Properties

Label 567.2.g.l.109.2
Level $567$
Weight $2$
Character 567.109
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(109,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.2
Root \(-1.41264 + 0.0667052i\) of defining polynomial
Character \(\chi\) \(=\) 567.109
Dual form 567.2.g.l.541.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.764088 + 1.32344i) q^{2} +(-0.167661 - 0.290398i) q^{4} +2.82528 q^{5} +(0.955663 - 2.46713i) q^{7} -2.54392 q^{8} +(-2.15876 + 3.73909i) q^{10} +3.63715 q^{11} +(2.81454 - 4.87493i) q^{13} +(2.53488 + 3.14986i) q^{14} +(2.27910 - 3.94752i) q^{16} +(-1.60110 + 2.77319i) q^{17} +(-2.03544 - 3.52548i) q^{19} +(-0.473690 - 0.820455i) q^{20} +(-2.77910 + 4.81355i) q^{22} +4.70318 q^{23} +2.98220 q^{25} +(4.30111 + 7.44975i) q^{26} +(-0.876676 + 0.136119i) q^{28} +(-2.16313 - 3.74665i) q^{29} +(-1.79099 - 3.10208i) q^{31} +(0.938949 + 1.62631i) q^{32} +(-2.44676 - 4.23792i) q^{34} +(2.70001 - 6.97032i) q^{35} +(2.15578 + 3.73392i) q^{37} +6.22102 q^{38} -7.18728 q^{40} +(-1.57596 + 2.72964i) q^{41} +(4.59663 + 7.96159i) q^{43} +(-0.609809 - 1.05622i) q^{44} +(-3.59364 + 6.22437i) q^{46} +(-2.42321 + 4.19713i) q^{47} +(-5.17342 - 4.71548i) q^{49} +(-2.27866 + 3.94676i) q^{50} -1.88756 q^{52} +(-7.06707 + 12.2405i) q^{53} +10.2760 q^{55} +(-2.43113 + 6.27617i) q^{56} +6.61128 q^{58} +(-0.750489 - 1.29988i) q^{59} +(-6.60254 + 11.4359i) q^{61} +5.47388 q^{62} +6.24665 q^{64} +(7.95186 - 13.7730i) q^{65} +(6.34108 + 10.9831i) q^{67} +1.07377 q^{68} +(7.16175 + 8.89924i) q^{70} -2.91413 q^{71} +(-1.46456 + 2.53670i) q^{73} -6.58882 q^{74} +(-0.682529 + 1.18217i) q^{76} +(3.47589 - 8.97330i) q^{77} +(-0.446763 + 0.773817i) q^{79} +(6.43910 - 11.1528i) q^{80} +(-2.40834 - 4.17137i) q^{82} +(-4.02432 - 6.97032i) q^{83} +(-4.52356 + 7.83503i) q^{85} -14.0489 q^{86} -9.25262 q^{88} +(-2.82863 - 4.89934i) q^{89} +(-9.33731 - 11.6026i) q^{91} +(-0.788541 - 1.36579i) q^{92} +(-3.70310 - 6.41396i) q^{94} +(-5.75068 - 9.96047i) q^{95} +(-2.56789 - 4.44772i) q^{97} +(10.1936 - 3.24366i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} - 14 q^{10} - 6 q^{13} - 6 q^{16} - 24 q^{19} - 2 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} + 72 q^{40} - 10 q^{43} + 36 q^{46} + 4 q^{49} + 68 q^{52} + 8 q^{55} - 44 q^{58} - 36 q^{61} + 76 q^{64}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.764088 + 1.32344i −0.540292 + 0.935813i 0.458595 + 0.888645i \(0.348353\pi\)
−0.998887 + 0.0471677i \(0.984980\pi\)
\(3\) 0 0
\(4\) −0.167661 0.290398i −0.0838307 0.145199i
\(5\) 2.82528 1.26350 0.631752 0.775171i \(-0.282336\pi\)
0.631752 + 0.775171i \(0.282336\pi\)
\(6\) 0 0
\(7\) 0.955663 2.46713i 0.361207 0.932486i
\(8\) −2.54392 −0.899412
\(9\) 0 0
\(10\) −2.15876 + 3.73909i −0.682661 + 1.18240i
\(11\) 3.63715 1.09664 0.548321 0.836268i \(-0.315267\pi\)
0.548321 + 0.836268i \(0.315267\pi\)
\(12\) 0 0
\(13\) 2.81454 4.87493i 0.780613 1.35206i −0.150972 0.988538i \(-0.548240\pi\)
0.931585 0.363523i \(-0.118426\pi\)
\(14\) 2.53488 + 3.14986i 0.677475 + 0.841836i
\(15\) 0 0
\(16\) 2.27910 3.94752i 0.569776 0.986880i
\(17\) −1.60110 + 2.77319i −0.388324 + 0.672597i −0.992224 0.124463i \(-0.960279\pi\)
0.603900 + 0.797060i \(0.293612\pi\)
\(18\) 0 0
\(19\) −2.03544 3.52548i −0.466962 0.808801i 0.532326 0.846539i \(-0.321318\pi\)
−0.999288 + 0.0377382i \(0.987985\pi\)
\(20\) −0.473690 0.820455i −0.105920 0.183459i
\(21\) 0 0
\(22\) −2.77910 + 4.81355i −0.592507 + 1.02625i
\(23\) 4.70318 0.980680 0.490340 0.871531i \(-0.336873\pi\)
0.490340 + 0.871531i \(0.336873\pi\)
\(24\) 0 0
\(25\) 2.98220 0.596440
\(26\) 4.30111 + 7.44975i 0.843518 + 1.46102i
\(27\) 0 0
\(28\) −0.876676 + 0.136119i −0.165676 + 0.0257241i
\(29\) −2.16313 3.74665i −0.401683 0.695735i 0.592246 0.805757i \(-0.298241\pi\)
−0.993929 + 0.110022i \(0.964908\pi\)
\(30\) 0 0
\(31\) −1.79099 3.10208i −0.321670 0.557150i 0.659162 0.752001i \(-0.270911\pi\)
−0.980833 + 0.194851i \(0.937578\pi\)
\(32\) 0.938949 + 1.62631i 0.165984 + 0.287493i
\(33\) 0 0
\(34\) −2.44676 4.23792i −0.419616 0.726797i
\(35\) 2.70001 6.97032i 0.456386 1.17820i
\(36\) 0 0
\(37\) 2.15578 + 3.73392i 0.354408 + 0.613852i 0.987016 0.160619i \(-0.0513492\pi\)
−0.632609 + 0.774472i \(0.718016\pi\)
\(38\) 6.22102 1.00918
\(39\) 0 0
\(40\) −7.18728 −1.13641
\(41\) −1.57596 + 2.72964i −0.246123 + 0.426298i −0.962447 0.271470i \(-0.912490\pi\)
0.716324 + 0.697768i \(0.245823\pi\)
\(42\) 0 0
\(43\) 4.59663 + 7.96159i 0.700979 + 1.21413i 0.968123 + 0.250475i \(0.0805867\pi\)
−0.267144 + 0.963657i \(0.586080\pi\)
\(44\) −0.609809 1.05622i −0.0919322 0.159231i
\(45\) 0 0
\(46\) −3.59364 + 6.22437i −0.529854 + 0.917733i
\(47\) −2.42321 + 4.19713i −0.353462 + 0.612215i −0.986854 0.161617i \(-0.948329\pi\)
0.633391 + 0.773832i \(0.281662\pi\)
\(48\) 0 0
\(49\) −5.17342 4.71548i −0.739060 0.673640i
\(50\) −2.27866 + 3.94676i −0.322252 + 0.558157i
\(51\) 0 0
\(52\) −1.88756 −0.261757
\(53\) −7.06707 + 12.2405i −0.970736 + 1.68136i −0.277395 + 0.960756i \(0.589471\pi\)
−0.693342 + 0.720609i \(0.743862\pi\)
\(54\) 0 0
\(55\) 10.2760 1.38561
\(56\) −2.43113 + 6.27617i −0.324873 + 0.838689i
\(57\) 0 0
\(58\) 6.61128 0.868104
\(59\) −0.750489 1.29988i −0.0977053 0.169231i 0.813029 0.582223i \(-0.197817\pi\)
−0.910734 + 0.412992i \(0.864484\pi\)
\(60\) 0 0
\(61\) −6.60254 + 11.4359i −0.845369 + 1.46422i 0.0399317 + 0.999202i \(0.487286\pi\)
−0.885301 + 0.465019i \(0.846047\pi\)
\(62\) 5.47388 0.695184
\(63\) 0 0
\(64\) 6.24665 0.780831
\(65\) 7.95186 13.7730i 0.986307 1.70833i
\(66\) 0 0
\(67\) 6.34108 + 10.9831i 0.774686 + 1.34180i 0.934971 + 0.354725i \(0.115425\pi\)
−0.160285 + 0.987071i \(0.551241\pi\)
\(68\) 1.07377 0.130214
\(69\) 0 0
\(70\) 7.16175 + 8.89924i 0.855992 + 1.06366i
\(71\) −2.91413 −0.345844 −0.172922 0.984936i \(-0.555321\pi\)
−0.172922 + 0.984936i \(0.555321\pi\)
\(72\) 0 0
\(73\) −1.46456 + 2.53670i −0.171414 + 0.296898i −0.938914 0.344151i \(-0.888167\pi\)
0.767500 + 0.641048i \(0.221500\pi\)
\(74\) −6.58882 −0.765935
\(75\) 0 0
\(76\) −0.682529 + 1.18217i −0.0782914 + 0.135605i
\(77\) 3.47589 8.97330i 0.396114 1.02260i
\(78\) 0 0
\(79\) −0.446763 + 0.773817i −0.0502648 + 0.0870612i −0.890063 0.455837i \(-0.849340\pi\)
0.839798 + 0.542899i \(0.182673\pi\)
\(80\) 6.43910 11.1528i 0.719913 1.24693i
\(81\) 0 0
\(82\) −2.40834 4.17137i −0.265957 0.460651i
\(83\) −4.02432 6.97032i −0.441726 0.765092i 0.556092 0.831121i \(-0.312300\pi\)
−0.997818 + 0.0660291i \(0.978967\pi\)
\(84\) 0 0
\(85\) −4.52356 + 7.83503i −0.490648 + 0.849828i
\(86\) −14.0489 −1.51493
\(87\) 0 0
\(88\) −9.25262 −0.986332
\(89\) −2.82863 4.89934i −0.299835 0.519329i 0.676263 0.736660i \(-0.263598\pi\)
−0.976098 + 0.217331i \(0.930265\pi\)
\(90\) 0 0
\(91\) −9.33731 11.6026i −0.978816 1.21628i
\(92\) −0.788541 1.36579i −0.0822111 0.142394i
\(93\) 0 0
\(94\) −3.70310 6.41396i −0.381946 0.661549i
\(95\) −5.75068 9.96047i −0.590007 1.02192i
\(96\) 0 0
\(97\) −2.56789 4.44772i −0.260730 0.451598i 0.705706 0.708505i \(-0.250630\pi\)
−0.966436 + 0.256907i \(0.917297\pi\)
\(98\) 10.1936 3.24366i 1.02971 0.327660i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 2.52446 0.251193 0.125597 0.992081i \(-0.459915\pi\)
0.125597 + 0.992081i \(0.459915\pi\)
\(102\) 0 0
\(103\) 9.84642 0.970196 0.485098 0.874460i \(-0.338784\pi\)
0.485098 + 0.874460i \(0.338784\pi\)
\(104\) −7.15997 + 12.4014i −0.702092 + 1.21606i
\(105\) 0 0
\(106\) −10.7997 18.7057i −1.04896 1.81686i
\(107\) −1.35126 2.34045i −0.130631 0.226260i 0.793289 0.608845i \(-0.208367\pi\)
−0.923920 + 0.382586i \(0.875034\pi\)
\(108\) 0 0
\(109\) 4.52873 7.84400i 0.433774 0.751319i −0.563421 0.826170i \(-0.690515\pi\)
0.997195 + 0.0748515i \(0.0238483\pi\)
\(110\) −7.85174 + 13.5996i −0.748634 + 1.29667i
\(111\) 0 0
\(112\) −7.56098 9.39533i −0.714445 0.887775i
\(113\) −0.232888 + 0.403374i −0.0219082 + 0.0379462i −0.876772 0.480907i \(-0.840308\pi\)
0.854863 + 0.518853i \(0.173641\pi\)
\(114\) 0 0
\(115\) 13.2878 1.23909
\(116\) −0.725346 + 1.25634i −0.0673467 + 0.116648i
\(117\) 0 0
\(118\) 2.29376 0.211158
\(119\) 5.31169 + 6.60035i 0.486922 + 0.605053i
\(120\) 0 0
\(121\) 2.22885 0.202623
\(122\) −10.0898 17.4761i −0.913492 1.58221i
\(123\) 0 0
\(124\) −0.600558 + 1.04020i −0.0539317 + 0.0934125i
\(125\) −5.70084 −0.509899
\(126\) 0 0
\(127\) −15.7574 −1.39825 −0.699123 0.715002i \(-0.746426\pi\)
−0.699123 + 0.715002i \(0.746426\pi\)
\(128\) −6.65089 + 11.5197i −0.587861 + 1.01821i
\(129\) 0 0
\(130\) 12.1518 + 21.0476i 1.06579 + 1.84600i
\(131\) 12.1479 1.06137 0.530685 0.847569i \(-0.321935\pi\)
0.530685 + 0.847569i \(0.321935\pi\)
\(132\) 0 0
\(133\) −10.6430 + 1.65251i −0.922865 + 0.143291i
\(134\) −19.3806 −1.67423
\(135\) 0 0
\(136\) 4.07307 7.05477i 0.349263 0.604941i
\(137\) 2.16337 0.184829 0.0924146 0.995721i \(-0.470541\pi\)
0.0924146 + 0.995721i \(0.470541\pi\)
\(138\) 0 0
\(139\) 10.7257 18.5775i 0.909743 1.57572i 0.0953212 0.995447i \(-0.469612\pi\)
0.814421 0.580274i \(-0.197054\pi\)
\(140\) −2.47685 + 0.384575i −0.209332 + 0.0325025i
\(141\) 0 0
\(142\) 2.22665 3.85668i 0.186857 0.323645i
\(143\) 10.2369 17.7308i 0.856053 1.48273i
\(144\) 0 0
\(145\) −6.11144 10.5853i −0.507528 0.879063i
\(146\) −2.23811 3.87652i −0.185227 0.320823i
\(147\) 0 0
\(148\) 0.722881 1.25207i 0.0594205 0.102919i
\(149\) −11.0972 −0.909121 −0.454561 0.890716i \(-0.650204\pi\)
−0.454561 + 0.890716i \(0.650204\pi\)
\(150\) 0 0
\(151\) 2.08710 0.169846 0.0849228 0.996388i \(-0.472936\pi\)
0.0849228 + 0.996388i \(0.472936\pi\)
\(152\) 5.17799 + 8.96855i 0.419991 + 0.727445i
\(153\) 0 0
\(154\) 9.21974 + 11.4565i 0.742948 + 0.923193i
\(155\) −5.06003 8.76423i −0.406432 0.703960i
\(156\) 0 0
\(157\) 10.8077 + 18.7194i 0.862547 + 1.49397i 0.869463 + 0.493998i \(0.164465\pi\)
−0.00691621 + 0.999976i \(0.502202\pi\)
\(158\) −0.682733 1.18253i −0.0543153 0.0940769i
\(159\) 0 0
\(160\) 2.65279 + 4.59477i 0.209722 + 0.363249i
\(161\) 4.49465 11.6033i 0.354228 0.914471i
\(162\) 0 0
\(163\) 4.69122 + 8.12543i 0.367444 + 0.636432i 0.989165 0.146807i \(-0.0468995\pi\)
−0.621721 + 0.783239i \(0.713566\pi\)
\(164\) 1.05691 0.0825307
\(165\) 0 0
\(166\) 12.2997 0.954644
\(167\) 8.70235 15.0729i 0.673408 1.16638i −0.303523 0.952824i \(-0.598163\pi\)
0.976931 0.213553i \(-0.0685036\pi\)
\(168\) 0 0
\(169\) −9.34327 16.1830i −0.718713 1.24485i
\(170\) −6.91279 11.9733i −0.530187 0.918310i
\(171\) 0 0
\(172\) 1.54135 2.66970i 0.117527 0.203563i
\(173\) −10.7738 + 18.6607i −0.819116 + 1.41875i 0.0872187 + 0.996189i \(0.472202\pi\)
−0.906334 + 0.422561i \(0.861131\pi\)
\(174\) 0 0
\(175\) 2.84998 7.35747i 0.215438 0.556172i
\(176\) 8.28943 14.3577i 0.624840 1.08225i
\(177\) 0 0
\(178\) 8.64530 0.647993
\(179\) 2.82863 4.89934i 0.211422 0.366194i −0.740738 0.671794i \(-0.765524\pi\)
0.952160 + 0.305601i \(0.0988572\pi\)
\(180\) 0 0
\(181\) 1.12427 0.0835664 0.0417832 0.999127i \(-0.486696\pi\)
0.0417832 + 0.999127i \(0.486696\pi\)
\(182\) 22.4899 3.49194i 1.66706 0.258840i
\(183\) 0 0
\(184\) −11.9645 −0.882035
\(185\) 6.09067 + 10.5494i 0.447795 + 0.775604i
\(186\) 0 0
\(187\) −5.82344 + 10.0865i −0.425852 + 0.737597i
\(188\) 1.62512 0.118524
\(189\) 0 0
\(190\) 17.5761 1.27510
\(191\) 1.96950 3.41127i 0.142508 0.246831i −0.785932 0.618312i \(-0.787817\pi\)
0.928440 + 0.371481i \(0.121150\pi\)
\(192\) 0 0
\(193\) −9.04339 15.6636i −0.650957 1.12749i −0.982891 0.184189i \(-0.941034\pi\)
0.331933 0.943303i \(-0.392299\pi\)
\(194\) 7.84838 0.563481
\(195\) 0 0
\(196\) −0.501983 + 2.29295i −0.0358560 + 0.163782i
\(197\) −25.4842 −1.81567 −0.907836 0.419326i \(-0.862266\pi\)
−0.907836 + 0.419326i \(0.862266\pi\)
\(198\) 0 0
\(199\) −6.31454 + 10.9371i −0.447626 + 0.775311i −0.998231 0.0594551i \(-0.981064\pi\)
0.550605 + 0.834766i \(0.314397\pi\)
\(200\) −7.58648 −0.536445
\(201\) 0 0
\(202\) −1.92891 + 3.34097i −0.135718 + 0.235070i
\(203\) −11.3107 + 1.75618i −0.793854 + 0.123260i
\(204\) 0 0
\(205\) −4.45252 + 7.71199i −0.310977 + 0.538629i
\(206\) −7.52353 + 13.0311i −0.524189 + 0.907922i
\(207\) 0 0
\(208\) −12.8292 22.2209i −0.889548 1.54074i
\(209\) −7.40319 12.8227i −0.512089 0.886965i
\(210\) 0 0
\(211\) −1.15578 + 2.00187i −0.0795670 + 0.137814i −0.903063 0.429508i \(-0.858687\pi\)
0.823496 + 0.567322i \(0.192020\pi\)
\(212\) 4.73950 0.325510
\(213\) 0 0
\(214\) 4.12992 0.282316
\(215\) 12.9868 + 22.4937i 0.885689 + 1.53406i
\(216\) 0 0
\(217\) −9.36479 + 1.45405i −0.635724 + 0.0987071i
\(218\) 6.92070 + 11.9870i 0.468729 + 0.811863i
\(219\) 0 0
\(220\) −1.72288 2.98412i −0.116157 0.201189i
\(221\) 9.01272 + 15.6105i 0.606261 + 1.05008i
\(222\) 0 0
\(223\) −4.64981 8.05371i −0.311374 0.539316i 0.667286 0.744802i \(-0.267456\pi\)
−0.978660 + 0.205486i \(0.934123\pi\)
\(224\) 4.90963 0.762304i 0.328038 0.0509336i
\(225\) 0 0
\(226\) −0.355894 0.616426i −0.0236737 0.0410040i
\(227\) 1.92818 0.127978 0.0639890 0.997951i \(-0.479618\pi\)
0.0639890 + 0.997951i \(0.479618\pi\)
\(228\) 0 0
\(229\) 3.34118 0.220792 0.110396 0.993888i \(-0.464788\pi\)
0.110396 + 0.993888i \(0.464788\pi\)
\(230\) −10.1530 + 17.5856i −0.669472 + 1.15956i
\(231\) 0 0
\(232\) 5.50283 + 9.53117i 0.361278 + 0.625752i
\(233\) 10.5758 + 18.3178i 0.692842 + 1.20004i 0.970903 + 0.239474i \(0.0769749\pi\)
−0.278061 + 0.960563i \(0.589692\pi\)
\(234\) 0 0
\(235\) −6.84626 + 11.8581i −0.446601 + 0.773535i
\(236\) −0.251656 + 0.435881i −0.0163814 + 0.0283734i
\(237\) 0 0
\(238\) −12.7938 + 1.98645i −0.829296 + 0.128763i
\(239\) −12.0575 + 20.8843i −0.779937 + 1.35089i 0.152041 + 0.988374i \(0.451416\pi\)
−0.931978 + 0.362516i \(0.881918\pi\)
\(240\) 0 0
\(241\) 9.23439 0.594840 0.297420 0.954747i \(-0.403874\pi\)
0.297420 + 0.954747i \(0.403874\pi\)
\(242\) −1.70304 + 2.94975i −0.109475 + 0.189617i
\(243\) 0 0
\(244\) 4.42796 0.283471
\(245\) −14.6163 13.3225i −0.933804 0.851146i
\(246\) 0 0
\(247\) −22.9153 −1.45807
\(248\) 4.55612 + 7.89144i 0.289314 + 0.501107i
\(249\) 0 0
\(250\) 4.35595 7.54472i 0.275494 0.477170i
\(251\) 18.5790 1.17270 0.586349 0.810058i \(-0.300565\pi\)
0.586349 + 0.810058i \(0.300565\pi\)
\(252\) 0 0
\(253\) 17.1062 1.07545
\(254\) 12.0401 20.8540i 0.755461 1.30850i
\(255\) 0 0
\(256\) −3.91708 6.78458i −0.244818 0.424037i
\(257\) −10.2197 −0.637490 −0.318745 0.947841i \(-0.603261\pi\)
−0.318745 + 0.947841i \(0.603261\pi\)
\(258\) 0 0
\(259\) 11.2722 1.75021i 0.700423 0.108753i
\(260\) −5.33288 −0.330731
\(261\) 0 0
\(262\) −9.28209 + 16.0770i −0.573449 + 0.993243i
\(263\) 9.13775 0.563458 0.281729 0.959494i \(-0.409092\pi\)
0.281729 + 0.959494i \(0.409092\pi\)
\(264\) 0 0
\(265\) −19.9664 + 34.5829i −1.22653 + 2.12441i
\(266\) 5.94519 15.3480i 0.364523 0.941048i
\(267\) 0 0
\(268\) 2.12631 3.68287i 0.129885 0.224967i
\(269\) 11.4606 19.8504i 0.698767 1.21030i −0.270127 0.962825i \(-0.587066\pi\)
0.968894 0.247475i \(-0.0796010\pi\)
\(270\) 0 0
\(271\) 4.65781 + 8.06757i 0.282942 + 0.490070i 0.972108 0.234533i \(-0.0753562\pi\)
−0.689166 + 0.724604i \(0.742023\pi\)
\(272\) 7.29814 + 12.6408i 0.442515 + 0.766458i
\(273\) 0 0
\(274\) −1.65301 + 2.86309i −0.0998617 + 0.172966i
\(275\) 10.8467 0.654081
\(276\) 0 0
\(277\) 0.183318 0.0110145 0.00550725 0.999985i \(-0.498247\pi\)
0.00550725 + 0.999985i \(0.498247\pi\)
\(278\) 16.3908 + 28.3896i 0.983053 + 1.70270i
\(279\) 0 0
\(280\) −6.86862 + 17.7319i −0.410479 + 1.05969i
\(281\) −8.10097 14.0313i −0.483263 0.837037i 0.516552 0.856256i \(-0.327215\pi\)
−0.999815 + 0.0192190i \(0.993882\pi\)
\(282\) 0 0
\(283\) −10.3492 17.9253i −0.615195 1.06555i −0.990350 0.138588i \(-0.955744\pi\)
0.375155 0.926962i \(-0.377590\pi\)
\(284\) 0.488588 + 0.846258i 0.0289923 + 0.0502162i
\(285\) 0 0
\(286\) 15.6438 + 27.0958i 0.925037 + 1.60221i
\(287\) 5.22828 + 6.49670i 0.308615 + 0.383488i
\(288\) 0 0
\(289\) 3.37296 + 5.84213i 0.198409 + 0.343655i
\(290\) 18.6787 1.09685
\(291\) 0 0
\(292\) 0.982202 0.0574790
\(293\) 8.01170 13.8767i 0.468049 0.810684i −0.531285 0.847193i \(-0.678291\pi\)
0.999333 + 0.0365093i \(0.0116239\pi\)
\(294\) 0 0
\(295\) −2.12034 3.67254i −0.123451 0.213823i
\(296\) −5.48413 9.49879i −0.318758 0.552106i
\(297\) 0 0
\(298\) 8.47927 14.6865i 0.491191 0.850768i
\(299\) 13.2373 22.9276i 0.765532 1.32594i
\(300\) 0 0
\(301\) 24.0351 3.73186i 1.38536 0.215101i
\(302\) −1.59473 + 2.76215i −0.0917662 + 0.158944i
\(303\) 0 0
\(304\) −18.5559 −1.06425
\(305\) −18.6540 + 32.3097i −1.06813 + 1.85005i
\(306\) 0 0
\(307\) −5.32307 −0.303804 −0.151902 0.988396i \(-0.548540\pi\)
−0.151902 + 0.988396i \(0.548540\pi\)
\(308\) −3.18860 + 0.495086i −0.181687 + 0.0282101i
\(309\) 0 0
\(310\) 15.4652 0.878367
\(311\) 9.21297 + 15.9573i 0.522420 + 0.904857i 0.999660 + 0.0260843i \(0.00830382\pi\)
−0.477240 + 0.878773i \(0.658363\pi\)
\(312\) 0 0
\(313\) −2.32344 + 4.02432i −0.131329 + 0.227468i −0.924189 0.381936i \(-0.875258\pi\)
0.792860 + 0.609403i \(0.208591\pi\)
\(314\) −33.0321 −1.86411
\(315\) 0 0
\(316\) 0.299620 0.0168549
\(317\) −5.24006 + 9.07606i −0.294311 + 0.509762i −0.974824 0.222974i \(-0.928424\pi\)
0.680513 + 0.732736i \(0.261757\pi\)
\(318\) 0 0
\(319\) −7.86762 13.6271i −0.440502 0.762972i
\(320\) 17.6485 0.986582
\(321\) 0 0
\(322\) 11.9220 + 14.8144i 0.664387 + 0.825572i
\(323\) 13.0358 0.725329
\(324\) 0 0
\(325\) 8.39353 14.5380i 0.465589 0.806424i
\(326\) −14.3380 −0.794109
\(327\) 0 0
\(328\) 4.00911 6.94398i 0.221366 0.383417i
\(329\) 8.03907 + 9.98942i 0.443209 + 0.550734i
\(330\) 0 0
\(331\) −6.42677 + 11.1315i −0.353247 + 0.611842i −0.986816 0.161844i \(-0.948256\pi\)
0.633569 + 0.773686i \(0.281589\pi\)
\(332\) −1.34944 + 2.33731i −0.0740604 + 0.128276i
\(333\) 0 0
\(334\) 13.2987 + 23.0341i 0.727674 + 1.26037i
\(335\) 17.9153 + 31.0302i 0.978818 + 1.69536i
\(336\) 0 0
\(337\) −3.64609 + 6.31521i −0.198615 + 0.344012i −0.948080 0.318033i \(-0.896978\pi\)
0.749464 + 0.662045i \(0.230311\pi\)
\(338\) 28.5563 1.55326
\(339\) 0 0
\(340\) 3.03370 0.164526
\(341\) −6.51408 11.2827i −0.352757 0.610993i
\(342\) 0 0
\(343\) −16.5777 + 8.25707i −0.895113 + 0.445840i
\(344\) −11.6935 20.2537i −0.630469 1.09200i
\(345\) 0 0
\(346\) −16.4642 28.5169i −0.885123 1.53308i
\(347\) 8.76942 + 15.1891i 0.470767 + 0.815392i 0.999441 0.0334327i \(-0.0106439\pi\)
−0.528674 + 0.848825i \(0.677311\pi\)
\(348\) 0 0
\(349\) −10.5080 18.2004i −0.562481 0.974245i −0.997279 0.0737172i \(-0.976514\pi\)
0.434799 0.900528i \(-0.356820\pi\)
\(350\) 7.55953 + 9.39353i 0.404074 + 0.502105i
\(351\) 0 0
\(352\) 3.41510 + 5.91512i 0.182025 + 0.315277i
\(353\) −5.05338 −0.268965 −0.134482 0.990916i \(-0.542937\pi\)
−0.134482 + 0.990916i \(0.542937\pi\)
\(354\) 0 0
\(355\) −8.23324 −0.436975
\(356\) −0.948505 + 1.64286i −0.0502707 + 0.0870713i
\(357\) 0 0
\(358\) 4.32265 + 7.48705i 0.228459 + 0.395703i
\(359\) −7.23806 12.5367i −0.382010 0.661661i 0.609339 0.792910i \(-0.291435\pi\)
−0.991349 + 0.131249i \(0.958101\pi\)
\(360\) 0 0
\(361\) 1.21398 2.10268i 0.0638938 0.110667i
\(362\) −0.859042 + 1.48791i −0.0451503 + 0.0782026i
\(363\) 0 0
\(364\) −1.80387 + 4.65684i −0.0945484 + 0.244085i
\(365\) −4.13780 + 7.16687i −0.216582 + 0.375131i
\(366\) 0 0
\(367\) 14.9228 0.778966 0.389483 0.921034i \(-0.372654\pi\)
0.389483 + 0.921034i \(0.372654\pi\)
\(368\) 10.7190 18.5659i 0.558768 0.967814i
\(369\) 0 0
\(370\) −18.6152 −0.967761
\(371\) 23.4452 + 29.1332i 1.21721 + 1.51252i
\(372\) 0 0
\(373\) 7.82107 0.404960 0.202480 0.979286i \(-0.435100\pi\)
0.202480 + 0.979286i \(0.435100\pi\)
\(374\) −8.89924 15.4139i −0.460169 0.797036i
\(375\) 0 0
\(376\) 6.16447 10.6772i 0.317908 0.550633i
\(377\) −24.3528 −1.25424
\(378\) 0 0
\(379\) 11.6097 0.596350 0.298175 0.954511i \(-0.403622\pi\)
0.298175 + 0.954511i \(0.403622\pi\)
\(380\) −1.92833 + 3.33997i −0.0989214 + 0.171337i
\(381\) 0 0
\(382\) 3.00974 + 5.21303i 0.153992 + 0.266722i
\(383\) −25.0764 −1.28134 −0.640672 0.767814i \(-0.721344\pi\)
−0.640672 + 0.767814i \(0.721344\pi\)
\(384\) 0 0
\(385\) 9.82035 25.3521i 0.500491 1.29206i
\(386\) 27.6398 1.40683
\(387\) 0 0
\(388\) −0.861073 + 1.49142i −0.0437143 + 0.0757155i
\(389\) −23.4993 −1.19146 −0.595732 0.803184i \(-0.703138\pi\)
−0.595732 + 0.803184i \(0.703138\pi\)
\(390\) 0 0
\(391\) −7.53026 + 13.0428i −0.380822 + 0.659602i
\(392\) 13.1608 + 11.9958i 0.664719 + 0.605880i
\(393\) 0 0
\(394\) 19.4721 33.7267i 0.980992 1.69913i
\(395\) −1.26223 + 2.18625i −0.0635098 + 0.110002i
\(396\) 0 0
\(397\) 9.86170 + 17.0810i 0.494945 + 0.857269i 0.999983 0.00582755i \(-0.00185498\pi\)
−0.505038 + 0.863097i \(0.668522\pi\)
\(398\) −9.64973 16.7138i −0.483697 0.837788i
\(399\) 0 0
\(400\) 6.79674 11.7723i 0.339837 0.588615i
\(401\) −14.3797 −0.718086 −0.359043 0.933321i \(-0.616897\pi\)
−0.359043 + 0.933321i \(0.616897\pi\)
\(402\) 0 0
\(403\) −20.1632 −1.00440
\(404\) −0.423255 0.733099i −0.0210577 0.0364730i
\(405\) 0 0
\(406\) 6.31816 16.3109i 0.313565 0.809495i
\(407\) 7.84089 + 13.5808i 0.388658 + 0.673176i
\(408\) 0 0
\(409\) 5.78795 + 10.0250i 0.286196 + 0.495705i 0.972898 0.231233i \(-0.0742759\pi\)
−0.686703 + 0.726938i \(0.740943\pi\)
\(410\) −6.80424 11.7853i −0.336037 0.582034i
\(411\) 0 0
\(412\) −1.65086 2.85938i −0.0813322 0.140872i
\(413\) −3.92419 + 0.609299i −0.193097 + 0.0299816i
\(414\) 0 0
\(415\) −11.3698 19.6931i −0.558122 0.966696i
\(416\) 10.5708 0.518278
\(417\) 0 0
\(418\) 22.6268 1.10671
\(419\) 17.0860 29.5939i 0.834708 1.44576i −0.0595598 0.998225i \(-0.518970\pi\)
0.894268 0.447532i \(-0.147697\pi\)
\(420\) 0 0
\(421\) 5.11065 + 8.85191i 0.249078 + 0.431416i 0.963270 0.268534i \(-0.0865391\pi\)
−0.714192 + 0.699950i \(0.753206\pi\)
\(422\) −1.76623 3.05920i −0.0859789 0.148920i
\(423\) 0 0
\(424\) 17.9781 31.1389i 0.873092 1.51224i
\(425\) −4.77480 + 8.27020i −0.231612 + 0.401164i
\(426\) 0 0
\(427\) 21.9041 + 27.2182i 1.06001 + 1.31718i
\(428\) −0.453108 + 0.784806i −0.0219018 + 0.0379350i
\(429\) 0 0
\(430\) −39.6921 −1.91412
\(431\) −0.0380526 + 0.0659090i −0.00183293 + 0.00317472i −0.866940 0.498412i \(-0.833917\pi\)
0.865107 + 0.501587i \(0.167250\pi\)
\(432\) 0 0
\(433\) −29.2697 −1.40661 −0.703305 0.710888i \(-0.748293\pi\)
−0.703305 + 0.710888i \(0.748293\pi\)
\(434\) 5.23118 13.5048i 0.251105 0.648249i
\(435\) 0 0
\(436\) −3.03717 −0.145454
\(437\) −9.57303 16.5810i −0.457940 0.793175i
\(438\) 0 0
\(439\) 2.17263 3.76310i 0.103694 0.179603i −0.809510 0.587106i \(-0.800267\pi\)
0.913204 + 0.407503i \(0.133600\pi\)
\(440\) −26.1412 −1.24623
\(441\) 0 0
\(442\) −27.5461 −1.31023
\(443\) −10.2772 + 17.8006i −0.488284 + 0.845732i −0.999909 0.0134764i \(-0.995710\pi\)
0.511625 + 0.859209i \(0.329044\pi\)
\(444\) 0 0
\(445\) −7.99168 13.8420i −0.378842 0.656173i
\(446\) 14.2115 0.672932
\(447\) 0 0
\(448\) 5.96969 15.4113i 0.282041 0.728114i
\(449\) 12.4720 0.588588 0.294294 0.955715i \(-0.404915\pi\)
0.294294 + 0.955715i \(0.404915\pi\)
\(450\) 0 0
\(451\) −5.73199 + 9.92810i −0.269909 + 0.467496i
\(452\) 0.156185 0.00734633
\(453\) 0 0
\(454\) −1.47330 + 2.55183i −0.0691455 + 0.119764i
\(455\) −26.3805 32.7806i −1.23674 1.53678i
\(456\) 0 0
\(457\) 15.4674 26.7903i 0.723534 1.25320i −0.236041 0.971743i \(-0.575850\pi\)
0.959575 0.281454i \(-0.0908168\pi\)
\(458\) −2.55296 + 4.42186i −0.119292 + 0.206620i
\(459\) 0 0
\(460\) −2.22785 3.85875i −0.103874 0.179915i
\(461\) 4.01141 + 6.94796i 0.186830 + 0.323599i 0.944192 0.329397i \(-0.106845\pi\)
−0.757362 + 0.652995i \(0.773512\pi\)
\(462\) 0 0
\(463\) 8.41117 14.5686i 0.390900 0.677059i −0.601668 0.798746i \(-0.705497\pi\)
0.992569 + 0.121687i \(0.0388305\pi\)
\(464\) −19.7200 −0.915476
\(465\) 0 0
\(466\) −32.3233 −1.49735
\(467\) 0.480399 + 0.832075i 0.0222302 + 0.0385038i 0.876926 0.480625i \(-0.159590\pi\)
−0.854696 + 0.519128i \(0.826257\pi\)
\(468\) 0 0
\(469\) 33.1566 5.14813i 1.53103 0.237719i
\(470\) −10.4623 18.1212i −0.482589 0.835869i
\(471\) 0 0
\(472\) 1.90918 + 3.30680i 0.0878773 + 0.152208i
\(473\) 16.7186 + 28.9575i 0.768723 + 1.33147i
\(474\) 0 0
\(475\) −6.07009 10.5137i −0.278515 0.482402i
\(476\) 1.02616 2.64913i 0.0470341 0.121423i
\(477\) 0 0
\(478\) −18.4260 31.9148i −0.842787 1.45975i
\(479\) −24.1290 −1.10248 −0.551242 0.834346i \(-0.685846\pi\)
−0.551242 + 0.834346i \(0.685846\pi\)
\(480\) 0 0
\(481\) 24.2701 1.10662
\(482\) −7.05589 + 12.2212i −0.321387 + 0.556659i
\(483\) 0 0
\(484\) −0.373692 0.647253i −0.0169860 0.0294206i
\(485\) −7.25501 12.5661i −0.329433 0.570595i
\(486\) 0 0
\(487\) −7.39944 + 12.8162i −0.335301 + 0.580758i −0.983543 0.180677i \(-0.942171\pi\)
0.648242 + 0.761435i \(0.275505\pi\)
\(488\) 16.7963 29.0921i 0.760335 1.31694i
\(489\) 0 0
\(490\) 28.7998 9.16426i 1.30104 0.413999i
\(491\) 3.15192 5.45928i 0.142244 0.246374i −0.786097 0.618103i \(-0.787902\pi\)
0.928341 + 0.371729i \(0.121235\pi\)
\(492\) 0 0
\(493\) 13.8535 0.623932
\(494\) 17.5093 30.3270i 0.787781 1.36448i
\(495\) 0 0
\(496\) −16.3274 −0.733120
\(497\) −2.78493 + 7.18953i −0.124921 + 0.322495i
\(498\) 0 0
\(499\) −28.5971 −1.28018 −0.640092 0.768298i \(-0.721104\pi\)
−0.640092 + 0.768298i \(0.721104\pi\)
\(500\) 0.955811 + 1.65551i 0.0427452 + 0.0740368i
\(501\) 0 0
\(502\) −14.1960 + 24.5882i −0.633600 + 1.09743i
\(503\) 35.4133 1.57900 0.789500 0.613750i \(-0.210340\pi\)
0.789500 + 0.613750i \(0.210340\pi\)
\(504\) 0 0
\(505\) 7.13231 0.317384
\(506\) −13.0706 + 22.6390i −0.581060 + 1.00642i
\(507\) 0 0
\(508\) 2.64191 + 4.57592i 0.117216 + 0.203024i
\(509\) −32.4883 −1.44002 −0.720010 0.693964i \(-0.755863\pi\)
−0.720010 + 0.693964i \(0.755863\pi\)
\(510\) 0 0
\(511\) 4.85872 + 6.03748i 0.214937 + 0.267083i
\(512\) −14.6316 −0.646630
\(513\) 0 0
\(514\) 7.80878 13.5252i 0.344431 0.596571i
\(515\) 27.8189 1.22585
\(516\) 0 0
\(517\) −8.81359 + 15.2656i −0.387621 + 0.671380i
\(518\) −6.29669 + 16.2554i −0.276661 + 0.714223i
\(519\) 0 0
\(520\) −20.2289 + 35.0375i −0.887096 + 1.53650i
\(521\) −16.4909 + 28.5631i −0.722479 + 1.25137i 0.237524 + 0.971382i \(0.423664\pi\)
−0.960003 + 0.279989i \(0.909669\pi\)
\(522\) 0 0
\(523\) −7.13133 12.3518i −0.311831 0.540108i 0.666928 0.745123i \(-0.267609\pi\)
−0.978759 + 0.205015i \(0.934276\pi\)
\(524\) −2.03674 3.52773i −0.0889753 0.154110i
\(525\) 0 0
\(526\) −6.98204 + 12.0933i −0.304432 + 0.527291i
\(527\) 11.4702 0.499649
\(528\) 0 0
\(529\) −0.880118 −0.0382660
\(530\) −30.5122 52.8487i −1.32537 2.29560i
\(531\) 0 0
\(532\) 2.26431 + 2.81364i 0.0981701 + 0.121987i
\(533\) 8.87119 + 15.3654i 0.384254 + 0.665547i
\(534\) 0 0
\(535\) −3.81768 6.61242i −0.165053 0.285880i
\(536\) −16.1312 27.9401i −0.696762 1.20683i
\(537\) 0 0
\(538\) 17.5139 + 30.3349i 0.755076 + 1.30783i
\(539\) −18.8165 17.1509i −0.810484 0.738742i
\(540\) 0 0
\(541\) 7.99105 + 13.8409i 0.343562 + 0.595067i 0.985091 0.172032i \(-0.0550331\pi\)
−0.641529 + 0.767098i \(0.721700\pi\)
\(542\) −14.2359 −0.611485
\(543\) 0 0
\(544\) −6.01341 −0.257823
\(545\) 12.7949 22.1615i 0.548075 0.949294i
\(546\) 0 0
\(547\) 16.0285 + 27.7622i 0.685330 + 1.18703i 0.973333 + 0.229397i \(0.0736754\pi\)
−0.288003 + 0.957630i \(0.592991\pi\)
\(548\) −0.362714 0.628238i −0.0154944 0.0268370i
\(549\) 0 0
\(550\) −8.28784 + 14.3550i −0.353395 + 0.612098i
\(551\) −8.80583 + 15.2521i −0.375141 + 0.649763i
\(552\) 0 0
\(553\) 1.48215 + 1.84173i 0.0630274 + 0.0783183i
\(554\) −0.140071 + 0.242610i −0.00595105 + 0.0103075i
\(555\) 0 0
\(556\) −7.19315 −0.305057
\(557\) 19.6474 34.0302i 0.832486 1.44191i −0.0635754 0.997977i \(-0.520250\pi\)
0.896061 0.443931i \(-0.146416\pi\)
\(558\) 0 0
\(559\) 51.7496 2.18877
\(560\) −21.3619 26.5444i −0.902704 1.12171i
\(561\) 0 0
\(562\) 24.7594 1.04441
\(563\) −17.2532 29.8834i −0.727134 1.25943i −0.958089 0.286469i \(-0.907518\pi\)
0.230955 0.972964i \(-0.425815\pi\)
\(564\) 0 0
\(565\) −0.657973 + 1.13964i −0.0276811 + 0.0479451i
\(566\) 31.6308 1.32954
\(567\) 0 0
\(568\) 7.41332 0.311056
\(569\) 2.14203 3.71010i 0.0897985 0.155536i −0.817627 0.575748i \(-0.804711\pi\)
0.907426 + 0.420212i \(0.138044\pi\)
\(570\) 0 0
\(571\) −12.5798 21.7888i −0.526447 0.911833i −0.999525 0.0308128i \(-0.990190\pi\)
0.473078 0.881021i \(-0.343143\pi\)
\(572\) −6.86533 −0.287054
\(573\) 0 0
\(574\) −12.5929 + 1.95526i −0.525616 + 0.0816109i
\(575\) 14.0258 0.584917
\(576\) 0 0
\(577\) 22.1281 38.3271i 0.921206 1.59558i 0.123655 0.992325i \(-0.460539\pi\)
0.797552 0.603251i \(-0.206128\pi\)
\(578\) −10.3089 −0.428795
\(579\) 0 0
\(580\) −2.04930 + 3.54950i −0.0850928 + 0.147385i
\(581\) −21.0425 + 3.26722i −0.872992 + 0.135547i
\(582\) 0 0
\(583\) −25.7040 + 44.5206i −1.06455 + 1.84385i
\(584\) 3.72573 6.45315i 0.154172 0.267033i
\(585\) 0 0
\(586\) 12.2433 + 21.2060i 0.505766 + 0.876012i
\(587\) 6.50229 + 11.2623i 0.268378 + 0.464845i 0.968443 0.249234i \(-0.0801789\pi\)
−0.700065 + 0.714079i \(0.746846\pi\)
\(588\) 0 0
\(589\) −7.29088 + 12.6282i −0.300415 + 0.520335i
\(590\) 6.48051 0.266798
\(591\) 0 0
\(592\) 19.6530 0.807731
\(593\) 14.1164 + 24.4503i 0.579691 + 1.00405i 0.995515 + 0.0946086i \(0.0301600\pi\)
−0.415824 + 0.909445i \(0.636507\pi\)
\(594\) 0 0
\(595\) 15.0070 + 18.6478i 0.615227 + 0.764486i
\(596\) 1.86058 + 3.22262i 0.0762123 + 0.132004i
\(597\) 0 0
\(598\) 20.2289 + 35.0375i 0.827221 + 1.43279i
\(599\) −2.49768 4.32611i −0.102052 0.176760i 0.810478 0.585769i \(-0.199208\pi\)
−0.912530 + 0.409010i \(0.865874\pi\)
\(600\) 0 0
\(601\) −4.07893 7.06492i −0.166383 0.288184i 0.770762 0.637123i \(-0.219876\pi\)
−0.937146 + 0.348939i \(0.886542\pi\)
\(602\) −13.4260 + 34.6604i −0.547204 + 1.41265i
\(603\) 0 0
\(604\) −0.349925 0.606089i −0.0142383 0.0246614i
\(605\) 6.29712 0.256014
\(606\) 0 0
\(607\) 16.7277 0.678956 0.339478 0.940614i \(-0.389750\pi\)
0.339478 + 0.940614i \(0.389750\pi\)
\(608\) 3.82235 6.62050i 0.155017 0.268497i
\(609\) 0 0
\(610\) −28.5066 49.3749i −1.15420 1.99913i
\(611\) 13.6405 + 23.6260i 0.551834 + 0.955805i
\(612\) 0 0
\(613\) 8.29381 14.3653i 0.334984 0.580209i −0.648498 0.761216i \(-0.724602\pi\)
0.983482 + 0.181007i \(0.0579358\pi\)
\(614\) 4.06729 7.04476i 0.164143 0.284303i
\(615\) 0 0
\(616\) −8.84238 + 22.8274i −0.356270 + 0.919741i
\(617\) −11.8543 + 20.5322i −0.477235 + 0.826595i −0.999660 0.0260905i \(-0.991694\pi\)
0.522425 + 0.852685i \(0.325028\pi\)
\(618\) 0 0
\(619\) −7.82412 −0.314478 −0.157239 0.987561i \(-0.550259\pi\)
−0.157239 + 0.987561i \(0.550259\pi\)
\(620\) −1.69674 + 2.93885i −0.0681429 + 0.118027i
\(621\) 0 0
\(622\) −28.1581 −1.12904
\(623\) −14.7905 + 2.29648i −0.592569 + 0.0920066i
\(624\) 0 0
\(625\) −31.0175 −1.24070
\(626\) −3.55063 6.14986i −0.141912 0.245798i
\(627\) 0 0
\(628\) 3.62406 6.27706i 0.144616 0.250482i
\(629\) −13.8065 −0.550500
\(630\) 0 0
\(631\) −2.54669 −0.101382 −0.0506911 0.998714i \(-0.516142\pi\)
−0.0506911 + 0.998714i \(0.516142\pi\)
\(632\) 1.13653 1.96853i 0.0452088 0.0783039i
\(633\) 0 0
\(634\) −8.00774 13.8698i −0.318028 0.550841i
\(635\) −44.5191 −1.76669
\(636\) 0 0
\(637\) −37.5484 + 11.9481i −1.48772 + 0.473402i
\(638\) 24.0462 0.951999
\(639\) 0 0
\(640\) −18.7906 + 32.5463i −0.742764 + 1.28651i
\(641\) −10.2854 −0.406248 −0.203124 0.979153i \(-0.565109\pi\)
−0.203124 + 0.979153i \(0.565109\pi\)
\(642\) 0 0
\(643\) 2.46063 4.26194i 0.0970378 0.168074i −0.813419 0.581678i \(-0.802397\pi\)
0.910457 + 0.413603i \(0.135730\pi\)
\(644\) −4.12316 + 0.640193i −0.162475 + 0.0252271i
\(645\) 0 0
\(646\) −9.96047 + 17.2520i −0.391890 + 0.678773i
\(647\) 4.39168 7.60661i 0.172655 0.299047i −0.766692 0.642015i \(-0.778099\pi\)
0.939347 + 0.342968i \(0.111432\pi\)
\(648\) 0 0
\(649\) −2.72964 4.72787i −0.107148 0.185585i
\(650\) 12.8268 + 22.2166i 0.503108 + 0.871409i
\(651\) 0 0
\(652\) 1.57307 2.72464i 0.0616062 0.106705i
\(653\) −1.77459 −0.0694453 −0.0347226 0.999397i \(-0.511055\pi\)
−0.0347226 + 0.999397i \(0.511055\pi\)
\(654\) 0 0
\(655\) 34.3213 1.34104
\(656\) 7.18354 + 12.4423i 0.280470 + 0.485788i
\(657\) 0 0
\(658\) −19.3630 + 3.00643i −0.754846 + 0.117203i
\(659\) 1.17184 + 2.02968i 0.0456483 + 0.0790652i 0.887947 0.459946i \(-0.152131\pi\)
−0.842298 + 0.539011i \(0.818798\pi\)
\(660\) 0 0
\(661\) 11.4547 + 19.8401i 0.445537 + 0.771692i 0.998089 0.0617856i \(-0.0196795\pi\)
−0.552553 + 0.833478i \(0.686346\pi\)
\(662\) −9.82124 17.0109i −0.381713 0.661147i
\(663\) 0 0
\(664\) 10.2375 + 17.7319i 0.397293 + 0.688133i
\(665\) −30.0694 + 4.66880i −1.16604 + 0.181048i
\(666\) 0 0
\(667\) −10.1736 17.6212i −0.393922 0.682294i
\(668\) −5.83619 −0.225809
\(669\) 0 0
\(670\) −54.7555 −2.11539
\(671\) −24.0144 + 41.5942i −0.927067 + 1.60573i
\(672\) 0 0
\(673\) 14.8675 + 25.7512i 0.573098 + 0.992636i 0.996245 + 0.0865746i \(0.0275921\pi\)
−0.423147 + 0.906061i \(0.639075\pi\)
\(674\) −5.57187 9.65076i −0.214620 0.371733i
\(675\) 0 0
\(676\) −3.13301 + 5.42654i −0.120500 + 0.208713i
\(677\) 12.7480 22.0802i 0.489946 0.848611i −0.509987 0.860182i \(-0.670350\pi\)
0.999933 + 0.0115711i \(0.00368327\pi\)
\(678\) 0 0
\(679\) −13.4271 + 2.08479i −0.515286 + 0.0800070i
\(680\) 11.5076 19.9317i 0.441295 0.764345i
\(681\) 0 0
\(682\) 19.9093 0.762367
\(683\) 5.69293 9.86044i 0.217834 0.377299i −0.736312 0.676643i \(-0.763434\pi\)
0.954145 + 0.299343i \(0.0967676\pi\)
\(684\) 0 0
\(685\) 6.11212 0.233532
\(686\) 1.73911 28.2487i 0.0663997 1.07854i
\(687\) 0 0
\(688\) 41.9047 1.59760
\(689\) 39.7811 + 68.9029i 1.51554 + 2.62499i
\(690\) 0 0
\(691\) 16.1261 27.9313i 0.613468 1.06256i −0.377184 0.926138i \(-0.623107\pi\)
0.990651 0.136419i \(-0.0435592\pi\)
\(692\) 7.22539 0.274668
\(693\) 0 0
\(694\) −26.8024 −1.01741
\(695\) 30.3031 52.4865i 1.14946 1.99093i
\(696\) 0 0
\(697\) −5.04653 8.74085i −0.191151 0.331083i
\(698\) 32.1162 1.21561
\(699\) 0 0
\(700\) −2.61442 + 0.405935i −0.0988160 + 0.0153429i
\(701\) −15.6291 −0.590302 −0.295151 0.955451i \(-0.595370\pi\)
−0.295151 + 0.955451i \(0.595370\pi\)
\(702\) 0 0
\(703\) 8.77591 15.2003i 0.330990 0.573291i
\(704\) 22.7200 0.856292
\(705\) 0 0
\(706\) 3.86123 6.68785i 0.145319 0.251700i
\(707\) 2.41253 6.22817i 0.0907327 0.234234i
\(708\) 0 0
\(709\) 5.90824 10.2334i 0.221888 0.384322i −0.733493 0.679697i \(-0.762111\pi\)
0.955381 + 0.295375i \(0.0954446\pi\)
\(710\) 6.29092 10.8962i 0.236094 0.408927i
\(711\) 0 0
\(712\) 7.19582 + 12.4635i 0.269675 + 0.467090i
\(713\) −8.42332 14.5896i −0.315456 0.546386i
\(714\) 0 0
\(715\) 28.9221 50.0946i 1.08163 1.87343i
\(716\) −1.89701 −0.0708946
\(717\) 0 0
\(718\) 22.1221 0.825588
\(719\) −25.3616 43.9276i −0.945830 1.63822i −0.754082 0.656781i \(-0.771918\pi\)
−0.191748 0.981444i \(-0.561416\pi\)
\(720\) 0 0
\(721\) 9.40985 24.2923i 0.350441 0.904694i
\(722\) 1.85518 + 3.21326i 0.0690426 + 0.119585i
\(723\) 0 0
\(724\) −0.188497 0.326486i −0.00700543 0.0121338i
\(725\) −6.45088 11.1733i −0.239580 0.414964i
\(726\) 0 0
\(727\) −1.13301 1.96243i −0.0420211 0.0727827i 0.844250 0.535950i \(-0.180046\pi\)
−0.886271 + 0.463167i \(0.846713\pi\)
\(728\) 23.7534 + 29.5161i 0.880358 + 1.09394i
\(729\) 0 0
\(730\) −6.32328 10.9522i −0.234035 0.405361i
\(731\) −29.4386 −1.08883
\(732\) 0 0
\(733\) −33.6524 −1.24298 −0.621490 0.783422i \(-0.713472\pi\)
−0.621490 + 0.783422i \(0.713472\pi\)
\(734\) −11.4024 + 19.7495i −0.420869 + 0.728966i
\(735\) 0 0
\(736\) 4.41605 + 7.64882i 0.162778 + 0.281939i
\(737\) 23.0634 + 39.9471i 0.849553 + 1.47147i
\(738\) 0 0
\(739\) −9.80187 + 16.9773i −0.360568 + 0.624521i −0.988054 0.154106i \(-0.950750\pi\)
0.627487 + 0.778627i \(0.284084\pi\)
\(740\) 2.04234 3.53744i 0.0750780 0.130039i
\(741\) 0 0
\(742\) −56.4701 + 8.76797i −2.07308 + 0.321882i
\(743\) 24.4195 42.2958i 0.895865 1.55168i 0.0631343 0.998005i \(-0.479890\pi\)
0.832731 0.553678i \(-0.186776\pi\)
\(744\) 0 0
\(745\) −31.3528 −1.14868
\(746\) −5.97599 + 10.3507i −0.218796 + 0.378967i
\(747\) 0 0
\(748\) 3.90546 0.142798
\(749\) −7.06553 + 1.09705i −0.258169 + 0.0400852i
\(750\) 0 0
\(751\) 15.8254 0.577476 0.288738 0.957408i \(-0.406764\pi\)
0.288738 + 0.957408i \(0.406764\pi\)
\(752\) 11.0455 + 19.1314i 0.402788 + 0.697650i
\(753\) 0 0
\(754\) 18.6077 32.2295i 0.677653 1.17373i
\(755\) 5.89663 0.214600
\(756\) 0 0
\(757\) −2.18728 −0.0794982 −0.0397491 0.999210i \(-0.512656\pi\)
−0.0397491 + 0.999210i \(0.512656\pi\)
\(758\) −8.87084 + 15.3647i −0.322203 + 0.558073i
\(759\) 0 0
\(760\) 14.6293 + 25.3386i 0.530660 + 0.919129i
\(761\) 27.7562 1.00616 0.503081 0.864240i \(-0.332200\pi\)
0.503081 + 0.864240i \(0.332200\pi\)
\(762\) 0 0
\(763\) −15.0242 18.6692i −0.543912 0.675869i
\(764\) −1.32084 −0.0477861
\(765\) 0 0
\(766\) 19.1606 33.1871i 0.692300 1.19910i
\(767\) −8.44912 −0.305080
\(768\) 0 0
\(769\) −5.01030 + 8.67810i −0.180676 + 0.312940i −0.942111 0.335301i \(-0.891162\pi\)
0.761435 + 0.648242i \(0.224495\pi\)
\(770\) 26.0483 + 32.3679i 0.938717 + 1.16646i
\(771\) 0 0
\(772\) −3.03245 + 5.25236i −0.109140 + 0.189037i
\(773\) −21.7596 + 37.6887i −0.782639 + 1.35557i 0.147761 + 0.989023i \(0.452793\pi\)
−0.930400 + 0.366547i \(0.880540\pi\)
\(774\) 0 0
\(775\) −5.34108 9.25102i −0.191857 0.332306i
\(776\) 6.53251 + 11.3146i 0.234504 + 0.406172i
\(777\) 0 0
\(778\) 17.9556 31.0999i 0.643738 1.11499i
\(779\) 12.8311 0.459720
\(780\) 0 0
\(781\) −10.5991 −0.379267
\(782\) −11.5076 19.9317i −0.411510 0.712756i
\(783\) 0 0
\(784\) −30.4052 + 9.67512i −1.08590 + 0.345540i
\(785\) 30.5347 + 52.8877i 1.08983 + 1.88764i
\(786\) 0 0
\(787\) 2.91819 + 5.05445i 0.104022 + 0.180172i 0.913338 0.407202i \(-0.133495\pi\)
−0.809316 + 0.587373i \(0.800162\pi\)
\(788\) 4.27271 + 7.40055i 0.152209 + 0.263634i
\(789\) 0 0
\(790\) −1.92891 3.34097i −0.0686276 0.118867i
\(791\) 0.772611 + 0.960053i 0.0274709 + 0.0341355i
\(792\) 0 0
\(793\) 37.1662 + 64.3738i 1.31981 + 2.28598i
\(794\) −30.1408 −1.06966
\(795\) 0 0
\(796\) 4.23482 0.150099
\(797\) 18.2900 31.6792i 0.647865 1.12214i −0.335766 0.941945i \(-0.608995\pi\)
0.983632 0.180191i \(-0.0576714\pi\)
\(798\) 0 0
\(799\) −7.75962 13.4401i −0.274516 0.475475i
\(800\) 2.80014 + 4.84998i 0.0989998 + 0.171473i
\(801\) 0 0
\(802\) 10.9873 19.0306i 0.387976 0.671994i
\(803\) −5.32683 + 9.22634i −0.187980 + 0.325590i
\(804\) 0 0
\(805\) 12.6986 32.7826i 0.447568 1.15544i
\(806\) 15.4065 26.6848i 0.542670 0.939931i
\(807\) 0 0
\(808\) −6.42203 −0.225926
\(809\) −11.0249 + 19.0957i −0.387616 + 0.671370i −0.992128 0.125225i \(-0.960035\pi\)
0.604513 + 0.796596i \(0.293368\pi\)
\(810\) 0 0
\(811\) −12.6451 −0.444029 −0.222015 0.975043i \(-0.571263\pi\)
−0.222015 + 0.975043i \(0.571263\pi\)
\(812\) 2.40635 + 2.99015i 0.0844464 + 0.104934i
\(813\) 0 0
\(814\) −23.9645 −0.839956
\(815\) 13.2540 + 22.9566i 0.464267 + 0.804134i
\(816\) 0 0
\(817\) 18.7123 32.4107i 0.654660 1.13391i
\(818\) −17.6900 −0.618517
\(819\) 0 0
\(820\) 2.98606 0.104278
\(821\) −15.5479 + 26.9298i −0.542625 + 0.939855i 0.456127 + 0.889915i \(0.349236\pi\)
−0.998752 + 0.0499401i \(0.984097\pi\)
\(822\) 0 0
\(823\) 24.4819 + 42.4039i 0.853385 + 1.47811i 0.878135 + 0.478412i \(0.158788\pi\)
−0.0247505 + 0.999694i \(0.507879\pi\)
\(824\) −25.0485 −0.872606
\(825\) 0 0
\(826\) 2.19206 5.65899i 0.0762715 0.196901i
\(827\) 36.3827 1.26515 0.632575 0.774499i \(-0.281998\pi\)
0.632575 + 0.774499i \(0.281998\pi\)
\(828\) 0 0
\(829\) −22.8702 + 39.6124i −0.794316 + 1.37580i 0.128957 + 0.991650i \(0.458837\pi\)
−0.923273 + 0.384145i \(0.874496\pi\)
\(830\) 34.7502 1.20620
\(831\) 0 0
\(832\) 17.5814 30.4520i 0.609527 1.05573i
\(833\) 21.3601 6.79690i 0.740082 0.235499i
\(834\) 0 0
\(835\) 24.5866 42.5852i 0.850853 1.47372i
\(836\) −2.48246 + 4.29974i −0.0858576 + 0.148710i
\(837\) 0 0
\(838\) 26.1105 + 45.2247i 0.901972 + 1.56226i
\(839\) −12.7674 22.1138i −0.440779 0.763452i 0.556968 0.830534i \(-0.311965\pi\)
−0.997747 + 0.0670815i \(0.978631\pi\)
\(840\) 0 0
\(841\) 5.14175 8.90578i 0.177302 0.307096i
\(842\) −15.6200 −0.538299
\(843\) 0 0
\(844\) 0.775117 0.0266806
\(845\) −26.3974 45.7216i −0.908097 1.57287i
\(846\) 0 0
\(847\) 2.13003 5.49885i 0.0731886 0.188943i
\(848\) 32.2131 + 55.7948i 1.10620 + 1.91600i
\(849\) 0 0
\(850\) −7.29674 12.6383i −0.250276 0.433491i
\(851\) 10.1390 + 17.5613i 0.347561 + 0.601993i
\(852\) 0 0
\(853\) 0.923367 + 1.59932i 0.0316155 + 0.0547596i 0.881400 0.472370i \(-0.156601\pi\)
−0.849785 + 0.527130i \(0.823268\pi\)
\(854\) −52.7583 + 8.19164i −1.80535 + 0.280312i
\(855\) 0 0
\(856\) 3.43749 + 5.95391i 0.117491 + 0.203501i
\(857\) 22.4848 0.768066 0.384033 0.923319i \(-0.374535\pi\)
0.384033 + 0.923319i \(0.374535\pi\)
\(858\) 0 0
\(859\) −1.14761 −0.0391561 −0.0195781 0.999808i \(-0.506232\pi\)
−0.0195781 + 0.999808i \(0.506232\pi\)
\(860\) 4.35475 7.54265i 0.148496 0.257202i
\(861\) 0 0
\(862\) −0.0581510 0.100721i −0.00198063 0.00343055i
\(863\) 0.897635 + 1.55475i 0.0305558 + 0.0529243i 0.880899 0.473304i \(-0.156939\pi\)
−0.850343 + 0.526229i \(0.823606\pi\)
\(864\) 0 0
\(865\) −30.4390 + 52.7218i −1.03496 + 1.79260i
\(866\) 22.3646 38.7366i 0.759980 1.31632i
\(867\) 0 0
\(868\) 1.99237 + 2.47573i 0.0676253 + 0.0840317i
\(869\) −1.62494 + 2.81449i −0.0551225 + 0.0954749i
\(870\) 0 0
\(871\) 71.3889 2.41892
\(872\) −11.5207 + 19.9545i −0.390141 + 0.675745i
\(873\) 0 0
\(874\) 29.2585 0.989685
\(875\) −5.44808 + 14.0647i −0.184179 + 0.475474i
\(876\) 0 0
\(877\) 8.57997 0.289725 0.144862 0.989452i \(-0.453726\pi\)
0.144862 + 0.989452i \(0.453726\pi\)
\(878\) 3.32016 + 5.75069i 0.112050 + 0.194076i
\(879\) 0 0
\(880\) 23.4200 40.5646i 0.789487 1.36743i
\(881\) 16.5346 0.557066 0.278533 0.960427i \(-0.410152\pi\)
0.278533 + 0.960427i \(0.410152\pi\)
\(882\) 0 0
\(883\) −27.4948 −0.925273 −0.462636 0.886548i \(-0.653096\pi\)
−0.462636 + 0.886548i \(0.653096\pi\)
\(884\) 3.02217 5.23455i 0.101647 0.176057i
\(885\) 0 0
\(886\) −15.7053 27.2025i −0.527631 0.913885i
\(887\) 43.4419 1.45864 0.729318 0.684175i \(-0.239837\pi\)
0.729318 + 0.684175i \(0.239837\pi\)
\(888\) 0 0
\(889\) −15.0588 + 38.8755i −0.505055 + 1.30384i
\(890\) 24.4254 0.818741
\(891\) 0 0
\(892\) −1.55919 + 2.70059i −0.0522054 + 0.0904225i
\(893\) 19.7292 0.660213
\(894\) 0 0
\(895\) 7.99168 13.8420i 0.267132 0.462687i
\(896\) 22.0645 + 27.4175i 0.737123 + 0.915954i
\(897\) 0 0
\(898\) −9.52968 + 16.5059i −0.318010 + 0.550809i
\(899\) −7.74826 + 13.4204i −0.258419 + 0.447595i
\(900\) 0 0
\(901\) −22.6302 39.1966i −0.753920 1.30583i
\(902\) −8.75949 15.1719i −0.291659 0.505169i
\(903\) 0 0
\(904\) 0.592448 1.02615i 0.0197045 0.0341292i
\(905\) 3.17638 0.105586
\(906\) 0 0
\(907\) 11.2952 0.375052 0.187526 0.982260i \(-0.439953\pi\)
0.187526 + 0.982260i \(0.439953\pi\)
\(908\) −0.323282 0.559941i −0.0107285 0.0185823i
\(909\) 0 0
\(910\) 63.5402 9.86571i 2.10634 0.327045i
\(911\) 5.01690 + 8.68953i 0.166217 + 0.287897i 0.937087 0.349096i \(-0.113511\pi\)
−0.770870 + 0.636993i \(0.780178\pi\)
\(912\) 0 0
\(913\) −14.6370 25.3521i −0.484415 0.839032i
\(914\) 23.6369 + 40.9403i 0.781839 + 1.35418i
\(915\) 0 0
\(916\) −0.560188 0.970273i −0.0185091 0.0320587i
\(917\) 11.6093 29.9705i 0.383373 0.989712i
\(918\) 0 0
\(919\) 0.178967 + 0.309980i 0.00590358 + 0.0102253i 0.868962 0.494879i \(-0.164787\pi\)
−0.863059 + 0.505104i \(0.831454\pi\)
\(920\) −33.8031 −1.11445
\(921\) 0 0
\(922\) −12.2603 −0.403770
\(923\) −8.20195 + 14.2062i −0.269970 + 0.467602i
\(924\) 0 0
\(925\) 6.42897 + 11.1353i 0.211383 + 0.366126i
\(926\) 12.8537 + 22.2633i 0.422400 + 0.731619i
\(927\) 0 0
\(928\) 4.06214 7.03583i 0.133346 0.230962i
\(929\) 16.7632 29.0347i 0.549983 0.952599i −0.448292 0.893887i \(-0.647967\pi\)
0.998275 0.0587116i \(-0.0186992\pi\)
\(930\) 0 0
\(931\) −6.09417 + 27.8369i −0.199728 + 0.912316i
\(932\) 3.54630 6.14236i 0.116163 0.201200i
\(933\) 0 0
\(934\) −1.46827 −0.0480432
\(935\) −16.4528 + 28.4972i −0.538065 + 0.931957i
\(936\) 0 0
\(937\) 12.8772 0.420680 0.210340 0.977628i \(-0.432543\pi\)
0.210340 + 0.977628i \(0.432543\pi\)
\(938\) −18.5213 + 47.8143i −0.604742 + 1.56119i
\(939\) 0 0
\(940\) 4.59141 0.149755
\(941\) −16.0492 27.7980i −0.523189 0.906190i −0.999636 0.0269868i \(-0.991409\pi\)
0.476447 0.879203i \(-0.341925\pi\)
\(942\) 0 0
\(943\) −7.41201 + 12.8380i −0.241368 + 0.418062i
\(944\) −6.84176 −0.222680
\(945\) 0 0
\(946\) −51.0980 −1.66134
\(947\) −8.39928 + 14.5480i −0.272940 + 0.472746i −0.969613 0.244642i \(-0.921329\pi\)
0.696673 + 0.717389i \(0.254663\pi\)
\(948\) 0 0
\(949\) 8.24414 + 14.2793i 0.267616 + 0.463524i
\(950\) 18.5523 0.601917
\(951\) 0 0
\(952\) −13.5125 16.7908i −0.437943 0.544192i
\(953\) −2.69574 −0.0873237 −0.0436619 0.999046i \(-0.513902\pi\)
−0.0436619 + 0.999046i \(0.513902\pi\)
\(954\) 0 0
\(955\) 5.56438 9.63780i 0.180059 0.311872i
\(956\) 8.08633 0.261531
\(957\) 0 0
\(958\) 18.4367 31.9333i 0.595663 1.03172i
\(959\) 2.06745 5.33731i 0.0667615 0.172351i
\(960\) 0 0
\(961\) 9.08474 15.7352i 0.293056 0.507588i
\(962\) −18.5445 + 32.1200i −0.597898 + 1.03559i
\(963\) 0 0
\(964\) −1.54825 2.68165i −0.0498658 0.0863701i
\(965\) −25.5501 44.2541i −0.822487 1.42459i
\(966\) 0 0
\(967\) −6.83873 + 11.8450i −0.219919 + 0.380910i −0.954783 0.297304i \(-0.903913\pi\)
0.734864 + 0.678214i \(0.237246\pi\)
\(968\) −5.67002 −0.182241
\(969\) 0 0
\(970\) 22.1739 0.711960
\(971\) −21.3133 36.9157i −0.683977 1.18468i −0.973757 0.227589i \(-0.926916\pi\)
0.289781 0.957093i \(-0.406418\pi\)
\(972\) 0 0
\(973\) −35.5828 44.2155i −1.14073 1.41748i
\(974\) −11.3077 19.5854i −0.362321 0.627558i
\(975\) 0 0
\(976\) 30.0957 + 52.1273i 0.963341 + 1.66856i
\(977\) −2.52841 4.37934i −0.0808911 0.140108i 0.822742 0.568415i \(-0.192443\pi\)
−0.903633 + 0.428308i \(0.859110\pi\)
\(978\) 0 0
\(979\) −10.2882 17.8196i −0.328811 0.569517i
\(980\) −1.41824 + 6.47823i −0.0453041 + 0.206940i
\(981\) 0 0
\(982\) 4.81668 + 8.34274i 0.153707 + 0.266227i
\(983\) 33.2884 1.06174 0.530868 0.847455i \(-0.321866\pi\)
0.530868 + 0.847455i \(0.321866\pi\)
\(984\) 0 0
\(985\) −71.9999 −2.29411
\(986\) −10.5853 + 18.3343i −0.337105 + 0.583884i
\(987\) 0 0
\(988\) 3.84201 + 6.65455i 0.122231 + 0.211710i
\(989\) 21.6188 + 37.4448i 0.687436 + 1.19067i
\(990\) 0 0
\(991\) −16.0440 + 27.7890i −0.509653 + 0.882746i 0.490284 + 0.871563i \(0.336893\pi\)
−0.999937 + 0.0111829i \(0.996440\pi\)
\(992\) 3.36329 5.82539i 0.106785 0.184956i
\(993\) 0 0
\(994\) −7.38698 9.17912i −0.234301 0.291144i
\(995\) −17.8403 + 30.9004i −0.565577 + 0.979608i
\(996\) 0 0
\(997\) −43.2566 −1.36995 −0.684975 0.728567i \(-0.740187\pi\)
−0.684975 + 0.728567i \(0.740187\pi\)
\(998\) 21.8507 37.8466i 0.691673 1.19801i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.l.109.2 16
3.2 odd 2 inner 567.2.g.l.109.7 16
7.2 even 3 567.2.h.l.352.7 16
9.2 odd 6 567.2.h.l.298.2 16
9.4 even 3 567.2.e.g.487.2 yes 16
9.5 odd 6 567.2.e.g.487.7 yes 16
9.7 even 3 567.2.h.l.298.7 16
21.2 odd 6 567.2.h.l.352.2 16
63.2 odd 6 inner 567.2.g.l.541.7 16
63.4 even 3 3969.2.a.bg.1.7 8
63.16 even 3 inner 567.2.g.l.541.2 16
63.23 odd 6 567.2.e.g.163.7 yes 16
63.31 odd 6 3969.2.a.bf.1.7 8
63.32 odd 6 3969.2.a.bg.1.2 8
63.58 even 3 567.2.e.g.163.2 16
63.59 even 6 3969.2.a.bf.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.2 16 63.58 even 3
567.2.e.g.163.7 yes 16 63.23 odd 6
567.2.e.g.487.2 yes 16 9.4 even 3
567.2.e.g.487.7 yes 16 9.5 odd 6
567.2.g.l.109.2 16 1.1 even 1 trivial
567.2.g.l.109.7 16 3.2 odd 2 inner
567.2.g.l.541.2 16 63.16 even 3 inner
567.2.g.l.541.7 16 63.2 odd 6 inner
567.2.h.l.298.2 16 9.2 odd 6
567.2.h.l.298.7 16 9.7 even 3
567.2.h.l.352.2 16 21.2 odd 6
567.2.h.l.352.7 16 7.2 even 3
3969.2.a.bf.1.2 8 63.59 even 6
3969.2.a.bf.1.7 8 63.31 odd 6
3969.2.a.bg.1.2 8 63.32 odd 6
3969.2.a.bg.1.7 8 63.4 even 3