\(717\) 0 0
\(718\) −14.2157 −0.530527
\(719\) 3.25084 5.63062i 0.121236 0.209987i −0.799019 0.601305i \(-0.794648\pi\)
0.920255 + 0.391319i \(0.127981\pi\)
\(720\) 0 0
\(721\) 52.7253 3.85956i 1.96359 0.143738i
\(722\) −2.95878 + 5.12475i −0.110114 + 0.190723i
\(723\) 0 0
\(724\) 1.71958 2.97841i 0.0639078 0.110692i
\(725\) −9.54400 + 16.5307i −0.354455 + 0.613934i
\(726\) 0 0
\(727\) 3.91607 6.78284i 0.145239 0.251562i −0.784223 0.620479i \(-0.786938\pi\)
0.929462 + 0.368918i \(0.120272\pi\)
\(728\) 21.5718 + 31.7579i 0.799505 + 1.17703i
\(729\) 0 0
\(730\) 11.7053 20.2742i 0.433234 0.750383i
\(731\) 10.3146 0.381501
\(732\) 0 0
\(733\) −7.49560 −0.276856 −0.138428 0.990372i \(-0.544205\pi\)
−0.138428 + 0.990372i \(0.544205\pi\)
\(734\) 3.29411 + 5.70557i 0.121588 + 0.210597i
\(735\) 0 0
\(736\) 3.99321 6.91645i 0.147192 0.254944i
\(737\) −19.6410 + 34.0192i −0.723486 + 1.25311i
\(738\) 0 0
\(739\) −12.0480 20.8678i −0.443194 0.767634i 0.554731 0.832030i \(-0.312821\pi\)
−0.997924 + 0.0643961i \(0.979488\pi\)
\(740\) 0.0560213 + 0.0970318i 0.00205939 + 0.00356696i
\(741\) 0 0
\(742\) 2.44214 5.04880i 0.0896536 0.185347i
\(743\) −9.64411 16.7041i −0.353808 0.612814i 0.633105 0.774066i \(-0.281780\pi\)
−0.986913 + 0.161252i \(0.948447\pi\)
\(744\) 0 0
\(745\) −4.98943 −0.182799
\(746\) −20.8721 36.1515i −0.764181 1.32360i
\(747\) 0 0
\(748\) −2.62887 −0.0961210
\(749\) 19.4774 40.2669i 0.711688 1.47132i
\(750\) 0 0
\(751\) −33.2089 −1.21181 −0.605906 0.795536i \(-0.707189\pi\)
−0.605906 + 0.795536i \(0.707189\pi\)
\(752\) −2.72633 + 4.72214i −0.0994190 + 0.172199i
\(753\) 0 0
\(754\) 22.4336 + 38.8562i 0.816985 + 1.41506i
\(755\) −26.4595 −0.962959
\(756\) 0 0
\(757\) 9.70935 0.352892 0.176446 0.984310i \(-0.443540\pi\)
0.176446 + 0.984310i \(0.443540\pi\)
\(758\) −8.85088 15.3302i −0.321478 0.556817i
\(759\) 0 0
\(760\) 11.4532 19.8375i 0.415452 0.719583i
\(761\) 2.72609 0.0988207 0.0494104 0.998779i \(-0.484266\pi\)
0.0494104 + 0.998779i \(0.484266\pi\)
\(762\) 0 0
\(763\) 15.9055 + 23.4160i 0.575819 + 0.847716i
\(764\) −5.71868 −0.206894
\(765\) 0 0
\(766\) −1.08932 1.88676i −0.0393588 0.0681714i
\(767\) −27.8870 −1.00694
\(768\) 0 0
\(769\) −25.0230 43.3411i −0.902352 1.56292i −0.824432 0.565960i \(-0.808506\pi\)
−0.0779198 0.996960i \(-0.524828\pi\)
\(770\) 9.41647 + 13.8629i 0.339346 + 0.499583i
\(771\) 0 0
\(772\) 0.352112 + 0.609877i 0.0126728 + 0.0219499i
\(773\) −9.52030 16.4896i −0.342421 0.593091i 0.642461 0.766319i \(-0.277914\pi\)
−0.984882 + 0.173228i \(0.944580\pi\)
\(774\) 0 0
\(775\) 7.11868 12.3299i 0.255711 0.442904i
\(776\) −16.0186 + 27.7450i −0.575033 + 0.995987i
\(777\) 0 0
\(778\) −1.99964 3.46348i −0.0716906 0.124172i
\(779\) −52.5179 −1.88165
\(780\) 0 0
\(781\) 44.3304 1.58627
\(782\) 4.98806 8.63957i 0.178373 0.308950i
\(783\) 0 0
\(784\) 13.3725 + 16.8881i 0.477590 + 0.603145i
\(785\) 7.32798 12.6924i 0.261547 0.453013i
\(786\) 0 0
\(787\) 16.6011 28.7540i 0.591766 1.02497i −0.402228 0.915539i \(-0.631764\pi\)
0.993995 0.109430i \(-0.0349025\pi\)
\(788\) 1.49222 2.58460i 0.0531582 0.0920727i
\(789\) 0 0
\(790\) −1.29175 + 2.23738i −0.0459584 + 0.0796023i
\(791\) 12.7622 + 18.7885i 0.453773 + 0.668041i
\(792\) 0 0
\(793\) −16.4597 + 28.5091i −0.584502 + 1.01239i
\(794\) 34.8472 1.23668
\(795\) 0 0
\(796\) −0.855668 −0.0303283
\(797\) −1.04472 1.80951i −0.0370059 0.0640961i 0.846929 0.531706i \(-0.178449\pi\)
−0.883935 + 0.467609i \(0.845115\pi\)
\(798\) 0 0
\(799\) 1.87674 3.25060i 0.0663942 0.114998i
\(800\) 2.78592 4.82536i 0.0984972 0.170602i
\(801\) 0 0
\(802\) 18.4414 + 31.9414i 0.651187 + 1.12789i
\(803\) −19.0418 32.9814i −0.671970 1.16389i
\(804\) 0 0
\(805\) 15.1981 1.11252i 0.535663 0.0392113i
\(806\) −16.7328 28.9821i −0.589388 1.02085i
\(807\) 0 0
\(808\) −6.16578 −0.216912
\(809\) −0.241404 0.418125i −0.00848732 0.0147005i 0.861751 0.507332i \(-0.169368\pi\)
−0.870238 + 0.492632i \(0.836035\pi\)
\(810\) 0 0
\(811\) 17.1671 0.602820 0.301410 0.953495i \(-0.402543\pi\)
0.301410 + 0.953495i \(0.402543\pi\)
\(812\) −4.24119 6.24384i −0.148836 0.219116i
\(813\) 0 0
\(814\) −0.760653 −0.0266609
\(815\) 2.85647 4.94755i 0.100058 0.173305i
\(816\) 0 0
\(817\) 11.8419 + 20.5107i 0.414294 + 0.717578i
\(818\) −35.2226 −1.23153
\(819\) 0 0
\(820\) 6.48462 0.226453
\(821\) 6.41086 + 11.1039i 0.223741 + 0.387530i 0.955941 0.293559i \(-0.0948398\pi\)
−0.732200 + 0.681089i \(0.761507\pi\)
\(822\) 0 0
\(823\) −12.2973 + 21.2995i −0.428655 + 0.742453i −0.996754 0.0805075i \(-0.974346\pi\)
0.568099 + 0.822961i \(0.307679\pi\)
\(824\) −60.5733 −2.11017
\(825\) 0 0
\(826\) −19.5266 + 1.42937i −0.679416 + 0.0497342i
\(827\) 0.527165 0.0183313 0.00916567 0.999958i \(-0.497082\pi\)
0.00916567 + 0.999958i \(0.497082\pi\)
\(828\) 0 0
\(829\) 23.1015 + 40.0130i 0.802348 + 1.38971i 0.918067 + 0.396426i \(0.129750\pi\)
−0.115718 + 0.993282i \(0.536917\pi\)
\(830\) −0.683706 −0.0237318
\(831\) 0 0
\(832\) −21.2787 36.8558i −0.737707 1.27775i
\(833\) −9.20530 11.6253i −0.318945 0.402793i
\(834\) 0 0
\(835\) −1.25070 2.16627i −0.0432822 0.0749669i
\(836\) −3.01811 5.22752i −0.104383 0.180797i
\(837\) 0 0
\(838\) 19.2815 33.3965i 0.666067 1.15366i
\(839\) 5.41289 9.37540i 0.186874 0.323675i −0.757333 0.653029i \(-0.773498\pi\)
0.944206 + 0.329355i \(0.106831\pi\)
\(840\) 0 0
\(841\) −12.7281 22.0456i −0.438898 0.760194i
\(842\) −35.2778 −1.21575
\(843\) 0 0
\(844\) 0.701079 0.0241321
\(845\) 7.69945 13.3358i 0.264869 0.458767i
\(846\) 0 0
\(847\) −1.83617 + 0.134410i −0.0630916 + 0.00461839i
\(848\) −2.56783 + 4.44761i −0.0881796 + 0.152732i
\(849\) 0 0
\(850\) 3.47999 6.02752i 0.119363 0.206742i
\(851\) −0.345836 + 0.599006i −0.0118551 + 0.0205337i
\(852\) 0 0
\(853\) 21.5961 37.4056i 0.739437 1.28074i −0.213313 0.976984i \(-0.568425\pi\)
0.952749 0.303758i \(-0.0982414\pi\)
\(854\) −10.0639 + 20.8058i −0.344380 + 0.711961i
\(855\) 0 0
\(856\) −25.6255 + 44.3847i −0.875863 + 1.51704i
\(857\) 1.57445 0.0537822 0.0268911 0.999638i \(-0.491439\pi\)
0.0268911 + 0.999638i \(0.491439\pi\)
\(858\) 0 0
\(859\) 6.82180 0.232757 0.116378 0.993205i \(-0.462871\pi\)
0.116378 + 0.993205i \(0.462871\pi\)
\(860\) −1.46217 2.53255i −0.0498595 0.0863592i
\(861\) 0 0
\(862\) −4.61037 + 7.98539i −0.157030 + 0.271983i
\(863\) −4.51387 + 7.81825i −0.153654 + 0.266136i −0.932568 0.360994i \(-0.882437\pi\)
0.778914 + 0.627131i \(0.215771\pi\)
\(864\) 0 0
\(865\) −12.5711 21.7738i −0.427430 0.740331i
\(866\) −9.55032 16.5416i −0.324533 0.562108i
\(867\) 0 0
\(868\) 3.16342 + 4.65716i 0.107373 + 0.158074i
\(869\) 2.10137 + 3.63968i 0.0712841 + 0.123468i
\(870\) 0 0
\(871\) 58.5765 1.98479
\(872\) −16.2169 28.0885i −0.549174 0.951196i
\(873\) 0 0
\(874\) 22.9064 0.774821
\(875\) 31.0992 2.27650i 1.05134 0.0769598i
\(876\) 0 0
\(877\) 9.66920 0.326506 0.163253 0.986584i \(-0.447801\pi\)
0.163253 + 0.986584i \(0.447801\pi\)
\(878\) −0.978807 + 1.69534i −0.0330331 + 0.0572151i
\(879\) 0 0
\(880\) −7.67293 13.2899i −0.258655 0.448003i
\(881\) −21.4721 −0.723415 −0.361707 0.932292i \(-0.617806\pi\)
−0.361707 + 0.932292i \(0.617806\pi\)
\(882\) 0 0
\(883\) −26.5380 −0.893076 −0.446538 0.894765i \(-0.647343\pi\)
−0.446538 + 0.894765i \(0.647343\pi\)
\(884\) 1.96006 + 3.39492i 0.0659238 + 0.114183i
\(885\) 0 0
\(886\) −12.9165 + 22.3721i −0.433940 + 0.751606i
\(887\) 41.5223 1.39418 0.697091 0.716982i \(-0.254477\pi\)
0.697091 + 0.716982i \(0.254477\pi\)
\(888\) 0 0
\(889\) 5.14973 0.376967i 0.172716 0.0126431i
\(890\) −34.3471 −1.15132
\(891\) 0 0
\(892\) 1.83755 + 3.18272i 0.0615256 + 0.106565i
\(893\) 8.61845 0.288405
\(894\) 0 0
\(895\) −13.5204 23.4180i −0.451937 0.782777i
\(896\) −10.3839 15.2871i −0.346901 0.510705i
\(897\) 0 0
\(898\) −16.8001 29.0986i −0.560626 0.971032i
\(899\) 20.3089 + 35.1760i 0.677339 + 1.17319i
\(900\) 0 0
\(901\) 1.76763 3.06162i 0.0588883 0.101997i
\(902\) −22.0119 + 38.1258i −0.732917 + 1.26945i
\(903\) 0 0
\(904\) −13.0121 22.5376i −0.432775 0.749588i
\(905\) −13.8198 −0.459385
\(906\) 0 0
\(907\) −4.64361 −0.154188 −0.0770942 0.997024i \(-0.524564\pi\)
−0.0770942 + 0.997024i \(0.524564\pi\)
\(908\) −2.09401 + 3.62693i −0.0694921 + 0.120364i
\(909\) 0 0
\(910\) 10.8817 22.4964i 0.360723 0.745749i
\(911\) 0.674054 1.16750i 0.0223324 0.0386808i −0.854643 0.519216i \(-0.826224\pi\)
0.876976 + 0.480535i \(0.159557\pi\)
\(912\) 0 0
\(913\) −0.556114 + 0.963217i −0.0184047 + 0.0318778i
\(914\) 4.12408 7.14312i 0.136413 0.236273i
\(915\) 0 0
\(916\) 2.42006 4.19166i 0.0799609 0.138496i
\(917\) 30.9895 2.26848i 1.02336 0.0749116i
\(918\) 0 0
\(919\) 20.2472 35.0692i 0.667893 1.15682i −0.310599 0.950541i \(-0.600530\pi\)
0.978492 0.206284i \(-0.0661370\pi\)
\(920\) −17.4603 −0.575649
\(921\) 0 0
\(922\) 19.8045 0.652225
\(923\) −33.0523 57.2482i −1.08793 1.88435i
\(924\) 0 0
\(925\) −0.241278 + 0.417905i −0.00793316 + 0.0137406i
\(926\) −4.86221 + 8.42160i −0.159782 + 0.276751i
\(927\) 0 0
\(928\) 7.94795 + 13.7663i 0.260904 + 0.451900i
\(929\) −11.1569 19.3243i −0.366046 0.634011i 0.622897 0.782304i \(-0.285956\pi\)
−0.988944 + 0.148293i \(0.952622\pi\)
\(930\) 0 0
\(931\) 12.5487 31.6514i 0.411267 1.03733i
\(932\) 2.95380 + 5.11613i 0.0967550 + 0.167585i
\(933\) 0 0
\(934\) −52.8749 −1.73012
\(935\) 5.28186 + 9.14844i 0.172735 + 0.299186i
\(936\) 0 0
\(937\) −1.13943 −0.0372235 −0.0186117 0.999827i \(-0.505925\pi\)
−0.0186117 + 0.999827i \(0.505925\pi\)
\(938\) 41.0154 3.00239i 1.33920 0.0980314i
\(939\) 0 0
\(940\) −1.06416 −0.0347090
\(941\) −23.5938 + 40.8656i −0.769134 + 1.33218i 0.168898 + 0.985633i \(0.445979\pi\)
−0.938033 + 0.346546i \(0.887354\pi\)
\(942\) 0 0
\(943\) 20.0157 + 34.6683i 0.651802 + 1.12895i
\(944\) 17.9284 0.583519
\(945\) 0 0
\(946\) 19.8532 0.645483
\(947\) −12.3230 21.3441i −0.400444 0.693590i 0.593335 0.804955i \(-0.297811\pi\)
−0.993779 + 0.111366i \(0.964477\pi\)
\(948\) 0 0
\(949\) −28.3947 + 49.1811i −0.921731 + 1.59649i
\(950\) 15.9810 0.518492
\(951\) 0 0
\(952\) 9.54667 + 14.0545i 0.309409 + 0.455510i
\(953\) −56.2821 −1.82316 −0.911579 0.411125i \(-0.865136\pi\)
−0.911579 + 0.411125i \(0.865136\pi\)
\(954\) 0 0
\(955\) 11.4898 + 19.9009i 0.371802 + 0.643979i
\(956\) −4.14275 −0.133986
\(957\) 0 0
\(958\) −1.47075 2.54742i −0.0475178 0.0823033i
\(959\) 42.5676 3.11601i 1.37458 0.100621i
\(960\) 0 0
\(961\) 0.352001 + 0.609683i 0.0113549 + 0.0196672i
\(962\) 0.567135 + 0.982306i 0.0182852 + 0.0316708i
\(963\) 0 0
\(964\) −2.89955 + 5.02217i −0.0933883 + 0.161753i
\(965\) 1.41491 2.45070i 0.0455476 0.0788907i
\(966\) 0 0
\(967\) 29.2989 + 50.7471i 0.942188 + 1.63192i 0.761285 + 0.648417i \(0.224569\pi\)
0.180903 + 0.983501i \(0.442098\pi\)
\(968\) 2.10948 0.0678013
\(969\) 0 0
\(970\) 20.8538 0.669574
\(971\) 3.04991 5.28260i 0.0978763 0.169527i −0.812929 0.582363i \(-0.802128\pi\)
0.910805 + 0.412836i \(0.135462\pi\)
\(972\) 0 0
\(973\) −19.9840 29.4203i −0.640657 0.943171i
\(974\) −11.5130 + 19.9411i −0.368901 + 0.638955i
\(975\) 0 0
\(976\) 10.5819 18.3283i 0.338718 0.586676i
\(977\) 2.57988 4.46849i 0.0825377 0.142960i −0.821802 0.569774i \(-0.807031\pi\)
0.904339 + 0.426814i \(0.140364\pi\)
\(978\) 0 0
\(979\) −27.9373 + 48.3888i −0.892880 + 1.54651i
\(980\) −1.54945 + 3.90814i −0.0494953 + 0.124841i
\(981\) 0 0
\(982\) 13.7146 23.7543i 0.437649 0.758031i
\(983\) 62.1071 1.98091 0.990455 0.137837i \(-0.0440150\pi\)
0.990455 + 0.137837i \(0.0440150\pi\)
\(984\) 0 0
\(985\) −11.9925 −0.382114
\(986\) 9.92806 + 17.1959i 0.316174 + 0.547629i
\(987\) 0 0
\(988\) −4.50054 + 7.79516i −0.143181 + 0.247997i
\(989\) 9.02639 15.6342i 0.287022 0.497138i
\(990\) 0 0
\(991\) 10.8163 + 18.7343i 0.343590 + 0.595116i 0.985097 0.172002i \(-0.0550235\pi\)
−0.641506 + 0.767118i \(0.721690\pi\)
\(992\) −5.92823 10.2680i −0.188221 0.326009i
\(993\) 0 0
\(994\) −26.0776 38.3912i −0.827131 1.21770i
\(995\) 1.71919 + 2.97772i 0.0545018 + 0.0944000i
\(996\) 0 0
\(997\) −40.7362 −1.29013 −0.645064 0.764128i \(-0.723169\pi\)
−0.645064 + 0.764128i \(0.723169\pi\)
\(998\) −17.2527 29.8825i −0.546124 0.945915i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.l.541.3 16
3.2 odd 2 inner 567.2.g.l.541.6 16
7.4 even 3 567.2.h.l.298.6 16
9.2 odd 6 567.2.e.g.163.6 yes 16
9.4 even 3 567.2.h.l.352.6 16
9.5 odd 6 567.2.h.l.352.3 16
9.7 even 3 567.2.e.g.163.3 16
21.11 odd 6 567.2.h.l.298.3 16
63.2 odd 6 3969.2.a.bg.1.3 8
63.4 even 3 inner 567.2.g.l.109.3 16
63.11 odd 6 567.2.e.g.487.6 yes 16
63.16 even 3 3969.2.a.bg.1.6 8
63.25 even 3 567.2.e.g.487.3 yes 16
63.32 odd 6 inner 567.2.g.l.109.6 16
63.47 even 6 3969.2.a.bf.1.3 8
63.61 odd 6 3969.2.a.bf.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.3 16 9.7 even 3
567.2.e.g.163.6 yes 16 9.2 odd 6
567.2.e.g.487.3 yes 16 63.25 even 3
567.2.e.g.487.6 yes 16 63.11 odd 6
567.2.g.l.109.3 16 63.4 even 3 inner
567.2.g.l.109.6 16 63.32 odd 6 inner
567.2.g.l.541.3 16 1.1 even 1 trivial
567.2.g.l.541.6 16 3.2 odd 2 inner
567.2.h.l.298.3 16 21.11 odd 6
567.2.h.l.298.6 16 7.4 even 3
567.2.h.l.352.3 16 9.5 odd 6
567.2.h.l.352.6 16 9.4 even 3
3969.2.a.bf.1.3 8 63.47 even 6
3969.2.a.bf.1.6 8 63.61 odd 6
3969.2.a.bg.1.3 8 63.2 odd 6
3969.2.a.bg.1.6 8 63.16 even 3