Properties

Label 567.2.g.l.541.1
Level $567$
Weight $2$
Character 567.541
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(109,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(-1.14160 - 0.834713i\) of defining polynomial
Character \(\chi\) \(=\) 567.541
Dual form 567.2.g.l.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.29368 - 2.24073i) q^{2} +(-2.34723 + 4.06553i) q^{4} +2.28320 q^{5} +(-2.08382 + 1.63024i) q^{7} +6.97158 q^{8} +(-2.95374 - 5.11603i) q^{10} -2.95632 q^{11} +(-2.13422 - 3.69657i) q^{13} +(6.34873 + 2.56025i) q^{14} +(-4.32455 - 7.49033i) q^{16} +(0.764218 + 1.32366i) q^{17} +(-3.69033 + 6.39184i) q^{19} +(-5.35921 + 9.28243i) q^{20} +(3.82455 + 6.62431i) q^{22} -6.15202 q^{23} +0.213017 q^{25} +(-5.52200 + 9.56439i) q^{26} +(-1.73659 - 12.2984i) q^{28} +(1.17019 - 2.02683i) q^{29} +(-3.11065 + 5.38780i) q^{31} +(-4.21761 + 7.30512i) q^{32} +(1.97731 - 3.42480i) q^{34} +(-4.75779 + 3.72218i) q^{35} +(-3.58796 + 6.21453i) q^{37} +19.0965 q^{38} +15.9175 q^{40} +(3.94584 + 6.83440i) q^{41} +(-0.417061 + 0.722372i) q^{43} +(6.93918 - 12.0190i) q^{44} +(7.95876 + 13.7850i) q^{46} +(-2.91322 - 5.04584i) q^{47} +(1.68461 - 6.79427i) q^{49} +(-0.275576 - 0.477312i) q^{50} +20.0380 q^{52} +(-3.71826 - 6.44021i) q^{53} -6.74989 q^{55} +(-14.5275 + 11.3654i) q^{56} -6.05542 q^{58} +(2.31179 - 4.00414i) q^{59} +(3.56527 + 6.17523i) q^{61} +16.0968 q^{62} +4.52683 q^{64} +(-4.87285 - 8.44003i) q^{65} +(1.66262 - 2.87974i) q^{67} -7.17519 q^{68} +(14.4954 + 5.84557i) q^{70} +0.160242 q^{71} +(0.190329 + 0.329659i) q^{73} +18.5667 q^{74} +(-17.3241 - 30.0063i) q^{76} +(6.16045 - 4.81953i) q^{77} +(3.97731 + 6.88891i) q^{79} +(-9.87382 - 17.1020i) q^{80} +(10.2093 - 17.6831i) q^{82} +(-2.14900 + 3.72218i) q^{83} +(1.74486 + 3.02219i) q^{85} +2.15818 q^{86} -20.6102 q^{88} +(3.02828 - 5.24514i) q^{89} +(10.4736 + 4.22370i) q^{91} +(14.4402 - 25.0112i) q^{92} +(-7.53756 + 13.0554i) q^{94} +(-8.42577 + 14.5939i) q^{95} +(0.661044 - 1.14496i) q^{97} +(-17.4034 + 5.01487i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} - 14 q^{10} - 6 q^{13} - 6 q^{16} - 24 q^{19} - 2 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} + 72 q^{40} - 10 q^{43} + 36 q^{46} + 4 q^{49} + 68 q^{52} + 8 q^{55} - 44 q^{58} - 36 q^{61} + 76 q^{64}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.29368 2.24073i −0.914772 1.58443i −0.807234 0.590231i \(-0.799037\pi\)
−0.107538 0.994201i \(-0.534297\pi\)
\(3\) 0 0
\(4\) −2.34723 + 4.06553i −1.17362 + 2.03276i
\(5\) 2.28320 1.02108 0.510540 0.859854i \(-0.329446\pi\)
0.510540 + 0.859854i \(0.329446\pi\)
\(6\) 0 0
\(7\) −2.08382 + 1.63024i −0.787610 + 0.616174i
\(8\) 6.97158 2.46482
\(9\) 0 0
\(10\) −2.95374 5.11603i −0.934055 1.61783i
\(11\) −2.95632 −0.891365 −0.445682 0.895191i \(-0.647039\pi\)
−0.445682 + 0.895191i \(0.647039\pi\)
\(12\) 0 0
\(13\) −2.13422 3.69657i −0.591925 1.02524i −0.993973 0.109626i \(-0.965035\pi\)
0.402048 0.915619i \(-0.368299\pi\)
\(14\) 6.34873 + 2.56025i 1.69677 + 0.684256i
\(15\) 0 0
\(16\) −4.32455 7.49033i −1.08114 1.87258i
\(17\) 0.764218 + 1.32366i 0.185350 + 0.321036i 0.943694 0.330818i \(-0.107325\pi\)
−0.758344 + 0.651854i \(0.773991\pi\)
\(18\) 0 0
\(19\) −3.69033 + 6.39184i −0.846619 + 1.46639i 0.0375879 + 0.999293i \(0.488033\pi\)
−0.884207 + 0.467095i \(0.845301\pi\)
\(20\) −5.35921 + 9.28243i −1.19836 + 2.07561i
\(21\) 0 0
\(22\) 3.82455 + 6.62431i 0.815396 + 1.41231i
\(23\) −6.15202 −1.28278 −0.641392 0.767213i \(-0.721643\pi\)
−0.641392 + 0.767213i \(0.721643\pi\)
\(24\) 0 0
\(25\) 0.213017 0.0426033
\(26\) −5.52200 + 9.56439i −1.08295 + 1.87573i
\(27\) 0 0
\(28\) −1.73659 12.2984i −0.328184 2.32418i
\(29\) 1.17019 2.02683i 0.217299 0.376372i −0.736683 0.676239i \(-0.763609\pi\)
0.953981 + 0.299866i \(0.0969421\pi\)
\(30\) 0 0
\(31\) −3.11065 + 5.38780i −0.558689 + 0.967677i 0.438918 + 0.898527i \(0.355362\pi\)
−0.997606 + 0.0691500i \(0.977971\pi\)
\(32\) −4.21761 + 7.30512i −0.745575 + 1.29137i
\(33\) 0 0
\(34\) 1.97731 3.42480i 0.339106 0.587349i
\(35\) −4.75779 + 3.72218i −0.804212 + 0.629163i
\(36\) 0 0
\(37\) −3.58796 + 6.21453i −0.589857 + 1.02166i 0.404394 + 0.914585i \(0.367483\pi\)
−0.994251 + 0.107077i \(0.965851\pi\)
\(38\) 19.0965 3.09786
\(39\) 0 0
\(40\) 15.9175 2.51678
\(41\) 3.94584 + 6.83440i 0.616237 + 1.06735i 0.990166 + 0.139897i \(0.0446770\pi\)
−0.373929 + 0.927457i \(0.621990\pi\)
\(42\) 0 0
\(43\) −0.417061 + 0.722372i −0.0636013 + 0.110161i −0.896073 0.443907i \(-0.853592\pi\)
0.832471 + 0.554068i \(0.186925\pi\)
\(44\) 6.93918 12.0190i 1.04612 1.81193i
\(45\) 0 0
\(46\) 7.95876 + 13.7850i 1.17346 + 2.03248i
\(47\) −2.91322 5.04584i −0.424936 0.736011i 0.571478 0.820617i \(-0.306370\pi\)
−0.996414 + 0.0846058i \(0.973037\pi\)
\(48\) 0 0
\(49\) 1.68461 6.79427i 0.240659 0.970610i
\(50\) −0.275576 0.477312i −0.0389724 0.0675021i
\(51\) 0 0
\(52\) 20.0380 2.77877
\(53\) −3.71826 6.44021i −0.510742 0.884631i −0.999923 0.0124487i \(-0.996037\pi\)
0.489180 0.872183i \(-0.337296\pi\)
\(54\) 0 0
\(55\) −6.74989 −0.910154
\(56\) −14.5275 + 11.3654i −1.94132 + 1.51876i
\(57\) 0 0
\(58\) −6.05542 −0.795115
\(59\) 2.31179 4.00414i 0.300970 0.521295i −0.675386 0.737464i \(-0.736023\pi\)
0.976356 + 0.216170i \(0.0693564\pi\)
\(60\) 0 0
\(61\) 3.56527 + 6.17523i 0.456486 + 0.790657i 0.998772 0.0495366i \(-0.0157744\pi\)
−0.542286 + 0.840194i \(0.682441\pi\)
\(62\) 16.0968 2.04429
\(63\) 0 0
\(64\) 4.52683 0.565853
\(65\) −4.87285 8.44003i −0.604403 1.04686i
\(66\) 0 0
\(67\) 1.66262 2.87974i 0.203121 0.351816i −0.746411 0.665485i \(-0.768225\pi\)
0.949533 + 0.313669i \(0.101558\pi\)
\(68\) −7.17519 −0.870120
\(69\) 0 0
\(70\) 14.4954 + 5.84557i 1.73254 + 0.698680i
\(71\) 0.160242 0.0190172 0.00950860 0.999955i \(-0.496973\pi\)
0.00950860 + 0.999955i \(0.496973\pi\)
\(72\) 0 0
\(73\) 0.190329 + 0.329659i 0.0222763 + 0.0385837i 0.876949 0.480584i \(-0.159575\pi\)
−0.854672 + 0.519168i \(0.826242\pi\)
\(74\) 18.5667 2.15834
\(75\) 0 0
\(76\) −17.3241 30.0063i −1.98721 3.44196i
\(77\) 6.16045 4.81953i 0.702048 0.549236i
\(78\) 0 0
\(79\) 3.97731 + 6.88891i 0.447483 + 0.775063i 0.998221 0.0596151i \(-0.0189873\pi\)
−0.550739 + 0.834678i \(0.685654\pi\)
\(80\) −9.87382 17.1020i −1.10393 1.91206i
\(81\) 0 0
\(82\) 10.2093 17.6831i 1.12743 1.95277i
\(83\) −2.14900 + 3.72218i −0.235883 + 0.408562i −0.959529 0.281610i \(-0.909132\pi\)
0.723646 + 0.690172i \(0.242465\pi\)
\(84\) 0 0
\(85\) 1.74486 + 3.02219i 0.189257 + 0.327803i
\(86\) 2.15818 0.232723
\(87\) 0 0
\(88\) −20.6102 −2.19706
\(89\) 3.02828 5.24514i 0.320997 0.555984i −0.659697 0.751532i \(-0.729315\pi\)
0.980694 + 0.195548i \(0.0626486\pi\)
\(90\) 0 0
\(91\) 10.4736 + 4.22370i 1.09794 + 0.442764i
\(92\) 14.4402 25.0112i 1.50550 2.60760i
\(93\) 0 0
\(94\) −7.53756 + 13.0554i −0.777440 + 1.34657i
\(95\) −8.42577 + 14.5939i −0.864466 + 1.49730i
\(96\) 0 0
\(97\) 0.661044 1.14496i 0.0671189 0.116253i −0.830513 0.556999i \(-0.811953\pi\)
0.897632 + 0.440746i \(0.145286\pi\)
\(98\) −17.4034 + 5.01487i −1.75801 + 0.506579i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −18.1620 −1.80719 −0.903594 0.428389i \(-0.859081\pi\)
−0.903594 + 0.428389i \(0.859081\pi\)
\(102\) 0 0
\(103\) 13.5351 1.33365 0.666827 0.745213i \(-0.267652\pi\)
0.666827 + 0.745213i \(0.267652\pi\)
\(104\) −14.8789 25.7709i −1.45899 2.52705i
\(105\) 0 0
\(106\) −9.62050 + 16.6632i −0.934426 + 1.61847i
\(107\) −4.06934 + 7.04830i −0.393398 + 0.681385i −0.992895 0.118992i \(-0.962034\pi\)
0.599498 + 0.800377i \(0.295367\pi\)
\(108\) 0 0
\(109\) 2.74398 + 4.75272i 0.262826 + 0.455228i 0.966992 0.254808i \(-0.0820122\pi\)
−0.704166 + 0.710036i \(0.748679\pi\)
\(110\) 8.73222 + 15.1246i 0.832584 + 1.44208i
\(111\) 0 0
\(112\) 21.2226 + 8.55845i 2.00535 + 0.808697i
\(113\) 3.12754 + 5.41706i 0.294214 + 0.509594i 0.974802 0.223073i \(-0.0716087\pi\)
−0.680587 + 0.732667i \(0.738275\pi\)
\(114\) 0 0
\(115\) −14.0463 −1.30982
\(116\) 5.49342 + 9.51487i 0.510051 + 0.883434i
\(117\) 0 0
\(118\) −11.9629 −1.10127
\(119\) −3.75039 1.51242i −0.343797 0.138643i
\(120\) 0 0
\(121\) −2.26016 −0.205469
\(122\) 9.22467 15.9776i 0.835162 1.44654i
\(123\) 0 0
\(124\) −14.6028 25.2929i −1.31137 2.27136i
\(125\) −10.9297 −0.977578
\(126\) 0 0
\(127\) −5.60019 −0.496936 −0.248468 0.968640i \(-0.579927\pi\)
−0.248468 + 0.968640i \(0.579927\pi\)
\(128\) 2.57894 + 4.46685i 0.227948 + 0.394818i
\(129\) 0 0
\(130\) −12.6079 + 21.8374i −1.10578 + 1.91527i
\(131\) 7.12474 0.622491 0.311246 0.950330i \(-0.399254\pi\)
0.311246 + 0.950330i \(0.399254\pi\)
\(132\) 0 0
\(133\) −2.73027 19.3356i −0.236744 1.67661i
\(134\) −8.60362 −0.743239
\(135\) 0 0
\(136\) 5.32780 + 9.22803i 0.456855 + 0.791297i
\(137\) 8.87821 0.758516 0.379258 0.925291i \(-0.376179\pi\)
0.379258 + 0.925291i \(0.376179\pi\)
\(138\) 0 0
\(139\) −4.18550 7.24949i −0.355009 0.614894i 0.632110 0.774878i \(-0.282189\pi\)
−0.987120 + 0.159985i \(0.948856\pi\)
\(140\) −3.96498 28.0797i −0.335102 2.37317i
\(141\) 0 0
\(142\) −0.207302 0.359058i −0.0173964 0.0301315i
\(143\) 6.30943 + 10.9283i 0.527621 + 0.913867i
\(144\) 0 0
\(145\) 2.67178 4.62766i 0.221879 0.384306i
\(146\) 0.492450 0.852948i 0.0407555 0.0705905i
\(147\) 0 0
\(148\) −16.8436 29.1739i −1.38453 2.39808i
\(149\) −13.4522 −1.10205 −0.551025 0.834489i \(-0.685763\pi\)
−0.551025 + 0.834489i \(0.685763\pi\)
\(150\) 0 0
\(151\) −9.02147 −0.734157 −0.367078 0.930190i \(-0.619642\pi\)
−0.367078 + 0.930190i \(0.619642\pi\)
\(152\) −25.7274 + 44.5612i −2.08677 + 3.61439i
\(153\) 0 0
\(154\) −18.7689 7.56893i −1.51244 0.609922i
\(155\) −7.10224 + 12.3014i −0.570466 + 0.988075i
\(156\) 0 0
\(157\) −1.46420 + 2.53607i −0.116856 + 0.202400i −0.918520 0.395374i \(-0.870615\pi\)
0.801664 + 0.597775i \(0.203948\pi\)
\(158\) 10.2908 17.8241i 0.818689 1.41801i
\(159\) 0 0
\(160\) −9.62966 + 16.6791i −0.761292 + 1.31860i
\(161\) 12.8197 10.0293i 1.01033 0.790418i
\(162\) 0 0
\(163\) 0.602369 1.04333i 0.0471812 0.0817202i −0.841470 0.540303i \(-0.818310\pi\)
0.888652 + 0.458583i \(0.151643\pi\)
\(164\) −37.0473 −2.89290
\(165\) 0 0
\(166\) 11.1205 0.863118
\(167\) −7.18464 12.4442i −0.555964 0.962958i −0.997828 0.0658761i \(-0.979016\pi\)
0.441864 0.897082i \(-0.354318\pi\)
\(168\) 0 0
\(169\) −2.60977 + 4.52025i −0.200751 + 0.347711i
\(170\) 4.51460 7.81953i 0.346254 0.599730i
\(171\) 0 0
\(172\) −1.95788 3.39115i −0.149287 0.258573i
\(173\) −2.72184 4.71436i −0.206938 0.358426i 0.743811 0.668390i \(-0.233016\pi\)
−0.950748 + 0.309964i \(0.899683\pi\)
\(174\) 0 0
\(175\) −0.443889 + 0.347269i −0.0335548 + 0.0262511i
\(176\) 12.7848 + 22.1438i 0.963687 + 1.66915i
\(177\) 0 0
\(178\) −15.6706 −1.17456
\(179\) −3.02828 5.24514i −0.226345 0.392040i 0.730377 0.683044i \(-0.239344\pi\)
−0.956722 + 0.291004i \(0.906011\pi\)
\(180\) 0 0
\(181\) 12.7416 0.947076 0.473538 0.880773i \(-0.342977\pi\)
0.473538 + 0.880773i \(0.342977\pi\)
\(182\) −4.08542 28.9327i −0.302831 2.14463i
\(183\) 0 0
\(184\) −42.8893 −3.16184
\(185\) −8.19204 + 14.1890i −0.602291 + 1.04320i
\(186\) 0 0
\(187\) −2.25927 3.91318i −0.165215 0.286160i
\(188\) 27.3520 1.99485
\(189\) 0 0
\(190\) 43.6011 3.16316
\(191\) 12.0662 + 20.8993i 0.873079 + 1.51222i 0.858795 + 0.512319i \(0.171213\pi\)
0.0142836 + 0.999898i \(0.495453\pi\)
\(192\) 0 0
\(193\) 0.394373 0.683075i 0.0283876 0.0491688i −0.851483 0.524383i \(-0.824296\pi\)
0.879870 + 0.475214i \(0.157629\pi\)
\(194\) −3.42073 −0.245594
\(195\) 0 0
\(196\) 23.6681 + 22.7966i 1.69058 + 1.62833i
\(197\) 14.8985 1.06147 0.530736 0.847537i \(-0.321915\pi\)
0.530736 + 0.847537i \(0.321915\pi\)
\(198\) 0 0
\(199\) −1.36578 2.36561i −0.0968178 0.167693i 0.813548 0.581498i \(-0.197533\pi\)
−0.910366 + 0.413804i \(0.864200\pi\)
\(200\) 1.48506 0.105010
\(201\) 0 0
\(202\) 23.4959 + 40.6961i 1.65317 + 2.86337i
\(203\) 0.865757 + 6.13124i 0.0607642 + 0.430328i
\(204\) 0 0
\(205\) 9.00916 + 15.6043i 0.629227 + 1.08985i
\(206\) −17.5101 30.3285i −1.21999 2.11308i
\(207\) 0 0
\(208\) −18.4590 + 31.9720i −1.27990 + 2.21686i
\(209\) 10.9098 18.8963i 0.754647 1.30709i
\(210\) 0 0
\(211\) 4.58796 + 7.94658i 0.315848 + 0.547065i 0.979617 0.200872i \(-0.0643776\pi\)
−0.663769 + 0.747937i \(0.731044\pi\)
\(212\) 34.9105 2.39766
\(213\) 0 0
\(214\) 21.0577 1.43948
\(215\) −0.952236 + 1.64932i −0.0649419 + 0.112483i
\(216\) 0 0
\(217\) −2.30139 16.2983i −0.156229 1.10640i
\(218\) 7.09969 12.2970i 0.480852 0.832860i
\(219\) 0 0
\(220\) 15.8436 27.4418i 1.06817 1.85013i
\(221\) 3.26201 5.64997i 0.219427 0.380058i
\(222\) 0 0
\(223\) 14.1714 24.5455i 0.948985 1.64369i 0.201415 0.979506i \(-0.435446\pi\)
0.747569 0.664184i \(-0.231221\pi\)
\(224\) −3.12037 22.0983i −0.208489 1.47650i
\(225\) 0 0
\(226\) 8.09210 14.0159i 0.538278 0.932326i
\(227\) −2.07197 −0.137522 −0.0687608 0.997633i \(-0.521905\pi\)
−0.0687608 + 0.997633i \(0.521905\pi\)
\(228\) 0 0
\(229\) −15.6854 −1.03652 −0.518259 0.855224i \(-0.673420\pi\)
−0.518259 + 0.855224i \(0.673420\pi\)
\(230\) 18.1715 + 31.4739i 1.19819 + 2.07533i
\(231\) 0 0
\(232\) 8.15806 14.1302i 0.535603 0.927692i
\(233\) 14.6262 25.3334i 0.958196 1.65964i 0.231317 0.972878i \(-0.425696\pi\)
0.726879 0.686766i \(-0.240970\pi\)
\(234\) 0 0
\(235\) −6.65147 11.5207i −0.433894 0.751526i
\(236\) 10.8526 + 18.7973i 0.706446 + 1.22360i
\(237\) 0 0
\(238\) 1.46290 + 10.3602i 0.0948259 + 0.671551i
\(239\) −8.86060 15.3470i −0.573144 0.992715i −0.996241 0.0866304i \(-0.972390\pi\)
0.423096 0.906085i \(-0.360943\pi\)
\(240\) 0 0
\(241\) −26.4073 −1.70104 −0.850520 0.525942i \(-0.823713\pi\)
−0.850520 + 0.525942i \(0.823713\pi\)
\(242\) 2.92393 + 5.06439i 0.187957 + 0.325551i
\(243\) 0 0
\(244\) −33.4741 −2.14296
\(245\) 3.84632 15.5127i 0.245732 0.991070i
\(246\) 0 0
\(247\) 31.5039 2.00454
\(248\) −21.6861 + 37.5615i −1.37707 + 2.38515i
\(249\) 0 0
\(250\) 14.1395 + 24.4904i 0.894261 + 1.54891i
\(251\) −8.81798 −0.556586 −0.278293 0.960496i \(-0.589769\pi\)
−0.278293 + 0.960496i \(0.589769\pi\)
\(252\) 0 0
\(253\) 18.1873 1.14343
\(254\) 7.24487 + 12.5485i 0.454584 + 0.787362i
\(255\) 0 0
\(256\) 11.1995 19.3981i 0.699968 1.21238i
\(257\) −9.19671 −0.573675 −0.286837 0.957979i \(-0.592604\pi\)
−0.286837 + 0.957979i \(0.592604\pi\)
\(258\) 0 0
\(259\) −2.65453 18.7992i −0.164944 1.16813i
\(260\) 45.7509 2.83735
\(261\) 0 0
\(262\) −9.21716 15.9646i −0.569438 0.986295i
\(263\) 0.254605 0.0156996 0.00784982 0.999969i \(-0.497501\pi\)
0.00784982 + 0.999969i \(0.497501\pi\)
\(264\) 0 0
\(265\) −8.48954 14.7043i −0.521508 0.903279i
\(266\) −39.7936 + 31.1319i −2.43990 + 1.90882i
\(267\) 0 0
\(268\) 7.80512 + 13.5189i 0.476773 + 0.825796i
\(269\) 0.489721 + 0.848222i 0.0298588 + 0.0517170i 0.880569 0.473919i \(-0.157161\pi\)
−0.850710 + 0.525636i \(0.823828\pi\)
\(270\) 0 0
\(271\) −7.02445 + 12.1667i −0.426705 + 0.739075i −0.996578 0.0826580i \(-0.973659\pi\)
0.569873 + 0.821733i \(0.306992\pi\)
\(272\) 6.60979 11.4485i 0.400777 0.694167i
\(273\) 0 0
\(274\) −11.4856 19.8936i −0.693870 1.20182i
\(275\) −0.629746 −0.0379751
\(276\) 0 0
\(277\) 25.4187 1.52726 0.763630 0.645654i \(-0.223415\pi\)
0.763630 + 0.645654i \(0.223415\pi\)
\(278\) −10.8294 + 18.7571i −0.649505 + 1.12498i
\(279\) 0 0
\(280\) −33.1693 + 25.9494i −1.98224 + 1.55078i
\(281\) −14.6906 + 25.4448i −0.876366 + 1.51791i −0.0210657 + 0.999778i \(0.506706\pi\)
−0.855300 + 0.518132i \(0.826627\pi\)
\(282\) 0 0
\(283\) 1.53844 2.66466i 0.0914510 0.158398i −0.816671 0.577104i \(-0.804183\pi\)
0.908122 + 0.418706i \(0.137516\pi\)
\(284\) −0.376125 + 0.651467i −0.0223189 + 0.0386575i
\(285\) 0 0
\(286\) 16.3248 28.2754i 0.965307 1.67196i
\(287\) −19.3642 7.80898i −1.14303 0.460949i
\(288\) 0 0
\(289\) 7.33194 12.6993i 0.431291 0.747017i
\(290\) −13.8257 −0.811876
\(291\) 0 0
\(292\) −1.78698 −0.104575
\(293\) −8.50817 14.7366i −0.497053 0.860921i 0.502941 0.864320i \(-0.332251\pi\)
−0.999994 + 0.00339988i \(0.998918\pi\)
\(294\) 0 0
\(295\) 5.27829 9.14226i 0.307314 0.532283i
\(296\) −25.0137 + 43.3251i −1.45389 + 2.51822i
\(297\) 0 0
\(298\) 17.4029 + 30.1428i 1.00812 + 1.74612i
\(299\) 13.1297 + 22.7414i 0.759313 + 1.31517i
\(300\) 0 0
\(301\) −0.308560 2.18520i −0.0177851 0.125953i
\(302\) 11.6709 + 20.2146i 0.671586 + 1.16322i
\(303\) 0 0
\(304\) 63.8360 3.66124
\(305\) 8.14024 + 14.0993i 0.466109 + 0.807324i
\(306\) 0 0
\(307\) 24.2396 1.38343 0.691714 0.722172i \(-0.256856\pi\)
0.691714 + 0.722172i \(0.256856\pi\)
\(308\) 5.13391 + 36.3580i 0.292532 + 2.07169i
\(309\) 0 0
\(310\) 36.7522 2.08738
\(311\) 10.9807 19.0192i 0.622661 1.07848i −0.366328 0.930486i \(-0.619385\pi\)
0.988988 0.147994i \(-0.0472816\pi\)
\(312\) 0 0
\(313\) 1.24073 + 2.14900i 0.0701300 + 0.121469i 0.898958 0.438035i \(-0.144325\pi\)
−0.828828 + 0.559503i \(0.810992\pi\)
\(314\) 7.57685 0.427586
\(315\) 0 0
\(316\) −37.3427 −2.10069
\(317\) 9.73961 + 16.8695i 0.547031 + 0.947486i 0.998476 + 0.0551868i \(0.0175754\pi\)
−0.451445 + 0.892299i \(0.649091\pi\)
\(318\) 0 0
\(319\) −3.45946 + 5.99195i −0.193692 + 0.335485i
\(320\) 10.3357 0.577781
\(321\) 0 0
\(322\) −39.0575 15.7507i −2.17659 0.877752i
\(323\) −11.2809 −0.627684
\(324\) 0 0
\(325\) −0.454624 0.787432i −0.0252180 0.0436789i
\(326\) −3.11710 −0.172640
\(327\) 0 0
\(328\) 27.5087 + 47.6465i 1.51892 + 2.63084i
\(329\) 14.2966 + 5.76537i 0.788195 + 0.317855i
\(330\) 0 0
\(331\) −1.28856 2.23185i −0.0708256 0.122674i 0.828438 0.560081i \(-0.189230\pi\)
−0.899263 + 0.437408i \(0.855897\pi\)
\(332\) −10.0884 17.4736i −0.553673 0.958990i
\(333\) 0 0
\(334\) −18.5893 + 32.1976i −1.01716 + 1.76178i
\(335\) 3.79610 6.57504i 0.207403 0.359233i
\(336\) 0 0
\(337\) 12.0760 + 20.9163i 0.657822 + 1.13938i 0.981178 + 0.193104i \(0.0618554\pi\)
−0.323356 + 0.946277i \(0.604811\pi\)
\(338\) 13.5048 0.734567
\(339\) 0 0
\(340\) −16.3824 −0.888462
\(341\) 9.19608 15.9281i 0.497996 0.862554i
\(342\) 0 0
\(343\) 7.56588 + 16.9044i 0.408519 + 0.912750i
\(344\) −2.90758 + 5.03607i −0.156766 + 0.271527i
\(345\) 0 0
\(346\) −7.04240 + 12.1978i −0.378602 + 0.655757i
\(347\) −18.1212 + 31.3868i −0.972797 + 1.68493i −0.285775 + 0.958297i \(0.592251\pi\)
−0.687022 + 0.726637i \(0.741082\pi\)
\(348\) 0 0
\(349\) −17.6469 + 30.5653i −0.944617 + 1.63613i −0.188102 + 0.982149i \(0.560234\pi\)
−0.756515 + 0.653976i \(0.773100\pi\)
\(350\) 1.35239 + 0.545376i 0.0722881 + 0.0291516i
\(351\) 0 0
\(352\) 12.4686 21.5963i 0.664579 1.15109i
\(353\) −2.92219 −0.155532 −0.0777662 0.996972i \(-0.524779\pi\)
−0.0777662 + 0.996972i \(0.524779\pi\)
\(354\) 0 0
\(355\) 0.365864 0.0194181
\(356\) 14.2162 + 24.6231i 0.753456 + 1.30502i
\(357\) 0 0
\(358\) −7.83528 + 13.5711i −0.414107 + 0.717255i
\(359\) −0.196714 + 0.340719i −0.0103822 + 0.0179825i −0.871170 0.490982i \(-0.836638\pi\)
0.860788 + 0.508964i \(0.169971\pi\)
\(360\) 0 0
\(361\) −17.7371 30.7215i −0.933529 1.61692i
\(362\) −16.4836 28.5504i −0.866359 1.50058i
\(363\) 0 0
\(364\) −41.7556 + 32.6669i −2.18859 + 1.71221i
\(365\) 0.434559 + 0.752678i 0.0227459 + 0.0393970i
\(366\) 0 0
\(367\) −9.23134 −0.481872 −0.240936 0.970541i \(-0.577454\pi\)
−0.240936 + 0.970541i \(0.577454\pi\)
\(368\) 26.6047 + 46.0807i 1.38686 + 2.40212i
\(369\) 0 0
\(370\) 42.3916 2.20384
\(371\) 18.2473 + 7.35858i 0.947353 + 0.382039i
\(372\) 0 0
\(373\) −21.5244 −1.11449 −0.557245 0.830348i \(-0.688142\pi\)
−0.557245 + 0.830348i \(0.688142\pi\)
\(374\) −5.84557 + 10.1248i −0.302267 + 0.523542i
\(375\) 0 0
\(376\) −20.3097 35.1775i −1.04739 1.81414i
\(377\) −9.98975 −0.514498
\(378\) 0 0
\(379\) −18.2445 −0.937159 −0.468579 0.883421i \(-0.655234\pi\)
−0.468579 + 0.883421i \(0.655234\pi\)
\(380\) −39.5545 68.5104i −2.02910 3.51451i
\(381\) 0 0
\(382\) 31.2197 54.0740i 1.59734 2.76667i
\(383\) 6.25965 0.319853 0.159926 0.987129i \(-0.448874\pi\)
0.159926 + 0.987129i \(0.448874\pi\)
\(384\) 0 0
\(385\) 14.0655 11.0040i 0.716847 0.560813i
\(386\) −2.04078 −0.103873
\(387\) 0 0
\(388\) 3.10325 + 5.37499i 0.157544 + 0.272874i
\(389\) −22.6208 −1.14692 −0.573460 0.819234i \(-0.694399\pi\)
−0.573460 + 0.819234i \(0.694399\pi\)
\(390\) 0 0
\(391\) −4.70148 8.14320i −0.237764 0.411820i
\(392\) 11.7444 47.3668i 0.593183 2.39238i
\(393\) 0 0
\(394\) −19.2739 33.3834i −0.971006 1.68183i
\(395\) 9.08101 + 15.7288i 0.456915 + 0.791400i
\(396\) 0 0
\(397\) 10.6077 18.3730i 0.532384 0.922115i −0.466902 0.884309i \(-0.654630\pi\)
0.999285 0.0378060i \(-0.0120369\pi\)
\(398\) −3.53378 + 6.12069i −0.177132 + 0.306802i
\(399\) 0 0
\(400\) −0.921200 1.59557i −0.0460600 0.0797783i
\(401\) 4.27442 0.213454 0.106727 0.994288i \(-0.465963\pi\)
0.106727 + 0.994288i \(0.465963\pi\)
\(402\) 0 0
\(403\) 26.5552 1.32281
\(404\) 42.6305 73.8382i 2.12095 3.67359i
\(405\) 0 0
\(406\) 12.6184 9.87180i 0.626241 0.489929i
\(407\) 10.6072 18.3721i 0.525778 0.910674i
\(408\) 0 0
\(409\) −17.6627 + 30.5926i −0.873363 + 1.51271i −0.0148660 + 0.999889i \(0.504732\pi\)
−0.858497 + 0.512819i \(0.828601\pi\)
\(410\) 23.3100 40.3741i 1.15120 1.99394i
\(411\) 0 0
\(412\) −31.7701 + 55.0274i −1.56520 + 2.71100i
\(413\) 1.71036 + 12.1127i 0.0841615 + 0.596026i
\(414\) 0 0
\(415\) −4.90660 + 8.49849i −0.240856 + 0.417174i
\(416\) 36.0052 1.76530
\(417\) 0 0
\(418\) −56.4553 −2.76132
\(419\) 1.87450 + 3.24673i 0.0915755 + 0.158613i 0.908174 0.418592i \(-0.137476\pi\)
−0.816599 + 0.577206i \(0.804143\pi\)
\(420\) 0 0
\(421\) −12.2663 + 21.2459i −0.597825 + 1.03546i 0.395317 + 0.918545i \(0.370635\pi\)
−0.993142 + 0.116918i \(0.962699\pi\)
\(422\) 11.8707 20.5607i 0.577858 1.00088i
\(423\) 0 0
\(424\) −25.9221 44.8984i −1.25889 2.18046i
\(425\) 0.162791 + 0.281963i 0.00789653 + 0.0136772i
\(426\) 0 0
\(427\) −17.4965 7.05581i −0.846716 0.341455i
\(428\) −19.1034 33.0880i −0.923396 1.59937i
\(429\) 0 0
\(430\) 4.92757 0.237628
\(431\) 12.1284 + 21.0071i 0.584206 + 1.01187i 0.994974 + 0.100135i \(0.0319273\pi\)
−0.410768 + 0.911740i \(0.634739\pi\)
\(432\) 0 0
\(433\) 8.60056 0.413317 0.206658 0.978413i \(-0.433741\pi\)
0.206658 + 0.978413i \(0.433741\pi\)
\(434\) −33.5428 + 26.2417i −1.61011 + 1.25964i
\(435\) 0 0
\(436\) −25.7631 −1.23383
\(437\) 22.7030 39.3227i 1.08603 1.88106i
\(438\) 0 0
\(439\) −13.2792 23.0002i −0.633780 1.09774i −0.986772 0.162113i \(-0.948169\pi\)
0.352992 0.935626i \(-0.385164\pi\)
\(440\) −47.0573 −2.24337
\(441\) 0 0
\(442\) −16.8801 −0.802902
\(443\) −13.8041 23.9094i −0.655853 1.13597i −0.981679 0.190542i \(-0.938976\pi\)
0.325826 0.945430i \(-0.394358\pi\)
\(444\) 0 0
\(445\) 6.91419 11.9757i 0.327764 0.567704i
\(446\) −73.3330 −3.47242
\(447\) 0 0
\(448\) −9.43309 + 7.37983i −0.445672 + 0.348664i
\(449\) 15.6315 0.737695 0.368847 0.929490i \(-0.379753\pi\)
0.368847 + 0.929490i \(0.379753\pi\)
\(450\) 0 0
\(451\) −11.6652 20.2047i −0.549292 0.951402i
\(452\) −29.3643 −1.38118
\(453\) 0 0
\(454\) 2.68047 + 4.64272i 0.125801 + 0.217894i
\(455\) 23.9134 + 9.64356i 1.12108 + 0.452097i
\(456\) 0 0
\(457\) 16.4677 + 28.5230i 0.770328 + 1.33425i 0.937383 + 0.348300i \(0.113241\pi\)
−0.167055 + 0.985948i \(0.553426\pi\)
\(458\) 20.2919 + 35.1466i 0.948178 + 1.64229i
\(459\) 0 0
\(460\) 32.9700 57.1057i 1.53723 2.66256i
\(461\) 17.4591 30.2400i 0.813149 1.40842i −0.0974999 0.995236i \(-0.531085\pi\)
0.910649 0.413180i \(-0.135582\pi\)
\(462\) 0 0
\(463\) −1.55128 2.68689i −0.0720940 0.124871i 0.827725 0.561134i \(-0.189635\pi\)
−0.899819 + 0.436264i \(0.856302\pi\)
\(464\) −20.2421 −0.939718
\(465\) 0 0
\(466\) −75.6868 −3.50613
\(467\) −5.26376 + 9.11710i −0.243578 + 0.421889i −0.961731 0.273996i \(-0.911654\pi\)
0.718153 + 0.695885i \(0.244988\pi\)
\(468\) 0 0
\(469\) 1.23008 + 8.71134i 0.0567998 + 0.402252i
\(470\) −17.2098 + 29.8082i −0.793828 + 1.37495i
\(471\) 0 0
\(472\) 16.1168 27.9152i 0.741837 1.28490i
\(473\) 1.23297 2.13556i 0.0566919 0.0981933i
\(474\) 0 0
\(475\) −0.786102 + 1.36157i −0.0360688 + 0.0624730i
\(476\) 14.9518 11.6973i 0.685315 0.536145i
\(477\) 0 0
\(478\) −22.9256 + 39.7083i −1.04859 + 1.81622i
\(479\) 16.9781 0.775748 0.387874 0.921712i \(-0.373210\pi\)
0.387874 + 0.921712i \(0.373210\pi\)
\(480\) 0 0
\(481\) 30.6299 1.39660
\(482\) 34.1626 + 59.1714i 1.55607 + 2.69518i
\(483\) 0 0
\(484\) 5.30512 9.18873i 0.241142 0.417669i
\(485\) 1.50930 2.61418i 0.0685337 0.118704i
\(486\) 0 0
\(487\) 6.60283 + 11.4364i 0.299203 + 0.518235i 0.975954 0.217977i \(-0.0699459\pi\)
−0.676751 + 0.736212i \(0.736613\pi\)
\(488\) 24.8556 + 43.0511i 1.12516 + 1.94883i
\(489\) 0 0
\(490\) −39.7356 + 11.4500i −1.79507 + 0.517257i
\(491\) −7.89168 13.6688i −0.356147 0.616864i 0.631167 0.775647i \(-0.282576\pi\)
−0.987314 + 0.158783i \(0.949243\pi\)
\(492\) 0 0
\(493\) 3.57712 0.161105
\(494\) −40.7560 70.5915i −1.83370 3.17606i
\(495\) 0 0
\(496\) 53.8085 2.41608
\(497\) −0.333915 + 0.261233i −0.0149781 + 0.0117179i
\(498\) 0 0
\(499\) 42.9459 1.92252 0.961261 0.275640i \(-0.0888897\pi\)
0.961261 + 0.275640i \(0.0888897\pi\)
\(500\) 25.6545 44.4348i 1.14730 1.98719i
\(501\) 0 0
\(502\) 11.4077 + 19.7587i 0.509149 + 0.881873i
\(503\) −37.7173 −1.68173 −0.840866 0.541243i \(-0.817954\pi\)
−0.840866 + 0.541243i \(0.817954\pi\)
\(504\) 0 0
\(505\) −41.4676 −1.84528
\(506\) −23.5287 40.7529i −1.04598 1.81169i
\(507\) 0 0
\(508\) 13.1450 22.7677i 0.583213 1.01015i
\(509\) 34.9928 1.55103 0.775513 0.631331i \(-0.217491\pi\)
0.775513 + 0.631331i \(0.217491\pi\)
\(510\) 0 0
\(511\) −0.934035 0.376668i −0.0413193 0.0166628i
\(512\) −47.6386 −2.10535
\(513\) 0 0
\(514\) 11.8976 + 20.6073i 0.524782 + 0.908949i
\(515\) 30.9034 1.36177
\(516\) 0 0
\(517\) 8.61241 + 14.9171i 0.378773 + 0.656055i
\(518\) −38.6897 + 30.2683i −1.69993 + 1.32991i
\(519\) 0 0
\(520\) −33.9715 58.8403i −1.48975 2.58032i
\(521\) 6.97005 + 12.0725i 0.305363 + 0.528905i 0.977342 0.211665i \(-0.0678887\pi\)
−0.671979 + 0.740570i \(0.734555\pi\)
\(522\) 0 0
\(523\) −13.4103 + 23.2274i −0.586393 + 1.01566i 0.408308 + 0.912844i \(0.366119\pi\)
−0.994700 + 0.102817i \(0.967214\pi\)
\(524\) −16.7234 + 28.9658i −0.730566 + 1.26538i
\(525\) 0 0
\(526\) −0.329379 0.570501i −0.0143616 0.0248750i
\(527\) −9.50885 −0.414212
\(528\) 0 0
\(529\) 14.8473 0.645535
\(530\) −21.9656 + 38.0455i −0.954123 + 1.65259i
\(531\) 0 0
\(532\) 85.0179 + 34.2851i 3.68599 + 1.48645i
\(533\) 16.8426 29.1722i 0.729533 1.26359i
\(534\) 0 0
\(535\) −9.29112 + 16.0927i −0.401690 + 0.695748i
\(536\) 11.5911 20.0763i 0.500658 0.867166i
\(537\) 0 0
\(538\) 1.26709 2.19466i 0.0546280 0.0946186i
\(539\) −4.98026 + 20.0860i −0.214515 + 0.865167i
\(540\) 0 0
\(541\) −11.6251 + 20.1353i −0.499802 + 0.865683i −1.00000 0.000228285i \(-0.999927\pi\)
0.500198 + 0.865911i \(0.333261\pi\)
\(542\) 36.3497 1.56135
\(543\) 0 0
\(544\) −12.8927 −0.552770
\(545\) 6.26507 + 10.8514i 0.268366 + 0.464824i
\(546\) 0 0
\(547\) −7.87127 + 13.6334i −0.336551 + 0.582924i −0.983782 0.179371i \(-0.942594\pi\)
0.647230 + 0.762294i \(0.275927\pi\)
\(548\) −20.8392 + 36.0946i −0.890208 + 1.54189i
\(549\) 0 0
\(550\) 0.814692 + 1.41109i 0.0347386 + 0.0601690i
\(551\) 8.63677 + 14.9593i 0.367939 + 0.637288i
\(552\) 0 0
\(553\) −19.5186 7.87126i −0.830015 0.334720i
\(554\) −32.8837 56.9563i −1.39710 2.41984i
\(555\) 0 0
\(556\) 39.2973 1.66658
\(557\) 2.06405 + 3.57504i 0.0874565 + 0.151479i 0.906435 0.422345i \(-0.138793\pi\)
−0.818979 + 0.573824i \(0.805459\pi\)
\(558\) 0 0
\(559\) 3.56040 0.150589
\(560\) 48.4556 + 19.5407i 2.04762 + 0.825744i
\(561\) 0 0
\(562\) 76.0198 3.20670
\(563\) −0.342707 + 0.593585i −0.0144434 + 0.0250166i −0.873157 0.487440i \(-0.837931\pi\)
0.858713 + 0.512456i \(0.171264\pi\)
\(564\) 0 0
\(565\) 7.14081 + 12.3683i 0.300416 + 0.520336i
\(566\) −7.96104 −0.334627
\(567\) 0 0
\(568\) 1.11714 0.0468740
\(569\) 9.25223 + 16.0253i 0.387874 + 0.671817i 0.992163 0.124948i \(-0.0398763\pi\)
−0.604290 + 0.796765i \(0.706543\pi\)
\(570\) 0 0
\(571\) −17.2741 + 29.9197i −0.722901 + 1.25210i 0.236932 + 0.971526i \(0.423858\pi\)
−0.959832 + 0.280574i \(0.909475\pi\)
\(572\) −59.2389 −2.47690
\(573\) 0 0
\(574\) 7.55332 + 53.4921i 0.315269 + 2.23272i
\(575\) −1.31048 −0.0546509
\(576\) 0 0
\(577\) −0.246628 0.427172i −0.0102673 0.0177834i 0.860846 0.508865i \(-0.169935\pi\)
−0.871113 + 0.491082i \(0.836602\pi\)
\(578\) −37.9408 −1.57813
\(579\) 0 0
\(580\) 12.5426 + 21.7244i 0.520802 + 0.902056i
\(581\) −1.58992 11.2597i −0.0659612 0.467133i
\(582\) 0 0
\(583\) 10.9924 + 19.0394i 0.455258 + 0.788529i
\(584\) 1.32689 + 2.29824i 0.0549071 + 0.0951019i
\(585\) 0 0
\(586\) −22.0138 + 38.1290i −0.909380 + 1.57509i
\(587\) −18.8206 + 32.5983i −0.776810 + 1.34547i 0.156961 + 0.987605i \(0.449830\pi\)
−0.933771 + 0.357870i \(0.883503\pi\)
\(588\) 0 0
\(589\) −22.9586 39.7655i −0.945994 1.63851i
\(590\) −27.3137 −1.12449
\(591\) 0 0
\(592\) 62.0652 2.55086
\(593\) 12.5475 21.7328i 0.515262 0.892460i −0.484581 0.874746i \(-0.661028\pi\)
0.999843 0.0177137i \(-0.00563874\pi\)
\(594\) 0 0
\(595\) −8.56290 3.45316i −0.351044 0.141566i
\(596\) 31.5755 54.6904i 1.29338 2.24021i
\(597\) 0 0
\(598\) 33.9715 58.8403i 1.38920 2.40616i
\(599\) −0.269218 + 0.466300i −0.0110000 + 0.0190525i −0.871473 0.490444i \(-0.836835\pi\)
0.860473 + 0.509496i \(0.170168\pi\)
\(600\) 0 0
\(601\) 18.0520 31.2670i 0.736357 1.27541i −0.217768 0.976001i \(-0.569878\pi\)
0.954125 0.299408i \(-0.0967890\pi\)
\(602\) −4.49726 + 3.51836i −0.183295 + 0.143398i
\(603\) 0 0
\(604\) 21.1755 36.6770i 0.861619 1.49237i
\(605\) −5.16040 −0.209800
\(606\) 0 0
\(607\) −22.3536 −0.907305 −0.453652 0.891179i \(-0.649879\pi\)
−0.453652 + 0.891179i \(0.649879\pi\)
\(608\) −31.1287 53.9166i −1.26244 2.18660i
\(609\) 0 0
\(610\) 21.0618 36.4801i 0.852767 1.47704i
\(611\) −12.4349 + 21.5378i −0.503061 + 0.871328i
\(612\) 0 0
\(613\) 12.2687 + 21.2500i 0.495529 + 0.858281i 0.999987 0.00515549i \(-0.00164105\pi\)
−0.504458 + 0.863436i \(0.668308\pi\)
\(614\) −31.3584 54.3143i −1.26552 2.19195i
\(615\) 0 0
\(616\) 42.9480 33.5997i 1.73042 1.35377i
\(617\) 15.0763 + 26.1130i 0.606950 + 1.05127i 0.991740 + 0.128264i \(0.0409405\pi\)
−0.384790 + 0.923004i \(0.625726\pi\)
\(618\) 0 0
\(619\) 23.6094 0.948942 0.474471 0.880271i \(-0.342639\pi\)
0.474471 + 0.880271i \(0.342639\pi\)
\(620\) −33.3412 57.7487i −1.33902 2.31924i
\(621\) 0 0
\(622\) −56.8224 −2.27837
\(623\) 2.24046 + 15.8668i 0.0897620 + 0.635689i
\(624\) 0 0
\(625\) −26.0197 −1.04079
\(626\) 3.21021 5.56025i 0.128306 0.222232i
\(627\) 0 0
\(628\) −6.87364 11.9055i −0.274288 0.475081i
\(629\) −10.9679 −0.437320
\(630\) 0 0
\(631\) −7.41460 −0.295171 −0.147585 0.989049i \(-0.547150\pi\)
−0.147585 + 0.989049i \(0.547150\pi\)
\(632\) 27.7281 + 48.0265i 1.10297 + 1.91039i
\(633\) 0 0
\(634\) 25.2000 43.6476i 1.00082 1.73347i
\(635\) −12.7864 −0.507412
\(636\) 0 0
\(637\) −28.7108 + 8.27315i −1.13756 + 0.327794i
\(638\) 17.9018 0.708738
\(639\) 0 0
\(640\) 5.88824 + 10.1987i 0.232753 + 0.403140i
\(641\) −18.6918 −0.738280 −0.369140 0.929374i \(-0.620348\pi\)
−0.369140 + 0.929374i \(0.620348\pi\)
\(642\) 0 0
\(643\) −18.2102 31.5410i −0.718141 1.24386i −0.961735 0.273980i \(-0.911660\pi\)
0.243594 0.969877i \(-0.421673\pi\)
\(644\) 10.6835 + 75.6599i 0.420989 + 2.98142i
\(645\) 0 0
\(646\) 14.5939 + 25.2773i 0.574188 + 0.994522i
\(647\) 8.33593 + 14.4383i 0.327719 + 0.567626i 0.982059 0.188574i \(-0.0603867\pi\)
−0.654340 + 0.756201i \(0.727053\pi\)
\(648\) 0 0
\(649\) −6.83440 + 11.8375i −0.268274 + 0.464664i
\(650\) −1.17628 + 2.03737i −0.0461375 + 0.0799124i
\(651\) 0 0
\(652\) 2.82780 + 4.89790i 0.110745 + 0.191817i
\(653\) −8.61070 −0.336963 −0.168481 0.985705i \(-0.553886\pi\)
−0.168481 + 0.985705i \(0.553886\pi\)
\(654\) 0 0
\(655\) 16.2672 0.635613
\(656\) 34.1280 59.1113i 1.33247 2.30791i
\(657\) 0 0
\(658\) −5.57662 39.4933i −0.217399 1.53961i
\(659\) −7.34515 + 12.7222i −0.286126 + 0.495586i −0.972882 0.231303i \(-0.925701\pi\)
0.686755 + 0.726889i \(0.259034\pi\)
\(660\) 0 0
\(661\) −4.06201 + 7.03561i −0.157994 + 0.273654i −0.934145 0.356893i \(-0.883836\pi\)
0.776151 + 0.630547i \(0.217169\pi\)
\(662\) −3.33397 + 5.77461i −0.129579 + 0.224437i
\(663\) 0 0
\(664\) −14.9819 + 25.9494i −0.581411 + 1.00703i
\(665\) −6.23375 44.1470i −0.241735 1.71195i
\(666\) 0 0
\(667\) −7.19902 + 12.4691i −0.278747 + 0.482805i
\(668\) 67.4561 2.60996
\(669\) 0 0
\(670\) −19.6438 −0.758906
\(671\) −10.5401 18.2560i −0.406896 0.704764i
\(672\) 0 0
\(673\) 6.57582 11.3897i 0.253479 0.439039i −0.711002 0.703190i \(-0.751758\pi\)
0.964481 + 0.264151i \(0.0850917\pi\)
\(674\) 31.2451 54.1180i 1.20351 2.08455i
\(675\) 0 0
\(676\) −12.2515 21.2202i −0.471210 0.816160i
\(677\) −5.40967 9.36982i −0.207910 0.360111i 0.743146 0.669130i \(-0.233333\pi\)
−0.951056 + 0.309018i \(0.900000\pi\)
\(678\) 0 0
\(679\) 0.489070 + 3.46356i 0.0187688 + 0.132919i
\(680\) 12.1645 + 21.0695i 0.466486 + 0.807977i
\(681\) 0 0
\(682\) −47.5873 −1.82221
\(683\) −0.684640 1.18583i −0.0261970 0.0453746i 0.852630 0.522516i \(-0.175006\pi\)
−0.878827 + 0.477141i \(0.841673\pi\)
\(684\) 0 0
\(685\) 20.2708 0.774506
\(686\) 28.0902 38.8219i 1.07249 1.48223i
\(687\) 0 0
\(688\) 7.21440 0.275047
\(689\) −15.8711 + 27.4896i −0.604642 + 1.04727i
\(690\) 0 0
\(691\) 17.9215 + 31.0409i 0.681765 + 1.18085i 0.974442 + 0.224640i \(0.0721207\pi\)
−0.292677 + 0.956211i \(0.594546\pi\)
\(692\) 25.5552 0.971462
\(693\) 0 0
\(694\) 93.7724 3.55955
\(695\) −9.55634 16.5521i −0.362493 0.627855i
\(696\) 0 0
\(697\) −6.03097 + 10.4459i −0.228439 + 0.395668i
\(698\) 91.3181 3.45644
\(699\) 0 0
\(700\) −0.369922 2.61976i −0.0139817 0.0990177i
\(701\) 29.6235 1.11886 0.559431 0.828877i \(-0.311020\pi\)
0.559431 + 0.828877i \(0.311020\pi\)
\(702\) 0 0
\(703\) −26.4815 45.8673i −0.998769 1.72992i
\(704\) −13.3828 −0.504382
\(705\) 0 0
\(706\) 3.78039 + 6.54782i 0.142277 + 0.246431i
\(707\) 37.8464 29.6085i 1.42336 1.11354i
\(708\) 0 0
\(709\) 7.63863 + 13.2305i 0.286875 + 0.496882i 0.973062 0.230543i \(-0.0740503\pi\)
−0.686187 + 0.727425i \(0.740717\pi\)
\(710\) −0.473313 0.819802i −0.0177631 0.0307666i
\(711\) 0 0
\(712\) 21.1119 36.5669i 0.791202 1.37040i
\(713\) 19.1368 33.1458i 0.716677 1.24132i
\(714\) 0 0
\(715\) 14.4057 + 24.9514i 0.538743 + 0.933131i
\(716\) 28.4324 1.06257
\(717\) 0 0
\(718\) 1.01794 0.0379893
\(719\) −1.00538 + 1.74138i −0.0374945 + 0.0649424i −0.884164 0.467177i \(-0.845271\pi\)
0.846669 + 0.532120i \(0.178604\pi\)
\(720\) 0 0
\(721\) −28.2047 + 22.0655i −1.05040 + 0.821763i
\(722\) −45.8923 + 79.4877i −1.70793 + 2.95823i
\(723\) 0 0
\(724\) −29.9075 + 51.8014i −1.11150 + 1.92518i
\(725\) 0.249270 0.431748i 0.00925765 0.0160347i
\(726\) 0 0
\(727\) −10.2515 + 17.7561i −0.380206 + 0.658535i −0.991091 0.133183i \(-0.957480\pi\)
0.610886 + 0.791719i \(0.290813\pi\)
\(728\) 73.0178 + 29.4458i 2.70622 + 1.09134i
\(729\) 0 0
\(730\) 1.12436 1.94745i 0.0416146 0.0720785i
\(731\) −1.27490 −0.0471540
\(732\) 0 0
\(733\) 4.62855 0.170959 0.0854797 0.996340i \(-0.472758\pi\)
0.0854797 + 0.996340i \(0.472758\pi\)
\(734\) 11.9424 + 20.6849i 0.440803 + 0.763493i
\(735\) 0 0
\(736\) 25.9468 44.9412i 0.956412 1.65655i
\(737\) −4.91524 + 8.51345i −0.181055 + 0.313597i
\(738\) 0 0
\(739\) 11.6640 + 20.2026i 0.429066 + 0.743164i 0.996790 0.0800546i \(-0.0255095\pi\)
−0.567725 + 0.823219i \(0.692176\pi\)
\(740\) −38.4573 66.6099i −1.41372 2.44863i
\(741\) 0 0
\(742\) −7.11767 50.4069i −0.261298 1.85049i
\(743\) 26.1283 + 45.2555i 0.958553 + 1.66026i 0.726018 + 0.687675i \(0.241369\pi\)
0.232535 + 0.972588i \(0.425298\pi\)
\(744\) 0 0
\(745\) −30.7142 −1.12528
\(746\) 27.8458 + 48.2303i 1.01951 + 1.76584i
\(747\) 0 0
\(748\) 21.2122 0.775594
\(749\) −3.01067 21.3214i −0.110008 0.779067i
\(750\) 0 0
\(751\) −6.18756 −0.225787 −0.112894 0.993607i \(-0.536012\pi\)
−0.112894 + 0.993607i \(0.536012\pi\)
\(752\) −25.1967 + 43.6419i −0.918829 + 1.59146i
\(753\) 0 0
\(754\) 12.9236 + 22.3843i 0.470649 + 0.815188i
\(755\) −20.5979 −0.749633
\(756\) 0 0
\(757\) 20.9175 0.760260 0.380130 0.924933i \(-0.375879\pi\)
0.380130 + 0.924933i \(0.375879\pi\)
\(758\) 23.6026 + 40.8810i 0.857287 + 1.48486i
\(759\) 0 0
\(760\) −58.7409 + 101.742i −2.13076 + 3.69058i
\(761\) 33.9143 1.22939 0.614696 0.788764i \(-0.289279\pi\)
0.614696 + 0.788764i \(0.289279\pi\)
\(762\) 0 0
\(763\) −13.4661 5.43045i −0.487504 0.196595i
\(764\) −113.289 −4.09864
\(765\) 0 0
\(766\) −8.09800 14.0261i −0.292593 0.506785i
\(767\) −19.7355 −0.712606
\(768\) 0 0
\(769\) 4.25392 + 7.36800i 0.153400 + 0.265697i 0.932475 0.361234i \(-0.117644\pi\)
−0.779075 + 0.626931i \(0.784311\pi\)
\(770\) −42.8532 17.2814i −1.54432 0.622778i
\(771\) 0 0
\(772\) 1.85137 + 3.20667i 0.0666324 + 0.115411i
\(773\) −22.7870 39.4682i −0.819590 1.41957i −0.905985 0.423310i \(-0.860868\pi\)
0.0863952 0.996261i \(-0.472465\pi\)
\(774\) 0 0
\(775\) −0.662620 + 1.14769i −0.0238020 + 0.0412263i
\(776\) 4.60852 7.98219i 0.165436 0.286544i
\(777\) 0 0
\(778\) 29.2642 + 50.6870i 1.04917 + 1.81722i
\(779\) −58.2458 −2.08687
\(780\) 0 0
\(781\) −0.473726 −0.0169513
\(782\) −12.1645 + 21.0695i −0.435000 + 0.753442i
\(783\) 0 0
\(784\) −58.1765 + 16.7638i −2.07773 + 0.598707i
\(785\) −3.34307 + 5.79036i −0.119319 + 0.206667i
\(786\) 0 0
\(787\) 4.16234 7.20939i 0.148372 0.256987i −0.782254 0.622959i \(-0.785930\pi\)
0.930626 + 0.365972i \(0.119264\pi\)
\(788\) −34.9702 + 60.5702i −1.24576 + 2.15772i
\(789\) 0 0
\(790\) 23.4959 40.6961i 0.835947 1.44790i
\(791\) −15.3484 6.18953i −0.545725 0.220074i
\(792\) 0 0
\(793\) 15.2181 26.3586i 0.540412 0.936020i
\(794\) −54.8919 −1.94804
\(795\) 0 0
\(796\) 12.8232 0.454508
\(797\) −19.6387 34.0152i −0.695637 1.20488i −0.969966 0.243242i \(-0.921789\pi\)
0.274329 0.961636i \(-0.411544\pi\)
\(798\) 0 0
\(799\) 4.45267 7.71224i 0.157524 0.272840i
\(800\) −0.898421 + 1.55611i −0.0317640 + 0.0550168i
\(801\) 0 0
\(802\) −5.52975 9.57781i −0.195262 0.338204i
\(803\) −0.562673 0.974578i −0.0198563 0.0343921i
\(804\) 0 0
\(805\) 29.2700 22.8989i 1.03163 0.807080i
\(806\) −34.3540 59.5029i −1.21007 2.09590i
\(807\) 0 0
\(808\) −126.618 −4.45440
\(809\) 11.4525 + 19.8364i 0.402649 + 0.697409i 0.994045 0.108973i \(-0.0347561\pi\)
−0.591395 + 0.806382i \(0.701423\pi\)
\(810\) 0 0
\(811\) −17.0254 −0.597842 −0.298921 0.954278i \(-0.596627\pi\)
−0.298921 + 0.954278i \(0.596627\pi\)
\(812\) −26.9588 10.8717i −0.946070 0.381521i
\(813\) 0 0
\(814\) −54.8893 −1.92387
\(815\) 1.37533 2.38214i 0.0481758 0.0834429i
\(816\) 0 0
\(817\) −3.07819 5.33158i −0.107692 0.186528i
\(818\) 91.3996 3.19571
\(819\) 0 0
\(820\) −84.5864 −2.95389
\(821\) 16.3565 + 28.3303i 0.570845 + 0.988733i 0.996479 + 0.0838376i \(0.0267177\pi\)
−0.425634 + 0.904895i \(0.639949\pi\)
\(822\) 0 0
\(823\) 13.9457 24.1547i 0.486118 0.841981i −0.513755 0.857937i \(-0.671746\pi\)
0.999873 + 0.0159561i \(0.00507920\pi\)
\(824\) 94.3610 3.28722
\(825\) 0 0
\(826\) 24.9285 19.5024i 0.867375 0.678577i
\(827\) 17.5753 0.611153 0.305576 0.952168i \(-0.401151\pi\)
0.305576 + 0.952168i \(0.401151\pi\)
\(828\) 0 0
\(829\) 0.997731 + 1.72812i 0.0346526 + 0.0600201i 0.882832 0.469690i \(-0.155634\pi\)
−0.848179 + 0.529710i \(0.822301\pi\)
\(830\) 25.3904 0.881312
\(831\) 0 0
\(832\) −9.66123 16.7337i −0.334943 0.580138i
\(833\) 10.2807 2.96244i 0.356207 0.102642i
\(834\) 0 0
\(835\) −16.4040 28.4126i −0.567684 0.983257i
\(836\) 51.2157 + 88.7082i 1.77133 + 3.06804i
\(837\) 0 0
\(838\) 4.85003 8.40049i 0.167541 0.290190i
\(839\) −11.3262 + 19.6175i −0.391023 + 0.677272i −0.992585 0.121555i \(-0.961212\pi\)
0.601562 + 0.798826i \(0.294545\pi\)
\(840\) 0 0
\(841\) 11.7613 + 20.3712i 0.405563 + 0.702455i
\(842\) 63.4750 2.18749
\(843\) 0 0
\(844\) −43.0761 −1.48274
\(845\) −5.95863 + 10.3206i −0.204983 + 0.355041i
\(846\) 0 0
\(847\) 4.70976 3.68460i 0.161829 0.126605i
\(848\) −32.1596 + 55.7020i −1.10436 + 1.91281i
\(849\) 0 0
\(850\) 0.421200 0.729541i 0.0144471 0.0250230i
\(851\) 22.0732 38.2319i 0.756659 1.31057i
\(852\) 0 0
\(853\) 6.65119 11.5202i 0.227732 0.394444i −0.729403 0.684084i \(-0.760202\pi\)
0.957136 + 0.289640i \(0.0935355\pi\)
\(854\) 6.82481 + 48.3329i 0.233540 + 1.65392i
\(855\) 0 0
\(856\) −28.3697 + 49.1377i −0.969656 + 1.67949i
\(857\) −24.3329 −0.831197 −0.415599 0.909548i \(-0.636428\pi\)
−0.415599 + 0.909548i \(0.636428\pi\)
\(858\) 0 0
\(859\) 15.6185 0.532897 0.266448 0.963849i \(-0.414150\pi\)
0.266448 + 0.963849i \(0.414150\pi\)
\(860\) −4.47024 7.74268i −0.152434 0.264023i
\(861\) 0 0
\(862\) 31.3807 54.3530i 1.06883 1.85127i
\(863\) −18.3558 + 31.7931i −0.624838 + 1.08225i 0.363735 + 0.931503i \(0.381502\pi\)
−0.988572 + 0.150748i \(0.951832\pi\)
\(864\) 0 0
\(865\) −6.21451 10.7638i −0.211300 0.365982i
\(866\) −11.1264 19.2715i −0.378091 0.654872i
\(867\) 0 0
\(868\) 71.6632 + 28.8996i 2.43241 + 0.980916i
\(869\) −11.7582 20.3658i −0.398870 0.690863i
\(870\) 0 0
\(871\) −14.1936 −0.480931
\(872\) 19.1299 + 33.1339i 0.647820 + 1.12206i
\(873\) 0 0
\(874\) −117.482 −3.97388
\(875\) 22.7754 17.8180i 0.769950 0.602358i
\(876\) 0 0
\(877\) −50.1983 −1.69508 −0.847538 0.530734i \(-0.821916\pi\)
−0.847538 + 0.530734i \(0.821916\pi\)
\(878\) −34.3581 + 59.5099i −1.15953 + 2.00836i
\(879\) 0 0
\(880\) 29.1902 + 50.5589i 0.984001 + 1.70434i
\(881\) 51.6426 1.73989 0.869943 0.493153i \(-0.164156\pi\)
0.869943 + 0.493153i \(0.164156\pi\)
\(882\) 0 0
\(883\) −4.77954 −0.160844 −0.0804222 0.996761i \(-0.525627\pi\)
−0.0804222 + 0.996761i \(0.525627\pi\)
\(884\) 15.3134 + 26.5236i 0.515046 + 0.892086i
\(885\) 0 0
\(886\) −35.7163 + 61.8625i −1.19991 + 2.07831i
\(887\) −31.1565 −1.04613 −0.523066 0.852292i \(-0.675212\pi\)
−0.523066 + 0.852292i \(0.675212\pi\)
\(888\) 0 0
\(889\) 11.6698 9.12967i 0.391392 0.306199i
\(890\) −35.7791 −1.19932
\(891\) 0 0
\(892\) 66.5270 + 115.228i 2.22749 + 3.85812i
\(893\) 43.0029 1.43904
\(894\) 0 0
\(895\) −6.91419 11.9757i −0.231116 0.400304i
\(896\) −12.6561 5.10382i −0.422811 0.170507i
\(897\) 0 0
\(898\) −20.2222 35.0258i −0.674823 1.16883i
\(899\) 7.28009 + 12.6095i 0.242805 + 0.420550i
\(900\) 0 0
\(901\) 5.68312 9.84345i 0.189332 0.327933i
\(902\) −30.1821 + 52.2769i −1.00495 + 1.74063i
\(903\) 0 0
\(904\) 21.8039 + 37.7655i 0.725187 + 1.25606i
\(905\) 29.0917 0.967040
\(906\) 0 0
\(907\) −22.2370 −0.738368 −0.369184 0.929356i \(-0.620363\pi\)
−0.369184 + 0.929356i \(0.620363\pi\)
\(908\) 4.86340 8.42366i 0.161398 0.279549i
\(909\) 0 0
\(910\) −9.32784 66.0592i −0.309215 2.18984i
\(911\) −1.01685 + 1.76123i −0.0336897 + 0.0583523i −0.882379 0.470540i \(-0.844059\pi\)
0.848689 + 0.528892i \(0.177392\pi\)
\(912\) 0 0
\(913\) 6.35314 11.0040i 0.210258 0.364178i
\(914\) 42.6081 73.7993i 1.40935 2.44107i
\(915\) 0 0
\(916\) 36.8172 63.7693i 1.21647 2.10700i
\(917\) −14.8467 + 11.6151i −0.490280 + 0.383563i
\(918\) 0 0
\(919\) 23.8031 41.2282i 0.785193 1.35999i −0.143691 0.989623i \(-0.545897\pi\)
0.928884 0.370371i \(-0.120769\pi\)
\(920\) −97.9249 −3.22849
\(921\) 0 0
\(922\) −90.3460 −2.97539
\(923\) −0.341991 0.592345i −0.0112568 0.0194973i
\(924\) 0 0
\(925\) −0.764295 + 1.32380i −0.0251299 + 0.0435262i
\(926\) −4.01373 + 6.95198i −0.131899 + 0.228456i
\(927\) 0 0
\(928\) 9.87080 + 17.0967i 0.324025 + 0.561228i
\(929\) 15.6050 + 27.0287i 0.511985 + 0.886784i 0.999903 + 0.0138945i \(0.00442289\pi\)
−0.487919 + 0.872889i \(0.662244\pi\)
\(930\) 0 0
\(931\) 37.2111 + 35.8409i 1.21954 + 1.17464i
\(932\) 68.6624 + 118.927i 2.24911 + 3.89557i
\(933\) 0 0
\(934\) 27.2386 0.891273
\(935\) −5.15838 8.93458i −0.168697 0.292192i
\(936\) 0 0
\(937\) −18.0157 −0.588548 −0.294274 0.955721i \(-0.595078\pi\)
−0.294274 + 0.955721i \(0.595078\pi\)
\(938\) 17.9284 14.0260i 0.585383 0.457965i
\(939\) 0 0
\(940\) 62.4502 2.03690
\(941\) −21.8559 + 37.8555i −0.712481 + 1.23405i 0.251442 + 0.967872i \(0.419095\pi\)
−0.963923 + 0.266181i \(0.914238\pi\)
\(942\) 0 0
\(943\) −24.2749 42.0453i −0.790499 1.36918i
\(944\) −39.9898 −1.30156
\(945\) 0 0
\(946\) −6.38028 −0.207441
\(947\) −22.2393 38.5197i −0.722681 1.25172i −0.959921 0.280270i \(-0.909576\pi\)
0.237240 0.971451i \(-0.423757\pi\)
\(948\) 0 0
\(949\) 0.812405 1.40713i 0.0263718 0.0456773i
\(950\) 4.06787 0.131979
\(951\) 0 0
\(952\) −26.1461 10.5439i −0.847400 0.341731i
\(953\) −52.3118 −1.69454 −0.847272 0.531159i \(-0.821757\pi\)
−0.847272 + 0.531159i \(0.821757\pi\)
\(954\) 0 0
\(955\) 27.5496 + 47.7172i 0.891483 + 1.54409i
\(956\) 83.1916 2.69061
\(957\) 0 0
\(958\) −21.9642 38.0432i −0.709633 1.22912i
\(959\) −18.5006 + 14.4736i −0.597415 + 0.467378i
\(960\) 0 0
\(961\) −3.85225 6.67230i −0.124266 0.215236i
\(962\) −39.6254 68.6333i −1.27758 2.21283i
\(963\) 0 0
\(964\) 61.9840 107.359i 1.99637 3.45781i
\(965\) 0.900434 1.55960i 0.0289860 0.0502052i
\(966\) 0 0
\(967\) −0.331836 0.574757i −0.0106711 0.0184829i 0.860641 0.509213i \(-0.170063\pi\)
−0.871312 + 0.490730i \(0.836730\pi\)
\(968\) −15.7569 −0.506444
\(969\) 0 0
\(970\) −7.81022 −0.250771
\(971\) 29.2598 50.6795i 0.938993 1.62638i 0.171639 0.985160i \(-0.445094\pi\)
0.767354 0.641224i \(-0.221573\pi\)
\(972\) 0 0
\(973\) 20.5403 + 8.28326i 0.658490 + 0.265549i
\(974\) 17.0840 29.5903i 0.547405 0.948134i
\(975\) 0 0
\(976\) 30.8364 53.4101i 0.987048 1.70962i
\(977\) −27.0201 + 46.8002i −0.864450 + 1.49727i 0.00314297 + 0.999995i \(0.499000\pi\)
−0.867593 + 0.497276i \(0.834334\pi\)
\(978\) 0 0
\(979\) −8.95258 + 15.5063i −0.286126 + 0.495584i
\(980\) 54.0391 + 52.0492i 1.72622 + 1.66265i
\(981\) 0 0
\(982\) −20.4187 + 35.3662i −0.651586 + 1.12858i
\(983\) −21.8521 −0.696974 −0.348487 0.937314i \(-0.613304\pi\)
−0.348487 + 0.937314i \(0.613304\pi\)
\(984\) 0 0
\(985\) 34.0163 1.08385
\(986\) −4.62766 8.01534i −0.147375 0.255260i
\(987\) 0 0
\(988\) −73.9469 + 128.080i −2.35256 + 4.07476i
\(989\) 2.56577 4.44404i 0.0815867 0.141312i
\(990\) 0 0
\(991\) 6.91507 + 11.9773i 0.219664 + 0.380470i 0.954705 0.297553i \(-0.0961704\pi\)
−0.735041 + 0.678023i \(0.762837\pi\)
\(992\) −26.2390 45.4473i −0.833089 1.44295i
\(993\) 0 0
\(994\) 1.01733 + 0.410259i 0.0322678 + 0.0130126i
\(995\) −3.11836 5.40116i −0.0988586 0.171228i
\(996\) 0 0
\(997\) −6.27402 −0.198700 −0.0993501 0.995053i \(-0.531676\pi\)
−0.0993501 + 0.995053i \(0.531676\pi\)
\(998\) −55.5584 96.2299i −1.75867 3.04611i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.l.541.1 16
3.2 odd 2 inner 567.2.g.l.541.8 16
7.4 even 3 567.2.h.l.298.8 16
9.2 odd 6 567.2.e.g.163.8 yes 16
9.4 even 3 567.2.h.l.352.8 16
9.5 odd 6 567.2.h.l.352.1 16
9.7 even 3 567.2.e.g.163.1 16
21.11 odd 6 567.2.h.l.298.1 16
63.2 odd 6 3969.2.a.bg.1.1 8
63.4 even 3 inner 567.2.g.l.109.1 16
63.11 odd 6 567.2.e.g.487.8 yes 16
63.16 even 3 3969.2.a.bg.1.8 8
63.25 even 3 567.2.e.g.487.1 yes 16
63.32 odd 6 inner 567.2.g.l.109.8 16
63.47 even 6 3969.2.a.bf.1.1 8
63.61 odd 6 3969.2.a.bf.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.1 16 9.7 even 3
567.2.e.g.163.8 yes 16 9.2 odd 6
567.2.e.g.487.1 yes 16 63.25 even 3
567.2.e.g.487.8 yes 16 63.11 odd 6
567.2.g.l.109.1 16 63.4 even 3 inner
567.2.g.l.109.8 16 63.32 odd 6 inner
567.2.g.l.541.1 16 1.1 even 1 trivial
567.2.g.l.541.8 16 3.2 odd 2 inner
567.2.h.l.298.1 16 21.11 odd 6
567.2.h.l.298.8 16 7.4 even 3
567.2.h.l.352.1 16 9.5 odd 6
567.2.h.l.352.8 16 9.4 even 3
3969.2.a.bf.1.1 8 63.47 even 6
3969.2.a.bf.1.8 8 63.61 odd 6
3969.2.a.bg.1.1 8 63.2 odd 6
3969.2.a.bg.1.8 8 63.16 even 3