Properties

Label 567.2.g.j.541.1
Level $567$
Weight $2$
Character 567.541
Analytic conductor $4.528$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(109,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1767277521.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + x^{6} - 10x^{5} + 38x^{4} - 40x^{3} + 64x^{2} - 38x + 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(-1.54162 + 1.88572i\) of defining polynomial
Character \(\chi\) \(=\) 567.541
Dual form 567.2.g.j.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.10400 - 1.91218i) q^{2} +(-1.43762 + 2.49004i) q^{4} -3.80779 q^{5} +(-2.57027 + 0.627473i) q^{7} +1.93254 q^{8} +(4.20379 + 7.28117i) q^{10} +4.32433 q^{11} +(1.43762 + 2.49004i) q^{13} +(4.03741 + 4.22209i) q^{14} +(0.741726 + 1.28471i) q^{16} +(-2.01297 - 3.48657i) q^{17} +(0.804103 - 1.39275i) q^{19} +(5.47416 - 9.48152i) q^{20} +(-4.77406 - 8.26891i) q^{22} -2.66725 q^{23} +9.49923 q^{25} +(3.17427 - 5.49799i) q^{26} +(2.13264 - 7.30213i) q^{28} +(-0.375246 + 0.649945i) q^{29} +(-0.0702679 + 0.121708i) q^{31} +(3.57027 - 6.18389i) q^{32} +(-4.44464 + 7.69834i) q^{34} +(9.78703 - 2.38928i) q^{35} +(4.14141 - 7.17313i) q^{37} -3.55091 q^{38} -7.35870 q^{40} +(5.18724 + 8.98456i) q^{41} +(-0.133520 + 0.231264i) q^{43} +(-6.21676 + 10.7677i) q^{44} +(2.94464 + 5.10026i) q^{46} +(3.96627 + 6.86978i) q^{47} +(6.21255 - 3.22555i) q^{49} +(-10.4871 - 18.1643i) q^{50} -8.26704 q^{52} +(5.61189 + 9.72008i) q^{53} -16.4661 q^{55} +(-4.96715 + 1.21262i) q^{56} +1.65708 q^{58} +(0.346599 - 0.600327i) q^{59} +(-1.05372 - 1.82510i) q^{61} +0.310302 q^{62} -12.7994 q^{64} +(-5.47416 - 9.48152i) q^{65} +(5.38314 - 9.32387i) q^{67} +11.5756 q^{68} +(-15.3736 - 16.0768i) q^{70} +3.62399 q^{71} +(1.78756 + 3.09614i) q^{73} -18.2884 q^{74} +(2.31199 + 4.00449i) q^{76} +(-11.1147 + 2.71340i) q^{77} +(7.71168 + 13.3570i) q^{79} +(-2.82433 - 4.89189i) q^{80} +(11.4534 - 19.8379i) q^{82} +(-3.22034 + 5.57779i) q^{83} +(7.66497 + 13.2761i) q^{85} +0.589624 q^{86} +8.35695 q^{88} +(-0.128437 + 0.222459i) q^{89} +(-5.25751 - 5.49799i) q^{91} +(3.83450 - 6.64155i) q^{92} +(8.75751 - 15.1684i) q^{94} +(-3.06185 + 5.30328i) q^{95} +(-0.529281 + 0.916742i) q^{97} +(-13.0265 - 8.31853i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 5 q^{4} + 4 q^{5} - 2 q^{7} - 6 q^{8} + 7 q^{10} + 10 q^{11} + 5 q^{13} + 7 q^{14} + q^{16} - 6 q^{17} + 8 q^{19} + 8 q^{20} + 7 q^{22} - 24 q^{23} + 16 q^{25} - q^{26} + 5 q^{28} + 10 q^{29}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10400 1.91218i −0.780644 1.35212i −0.931567 0.363570i \(-0.881558\pi\)
0.150922 0.988546i \(-0.451776\pi\)
\(3\) 0 0
\(4\) −1.43762 + 2.49004i −0.718812 + 1.24502i
\(5\) −3.80779 −1.70289 −0.851447 0.524441i \(-0.824274\pi\)
−0.851447 + 0.524441i \(0.824274\pi\)
\(6\) 0 0
\(7\) −2.57027 + 0.627473i −0.971470 + 0.237163i
\(8\) 1.93254 0.683256
\(9\) 0 0
\(10\) 4.20379 + 7.28117i 1.32935 + 2.30251i
\(11\) 4.32433 1.30384 0.651918 0.758290i \(-0.273965\pi\)
0.651918 + 0.758290i \(0.273965\pi\)
\(12\) 0 0
\(13\) 1.43762 + 2.49004i 0.398725 + 0.690612i 0.993569 0.113229i \(-0.0361195\pi\)
−0.594844 + 0.803841i \(0.702786\pi\)
\(14\) 4.03741 + 4.22209i 1.07904 + 1.12840i
\(15\) 0 0
\(16\) 0.741726 + 1.28471i 0.185432 + 0.321177i
\(17\) −2.01297 3.48657i −0.488218 0.845618i 0.511690 0.859170i \(-0.329020\pi\)
−0.999908 + 0.0135517i \(0.995686\pi\)
\(18\) 0 0
\(19\) 0.804103 1.39275i 0.184474 0.319518i −0.758925 0.651178i \(-0.774275\pi\)
0.943399 + 0.331660i \(0.107609\pi\)
\(20\) 5.47416 9.48152i 1.22406 2.12013i
\(21\) 0 0
\(22\) −4.77406 8.26891i −1.01783 1.76294i
\(23\) −2.66725 −0.556160 −0.278080 0.960558i \(-0.589698\pi\)
−0.278080 + 0.960558i \(0.589698\pi\)
\(24\) 0 0
\(25\) 9.49923 1.89985
\(26\) 3.17427 5.49799i 0.622525 1.07824i
\(27\) 0 0
\(28\) 2.13264 7.30213i 0.403032 1.37997i
\(29\) −0.375246 + 0.649945i −0.0696815 + 0.120692i −0.898761 0.438439i \(-0.855532\pi\)
0.829080 + 0.559131i \(0.188865\pi\)
\(30\) 0 0
\(31\) −0.0702679 + 0.121708i −0.0126205 + 0.0218593i −0.872267 0.489031i \(-0.837351\pi\)
0.859646 + 0.510890i \(0.170684\pi\)
\(32\) 3.57027 6.18389i 0.631140 1.09317i
\(33\) 0 0
\(34\) −4.44464 + 7.69834i −0.762249 + 1.32025i
\(35\) 9.78703 2.38928i 1.65431 0.403863i
\(36\) 0 0
\(37\) 4.14141 7.17313i 0.680844 1.17926i −0.293880 0.955842i \(-0.594947\pi\)
0.974724 0.223414i \(-0.0717201\pi\)
\(38\) −3.55091 −0.576034
\(39\) 0 0
\(40\) −7.35870 −1.16351
\(41\) 5.18724 + 8.98456i 0.810111 + 1.40315i 0.912786 + 0.408438i \(0.133926\pi\)
−0.102675 + 0.994715i \(0.532740\pi\)
\(42\) 0 0
\(43\) −0.133520 + 0.231264i −0.0203616 + 0.0352674i −0.876027 0.482263i \(-0.839815\pi\)
0.855665 + 0.517530i \(0.173148\pi\)
\(44\) −6.21676 + 10.7677i −0.937212 + 1.62330i
\(45\) 0 0
\(46\) 2.94464 + 5.10026i 0.434163 + 0.751993i
\(47\) 3.96627 + 6.86978i 0.578540 + 1.00206i 0.995647 + 0.0932032i \(0.0297106\pi\)
−0.417107 + 0.908857i \(0.636956\pi\)
\(48\) 0 0
\(49\) 6.21255 3.22555i 0.887508 0.460793i
\(50\) −10.4871 18.1643i −1.48310 2.56881i
\(51\) 0 0
\(52\) −8.26704 −1.14643
\(53\) 5.61189 + 9.72008i 0.770852 + 1.33516i 0.937096 + 0.349071i \(0.113503\pi\)
−0.166244 + 0.986085i \(0.553164\pi\)
\(54\) 0 0
\(55\) −16.4661 −2.22029
\(56\) −4.96715 + 1.21262i −0.663763 + 0.162043i
\(57\) 0 0
\(58\) 1.65708 0.217586
\(59\) 0.346599 0.600327i 0.0451234 0.0781560i −0.842582 0.538569i \(-0.818965\pi\)
0.887705 + 0.460413i \(0.152299\pi\)
\(60\) 0 0
\(61\) −1.05372 1.82510i −0.134915 0.233680i 0.790650 0.612268i \(-0.209743\pi\)
−0.925565 + 0.378589i \(0.876409\pi\)
\(62\) 0.310302 0.0394085
\(63\) 0 0
\(64\) −12.7994 −1.59992
\(65\) −5.47416 9.48152i −0.678986 1.17604i
\(66\) 0 0
\(67\) 5.38314 9.32387i 0.657655 1.13909i −0.323566 0.946206i \(-0.604882\pi\)
0.981221 0.192886i \(-0.0617848\pi\)
\(68\) 11.5756 1.40375
\(69\) 0 0
\(70\) −15.3736 16.0768i −1.83750 1.92155i
\(71\) 3.62399 0.430088 0.215044 0.976604i \(-0.431010\pi\)
0.215044 + 0.976604i \(0.431010\pi\)
\(72\) 0 0
\(73\) 1.78756 + 3.09614i 0.209217 + 0.362375i 0.951468 0.307747i \(-0.0995750\pi\)
−0.742251 + 0.670122i \(0.766242\pi\)
\(74\) −18.2884 −2.12599
\(75\) 0 0
\(76\) 2.31199 + 4.00449i 0.265204 + 0.459347i
\(77\) −11.1147 + 2.71340i −1.26664 + 0.309221i
\(78\) 0 0
\(79\) 7.71168 + 13.3570i 0.867632 + 1.50278i 0.864410 + 0.502787i \(0.167692\pi\)
0.00322152 + 0.999995i \(0.498975\pi\)
\(80\) −2.82433 4.89189i −0.315770 0.546930i
\(81\) 0 0
\(82\) 11.4534 19.8379i 1.26482 2.19073i
\(83\) −3.22034 + 5.57779i −0.353478 + 0.612241i −0.986856 0.161601i \(-0.948334\pi\)
0.633378 + 0.773842i \(0.281668\pi\)
\(84\) 0 0
\(85\) 7.66497 + 13.2761i 0.831383 + 1.44000i
\(86\) 0.589624 0.0635808
\(87\) 0 0
\(88\) 8.35695 0.890854
\(89\) −0.128437 + 0.222459i −0.0136143 + 0.0235806i −0.872752 0.488163i \(-0.837667\pi\)
0.859138 + 0.511744i \(0.171000\pi\)
\(90\) 0 0
\(91\) −5.25751 5.49799i −0.551137 0.576346i
\(92\) 3.83450 6.64155i 0.399774 0.692429i
\(93\) 0 0
\(94\) 8.75751 15.1684i 0.903268 1.56451i
\(95\) −3.06185 + 5.30328i −0.314139 + 0.544105i
\(96\) 0 0
\(97\) −0.529281 + 0.916742i −0.0537403 + 0.0930810i −0.891644 0.452737i \(-0.850448\pi\)
0.837904 + 0.545818i \(0.183781\pi\)
\(98\) −13.0265 8.31853i −1.31587 0.840298i
\(99\) 0 0
\(100\) −13.6563 + 23.6534i −1.36563 + 2.36534i
\(101\) −1.36585 −0.135907 −0.0679534 0.997688i \(-0.521647\pi\)
−0.0679534 + 0.997688i \(0.521647\pi\)
\(102\) 0 0
\(103\) −14.9713 −1.47516 −0.737581 0.675259i \(-0.764032\pi\)
−0.737581 + 0.675259i \(0.764032\pi\)
\(104\) 2.77826 + 4.81209i 0.272431 + 0.471865i
\(105\) 0 0
\(106\) 12.3910 21.4619i 1.20352 2.08456i
\(107\) −4.04075 + 6.99878i −0.390634 + 0.676597i −0.992533 0.121974i \(-0.961077\pi\)
0.601900 + 0.798572i \(0.294411\pi\)
\(108\) 0 0
\(109\) 4.55460 + 7.88879i 0.436251 + 0.755609i 0.997397 0.0721080i \(-0.0229726\pi\)
−0.561146 + 0.827717i \(0.689639\pi\)
\(110\) 18.1786 + 31.4862i 1.73326 + 3.00209i
\(111\) 0 0
\(112\) −2.71255 2.83663i −0.256312 0.268036i
\(113\) −1.38303 2.39547i −0.130104 0.225347i 0.793612 0.608424i \(-0.208198\pi\)
−0.923717 + 0.383077i \(0.874865\pi\)
\(114\) 0 0
\(115\) 10.1563 0.947082
\(116\) −1.07892 1.86875i −0.100176 0.173509i
\(117\) 0 0
\(118\) −1.53058 −0.140901
\(119\) 7.36162 + 7.69834i 0.674838 + 0.705706i
\(120\) 0 0
\(121\) 7.69986 0.699988
\(122\) −2.32661 + 4.02981i −0.210641 + 0.364841i
\(123\) 0 0
\(124\) −0.202038 0.349939i −0.0181435 0.0314255i
\(125\) −17.1321 −1.53234
\(126\) 0 0
\(127\) 13.6573 1.21189 0.605945 0.795507i \(-0.292795\pi\)
0.605945 + 0.795507i \(0.292795\pi\)
\(128\) 6.98994 + 12.1069i 0.617829 + 1.07011i
\(129\) 0 0
\(130\) −12.0869 + 20.9352i −1.06009 + 1.83614i
\(131\) 17.6138 1.53893 0.769463 0.638691i \(-0.220524\pi\)
0.769463 + 0.638691i \(0.220524\pi\)
\(132\) 0 0
\(133\) −1.19285 + 4.08429i −0.103433 + 0.354153i
\(134\) −23.7719 −2.05358
\(135\) 0 0
\(136\) −3.89015 6.73794i −0.333578 0.577774i
\(137\) 8.66725 0.740493 0.370247 0.928934i \(-0.379273\pi\)
0.370247 + 0.928934i \(0.379273\pi\)
\(138\) 0 0
\(139\) 1.88303 + 3.26150i 0.159716 + 0.276637i 0.934766 0.355263i \(-0.115609\pi\)
−0.775050 + 0.631900i \(0.782275\pi\)
\(140\) −8.12066 + 27.8049i −0.686321 + 2.34995i
\(141\) 0 0
\(142\) −4.00088 6.92972i −0.335746 0.581529i
\(143\) 6.21676 + 10.7677i 0.519872 + 0.900444i
\(144\) 0 0
\(145\) 1.42886 2.47485i 0.118660 0.205525i
\(146\) 3.94691 6.83626i 0.326649 0.565773i
\(147\) 0 0
\(148\) 11.9076 + 20.6245i 0.978797 + 1.69533i
\(149\) 4.61122 0.377766 0.188883 0.982000i \(-0.439513\pi\)
0.188883 + 0.982000i \(0.439513\pi\)
\(150\) 0 0
\(151\) 7.79762 0.634561 0.317281 0.948332i \(-0.397230\pi\)
0.317281 + 0.948332i \(0.397230\pi\)
\(152\) 1.55396 2.69154i 0.126043 0.218313i
\(153\) 0 0
\(154\) 17.4591 + 18.2577i 1.40690 + 1.47125i
\(155\) 0.267565 0.463436i 0.0214913 0.0372241i
\(156\) 0 0
\(157\) −11.6328 + 20.1485i −0.928395 + 1.60803i −0.142387 + 0.989811i \(0.545478\pi\)
−0.786008 + 0.618216i \(0.787856\pi\)
\(158\) 17.0274 29.4922i 1.35462 2.34628i
\(159\) 0 0
\(160\) −13.5948 + 23.5469i −1.07476 + 1.86155i
\(161\) 6.85555 1.67363i 0.540293 0.131900i
\(162\) 0 0
\(163\) −3.05547 + 5.29223i −0.239323 + 0.414519i −0.960520 0.278210i \(-0.910259\pi\)
0.721197 + 0.692730i \(0.243592\pi\)
\(164\) −29.8292 −2.32927
\(165\) 0 0
\(166\) 14.2210 1.10376
\(167\) −5.82076 10.0819i −0.450424 0.780157i 0.547988 0.836486i \(-0.315394\pi\)
−0.998412 + 0.0563288i \(0.982060\pi\)
\(168\) 0 0
\(169\) 2.36648 4.09886i 0.182037 0.315297i
\(170\) 16.9242 29.3136i 1.29803 2.24825i
\(171\) 0 0
\(172\) −0.383903 0.664940i −0.0292723 0.0507012i
\(173\) −9.62855 16.6771i −0.732045 1.26794i −0.956008 0.293341i \(-0.905233\pi\)
0.223963 0.974598i \(-0.428101\pi\)
\(174\) 0 0
\(175\) −24.4156 + 5.96052i −1.84564 + 0.450573i
\(176\) 3.20747 + 5.55550i 0.241772 + 0.418762i
\(177\) 0 0
\(178\) 0.567176 0.0425117
\(179\) −1.67093 2.89414i −0.124891 0.216318i 0.796799 0.604244i \(-0.206525\pi\)
−0.921690 + 0.387926i \(0.873192\pi\)
\(180\) 0 0
\(181\) −19.7358 −1.46695 −0.733474 0.679717i \(-0.762103\pi\)
−0.733474 + 0.679717i \(0.762103\pi\)
\(182\) −4.70887 + 16.1231i −0.349045 + 1.19512i
\(183\) 0 0
\(184\) −5.15457 −0.380000
\(185\) −15.7696 + 27.3138i −1.15940 + 2.00815i
\(186\) 0 0
\(187\) −8.70477 15.0771i −0.636556 1.10255i
\(188\) −22.8080 −1.66344
\(189\) 0 0
\(190\) 13.5211 0.980925
\(191\) −2.08745 3.61557i −0.151043 0.261613i 0.780568 0.625070i \(-0.214930\pi\)
−0.931611 + 0.363457i \(0.881596\pi\)
\(192\) 0 0
\(193\) 6.93686 12.0150i 0.499326 0.864858i −0.500674 0.865636i \(-0.666914\pi\)
1.00000 0.000778217i \(0.000247714\pi\)
\(194\) 2.33730 0.167808
\(195\) 0 0
\(196\) −0.899576 + 20.1066i −0.0642554 + 1.43619i
\(197\) 7.48520 0.533299 0.266649 0.963794i \(-0.414083\pi\)
0.266649 + 0.963794i \(0.414083\pi\)
\(198\) 0 0
\(199\) 6.32767 + 10.9598i 0.448556 + 0.776922i 0.998292 0.0584160i \(-0.0186050\pi\)
−0.549736 + 0.835338i \(0.685272\pi\)
\(200\) 18.3576 1.29808
\(201\) 0 0
\(202\) 1.50789 + 2.61174i 0.106095 + 0.183762i
\(203\) 0.556660 1.90599i 0.0390698 0.133774i
\(204\) 0 0
\(205\) −19.7519 34.2113i −1.37953 2.38942i
\(206\) 16.5282 + 28.6277i 1.15158 + 1.99459i
\(207\) 0 0
\(208\) −2.13264 + 3.69385i −0.147872 + 0.256122i
\(209\) 3.47721 6.02270i 0.240524 0.416599i
\(210\) 0 0
\(211\) 2.57599 + 4.46174i 0.177338 + 0.307159i 0.940968 0.338496i \(-0.109918\pi\)
−0.763630 + 0.645654i \(0.776585\pi\)
\(212\) −32.2711 −2.21639
\(213\) 0 0
\(214\) 17.8439 1.21978
\(215\) 0.508416 0.880602i 0.0346737 0.0600566i
\(216\) 0 0
\(217\) 0.104239 0.356912i 0.00707621 0.0242288i
\(218\) 10.0565 17.4184i 0.681114 1.17972i
\(219\) 0 0
\(220\) 23.6721 41.0013i 1.59597 2.76431i
\(221\) 5.78780 10.0248i 0.389329 0.674338i
\(222\) 0 0
\(223\) 7.60832 13.1780i 0.509490 0.882463i −0.490449 0.871470i \(-0.663167\pi\)
0.999940 0.0109935i \(-0.00349942\pi\)
\(224\) −5.29632 + 18.1345i −0.353875 + 1.21166i
\(225\) 0 0
\(226\) −3.05372 + 5.28920i −0.203130 + 0.351832i
\(227\) 4.28949 0.284703 0.142352 0.989816i \(-0.454534\pi\)
0.142352 + 0.989816i \(0.454534\pi\)
\(228\) 0 0
\(229\) 0.971251 0.0641821 0.0320910 0.999485i \(-0.489783\pi\)
0.0320910 + 0.999485i \(0.489783\pi\)
\(230\) −11.2126 19.4207i −0.739334 1.28056i
\(231\) 0 0
\(232\) −0.725178 + 1.25605i −0.0476103 + 0.0824634i
\(233\) −1.88671 + 3.26788i −0.123603 + 0.214086i −0.921186 0.389123i \(-0.872778\pi\)
0.797583 + 0.603209i \(0.206111\pi\)
\(234\) 0 0
\(235\) −15.1027 26.1587i −0.985192 1.70640i
\(236\) 0.996558 + 1.72609i 0.0648704 + 0.112359i
\(237\) 0 0
\(238\) 6.59341 22.5757i 0.427387 1.46336i
\(239\) 3.34520 + 5.79405i 0.216383 + 0.374786i 0.953699 0.300761i \(-0.0972407\pi\)
−0.737317 + 0.675547i \(0.763907\pi\)
\(240\) 0 0
\(241\) −14.9713 −0.964383 −0.482192 0.876066i \(-0.660159\pi\)
−0.482192 + 0.876066i \(0.660159\pi\)
\(242\) −8.50063 14.7235i −0.546441 0.946464i
\(243\) 0 0
\(244\) 6.05941 0.387914
\(245\) −23.6561 + 12.2822i −1.51133 + 0.784681i
\(246\) 0 0
\(247\) 4.62399 0.294217
\(248\) −0.135796 + 0.235205i −0.00862302 + 0.0149355i
\(249\) 0 0
\(250\) 18.9138 + 32.7597i 1.19622 + 2.07191i
\(251\) 17.0787 1.07800 0.538999 0.842307i \(-0.318803\pi\)
0.538999 + 0.842307i \(0.318803\pi\)
\(252\) 0 0
\(253\) −11.5341 −0.725141
\(254\) −15.0776 26.1152i −0.946055 1.63862i
\(255\) 0 0
\(256\) 2.63440 4.56291i 0.164650 0.285182i
\(257\) −8.57231 −0.534726 −0.267363 0.963596i \(-0.586152\pi\)
−0.267363 + 0.963596i \(0.586152\pi\)
\(258\) 0 0
\(259\) −6.14358 + 21.0355i −0.381744 + 1.30708i
\(260\) 31.4791 1.95225
\(261\) 0 0
\(262\) −19.4456 33.6808i −1.20135 2.08081i
\(263\) 5.69685 0.351283 0.175641 0.984454i \(-0.443800\pi\)
0.175641 + 0.984454i \(0.443800\pi\)
\(264\) 0 0
\(265\) −21.3689 37.0120i −1.31268 2.27363i
\(266\) 9.12680 2.22810i 0.559600 0.136614i
\(267\) 0 0
\(268\) 15.4778 + 26.8084i 0.945460 + 1.63758i
\(269\) 7.80077 + 13.5113i 0.475621 + 0.823800i 0.999610 0.0279249i \(-0.00888992\pi\)
−0.523989 + 0.851725i \(0.675557\pi\)
\(270\) 0 0
\(271\) 15.3688 26.6195i 0.933586 1.61702i 0.156449 0.987686i \(-0.449995\pi\)
0.777136 0.629332i \(-0.216671\pi\)
\(272\) 2.98615 5.17216i 0.181062 0.313609i
\(273\) 0 0
\(274\) −9.56863 16.5733i −0.578062 1.00123i
\(275\) 41.0779 2.47709
\(276\) 0 0
\(277\) −26.5926 −1.59780 −0.798899 0.601466i \(-0.794584\pi\)
−0.798899 + 0.601466i \(0.794584\pi\)
\(278\) 4.15772 7.20138i 0.249363 0.431910i
\(279\) 0 0
\(280\) 18.9138 4.61739i 1.13032 0.275942i
\(281\) 8.68065 15.0353i 0.517844 0.896932i −0.481941 0.876204i \(-0.660068\pi\)
0.999785 0.0207285i \(-0.00659857\pi\)
\(282\) 0 0
\(283\) −9.17771 + 15.8963i −0.545558 + 0.944934i 0.453013 + 0.891504i \(0.350349\pi\)
−0.998572 + 0.0534307i \(0.982984\pi\)
\(284\) −5.20993 + 9.02386i −0.309152 + 0.535468i
\(285\) 0 0
\(286\) 13.7266 23.7751i 0.811670 1.40585i
\(287\) −18.9702 19.8379i −1.11977 1.17099i
\(288\) 0 0
\(289\) 0.395870 0.685667i 0.0232865 0.0403334i
\(290\) −6.30982 −0.370525
\(291\) 0 0
\(292\) −10.2793 −0.601552
\(293\) −5.34906 9.26484i −0.312495 0.541258i 0.666407 0.745588i \(-0.267831\pi\)
−0.978902 + 0.204331i \(0.934498\pi\)
\(294\) 0 0
\(295\) −1.31978 + 2.28592i −0.0768403 + 0.133091i
\(296\) 8.00344 13.8624i 0.465191 0.805734i
\(297\) 0 0
\(298\) −5.09078 8.81749i −0.294901 0.510784i
\(299\) −3.83450 6.64155i −0.221755 0.384091i
\(300\) 0 0
\(301\) 0.198071 0.678190i 0.0114166 0.0390902i
\(302\) −8.60856 14.9105i −0.495367 0.858000i
\(303\) 0 0
\(304\) 2.38570 0.136829
\(305\) 4.01234 + 6.94958i 0.229746 + 0.397932i
\(306\) 0 0
\(307\) 31.3948 1.79180 0.895899 0.444258i \(-0.146533\pi\)
0.895899 + 0.444258i \(0.146533\pi\)
\(308\) 9.22227 31.5768i 0.525488 1.79926i
\(309\) 0 0
\(310\) −1.18157 −0.0671084
\(311\) 6.74453 11.6819i 0.382447 0.662418i −0.608964 0.793198i \(-0.708415\pi\)
0.991411 + 0.130779i \(0.0417480\pi\)
\(312\) 0 0
\(313\) 9.67069 + 16.7501i 0.546620 + 0.946773i 0.998503 + 0.0546962i \(0.0174190\pi\)
−0.451883 + 0.892077i \(0.649248\pi\)
\(314\) 51.3701 2.89899
\(315\) 0 0
\(316\) −44.3459 −2.49465
\(317\) 7.67882 + 13.3001i 0.431286 + 0.747009i 0.996984 0.0776033i \(-0.0247268\pi\)
−0.565699 + 0.824612i \(0.691393\pi\)
\(318\) 0 0
\(319\) −1.62269 + 2.81058i −0.0908532 + 0.157362i
\(320\) 48.7373 2.72450
\(321\) 0 0
\(322\) −10.7688 11.2614i −0.600121 0.627571i
\(323\) −6.47455 −0.360254
\(324\) 0 0
\(325\) 13.6563 + 23.6534i 0.757516 + 1.31206i
\(326\) 13.4929 0.747304
\(327\) 0 0
\(328\) 10.0245 + 17.3630i 0.553513 + 0.958713i
\(329\) −14.5050 15.1684i −0.799686 0.836264i
\(330\) 0 0
\(331\) 0.619146 + 1.07239i 0.0340313 + 0.0589440i 0.882539 0.470238i \(-0.155832\pi\)
−0.848508 + 0.529182i \(0.822499\pi\)
\(332\) −9.25926 16.0375i −0.508168 0.880172i
\(333\) 0 0
\(334\) −12.8522 + 22.2607i −0.703242 + 1.21805i
\(335\) −20.4978 + 35.5033i −1.11992 + 1.93975i
\(336\) 0 0
\(337\) −5.95428 10.3131i −0.324350 0.561791i 0.657030 0.753864i \(-0.271812\pi\)
−0.981381 + 0.192073i \(0.938479\pi\)
\(338\) −10.4504 −0.568424
\(339\) 0 0
\(340\) −44.0774 −2.39043
\(341\) −0.303862 + 0.526304i −0.0164550 + 0.0285010i
\(342\) 0 0
\(343\) −13.9440 + 12.1887i −0.752904 + 0.658130i
\(344\) −0.258033 + 0.446926i −0.0139122 + 0.0240966i
\(345\) 0 0
\(346\) −21.2598 + 36.8230i −1.14293 + 1.97962i
\(347\) 2.17339 3.76442i 0.116674 0.202085i −0.801774 0.597628i \(-0.796110\pi\)
0.918448 + 0.395543i \(0.129443\pi\)
\(348\) 0 0
\(349\) −3.58780 + 6.21425i −0.192051 + 0.332641i −0.945930 0.324372i \(-0.894847\pi\)
0.753879 + 0.657013i \(0.228180\pi\)
\(350\) 38.3523 + 40.1066i 2.05002 + 2.14379i
\(351\) 0 0
\(352\) 15.4390 26.7412i 0.822903 1.42531i
\(353\) 25.0967 1.33576 0.667881 0.744268i \(-0.267201\pi\)
0.667881 + 0.744268i \(0.267201\pi\)
\(354\) 0 0
\(355\) −13.7994 −0.732395
\(356\) −0.369288 0.639625i −0.0195722 0.0339001i
\(357\) 0 0
\(358\) −3.68941 + 6.39025i −0.194992 + 0.337735i
\(359\) −15.9959 + 27.7057i −0.844231 + 1.46225i 0.0420557 + 0.999115i \(0.486609\pi\)
−0.886287 + 0.463136i \(0.846724\pi\)
\(360\) 0 0
\(361\) 8.20684 + 14.2147i 0.431939 + 0.748140i
\(362\) 21.7883 + 37.7384i 1.14517 + 1.98348i
\(363\) 0 0
\(364\) 21.2485 5.18735i 1.11372 0.271891i
\(365\) −6.80663 11.7894i −0.356275 0.617087i
\(366\) 0 0
\(367\) −11.1248 −0.580707 −0.290354 0.956919i \(-0.593773\pi\)
−0.290354 + 0.956919i \(0.593773\pi\)
\(368\) −1.97837 3.42664i −0.103130 0.178626i
\(369\) 0 0
\(370\) 69.6385 3.62033
\(371\) −20.5231 21.4619i −1.06551 1.11425i
\(372\) 0 0
\(373\) 16.1546 0.836452 0.418226 0.908343i \(-0.362652\pi\)
0.418226 + 0.908343i \(0.362652\pi\)
\(374\) −19.2201 + 33.2902i −0.993848 + 1.72139i
\(375\) 0 0
\(376\) 7.66497 + 13.2761i 0.395291 + 0.684664i
\(377\) −2.15785 −0.111135
\(378\) 0 0
\(379\) 3.18485 0.163595 0.0817973 0.996649i \(-0.473934\pi\)
0.0817973 + 0.996649i \(0.473934\pi\)
\(380\) −8.80358 15.2482i −0.451614 0.782218i
\(381\) 0 0
\(382\) −4.60908 + 7.98316i −0.235821 + 0.408454i
\(383\) 16.4776 0.841968 0.420984 0.907068i \(-0.361685\pi\)
0.420984 + 0.907068i \(0.361685\pi\)
\(384\) 0 0
\(385\) 42.3224 10.3321i 2.15695 0.526571i
\(386\) −30.6331 −1.55918
\(387\) 0 0
\(388\) −1.52181 2.63586i −0.0772584 0.133815i
\(389\) −31.9771 −1.62130 −0.810651 0.585529i \(-0.800887\pi\)
−0.810651 + 0.585529i \(0.800887\pi\)
\(390\) 0 0
\(391\) 5.36911 + 9.29956i 0.271527 + 0.470299i
\(392\) 12.0060 6.23350i 0.606395 0.314839i
\(393\) 0 0
\(394\) −8.26365 14.3131i −0.416317 0.721081i
\(395\) −29.3644 50.8607i −1.47748 2.55908i
\(396\) 0 0
\(397\) −13.9059 + 24.0858i −0.697919 + 1.20883i 0.271268 + 0.962504i \(0.412557\pi\)
−0.969187 + 0.246327i \(0.920776\pi\)
\(398\) 13.9715 24.1993i 0.700326 1.21300i
\(399\) 0 0
\(400\) 7.04583 + 12.2037i 0.352291 + 0.610187i
\(401\) −27.5883 −1.37769 −0.688847 0.724907i \(-0.741883\pi\)
−0.688847 + 0.724907i \(0.741883\pi\)
\(402\) 0 0
\(403\) −0.404075 −0.0201284
\(404\) 1.96357 3.40101i 0.0976913 0.169206i
\(405\) 0 0
\(406\) −4.25915 + 1.03978i −0.211378 + 0.0516032i
\(407\) 17.9088 31.0190i 0.887708 1.53756i
\(408\) 0 0
\(409\) 5.91231 10.2404i 0.292345 0.506356i −0.682019 0.731335i \(-0.738898\pi\)
0.974364 + 0.224978i \(0.0722312\pi\)
\(410\) −43.6121 + 75.5384i −2.15385 + 3.73058i
\(411\) 0 0
\(412\) 21.5230 37.2790i 1.06036 1.83660i
\(413\) −0.514163 + 1.76048i −0.0253003 + 0.0866278i
\(414\) 0 0
\(415\) 12.2624 21.2390i 0.601935 1.04258i
\(416\) 20.5308 1.00661
\(417\) 0 0
\(418\) −15.3553 −0.751054
\(419\) 4.40834 + 7.63547i 0.215362 + 0.373017i 0.953384 0.301759i \(-0.0975737\pi\)
−0.738023 + 0.674776i \(0.764240\pi\)
\(420\) 0 0
\(421\) −9.35004 + 16.1947i −0.455693 + 0.789284i −0.998728 0.0504267i \(-0.983942\pi\)
0.543035 + 0.839710i \(0.317275\pi\)
\(422\) 5.68776 9.85150i 0.276876 0.479563i
\(423\) 0 0
\(424\) 10.8452 + 18.7844i 0.526689 + 0.912253i
\(425\) −19.1217 33.1198i −0.927539 1.60655i
\(426\) 0 0
\(427\) 3.85354 + 4.02981i 0.186486 + 0.195016i
\(428\) −11.6181 20.1232i −0.561584 0.972692i
\(429\) 0 0
\(430\) −2.24516 −0.108271
\(431\) −8.30972 14.3929i −0.400265 0.693279i 0.593493 0.804839i \(-0.297749\pi\)
−0.993758 + 0.111560i \(0.964415\pi\)
\(432\) 0 0
\(433\) −25.3004 −1.21586 −0.607929 0.793992i \(-0.707999\pi\)
−0.607929 + 0.793992i \(0.707999\pi\)
\(434\) −0.797561 + 0.194707i −0.0382841 + 0.00934621i
\(435\) 0 0
\(436\) −26.1912 −1.25433
\(437\) −2.14474 + 3.71481i −0.102597 + 0.177703i
\(438\) 0 0
\(439\) 14.7262 + 25.5065i 0.702841 + 1.21736i 0.967465 + 0.253005i \(0.0814190\pi\)
−0.264624 + 0.964352i \(0.585248\pi\)
\(440\) −31.8215 −1.51703
\(441\) 0 0
\(442\) −25.5589 −1.21571
\(443\) 16.2783 + 28.1948i 0.773404 + 1.33957i 0.935687 + 0.352830i \(0.114781\pi\)
−0.162284 + 0.986744i \(0.551886\pi\)
\(444\) 0 0
\(445\) 0.489060 0.847077i 0.0231837 0.0401553i
\(446\) −33.5983 −1.59092
\(447\) 0 0
\(448\) 32.8978 8.03126i 1.55428 0.379442i
\(449\) 0.171881 0.00811158 0.00405579 0.999992i \(-0.498709\pi\)
0.00405579 + 0.999992i \(0.498709\pi\)
\(450\) 0 0
\(451\) 22.4314 + 38.8523i 1.05625 + 1.82948i
\(452\) 7.95309 0.374082
\(453\) 0 0
\(454\) −4.73559 8.20227i −0.222252 0.384952i
\(455\) 20.0195 + 20.9352i 0.938527 + 0.981456i
\(456\) 0 0
\(457\) −12.2510 21.2194i −0.573079 0.992602i −0.996247 0.0865506i \(-0.972416\pi\)
0.423169 0.906051i \(-0.360918\pi\)
\(458\) −1.07226 1.85721i −0.0501034 0.0867816i
\(459\) 0 0
\(460\) −14.6010 + 25.2896i −0.680773 + 1.17913i
\(461\) −4.71554 + 8.16755i −0.219624 + 0.380401i −0.954693 0.297592i \(-0.903817\pi\)
0.735069 + 0.677993i \(0.237150\pi\)
\(462\) 0 0
\(463\) −1.43061 2.47788i −0.0664860 0.115157i 0.830866 0.556472i \(-0.187845\pi\)
−0.897352 + 0.441315i \(0.854512\pi\)
\(464\) −1.11332 −0.0516845
\(465\) 0 0
\(466\) 8.33170 0.385959
\(467\) −3.85144 + 6.67089i −0.178223 + 0.308692i −0.941272 0.337649i \(-0.890368\pi\)
0.763049 + 0.646341i \(0.223702\pi\)
\(468\) 0 0
\(469\) −7.98563 + 27.3426i −0.368742 + 1.26256i
\(470\) −33.3467 + 57.7582i −1.53817 + 2.66419i
\(471\) 0 0
\(472\) 0.669817 1.16016i 0.0308308 0.0534005i
\(473\) −0.577385 + 1.00006i −0.0265482 + 0.0459829i
\(474\) 0 0
\(475\) 7.63836 13.2300i 0.350472 0.607035i
\(476\) −29.7524 + 7.26338i −1.36370 + 0.332916i
\(477\) 0 0
\(478\) 7.38619 12.7932i 0.337836 0.585150i
\(479\) 34.5822 1.58010 0.790051 0.613041i \(-0.210054\pi\)
0.790051 + 0.613041i \(0.210054\pi\)
\(480\) 0 0
\(481\) 23.8152 1.08588
\(482\) 16.5282 + 28.6277i 0.752840 + 1.30396i
\(483\) 0 0
\(484\) −11.0695 + 19.1729i −0.503159 + 0.871497i
\(485\) 2.01539 3.49076i 0.0915141 0.158507i
\(486\) 0 0
\(487\) −9.21782 15.9657i −0.417699 0.723476i 0.578008 0.816031i \(-0.303830\pi\)
−0.995708 + 0.0925545i \(0.970497\pi\)
\(488\) −2.03636 3.52707i −0.0921815 0.159663i
\(489\) 0 0
\(490\) 49.6021 + 31.6752i 2.24079 + 1.43094i
\(491\) −1.57686 2.73120i −0.0711627 0.123257i 0.828248 0.560361i \(-0.189338\pi\)
−0.899411 + 0.437104i \(0.856004\pi\)
\(492\) 0 0
\(493\) 3.02144 0.136079
\(494\) −5.10487 8.84190i −0.229679 0.397816i
\(495\) 0 0
\(496\) −0.208478 −0.00936094
\(497\) −9.31462 + 2.27396i −0.417818 + 0.102001i
\(498\) 0 0
\(499\) 28.8798 1.29284 0.646419 0.762983i \(-0.276266\pi\)
0.646419 + 0.762983i \(0.276266\pi\)
\(500\) 24.6295 42.6596i 1.10147 1.90780i
\(501\) 0 0
\(502\) −18.8548 32.6575i −0.841533 1.45758i
\(503\) 21.4742 0.957487 0.478744 0.877955i \(-0.341092\pi\)
0.478744 + 0.877955i \(0.341092\pi\)
\(504\) 0 0
\(505\) 5.20085 0.231435
\(506\) 12.7336 + 22.0552i 0.566078 + 0.980475i
\(507\) 0 0
\(508\) −19.6341 + 34.0072i −0.871120 + 1.50882i
\(509\) 8.82435 0.391133 0.195566 0.980690i \(-0.437346\pi\)
0.195566 + 0.980690i \(0.437346\pi\)
\(510\) 0 0
\(511\) −6.53724 6.83626i −0.289190 0.302418i
\(512\) 16.3263 0.721527
\(513\) 0 0
\(514\) 9.46381 + 16.3918i 0.417431 + 0.723011i
\(515\) 57.0073 2.51204
\(516\) 0 0
\(517\) 17.1515 + 29.7072i 0.754321 + 1.30652i
\(518\) 47.0062 11.4755i 2.06533 0.504205i
\(519\) 0 0
\(520\) −10.5790 18.3234i −0.463921 0.803535i
\(521\) −14.8351 25.6952i −0.649939 1.12573i −0.983137 0.182871i \(-0.941461\pi\)
0.333198 0.942857i \(-0.391872\pi\)
\(522\) 0 0
\(523\) 3.46995 6.01013i 0.151730 0.262805i −0.780133 0.625613i \(-0.784849\pi\)
0.931864 + 0.362809i \(0.118182\pi\)
\(524\) −25.3220 + 43.8591i −1.10620 + 1.91599i
\(525\) 0 0
\(526\) −6.28931 10.8934i −0.274227 0.474975i
\(527\) 0.565790 0.0246462
\(528\) 0 0
\(529\) −15.8858 −0.690686
\(530\) −47.1824 + 81.7223i −2.04947 + 3.54979i
\(531\) 0 0
\(532\) −8.45516 8.84190i −0.366577 0.383345i
\(533\) −14.9146 + 25.8328i −0.646023 + 1.11894i
\(534\) 0 0
\(535\) 15.3863 26.6498i 0.665208 1.15217i
\(536\) 10.4031 18.0187i 0.449347 0.778291i
\(537\) 0 0
\(538\) 17.2241 29.8330i 0.742582 1.28619i
\(539\) 26.8652 13.9484i 1.15716 0.600798i
\(540\) 0 0
\(541\) 8.34520 14.4543i 0.358788 0.621439i −0.628971 0.777429i \(-0.716523\pi\)
0.987759 + 0.155990i \(0.0498567\pi\)
\(542\) −67.8683 −2.91519
\(543\) 0 0
\(544\) −28.7474 −1.23254
\(545\) −17.3429 30.0388i −0.742889 1.28672i
\(546\) 0 0
\(547\) −1.88962 + 3.27292i −0.0807943 + 0.139940i −0.903591 0.428395i \(-0.859079\pi\)
0.822797 + 0.568335i \(0.192412\pi\)
\(548\) −12.4602 + 21.5818i −0.532275 + 0.921927i
\(549\) 0 0
\(550\) −45.3499 78.5483i −1.93373 3.34931i
\(551\) 0.603473 + 1.04525i 0.0257088 + 0.0445290i
\(552\) 0 0
\(553\) −28.2023 29.4922i −1.19928 1.25414i
\(554\) 29.3582 + 50.8499i 1.24731 + 2.16041i
\(555\) 0 0
\(556\) −10.8283 −0.459224
\(557\) 5.73458 + 9.93258i 0.242982 + 0.420857i 0.961562 0.274587i \(-0.0885411\pi\)
−0.718580 + 0.695444i \(0.755208\pi\)
\(558\) 0 0
\(559\) −0.767806 −0.0324747
\(560\) 10.3288 + 10.8013i 0.436473 + 0.456437i
\(561\) 0 0
\(562\) −38.3337 −1.61701
\(563\) 12.6908 21.9811i 0.534854 0.926394i −0.464316 0.885669i \(-0.653700\pi\)
0.999170 0.0407249i \(-0.0129667\pi\)
\(564\) 0 0
\(565\) 5.26627 + 9.12145i 0.221554 + 0.383742i
\(566\) 40.5287 1.70355
\(567\) 0 0
\(568\) 7.00350 0.293860
\(569\) −4.34702 7.52926i −0.182237 0.315643i 0.760405 0.649449i \(-0.225000\pi\)
−0.942642 + 0.333806i \(0.891667\pi\)
\(570\) 0 0
\(571\) −4.06378 + 7.03868i −0.170064 + 0.294560i −0.938442 0.345437i \(-0.887731\pi\)
0.768378 + 0.639996i \(0.221064\pi\)
\(572\) −35.7494 −1.49476
\(573\) 0 0
\(574\) −16.9906 + 58.1754i −0.709173 + 2.42819i
\(575\) −25.3368 −1.05662
\(576\) 0 0
\(577\) −11.0420 19.1253i −0.459683 0.796195i 0.539261 0.842139i \(-0.318704\pi\)
−0.998944 + 0.0459441i \(0.985370\pi\)
\(578\) −1.74816 −0.0727138
\(579\) 0 0
\(580\) 4.10832 + 7.11581i 0.170589 + 0.295468i
\(581\) 4.77721 16.3571i 0.198192 0.678606i
\(582\) 0 0
\(583\) 24.2677 + 42.0329i 1.00506 + 1.74082i
\(584\) 3.45452 + 5.98341i 0.142949 + 0.247595i
\(585\) 0 0
\(586\) −11.8107 + 20.4567i −0.487895 + 0.845060i
\(587\) −15.3600 + 26.6043i −0.633975 + 1.09808i 0.352756 + 0.935715i \(0.385244\pi\)
−0.986731 + 0.162362i \(0.948089\pi\)
\(588\) 0 0
\(589\) 0.113005 + 0.195731i 0.00465630 + 0.00806495i
\(590\) 5.82812 0.239940
\(591\) 0 0
\(592\) 12.2872 0.505000
\(593\) 22.0358 38.1671i 0.904901 1.56733i 0.0838502 0.996478i \(-0.473278\pi\)
0.821050 0.570856i \(-0.193388\pi\)
\(594\) 0 0
\(595\) −28.0315 29.3136i −1.14918 1.20174i
\(596\) −6.62920 + 11.4821i −0.271543 + 0.470326i
\(597\) 0 0
\(598\) −8.46656 + 14.6645i −0.346223 + 0.599677i
\(599\) 13.6831 23.6999i 0.559078 0.968351i −0.438496 0.898733i \(-0.644489\pi\)
0.997574 0.0696182i \(-0.0221781\pi\)
\(600\) 0 0
\(601\) 3.60908 6.25111i 0.147217 0.254988i −0.782981 0.622046i \(-0.786302\pi\)
0.930198 + 0.367058i \(0.119635\pi\)
\(602\) −1.51549 + 0.369973i −0.0617668 + 0.0150790i
\(603\) 0 0
\(604\) −11.2100 + 19.4164i −0.456130 + 0.790040i
\(605\) −29.3194 −1.19200
\(606\) 0 0
\(607\) 37.0048 1.50198 0.750989 0.660315i \(-0.229577\pi\)
0.750989 + 0.660315i \(0.229577\pi\)
\(608\) −5.74173 9.94496i −0.232858 0.403321i
\(609\) 0 0
\(610\) 8.85923 15.3446i 0.358700 0.621286i
\(611\) −11.4040 + 19.7523i −0.461357 + 0.799093i
\(612\) 0 0
\(613\) −0.830292 1.43811i −0.0335352 0.0580847i 0.848771 0.528761i \(-0.177343\pi\)
−0.882306 + 0.470676i \(0.844010\pi\)
\(614\) −34.6598 60.0326i −1.39876 2.42272i
\(615\) 0 0
\(616\) −21.4796 + 5.24376i −0.865438 + 0.211277i
\(617\) 11.1209 + 19.2620i 0.447710 + 0.775457i 0.998237 0.0593607i \(-0.0189062\pi\)
−0.550526 + 0.834818i \(0.685573\pi\)
\(618\) 0 0
\(619\) 19.7805 0.795046 0.397523 0.917592i \(-0.369870\pi\)
0.397523 + 0.917592i \(0.369870\pi\)
\(620\) 0.769316 + 1.33249i 0.0308965 + 0.0535142i
\(621\) 0 0
\(622\) −29.7838 −1.19422
\(623\) 0.190530 0.652371i 0.00763342 0.0261367i
\(624\) 0 0
\(625\) 17.7393 0.709571
\(626\) 21.3528 36.9842i 0.853431 1.47819i
\(627\) 0 0
\(628\) −33.4470 57.9320i −1.33468 2.31174i
\(629\) −33.3462 −1.32960
\(630\) 0 0
\(631\) 49.2569 1.96089 0.980443 0.196804i \(-0.0630562\pi\)
0.980443 + 0.196804i \(0.0630562\pi\)
\(632\) 14.9031 + 25.8130i 0.592815 + 1.02678i
\(633\) 0 0
\(634\) 16.9548 29.3666i 0.673362 1.16630i
\(635\) −52.0041 −2.06372
\(636\) 0 0
\(637\) 16.9630 + 10.8324i 0.672100 + 0.429194i
\(638\) 7.16578 0.283696
\(639\) 0 0
\(640\) −26.6162 46.1006i −1.05210 1.82229i
\(641\) −8.65682 −0.341924 −0.170962 0.985278i \(-0.554688\pi\)
−0.170962 + 0.985278i \(0.554688\pi\)
\(642\) 0 0
\(643\) −8.85782 15.3422i −0.349318 0.605037i 0.636810 0.771021i \(-0.280254\pi\)
−0.986129 + 0.165983i \(0.946920\pi\)
\(644\) −5.68830 + 19.4766i −0.224150 + 0.767486i
\(645\) 0 0
\(646\) 7.14789 + 12.3805i 0.281230 + 0.487105i
\(647\) 6.05092 + 10.4805i 0.237886 + 0.412031i 0.960108 0.279631i \(-0.0902121\pi\)
−0.722221 + 0.691662i \(0.756879\pi\)
\(648\) 0 0
\(649\) 1.49881 2.59602i 0.0588335 0.101903i
\(650\) 30.1531 52.2267i 1.18270 2.04850i
\(651\) 0 0
\(652\) −8.78523 15.2165i −0.344056 0.595923i
\(653\) −36.2140 −1.41717 −0.708583 0.705628i \(-0.750665\pi\)
−0.708583 + 0.705628i \(0.750665\pi\)
\(654\) 0 0
\(655\) −67.0697 −2.62063
\(656\) −7.69502 + 13.3282i −0.300440 + 0.520378i
\(657\) 0 0
\(658\) −12.9913 + 44.4821i −0.506455 + 1.73409i
\(659\) −19.6707 + 34.0706i −0.766261 + 1.32720i 0.173316 + 0.984866i \(0.444552\pi\)
−0.939577 + 0.342337i \(0.888781\pi\)
\(660\) 0 0
\(661\) 0.830402 1.43830i 0.0322989 0.0559433i −0.849424 0.527711i \(-0.823050\pi\)
0.881723 + 0.471767i \(0.156384\pi\)
\(662\) 1.36707 2.36784i 0.0531327 0.0920286i
\(663\) 0 0
\(664\) −6.22343 + 10.7793i −0.241516 + 0.418318i
\(665\) 4.54211 15.5521i 0.176135 0.603084i
\(666\) 0 0
\(667\) 1.00088 1.73357i 0.0387540 0.0671240i
\(668\) 33.4722 1.29508
\(669\) 0 0
\(670\) 90.5183 3.49703
\(671\) −4.55664 7.89233i −0.175907 0.304680i
\(672\) 0 0
\(673\) −10.4154 + 18.0399i −0.401483 + 0.695388i −0.993905 0.110239i \(-0.964838\pi\)
0.592423 + 0.805627i \(0.298172\pi\)
\(674\) −13.1470 + 22.7713i −0.506405 + 0.877118i
\(675\) 0 0
\(676\) 6.80421 + 11.7852i 0.261700 + 0.453279i
\(677\) 23.3654 + 40.4701i 0.898006 + 1.55539i 0.830040 + 0.557704i \(0.188317\pi\)
0.0679653 + 0.997688i \(0.478349\pi\)
\(678\) 0 0
\(679\) 0.785163 2.68838i 0.0301318 0.103171i
\(680\) 14.8129 + 25.6566i 0.568048 + 0.983887i
\(681\) 0 0
\(682\) 1.34185 0.0513822
\(683\) 10.5747 + 18.3159i 0.404630 + 0.700840i 0.994278 0.106820i \(-0.0340669\pi\)
−0.589648 + 0.807660i \(0.700734\pi\)
\(684\) 0 0
\(685\) −33.0030 −1.26098
\(686\) 38.7012 + 13.2071i 1.47762 + 0.504248i
\(687\) 0 0
\(688\) −0.396141 −0.0151027
\(689\) −16.1356 + 27.9476i −0.614716 + 1.06472i
\(690\) 0 0
\(691\) 11.7985 + 20.4356i 0.448836 + 0.777407i 0.998311 0.0581038i \(-0.0185054\pi\)
−0.549475 + 0.835510i \(0.685172\pi\)
\(692\) 55.3689 2.10481
\(693\) 0 0
\(694\) −9.59768 −0.364323
\(695\) −7.17017 12.4191i −0.271980 0.471083i
\(696\) 0 0
\(697\) 20.8836 36.1714i 0.791021 1.37009i
\(698\) 15.8437 0.599693
\(699\) 0 0
\(700\) 20.2585 69.3646i 0.765699 2.62174i
\(701\) −42.1420 −1.59168 −0.795841 0.605505i \(-0.792971\pi\)
−0.795841 + 0.605505i \(0.792971\pi\)
\(702\) 0 0
\(703\) −6.66024 11.5359i −0.251196 0.435084i
\(704\) −55.3488 −2.08603
\(705\) 0 0
\(706\) −27.7067 47.9894i −1.04276 1.80611i
\(707\) 3.51059 0.857032i 0.132029 0.0322320i
\(708\) 0 0
\(709\) −22.9919 39.8231i −0.863478 1.49559i −0.868551 0.495601i \(-0.834948\pi\)
0.00507252 0.999987i \(-0.498385\pi\)
\(710\) 15.2345 + 26.3869i 0.571740 + 0.990282i
\(711\) 0 0
\(712\) −0.248209 + 0.429911i −0.00930204 + 0.0161116i
\(713\) 0.187422 0.324625i 0.00701901 0.0121573i
\(714\) 0 0
\(715\) −23.6721 41.0013i −0.885286 1.53336i
\(716\) 9.60869 0.359094
\(717\) 0 0
\(718\) 70.6378 2.63618
\(719\) 16.5249 28.6220i 0.616275 1.06742i −0.373885 0.927475i \(-0.621974\pi\)
0.990159 0.139944i \(-0.0446922\pi\)
\(720\) 0 0
\(721\) 38.4801 9.39406i 1.43307 0.349853i
\(722\) 18.1207 31.3859i 0.674381 1.16806i
\(723\) 0 0
\(724\) 28.3726 49.1428i 1.05446 1.82638i
\(725\) −3.56455 + 6.17398i −0.132384 + 0.229296i
\(726\) 0 0
\(727\) 12.5275 21.6982i 0.464619 0.804743i −0.534565 0.845127i \(-0.679525\pi\)
0.999184 + 0.0403837i \(0.0128580\pi\)
\(728\) −10.1603 10.6251i −0.376567 0.393792i
\(729\) 0 0
\(730\) −15.0290 + 26.0310i −0.556248 + 0.963451i
\(731\) 1.07509 0.0397636
\(732\) 0 0
\(733\) 14.0125 0.517563 0.258782 0.965936i \(-0.416679\pi\)
0.258782 + 0.965936i \(0.416679\pi\)
\(734\) 12.2817 + 21.2725i 0.453326 + 0.785184i
\(735\) 0 0
\(736\) −9.52280 + 16.4940i −0.351015 + 0.607976i
\(737\) 23.2785 40.3195i 0.857474 1.48519i
\(738\) 0 0
\(739\) 19.3007 + 33.4297i 0.709987 + 1.22973i 0.964862 + 0.262759i \(0.0846323\pi\)
−0.254875 + 0.966974i \(0.582034\pi\)
\(740\) −45.3415 78.5338i −1.66679 2.88696i
\(741\) 0 0
\(742\) −18.3815 + 62.9378i −0.674806 + 2.31052i
\(743\) 0.906592 + 1.57026i 0.0332596 + 0.0576073i 0.882176 0.470920i \(-0.156078\pi\)
−0.848916 + 0.528527i \(0.822745\pi\)
\(744\) 0 0
\(745\) −17.5586 −0.643296
\(746\) −17.8346 30.8904i −0.652971 1.13098i
\(747\) 0 0
\(748\) 50.0567 1.83026
\(749\) 5.99425 20.5242i 0.219025 0.749938i
\(750\) 0 0
\(751\) −29.4262 −1.07378 −0.536888 0.843653i \(-0.680400\pi\)
−0.536888 + 0.843653i \(0.680400\pi\)
\(752\) −5.88377 + 10.1910i −0.214559 + 0.371627i
\(753\) 0 0
\(754\) 2.38226 + 4.12620i 0.0867569 + 0.150267i
\(755\) −29.6917 −1.08059
\(756\) 0 0
\(757\) 22.5455 0.819431 0.409715 0.912213i \(-0.365628\pi\)
0.409715 + 0.912213i \(0.365628\pi\)
\(758\) −3.51607 6.09000i −0.127709 0.221199i
\(759\) 0 0
\(760\) −5.91715 + 10.2488i −0.214638 + 0.371763i
\(761\) −12.8626 −0.466270 −0.233135 0.972444i \(-0.574898\pi\)
−0.233135 + 0.972444i \(0.574898\pi\)
\(762\) 0 0
\(763\) −16.6565 17.4184i −0.603007 0.630589i
\(764\) 12.0039 0.434285
\(765\) 0 0
\(766\) −18.1913 31.5082i −0.657277 1.13844i
\(767\) 1.99312 0.0719673
\(768\) 0 0
\(769\) 22.3611 + 38.7305i 0.806362 + 1.39666i 0.915368 + 0.402618i \(0.131900\pi\)
−0.109007 + 0.994041i \(0.534767\pi\)
\(770\) −66.4806 69.5215i −2.39579 2.50538i
\(771\) 0 0
\(772\) 19.9452 + 34.5460i 0.717842 + 1.24334i
\(773\) 5.24400 + 9.08288i 0.188614 + 0.326688i 0.944788 0.327681i \(-0.106267\pi\)
−0.756175 + 0.654370i \(0.772934\pi\)
\(774\) 0 0
\(775\) −0.667491 + 1.15613i −0.0239770 + 0.0415294i
\(776\) −1.02286 + 1.77164i −0.0367184 + 0.0635982i
\(777\) 0 0
\(778\) 35.3026 + 61.1460i 1.26566 + 2.19219i
\(779\) 16.6843 0.597777
\(780\) 0 0
\(781\) 15.6713 0.560764
\(782\) 11.8550 20.5334i 0.423933 0.734273i
\(783\) 0 0
\(784\) 8.75190 + 5.58884i 0.312568 + 0.199601i
\(785\) 44.2950 76.7213i 1.58096 2.73830i
\(786\) 0 0
\(787\) −16.1037 + 27.8924i −0.574035 + 0.994257i 0.422111 + 0.906544i \(0.361289\pi\)
−0.996146 + 0.0877130i \(0.972044\pi\)
\(788\) −10.7609 + 18.6384i −0.383341 + 0.663966i
\(789\) 0 0
\(790\) −64.8365 + 112.300i −2.30678 + 3.99546i
\(791\) 5.05785 + 5.28920i 0.179836 + 0.188062i
\(792\) 0 0
\(793\) 3.02970 5.24760i 0.107588 0.186348i
\(794\) 61.4085 2.17931
\(795\) 0 0
\(796\) −36.3872 −1.28971
\(797\) 16.1389 + 27.9534i 0.571669 + 0.990160i 0.996395 + 0.0848377i \(0.0270372\pi\)
−0.424726 + 0.905322i \(0.639629\pi\)
\(798\) 0 0
\(799\) 15.9680 27.6574i 0.564907 0.978448i
\(800\) 33.9148 58.7422i 1.19907 2.07685i
\(801\) 0 0
\(802\) 30.4574 + 52.7538i 1.07549 + 1.86280i
\(803\) 7.72998 + 13.3887i 0.272785 + 0.472478i
\(804\) 0 0
\(805\) −26.1045 + 6.37282i −0.920061 + 0.224612i
\(806\) 0.446098 + 0.772664i 0.0157131 + 0.0272159i
\(807\) 0 0
\(808\) −2.63955 −0.0928591
\(809\) 14.9820 + 25.9495i 0.526737 + 0.912336i 0.999515 + 0.0311538i \(0.00991818\pi\)
−0.472777 + 0.881182i \(0.656748\pi\)
\(810\) 0 0
\(811\) −13.1971 −0.463414 −0.231707 0.972786i \(-0.574431\pi\)
−0.231707 + 0.972786i \(0.574431\pi\)
\(812\) 3.94572 + 4.12620i 0.138468 + 0.144801i
\(813\) 0 0
\(814\) −79.0853 −2.77194
\(815\) 11.6346 20.1517i 0.407541 0.705883i
\(816\) 0 0
\(817\) 0.214728 + 0.371919i 0.00751237 + 0.0130118i
\(818\) −26.1087 −0.912870
\(819\) 0 0
\(820\) 113.583 3.96650
\(821\) −4.01806 6.95948i −0.140231 0.242888i 0.787352 0.616503i \(-0.211451\pi\)
−0.927584 + 0.373616i \(0.878118\pi\)
\(822\) 0 0
\(823\) −9.78282 + 16.9443i −0.341008 + 0.590643i −0.984620 0.174709i \(-0.944102\pi\)
0.643612 + 0.765352i \(0.277435\pi\)
\(824\) −28.9325 −1.00791
\(825\) 0 0
\(826\) 3.93400 0.960398i 0.136881 0.0334165i
\(827\) 45.8218 1.59338 0.796690 0.604389i \(-0.206583\pi\)
0.796690 + 0.604389i \(0.206583\pi\)
\(828\) 0 0
\(829\) −17.0773 29.5787i −0.593119 1.02731i −0.993809 0.111098i \(-0.964563\pi\)
0.400691 0.916213i \(-0.368770\pi\)
\(830\) −54.1504 −1.87959
\(831\) 0 0
\(832\) −18.4007 31.8709i −0.637928 1.10492i
\(833\) −23.7518 15.1676i −0.822952 0.525525i
\(834\) 0 0
\(835\) 22.1642 + 38.3895i 0.767024 + 1.32852i
\(836\) 9.99783 + 17.3168i 0.345782 + 0.598913i
\(837\) 0 0
\(838\) 9.73360 16.8591i 0.336242 0.582388i
\(839\) −17.7986 + 30.8281i −0.614476 + 1.06430i 0.376000 + 0.926620i \(0.377299\pi\)
−0.990476 + 0.137684i \(0.956034\pi\)
\(840\) 0 0
\(841\) 14.2184 + 24.6270i 0.490289 + 0.849205i
\(842\) 41.2897 1.42294
\(843\) 0 0
\(844\) −14.8132 −0.509891
\(845\) −9.01105 + 15.6076i −0.309990 + 0.536918i
\(846\) 0 0
\(847\) −19.7907 + 4.83146i −0.680017 + 0.166011i
\(848\) −8.32497 + 14.4193i −0.285881 + 0.495160i
\(849\) 0 0
\(850\) −42.2207 + 73.1283i −1.44816 + 2.50828i
\(851\) −11.0462 + 19.1325i −0.378658 + 0.655855i
\(852\) 0 0
\(853\) −16.6973 + 28.9206i −0.571705 + 0.990222i 0.424686 + 0.905341i \(0.360384\pi\)
−0.996391 + 0.0848812i \(0.972949\pi\)
\(854\) 3.45141 11.8176i 0.118105 0.404389i
\(855\) 0 0
\(856\) −7.80890 + 13.5254i −0.266903 + 0.462289i
\(857\) 25.8147 0.881814 0.440907 0.897553i \(-0.354657\pi\)
0.440907 + 0.897553i \(0.354657\pi\)
\(858\) 0 0
\(859\) −43.0007 −1.46716 −0.733582 0.679601i \(-0.762153\pi\)
−0.733582 + 0.679601i \(0.762153\pi\)
\(860\) 1.46182 + 2.53195i 0.0498477 + 0.0863387i
\(861\) 0 0
\(862\) −18.3478 + 31.7794i −0.624929 + 1.08241i
\(863\) 10.7483 18.6166i 0.365877 0.633718i −0.623039 0.782191i \(-0.714102\pi\)
0.988917 + 0.148473i \(0.0474357\pi\)
\(864\) 0 0
\(865\) 36.6634 + 63.5029i 1.24659 + 2.15916i
\(866\) 27.9315 + 48.3788i 0.949152 + 1.64398i
\(867\) 0 0
\(868\) 0.738868 + 0.772664i 0.0250788 + 0.0262259i
\(869\) 33.3479 + 57.7602i 1.13125 + 1.95938i
\(870\) 0 0
\(871\) 30.9557 1.04889
\(872\) 8.80194 + 15.2454i 0.298071 + 0.516274i
\(873\) 0 0
\(874\) 9.47117 0.320367
\(875\) 44.0341 10.7500i 1.48863 0.363415i
\(876\) 0 0
\(877\) 14.6841 0.495846 0.247923 0.968780i \(-0.420252\pi\)
0.247923 + 0.968780i \(0.420252\pi\)
\(878\) 32.5153 56.3182i 1.09734 1.90065i
\(879\) 0 0
\(880\) −12.2134 21.1542i −0.411712 0.713107i
\(881\) −37.6060 −1.26698 −0.633490 0.773751i \(-0.718378\pi\)
−0.633490 + 0.773751i \(0.718378\pi\)
\(882\) 0 0
\(883\) −46.9989 −1.58164 −0.790820 0.612049i \(-0.790345\pi\)
−0.790820 + 0.612049i \(0.790345\pi\)
\(884\) 16.6413 + 28.8236i 0.559709 + 0.969444i
\(885\) 0 0
\(886\) 35.9423 62.2540i 1.20751 2.09146i
\(887\) 26.4248 0.887259 0.443630 0.896210i \(-0.353691\pi\)
0.443630 + 0.896210i \(0.353691\pi\)
\(888\) 0 0
\(889\) −35.1029 + 8.56959i −1.17731 + 0.287415i
\(890\) −2.15969 −0.0723928
\(891\) 0 0
\(892\) 21.8758 + 37.8900i 0.732455 + 1.26865i
\(893\) 12.7572 0.426902
\(894\) 0 0
\(895\) 6.36256 + 11.0203i 0.212677 + 0.368367i
\(896\) −25.5628 26.7321i −0.853993 0.893056i
\(897\) 0 0
\(898\) −0.189757 0.328668i −0.00633226 0.0109678i
\(899\) −0.0527355 0.0913406i −0.00175883 0.00304638i
\(900\) 0 0
\(901\) 22.5932 39.1325i 0.752688 1.30369i
\(902\) 49.5283 85.7856i 1.64911 2.85635i
\(903\) 0 0
\(904\) −2.67276 4.62935i −0.0888946 0.153970i
\(905\) 75.1496 2.49806
\(906\) 0 0
\(907\) −0.450052 −0.0149437 −0.00747187 0.999972i \(-0.502378\pi\)
−0.00747187 + 0.999972i \(0.502378\pi\)
\(908\) −6.16667 + 10.6810i −0.204648 + 0.354461i
\(909\) 0 0
\(910\) 17.9304 61.3932i 0.594386 2.03517i
\(911\) −2.37220 + 4.10877i −0.0785944 + 0.136129i −0.902644 0.430389i \(-0.858377\pi\)
0.824049 + 0.566518i \(0.191710\pi\)
\(912\) 0 0
\(913\) −13.9258 + 24.1202i −0.460877 + 0.798262i
\(914\) −27.0502 + 46.8523i −0.894742 + 1.54974i
\(915\) 0 0
\(916\) −1.39629 + 2.41845i −0.0461348 + 0.0799079i
\(917\) −45.2722 + 11.0522i −1.49502 + 0.364976i
\(918\) 0 0
\(919\) −21.2103 + 36.7372i −0.699662 + 1.21185i 0.268922 + 0.963162i \(0.413333\pi\)
−0.968584 + 0.248688i \(0.920001\pi\)
\(920\) 19.6275 0.647099
\(921\) 0 0
\(922\) 20.8238 0.685794
\(923\) 5.20993 + 9.02386i 0.171487 + 0.297024i
\(924\) 0 0
\(925\) 39.3402 68.1393i 1.29350 2.24041i
\(926\) −3.15878 + 5.47116i −0.103804 + 0.179793i
\(927\) 0 0
\(928\) 2.67946 + 4.64096i 0.0879575 + 0.152347i
\(929\) −22.5409 39.0419i −0.739541 1.28092i −0.952702 0.303906i \(-0.901709\pi\)
0.213160 0.977017i \(-0.431624\pi\)
\(930\) 0 0
\(931\) 0.503158 11.2462i 0.0164903 0.368579i
\(932\) −5.42476 9.39596i −0.177694 0.307775i
\(933\) 0 0
\(934\) 17.0079 0.556517
\(935\) 33.1459 + 57.4104i 1.08399 + 1.87752i
\(936\) 0 0
\(937\) 19.3045 0.630650 0.315325 0.948984i \(-0.397886\pi\)
0.315325 + 0.948984i \(0.397886\pi\)
\(938\) 61.1001 14.9162i 1.99499 0.487032i
\(939\) 0 0
\(940\) 86.8480 2.83267
\(941\) −5.27697 + 9.13997i −0.172024 + 0.297955i −0.939127 0.343569i \(-0.888364\pi\)
0.767103 + 0.641524i \(0.221697\pi\)
\(942\) 0 0
\(943\) −13.8357 23.9641i −0.450551 0.780378i
\(944\) 1.02833 0.0334692
\(945\) 0 0
\(946\) 2.54973 0.0828989
\(947\) −23.8800 41.3614i −0.775996 1.34407i −0.934233 0.356664i \(-0.883914\pi\)
0.158236 0.987401i \(-0.449419\pi\)
\(948\) 0 0
\(949\) −5.13966 + 8.90215i −0.166840 + 0.288976i
\(950\) −33.7309 −1.09438
\(951\) 0 0
\(952\) 14.2266 + 14.8773i 0.461087 + 0.482178i
\(953\) 53.8101 1.74308 0.871540 0.490324i \(-0.163121\pi\)
0.871540 + 0.490324i \(0.163121\pi\)
\(954\) 0 0
\(955\) 7.94856 + 13.7673i 0.257209 + 0.445500i
\(956\) −19.2365 −0.622154
\(957\) 0 0
\(958\) −38.1787 66.1274i −1.23350 2.13648i
\(959\) −22.2772 + 5.43847i −0.719367 + 0.175617i
\(960\) 0 0
\(961\) 15.4901 + 26.8297i 0.499681 + 0.865474i
\(962\) −26.2919 45.5389i −0.847684 1.46823i
\(963\) 0 0
\(964\) 21.5230 37.2790i 0.693210 1.20067i
\(965\) −26.4141 + 45.7505i −0.850299 + 1.47276i
\(966\) 0 0
\(967\) 4.90887 + 8.50242i 0.157859 + 0.273419i 0.934096 0.357021i \(-0.116208\pi\)
−0.776238 + 0.630441i \(0.782874\pi\)
\(968\) 14.8803 0.478271
\(969\) 0 0
\(970\) −8.89994 −0.285760
\(971\) 11.8993 20.6102i 0.381867 0.661413i −0.609462 0.792815i \(-0.708615\pi\)
0.991329 + 0.131402i \(0.0419479\pi\)
\(972\) 0 0
\(973\) −6.88639 7.20138i −0.220768 0.230866i
\(974\) −20.3529 + 35.2523i −0.652149 + 1.12956i
\(975\) 0 0
\(976\) 1.56314 2.70744i 0.0500350 0.0866631i
\(977\) 19.9951 34.6326i 0.639701 1.10799i −0.345797 0.938309i \(-0.612391\pi\)
0.985498 0.169685i \(-0.0542752\pi\)
\(978\) 0 0
\(979\) −0.555404 + 0.961988i −0.0177508 + 0.0307453i
\(980\) 3.42539 76.5617i 0.109420 2.44567i
\(981\) 0 0
\(982\) −3.48170 + 6.03048i −0.111106 + 0.192440i
\(983\) −46.2286 −1.47446 −0.737231 0.675641i \(-0.763867\pi\)
−0.737231 + 0.675641i \(0.763867\pi\)
\(984\) 0 0
\(985\) −28.5020 −0.908151
\(986\) −3.33567 5.77754i −0.106229 0.183994i
\(987\) 0 0
\(988\) −6.64755 + 11.5139i −0.211487 + 0.366306i
\(989\) 0.356131 0.616838i 0.0113243 0.0196143i
\(990\) 0 0
\(991\) −7.19818 12.4676i −0.228658 0.396047i 0.728753 0.684777i \(-0.240100\pi\)
−0.957411 + 0.288730i \(0.906767\pi\)
\(992\) 0.501750 + 0.869057i 0.0159306 + 0.0275926i
\(993\) 0 0
\(994\) 14.6315 + 15.3008i 0.464084 + 0.485312i
\(995\) −24.0944 41.7327i −0.763844 1.32302i
\(996\) 0 0
\(997\) 43.8546 1.38889 0.694444 0.719547i \(-0.255650\pi\)
0.694444 + 0.719547i \(0.255650\pi\)
\(998\) −31.8833 55.2234i −1.00925 1.74807i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.j.541.1 8
3.2 odd 2 567.2.g.k.541.4 8
7.4 even 3 567.2.h.k.298.4 8
9.2 odd 6 567.2.e.d.163.4 yes 8
9.4 even 3 567.2.h.k.352.4 8
9.5 odd 6 567.2.h.j.352.1 8
9.7 even 3 567.2.e.c.163.1 8
21.11 odd 6 567.2.h.j.298.1 8
63.2 odd 6 3969.2.a.s.1.1 4
63.4 even 3 inner 567.2.g.j.109.1 8
63.11 odd 6 567.2.e.d.487.4 yes 8
63.16 even 3 3969.2.a.x.1.4 4
63.25 even 3 567.2.e.c.487.1 yes 8
63.32 odd 6 567.2.g.k.109.4 8
63.47 even 6 3969.2.a.t.1.1 4
63.61 odd 6 3969.2.a.w.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.c.163.1 8 9.7 even 3
567.2.e.c.487.1 yes 8 63.25 even 3
567.2.e.d.163.4 yes 8 9.2 odd 6
567.2.e.d.487.4 yes 8 63.11 odd 6
567.2.g.j.109.1 8 63.4 even 3 inner
567.2.g.j.541.1 8 1.1 even 1 trivial
567.2.g.k.109.4 8 63.32 odd 6
567.2.g.k.541.4 8 3.2 odd 2
567.2.h.j.298.1 8 21.11 odd 6
567.2.h.j.352.1 8 9.5 odd 6
567.2.h.k.298.4 8 7.4 even 3
567.2.h.k.352.4 8 9.4 even 3
3969.2.a.s.1.1 4 63.2 odd 6
3969.2.a.t.1.1 4 63.47 even 6
3969.2.a.w.1.4 4 63.61 odd 6
3969.2.a.x.1.4 4 63.16 even 3