Properties

Label 567.2.g.j.109.3
Level $567$
Weight $2$
Character 567.109
Analytic conductor $4.528$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [567,2,Mod(109,567)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(567, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("567.109"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-1,0,-5,4,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1767277521.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + x^{6} - 10x^{5} + 38x^{4} - 40x^{3} + 64x^{2} - 38x + 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.3
Root \(2.11692 - 0.978886i\) of defining polynomial
Character \(\chi\) \(=\) 567.109
Dual form 567.2.g.j.541.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.186423 - 0.322894i) q^{2} +(0.930493 + 1.61166i) q^{4} +1.42143 q^{5} +(-1.03335 - 2.43561i) q^{7} +1.43955 q^{8} +(0.264988 - 0.458972i) q^{10} +3.76381 q^{11} +(-0.930493 + 1.61166i) q^{13} +(-0.979083 - 0.120389i) q^{14} +(-1.59262 + 2.75850i) q^{16} +(3.76718 - 6.52496i) q^{17} +(0.837872 + 1.45124i) q^{19} +(1.32264 + 2.29087i) q^{20} +(0.701659 - 1.21531i) q^{22} -0.511859 q^{23} -2.97952 q^{25} +(0.346930 + 0.600901i) q^{26} +(2.96385 - 3.93173i) q^{28} +(4.36099 + 7.55345i) q^{29} +(1.46665 + 2.54031i) q^{31} +(2.03335 + 3.52187i) q^{32} +(-1.40458 - 2.43280i) q^{34} +(-1.46884 - 3.46206i) q^{35} +(-2.16551 - 3.75077i) q^{37} +0.624794 q^{38} +2.04623 q^{40} +(-3.42025 + 5.92405i) q^{41} +(2.26837 + 3.92892i) q^{43} +(3.50220 + 6.06598i) q^{44} +(-0.0954222 + 0.165276i) q^{46} +(3.71978 - 6.44284i) q^{47} +(-4.86436 + 5.03368i) q^{49} +(-0.555451 + 0.962069i) q^{50} -3.46327 q^{52} +(0.416437 - 0.721290i) q^{53} +5.35001 q^{55} +(-1.48756 - 3.50618i) q^{56} +3.25195 q^{58} +(-6.51126 - 11.2778i) q^{59} +(5.15189 - 8.92333i) q^{61} +1.09367 q^{62} -4.85423 q^{64} +(-1.32264 + 2.29087i) q^{65} +(-3.25813 - 5.64324i) q^{67} +14.0214 q^{68} +(-1.39170 - 0.171126i) q^{70} -4.11854 q^{71} +(-2.84737 + 4.93179i) q^{73} -1.61480 q^{74} +(-1.55927 + 2.70073i) q^{76} +(-3.88934 - 9.16716i) q^{77} +(-0.132152 + 0.228895i) q^{79} +(-2.26381 + 3.92103i) q^{80} +(1.27523 + 2.20876i) q^{82} +(-3.95023 - 6.84200i) q^{83} +(5.35481 - 9.27480i) q^{85} +1.69150 q^{86} +5.41819 q^{88} +(0.398321 + 0.689912i) q^{89} +(4.88690 + 0.600901i) q^{91} +(-0.476282 - 0.824944i) q^{92} +(-1.38690 - 2.40218i) q^{94} +(1.19098 + 2.06284i) q^{95} +(6.43999 + 11.1544i) q^{97} +(0.718516 + 2.50907i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 5 q^{4} + 4 q^{5} - 2 q^{7} - 6 q^{8} + 7 q^{10} + 10 q^{11} + 5 q^{13} + 7 q^{14} + q^{16} - 6 q^{17} + 8 q^{19} + 8 q^{20} + 7 q^{22} - 24 q^{23} + 16 q^{25} - q^{26} + 5 q^{28} + 10 q^{29}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.186423 0.322894i 0.131821 0.228320i −0.792558 0.609797i \(-0.791251\pi\)
0.924378 + 0.381477i \(0.124584\pi\)
\(3\) 0 0
\(4\) 0.930493 + 1.61166i 0.465247 + 0.805831i
\(5\) 1.42143 0.635685 0.317843 0.948144i \(-0.397042\pi\)
0.317843 + 0.948144i \(0.397042\pi\)
\(6\) 0 0
\(7\) −1.03335 2.43561i −0.390571 0.920573i
\(8\) 1.43955 0.508958
\(9\) 0 0
\(10\) 0.264988 0.458972i 0.0837965 0.145140i
\(11\) 3.76381 1.13483 0.567415 0.823432i \(-0.307943\pi\)
0.567415 + 0.823432i \(0.307943\pi\)
\(12\) 0 0
\(13\) −0.930493 + 1.61166i −0.258072 + 0.446994i −0.965725 0.259566i \(-0.916421\pi\)
0.707653 + 0.706560i \(0.249754\pi\)
\(14\) −0.979083 0.120389i −0.261671 0.0321754i
\(15\) 0 0
\(16\) −1.59262 + 2.75850i −0.398155 + 0.689625i
\(17\) 3.76718 6.52496i 0.913676 1.58253i 0.104849 0.994488i \(-0.466564\pi\)
0.808828 0.588046i \(-0.200103\pi\)
\(18\) 0 0
\(19\) 0.837872 + 1.45124i 0.192221 + 0.332937i 0.945986 0.324208i \(-0.105098\pi\)
−0.753765 + 0.657144i \(0.771764\pi\)
\(20\) 1.32264 + 2.29087i 0.295750 + 0.512255i
\(21\) 0 0
\(22\) 0.701659 1.21531i 0.149594 0.259105i
\(23\) −0.511859 −0.106730 −0.0533650 0.998575i \(-0.516995\pi\)
−0.0533650 + 0.998575i \(0.516995\pi\)
\(24\) 0 0
\(25\) −2.97952 −0.595905
\(26\) 0.346930 + 0.600901i 0.0680386 + 0.117846i
\(27\) 0 0
\(28\) 2.96385 3.93173i 0.560114 0.743027i
\(29\) 4.36099 + 7.55345i 0.809815 + 1.40264i 0.912992 + 0.407977i \(0.133766\pi\)
−0.103177 + 0.994663i \(0.532901\pi\)
\(30\) 0 0
\(31\) 1.46665 + 2.54031i 0.263418 + 0.456253i 0.967148 0.254215i \(-0.0818170\pi\)
−0.703730 + 0.710467i \(0.748484\pi\)
\(32\) 2.03335 + 3.52187i 0.359449 + 0.622585i
\(33\) 0 0
\(34\) −1.40458 2.43280i −0.240883 0.417222i
\(35\) −1.46884 3.46206i −0.248280 0.585194i
\(36\) 0 0
\(37\) −2.16551 3.75077i −0.356007 0.616622i 0.631283 0.775553i \(-0.282529\pi\)
−0.987290 + 0.158931i \(0.949195\pi\)
\(38\) 0.624794 0.101355
\(39\) 0 0
\(40\) 2.04623 0.323537
\(41\) −3.42025 + 5.92405i −0.534154 + 0.925182i 0.465050 + 0.885285i \(0.346036\pi\)
−0.999204 + 0.0398973i \(0.987297\pi\)
\(42\) 0 0
\(43\) 2.26837 + 3.92892i 0.345922 + 0.599155i 0.985521 0.169554i \(-0.0542327\pi\)
−0.639598 + 0.768709i \(0.720899\pi\)
\(44\) 3.50220 + 6.06598i 0.527976 + 0.914481i
\(45\) 0 0
\(46\) −0.0954222 + 0.165276i −0.0140692 + 0.0243686i
\(47\) 3.71978 6.44284i 0.542585 0.939785i −0.456170 0.889893i \(-0.650779\pi\)
0.998755 0.0498920i \(-0.0158877\pi\)
\(48\) 0 0
\(49\) −4.86436 + 5.03368i −0.694909 + 0.719098i
\(50\) −0.555451 + 0.962069i −0.0785526 + 0.136057i
\(51\) 0 0
\(52\) −3.46327 −0.480269
\(53\) 0.416437 0.721290i 0.0572020 0.0990768i −0.836006 0.548720i \(-0.815115\pi\)
0.893208 + 0.449643i \(0.148449\pi\)
\(54\) 0 0
\(55\) 5.35001 0.721395
\(56\) −1.48756 3.50618i −0.198784 0.468533i
\(57\) 0 0
\(58\) 3.25195 0.427002
\(59\) −6.51126 11.2778i −0.847693 1.46825i −0.883262 0.468880i \(-0.844658\pi\)
0.0355684 0.999367i \(-0.488676\pi\)
\(60\) 0 0
\(61\) 5.15189 8.92333i 0.659632 1.14252i −0.321079 0.947052i \(-0.604046\pi\)
0.980711 0.195463i \(-0.0626211\pi\)
\(62\) 1.09367 0.138896
\(63\) 0 0
\(64\) −4.85423 −0.606779
\(65\) −1.32264 + 2.29087i −0.164053 + 0.284148i
\(66\) 0 0
\(67\) −3.25813 5.64324i −0.398043 0.689432i 0.595441 0.803399i \(-0.296977\pi\)
−0.993484 + 0.113967i \(0.963644\pi\)
\(68\) 14.0214 1.70034
\(69\) 0 0
\(70\) −1.39170 0.171126i −0.166340 0.0204534i
\(71\) −4.11854 −0.488780 −0.244390 0.969677i \(-0.578588\pi\)
−0.244390 + 0.969677i \(0.578588\pi\)
\(72\) 0 0
\(73\) −2.84737 + 4.93179i −0.333259 + 0.577222i −0.983149 0.182806i \(-0.941482\pi\)
0.649889 + 0.760029i \(0.274815\pi\)
\(74\) −1.61480 −0.187716
\(75\) 0 0
\(76\) −1.55927 + 2.70073i −0.178860 + 0.309795i
\(77\) −3.88934 9.16716i −0.443232 1.04469i
\(78\) 0 0
\(79\) −0.132152 + 0.228895i −0.0148683 + 0.0257527i −0.873364 0.487068i \(-0.838066\pi\)
0.858496 + 0.512821i \(0.171400\pi\)
\(80\) −2.26381 + 3.92103i −0.253101 + 0.438384i
\(81\) 0 0
\(82\) 1.27523 + 2.20876i 0.140825 + 0.243916i
\(83\) −3.95023 6.84200i −0.433594 0.751007i 0.563586 0.826058i \(-0.309421\pi\)
−0.997180 + 0.0750507i \(0.976088\pi\)
\(84\) 0 0
\(85\) 5.35481 9.27480i 0.580810 1.00599i
\(86\) 1.69150 0.182399
\(87\) 0 0
\(88\) 5.41819 0.577581
\(89\) 0.398321 + 0.689912i 0.0422219 + 0.0731305i 0.886364 0.462989i \(-0.153223\pi\)
−0.844142 + 0.536119i \(0.819890\pi\)
\(90\) 0 0
\(91\) 4.88690 + 0.600901i 0.512286 + 0.0629915i
\(92\) −0.476282 0.824944i −0.0496558 0.0860063i
\(93\) 0 0
\(94\) −1.38690 2.40218i −0.143048 0.247766i
\(95\) 1.19098 + 2.06284i 0.122192 + 0.211643i
\(96\) 0 0
\(97\) 6.43999 + 11.1544i 0.653882 + 1.13256i 0.982173 + 0.187980i \(0.0601941\pi\)
−0.328291 + 0.944577i \(0.606473\pi\)
\(98\) 0.718516 + 2.50907i 0.0725811 + 0.253454i
\(99\) 0 0
\(100\) −2.77243 4.80198i −0.277243 0.480198i
\(101\) −12.8586 −1.27948 −0.639741 0.768591i \(-0.720958\pi\)
−0.639741 + 0.768591i \(0.720958\pi\)
\(102\) 0 0
\(103\) −19.7558 −1.94660 −0.973301 0.229534i \(-0.926280\pi\)
−0.973301 + 0.229534i \(0.926280\pi\)
\(104\) −1.33949 + 2.32007i −0.131348 + 0.227502i
\(105\) 0 0
\(106\) −0.155267 0.268930i −0.0150808 0.0261208i
\(107\) −3.61530 6.26188i −0.349504 0.605358i 0.636658 0.771147i \(-0.280316\pi\)
−0.986161 + 0.165788i \(0.946983\pi\)
\(108\) 0 0
\(109\) −4.88410 + 8.45951i −0.467812 + 0.810274i −0.999323 0.0367769i \(-0.988291\pi\)
0.531512 + 0.847051i \(0.321624\pi\)
\(110\) 0.997363 1.72748i 0.0950948 0.164709i
\(111\) 0 0
\(112\) 8.36436 + 1.02849i 0.790358 + 0.0971836i
\(113\) −8.45361 + 14.6421i −0.795248 + 1.37741i 0.127433 + 0.991847i \(0.459326\pi\)
−0.922681 + 0.385564i \(0.874007\pi\)
\(114\) 0 0
\(115\) −0.727575 −0.0678467
\(116\) −8.11574 + 14.0569i −0.753527 + 1.30515i
\(117\) 0 0
\(118\) −4.85538 −0.446974
\(119\) −19.7851 2.43280i −1.81369 0.223014i
\(120\) 0 0
\(121\) 3.16625 0.287841
\(122\) −1.92086 3.32702i −0.173906 0.301215i
\(123\) 0 0
\(124\) −2.72941 + 4.72748i −0.245108 + 0.424540i
\(125\) −11.3424 −1.01449
\(126\) 0 0
\(127\) −16.1715 −1.43499 −0.717495 0.696563i \(-0.754711\pi\)
−0.717495 + 0.696563i \(0.754711\pi\)
\(128\) −4.97164 + 8.61114i −0.439435 + 0.761125i
\(129\) 0 0
\(130\) 0.493139 + 0.854141i 0.0432511 + 0.0749131i
\(131\) 13.6216 1.19012 0.595060 0.803681i \(-0.297128\pi\)
0.595060 + 0.803681i \(0.297128\pi\)
\(132\) 0 0
\(133\) 2.66883 3.54037i 0.231416 0.306989i
\(134\) −2.42956 −0.209882
\(135\) 0 0
\(136\) 5.42306 9.39301i 0.465023 0.805444i
\(137\) 6.51186 0.556346 0.278173 0.960531i \(-0.410271\pi\)
0.278173 + 0.960531i \(0.410271\pi\)
\(138\) 0 0
\(139\) 8.95361 15.5081i 0.759435 1.31538i −0.183704 0.982982i \(-0.558809\pi\)
0.943139 0.332399i \(-0.107858\pi\)
\(140\) 4.21291 5.58870i 0.356056 0.472331i
\(141\) 0 0
\(142\) −0.767789 + 1.32985i −0.0644314 + 0.111598i
\(143\) −3.50220 + 6.06598i −0.292868 + 0.507263i
\(144\) 0 0
\(145\) 6.19886 + 10.7367i 0.514787 + 0.891638i
\(146\) 1.06163 + 1.83880i 0.0878611 + 0.152180i
\(147\) 0 0
\(148\) 4.02998 6.98012i 0.331262 0.573763i
\(149\) −19.9692 −1.63594 −0.817970 0.575261i \(-0.804901\pi\)
−0.817970 + 0.575261i \(0.804901\pi\)
\(150\) 0 0
\(151\) 6.31865 0.514205 0.257102 0.966384i \(-0.417232\pi\)
0.257102 + 0.966384i \(0.417232\pi\)
\(152\) 1.20616 + 2.08913i 0.0978325 + 0.169451i
\(153\) 0 0
\(154\) −3.68508 0.453123i −0.296952 0.0365137i
\(155\) 2.08474 + 3.61088i 0.167451 + 0.290033i
\(156\) 0 0
\(157\) 3.24789 + 5.62551i 0.259210 + 0.448964i 0.966030 0.258428i \(-0.0832046\pi\)
−0.706821 + 0.707393i \(0.749871\pi\)
\(158\) 0.0492724 + 0.0853424i 0.00391990 + 0.00678947i
\(159\) 0 0
\(160\) 2.89028 + 5.00611i 0.228497 + 0.395768i
\(161\) 0.528931 + 1.24669i 0.0416856 + 0.0982528i
\(162\) 0 0
\(163\) 9.61631 + 16.6559i 0.753208 + 1.30459i 0.946260 + 0.323406i \(0.104828\pi\)
−0.193053 + 0.981188i \(0.561839\pi\)
\(164\) −12.7301 −0.994053
\(165\) 0 0
\(166\) −2.94565 −0.228627
\(167\) 5.18862 8.98695i 0.401507 0.695431i −0.592401 0.805644i \(-0.701820\pi\)
0.993908 + 0.110212i \(0.0351531\pi\)
\(168\) 0 0
\(169\) 4.76837 + 8.25905i 0.366797 + 0.635312i
\(170\) −1.99652 3.45807i −0.153126 0.265222i
\(171\) 0 0
\(172\) −4.22140 + 7.31167i −0.321878 + 0.557510i
\(173\) 6.61005 11.4490i 0.502553 0.870448i −0.497443 0.867497i \(-0.665727\pi\)
0.999996 0.00295062i \(-0.000939214\pi\)
\(174\) 0 0
\(175\) 3.07890 + 7.25695i 0.232743 + 0.548574i
\(176\) −5.99432 + 10.3825i −0.451839 + 0.782608i
\(177\) 0 0
\(178\) 0.297024 0.0222629
\(179\) 5.74745 9.95487i 0.429584 0.744062i −0.567252 0.823544i \(-0.691993\pi\)
0.996836 + 0.0794823i \(0.0253267\pi\)
\(180\) 0 0
\(181\) −13.7040 −1.01861 −0.509306 0.860586i \(-0.670098\pi\)
−0.509306 + 0.860586i \(0.670098\pi\)
\(182\) 1.10506 1.46593i 0.0819122 0.108662i
\(183\) 0 0
\(184\) −0.736848 −0.0543211
\(185\) −3.07812 5.33147i −0.226308 0.391977i
\(186\) 0 0
\(187\) 14.1790 24.5587i 1.03687 1.79591i
\(188\) 13.8449 1.00974
\(189\) 0 0
\(190\) 0.888103 0.0644298
\(191\) 3.87167 6.70592i 0.280144 0.485223i −0.691276 0.722591i \(-0.742951\pi\)
0.971420 + 0.237367i \(0.0762845\pi\)
\(192\) 0 0
\(193\) −7.91002 13.7005i −0.569375 0.986187i −0.996628 0.0820547i \(-0.973852\pi\)
0.427252 0.904132i \(-0.359482\pi\)
\(194\) 4.80224 0.344781
\(195\) 0 0
\(196\) −12.6388 3.15590i −0.902775 0.225421i
\(197\) −3.64966 −0.260028 −0.130014 0.991512i \(-0.541502\pi\)
−0.130014 + 0.991512i \(0.541502\pi\)
\(198\) 0 0
\(199\) 10.3582 17.9409i 0.734272 1.27180i −0.220770 0.975326i \(-0.570857\pi\)
0.955042 0.296471i \(-0.0958098\pi\)
\(200\) −4.28918 −0.303291
\(201\) 0 0
\(202\) −2.39714 + 4.15197i −0.168662 + 0.292131i
\(203\) 13.8908 18.4270i 0.974943 1.29332i
\(204\) 0 0
\(205\) −4.86167 + 8.42066i −0.339554 + 0.588124i
\(206\) −3.68294 + 6.37904i −0.256602 + 0.444449i
\(207\) 0 0
\(208\) −2.96385 5.13353i −0.205506 0.355946i
\(209\) 3.15359 + 5.46218i 0.218138 + 0.377827i
\(210\) 0 0
\(211\) −9.92695 + 17.1940i −0.683400 + 1.18368i 0.290537 + 0.956864i \(0.406166\pi\)
−0.973937 + 0.226819i \(0.927167\pi\)
\(212\) 1.54997 0.106452
\(213\) 0 0
\(214\) −2.69589 −0.184287
\(215\) 3.22433 + 5.58471i 0.219898 + 0.380874i
\(216\) 0 0
\(217\) 4.67163 6.19721i 0.317131 0.420694i
\(218\) 1.82101 + 3.15409i 0.123335 + 0.213622i
\(219\) 0 0
\(220\) 4.97814 + 8.62240i 0.335626 + 0.581322i
\(221\) 7.01068 + 12.1429i 0.471589 + 0.816817i
\(222\) 0 0
\(223\) −8.03599 13.9187i −0.538130 0.932068i −0.999005 0.0446029i \(-0.985798\pi\)
0.460875 0.887465i \(-0.347536\pi\)
\(224\) 6.47672 8.59178i 0.432744 0.574063i
\(225\) 0 0
\(226\) 3.15189 + 5.45923i 0.209661 + 0.363143i
\(227\) 0.857745 0.0569305 0.0284653 0.999595i \(-0.490938\pi\)
0.0284653 + 0.999595i \(0.490938\pi\)
\(228\) 0 0
\(229\) 5.75584 0.380357 0.190178 0.981750i \(-0.439093\pi\)
0.190178 + 0.981750i \(0.439093\pi\)
\(230\) −0.135636 + 0.234929i −0.00894360 + 0.0154908i
\(231\) 0 0
\(232\) 6.27786 + 10.8736i 0.412162 + 0.713885i
\(233\) −3.69430 6.39872i −0.242022 0.419194i 0.719268 0.694732i \(-0.244477\pi\)
−0.961290 + 0.275539i \(0.911144\pi\)
\(234\) 0 0
\(235\) 5.28742 9.15808i 0.344913 0.597407i
\(236\) 12.1174 20.9879i 0.788773 1.36619i
\(237\) 0 0
\(238\) −4.47392 + 5.93494i −0.290001 + 0.384705i
\(239\) −6.90052 + 11.9520i −0.446357 + 0.773114i −0.998146 0.0608706i \(-0.980612\pi\)
0.551788 + 0.833984i \(0.313946\pi\)
\(240\) 0 0
\(241\) −19.7558 −1.27259 −0.636293 0.771448i \(-0.719533\pi\)
−0.636293 + 0.771448i \(0.719533\pi\)
\(242\) 0.590260 1.02236i 0.0379434 0.0657198i
\(243\) 0 0
\(244\) 19.1752 1.22757
\(245\) −6.91438 + 7.15505i −0.441743 + 0.457120i
\(246\) 0 0
\(247\) −3.11854 −0.198428
\(248\) 2.11131 + 3.65690i 0.134069 + 0.232214i
\(249\) 0 0
\(250\) −2.11448 + 3.66238i −0.133731 + 0.231629i
\(251\) 9.45207 0.596609 0.298305 0.954471i \(-0.403579\pi\)
0.298305 + 0.954471i \(0.403579\pi\)
\(252\) 0 0
\(253\) −1.92654 −0.121121
\(254\) −3.01474 + 5.22168i −0.189162 + 0.327637i
\(255\) 0 0
\(256\) −3.00058 5.19715i −0.187536 0.324822i
\(257\) 7.47327 0.466169 0.233085 0.972456i \(-0.425118\pi\)
0.233085 + 0.972456i \(0.425118\pi\)
\(258\) 0 0
\(259\) −6.89766 + 9.15018i −0.428600 + 0.568565i
\(260\) −4.92281 −0.305300
\(261\) 0 0
\(262\) 2.53937 4.39831i 0.156883 0.271729i
\(263\) 25.8112 1.59159 0.795793 0.605569i \(-0.207054\pi\)
0.795793 + 0.605569i \(0.207054\pi\)
\(264\) 0 0
\(265\) 0.591938 1.02527i 0.0363625 0.0629816i
\(266\) −0.645632 1.52175i −0.0395863 0.0933046i
\(267\) 0 0
\(268\) 6.06333 10.5020i 0.370377 0.641511i
\(269\) 3.24349 5.61790i 0.197759 0.342529i −0.750042 0.661390i \(-0.769967\pi\)
0.947802 + 0.318861i \(0.103300\pi\)
\(270\) 0 0
\(271\) 9.11980 + 15.7959i 0.553988 + 0.959536i 0.997981 + 0.0635055i \(0.0202280\pi\)
−0.443993 + 0.896030i \(0.646439\pi\)
\(272\) 11.9994 + 20.7836i 0.727570 + 1.26019i
\(273\) 0 0
\(274\) 1.21396 2.10264i 0.0733379 0.127025i
\(275\) −11.2143 −0.676251
\(276\) 0 0
\(277\) −3.04656 −0.183050 −0.0915249 0.995803i \(-0.529174\pi\)
−0.0915249 + 0.995803i \(0.529174\pi\)
\(278\) −3.33831 5.78213i −0.200219 0.346789i
\(279\) 0 0
\(280\) −2.11448 4.98381i −0.126364 0.297840i
\(281\) 14.2723 + 24.7203i 0.851412 + 1.47469i 0.879934 + 0.475095i \(0.157586\pi\)
−0.0285227 + 0.999593i \(0.509080\pi\)
\(282\) 0 0
\(283\) 4.77043 + 8.26262i 0.283572 + 0.491162i 0.972262 0.233895i \(-0.0751470\pi\)
−0.688690 + 0.725056i \(0.741814\pi\)
\(284\) −3.83227 6.63769i −0.227403 0.393874i
\(285\) 0 0
\(286\) 1.30578 + 2.26167i 0.0772123 + 0.133736i
\(287\) 17.9630 + 2.20876i 1.06032 + 0.130379i
\(288\) 0 0
\(289\) −19.8834 34.4390i −1.16961 2.02582i
\(290\) 4.62243 0.271439
\(291\) 0 0
\(292\) −10.5978 −0.620191
\(293\) −6.31533 + 10.9385i −0.368946 + 0.639033i −0.989401 0.145209i \(-0.953615\pi\)
0.620455 + 0.784242i \(0.286948\pi\)
\(294\) 0 0
\(295\) −9.25533 16.0307i −0.538866 0.933343i
\(296\) −3.11736 5.39942i −0.181193 0.313835i
\(297\) 0 0
\(298\) −3.72271 + 6.44793i −0.215651 + 0.373518i
\(299\) 0.476282 0.824944i 0.0275441 0.0477077i
\(300\) 0 0
\(301\) 7.22529 9.58481i 0.416459 0.552459i
\(302\) 1.17794 2.04025i 0.0677829 0.117403i
\(303\) 0 0
\(304\) −5.33765 −0.306135
\(305\) 7.32308 12.6839i 0.419318 0.726280i
\(306\) 0 0
\(307\) −10.9319 −0.623918 −0.311959 0.950096i \(-0.600985\pi\)
−0.311959 + 0.950096i \(0.600985\pi\)
\(308\) 11.1553 14.7983i 0.635635 0.843210i
\(309\) 0 0
\(310\) 1.55457 0.0882939
\(311\) 2.38028 + 4.12277i 0.134973 + 0.233781i 0.925587 0.378534i \(-0.123572\pi\)
−0.790614 + 0.612315i \(0.790238\pi\)
\(312\) 0 0
\(313\) −3.60550 + 6.24490i −0.203795 + 0.352983i −0.949748 0.313015i \(-0.898661\pi\)
0.745953 + 0.665998i \(0.231994\pi\)
\(314\) 2.42192 0.136677
\(315\) 0 0
\(316\) −0.491868 −0.0276697
\(317\) −3.64459 + 6.31261i −0.204700 + 0.354552i −0.950037 0.312137i \(-0.898955\pi\)
0.745337 + 0.666688i \(0.232289\pi\)
\(318\) 0 0
\(319\) 16.4139 + 28.4297i 0.919003 + 1.59176i
\(320\) −6.89997 −0.385720
\(321\) 0 0
\(322\) 0.501152 + 0.0616225i 0.0279281 + 0.00343408i
\(323\) 12.6257 0.702511
\(324\) 0 0
\(325\) 2.77243 4.80198i 0.153786 0.266366i
\(326\) 7.17080 0.397154
\(327\) 0 0
\(328\) −4.92363 + 8.52798i −0.271862 + 0.470879i
\(329\) −19.5361 2.40218i −1.07706 0.132437i
\(330\) 0 0
\(331\) 0.609557 1.05578i 0.0335043 0.0580311i −0.848787 0.528735i \(-0.822667\pi\)
0.882291 + 0.470704i \(0.156000\pi\)
\(332\) 7.35132 12.7329i 0.403456 0.698807i
\(333\) 0 0
\(334\) −1.93455 3.35074i −0.105854 0.183345i
\(335\) −4.63121 8.02150i −0.253030 0.438261i
\(336\) 0 0
\(337\) 7.45698 12.9159i 0.406208 0.703573i −0.588253 0.808677i \(-0.700184\pi\)
0.994461 + 0.105104i \(0.0335176\pi\)
\(338\) 3.55573 0.193406
\(339\) 0 0
\(340\) 19.9304 1.08088
\(341\) 5.52018 + 9.56123i 0.298934 + 0.517769i
\(342\) 0 0
\(343\) 17.2867 + 6.64611i 0.933393 + 0.358856i
\(344\) 3.26543 + 5.65589i 0.176060 + 0.304945i
\(345\) 0 0
\(346\) −2.46453 4.26869i −0.132494 0.229486i
\(347\) 2.57914 + 4.46720i 0.138456 + 0.239812i 0.926912 0.375278i \(-0.122453\pi\)
−0.788457 + 0.615090i \(0.789120\pi\)
\(348\) 0 0
\(349\) 12.2253 + 21.1749i 0.654408 + 1.13347i 0.982042 + 0.188663i \(0.0604154\pi\)
−0.327634 + 0.944805i \(0.606251\pi\)
\(350\) 2.91720 + 0.358703i 0.155931 + 0.0191735i
\(351\) 0 0
\(352\) 7.65315 + 13.2556i 0.407914 + 0.706528i
\(353\) 14.9095 0.793551 0.396775 0.917916i \(-0.370129\pi\)
0.396775 + 0.917916i \(0.370129\pi\)
\(354\) 0 0
\(355\) −5.85423 −0.310710
\(356\) −0.741269 + 1.28392i −0.0392872 + 0.0680474i
\(357\) 0 0
\(358\) −2.14291 3.71163i −0.113256 0.196166i
\(359\) 1.07390 + 1.86005i 0.0566783 + 0.0981697i 0.892972 0.450111i \(-0.148616\pi\)
−0.836294 + 0.548281i \(0.815282\pi\)
\(360\) 0 0
\(361\) 8.09594 14.0226i 0.426102 0.738031i
\(362\) −2.55474 + 4.42494i −0.134274 + 0.232570i
\(363\) 0 0
\(364\) 3.57878 + 8.43516i 0.187579 + 0.442123i
\(365\) −4.04735 + 7.01022i −0.211848 + 0.366932i
\(366\) 0 0
\(367\) −15.8610 −0.827937 −0.413968 0.910291i \(-0.635858\pi\)
−0.413968 + 0.910291i \(0.635858\pi\)
\(368\) 0.815198 1.41196i 0.0424951 0.0736037i
\(369\) 0 0
\(370\) −2.29533 −0.119329
\(371\) −2.18711 0.268930i −0.113549 0.0139621i
\(372\) 0 0
\(373\) 11.7368 0.607711 0.303855 0.952718i \(-0.401726\pi\)
0.303855 + 0.952718i \(0.401726\pi\)
\(374\) −5.28656 9.15659i −0.273362 0.473476i
\(375\) 0 0
\(376\) 5.35481 9.27480i 0.276153 0.478311i
\(377\) −16.2315 −0.835963
\(378\) 0 0
\(379\) 18.9400 0.972885 0.486442 0.873713i \(-0.338294\pi\)
0.486442 + 0.873713i \(0.338294\pi\)
\(380\) −2.21640 + 3.83891i −0.113699 + 0.196932i
\(381\) 0 0
\(382\) −1.44353 2.50027i −0.0738576 0.127925i
\(383\) 29.6812 1.51664 0.758319 0.651884i \(-0.226021\pi\)
0.758319 + 0.651884i \(0.226021\pi\)
\(384\) 0 0
\(385\) −5.52845 13.0305i −0.281756 0.664097i
\(386\) −5.89843 −0.300222
\(387\) 0 0
\(388\) −11.9847 + 20.7582i −0.608433 + 1.05384i
\(389\) −1.27819 −0.0648066 −0.0324033 0.999475i \(-0.510316\pi\)
−0.0324033 + 0.999475i \(0.510316\pi\)
\(390\) 0 0
\(391\) −1.92827 + 3.33986i −0.0975167 + 0.168904i
\(392\) −7.00250 + 7.24625i −0.353680 + 0.365991i
\(393\) 0 0
\(394\) −0.680380 + 1.17845i −0.0342771 + 0.0593696i
\(395\) −0.187846 + 0.325359i −0.00945156 + 0.0163706i
\(396\) 0 0
\(397\) 3.21734 + 5.57259i 0.161473 + 0.279680i 0.935397 0.353598i \(-0.115042\pi\)
−0.773924 + 0.633279i \(0.781709\pi\)
\(398\) −3.86200 6.68918i −0.193585 0.335299i
\(399\) 0 0
\(400\) 4.74525 8.21902i 0.237263 0.410951i
\(401\) 27.6910 1.38282 0.691412 0.722461i \(-0.256989\pi\)
0.691412 + 0.722461i \(0.256989\pi\)
\(402\) 0 0
\(403\) −5.45882 −0.271923
\(404\) −11.9649 20.7237i −0.595274 1.03105i
\(405\) 0 0
\(406\) −3.36041 7.92047i −0.166774 0.393086i
\(407\) −8.15054 14.1172i −0.404008 0.699762i
\(408\) 0 0
\(409\) 6.01362 + 10.4159i 0.297354 + 0.515033i 0.975530 0.219867i \(-0.0705625\pi\)
−0.678176 + 0.734900i \(0.737229\pi\)
\(410\) 1.81265 + 3.13960i 0.0895205 + 0.155054i
\(411\) 0 0
\(412\) −18.3827 31.8397i −0.905650 1.56863i
\(413\) −20.7399 + 27.5128i −1.02054 + 1.35382i
\(414\) 0 0
\(415\) −5.61500 9.72546i −0.275629 0.477404i
\(416\) −7.56808 −0.371056
\(417\) 0 0
\(418\) 2.35160 0.115021
\(419\) 9.00950 15.6049i 0.440143 0.762350i −0.557557 0.830139i \(-0.688261\pi\)
0.997700 + 0.0677891i \(0.0215945\pi\)
\(420\) 0 0
\(421\) 8.62861 + 14.9452i 0.420533 + 0.728384i 0.995992 0.0894466i \(-0.0285098\pi\)
−0.575459 + 0.817831i \(0.695177\pi\)
\(422\) 3.70122 + 6.41070i 0.180173 + 0.312068i
\(423\) 0 0
\(424\) 0.599482 1.03833i 0.0291134 0.0504260i
\(425\) −11.2244 + 19.4413i −0.544464 + 0.943039i
\(426\) 0 0
\(427\) −27.0575 3.32702i −1.30940 0.161006i
\(428\) 6.72801 11.6533i 0.325211 0.563282i
\(429\) 0 0
\(430\) 2.40436 0.115948
\(431\) −4.28368 + 7.41955i −0.206338 + 0.357387i −0.950558 0.310547i \(-0.899488\pi\)
0.744220 + 0.667934i \(0.232821\pi\)
\(432\) 0 0
\(433\) 1.58971 0.0763967 0.0381984 0.999270i \(-0.487838\pi\)
0.0381984 + 0.999270i \(0.487838\pi\)
\(434\) −1.13014 2.66374i −0.0542486 0.127864i
\(435\) 0 0
\(436\) −18.1785 −0.870592
\(437\) −0.428873 0.742829i −0.0205158 0.0355343i
\(438\) 0 0
\(439\) −11.2218 + 19.4367i −0.535588 + 0.927665i 0.463547 + 0.886072i \(0.346577\pi\)
−0.999135 + 0.0415927i \(0.986757\pi\)
\(440\) 7.70161 0.367160
\(441\) 0 0
\(442\) 5.22780 0.248661
\(443\) 12.1605 21.0626i 0.577763 1.00072i −0.417972 0.908460i \(-0.637259\pi\)
0.995735 0.0922553i \(-0.0294076\pi\)
\(444\) 0 0
\(445\) 0.566187 + 0.980665i 0.0268398 + 0.0464880i
\(446\) −5.99237 −0.283747
\(447\) 0 0
\(448\) 5.01613 + 11.8230i 0.236990 + 0.558584i
\(449\) 12.9016 0.608865 0.304432 0.952534i \(-0.401533\pi\)
0.304432 + 0.952534i \(0.401533\pi\)
\(450\) 0 0
\(451\) −12.8732 + 22.2970i −0.606174 + 1.04992i
\(452\) −31.4641 −1.47995
\(453\) 0 0
\(454\) 0.159903 0.276960i 0.00750463 0.0129984i
\(455\) 6.94641 + 0.854141i 0.325653 + 0.0400428i
\(456\) 0 0
\(457\) −0.593880 + 1.02863i −0.0277806 + 0.0481173i −0.879581 0.475748i \(-0.842177\pi\)
0.851801 + 0.523866i \(0.175511\pi\)
\(458\) 1.07302 1.85853i 0.0501389 0.0868432i
\(459\) 0 0
\(460\) −0.677003 1.17260i −0.0315654 0.0546729i
\(461\) −8.08370 14.0014i −0.376495 0.652109i 0.614054 0.789264i \(-0.289538\pi\)
−0.990550 + 0.137155i \(0.956204\pi\)
\(462\) 0 0
\(463\) 0.265564 0.459970i 0.0123418 0.0213766i −0.859789 0.510650i \(-0.829405\pi\)
0.872130 + 0.489274i \(0.162738\pi\)
\(464\) −27.7816 −1.28973
\(465\) 0 0
\(466\) −2.75481 −0.127614
\(467\) 10.7393 + 18.6011i 0.496958 + 0.860756i 0.999994 0.00350930i \(-0.00111705\pi\)
−0.503036 + 0.864265i \(0.667784\pi\)
\(468\) 0 0
\(469\) −10.3779 + 13.7670i −0.479208 + 0.635700i
\(470\) −1.97139 3.41455i −0.0909335 0.157501i
\(471\) 0 0
\(472\) −9.37329 16.2350i −0.431440 0.747277i
\(473\) 8.53769 + 14.7877i 0.392563 + 0.679940i
\(474\) 0 0
\(475\) −2.49646 4.32399i −0.114545 0.198398i
\(476\) −14.4890 34.1505i −0.664103 1.56529i
\(477\) 0 0
\(478\) 2.57283 + 4.45627i 0.117678 + 0.203825i
\(479\) −28.3529 −1.29548 −0.647739 0.761862i \(-0.724285\pi\)
−0.647739 + 0.761862i \(0.724285\pi\)
\(480\) 0 0
\(481\) 8.05995 0.367502
\(482\) −3.68294 + 6.37904i −0.167753 + 0.290557i
\(483\) 0 0
\(484\) 2.94617 + 5.10292i 0.133917 + 0.231951i
\(485\) 9.15403 + 15.8552i 0.415663 + 0.719950i
\(486\) 0 0
\(487\) −3.93513 + 6.81584i −0.178318 + 0.308855i −0.941304 0.337559i \(-0.890399\pi\)
0.762987 + 0.646414i \(0.223732\pi\)
\(488\) 7.41641 12.8456i 0.335725 0.581493i
\(489\) 0 0
\(490\) 1.02132 + 3.56647i 0.0461387 + 0.161117i
\(491\) 14.1592 24.5244i 0.638994 1.10677i −0.346660 0.937991i \(-0.612684\pi\)
0.985654 0.168779i \(-0.0539825\pi\)
\(492\) 0 0
\(493\) 65.7146 2.95963
\(494\) −0.581366 + 1.00696i −0.0261569 + 0.0453051i
\(495\) 0 0
\(496\) −9.34325 −0.419524
\(497\) 4.25590 + 10.0311i 0.190903 + 0.449958i
\(498\) 0 0
\(499\) 6.84187 0.306284 0.153142 0.988204i \(-0.451061\pi\)
0.153142 + 0.988204i \(0.451061\pi\)
\(500\) −10.5540 18.2801i −0.471989 0.817509i
\(501\) 0 0
\(502\) 1.76208 3.05201i 0.0786455 0.136218i
\(503\) −30.5760 −1.36332 −0.681658 0.731671i \(-0.738741\pi\)
−0.681658 + 0.731671i \(0.738741\pi\)
\(504\) 0 0
\(505\) −18.2777 −0.813347
\(506\) −0.359151 + 0.622067i −0.0159662 + 0.0276543i
\(507\) 0 0
\(508\) −15.0475 26.0630i −0.667624 1.15636i
\(509\) −34.1123 −1.51200 −0.756001 0.654570i \(-0.772850\pi\)
−0.756001 + 0.654570i \(0.772850\pi\)
\(510\) 0 0
\(511\) 14.9542 + 1.83880i 0.661537 + 0.0813435i
\(512\) −22.1241 −0.977756
\(513\) 0 0
\(514\) 1.39319 2.41307i 0.0614508 0.106436i
\(515\) −28.0816 −1.23743
\(516\) 0 0
\(517\) 14.0005 24.2496i 0.615742 1.06650i
\(518\) 1.66866 + 3.93301i 0.0733165 + 0.172807i
\(519\) 0 0
\(520\) −1.90400 + 3.29783i −0.0834960 + 0.144619i
\(521\) 7.37216 12.7690i 0.322980 0.559418i −0.658121 0.752912i \(-0.728649\pi\)
0.981102 + 0.193494i \(0.0619819\pi\)
\(522\) 0 0
\(523\) −2.03953 3.53257i −0.0891825 0.154469i 0.817983 0.575242i \(-0.195092\pi\)
−0.907166 + 0.420773i \(0.861759\pi\)
\(524\) 12.6748 + 21.9533i 0.553699 + 0.959036i
\(525\) 0 0
\(526\) 4.81179 8.33427i 0.209804 0.363391i
\(527\) 22.1005 0.962714
\(528\) 0 0
\(529\) −22.7380 −0.988609
\(530\) −0.220701 0.382266i −0.00958666 0.0166046i
\(531\) 0 0
\(532\) 8.18920 + 1.00696i 0.355047 + 0.0436571i
\(533\) −6.36505 11.0246i −0.275701 0.477528i
\(534\) 0 0
\(535\) −5.13891 8.90085i −0.222174 0.384817i
\(536\) −4.69024 8.12373i −0.202588 0.350892i
\(537\) 0 0
\(538\) −1.20932 2.09461i −0.0521376 0.0903049i
\(539\) −18.3085 + 18.9458i −0.788604 + 0.816054i
\(540\) 0 0
\(541\) −1.90052 3.29179i −0.0817096 0.141525i 0.822275 0.569091i \(-0.192705\pi\)
−0.903984 + 0.427565i \(0.859371\pi\)
\(542\) 6.80055 0.292109
\(543\) 0 0
\(544\) 30.6401 1.31368
\(545\) −6.94243 + 12.0246i −0.297381 + 0.515079i
\(546\) 0 0
\(547\) 5.23891 + 9.07406i 0.224000 + 0.387979i 0.956019 0.293305i \(-0.0947553\pi\)
−0.732019 + 0.681284i \(0.761422\pi\)
\(548\) 6.05924 + 10.4949i 0.258838 + 0.448320i
\(549\) 0 0
\(550\) −2.09061 + 3.62104i −0.0891439 + 0.154402i
\(551\) −7.30790 + 12.6576i −0.311327 + 0.539234i
\(552\) 0 0
\(553\) 0.694058 + 0.0853424i 0.0295143 + 0.00362913i
\(554\) −0.567947 + 0.983714i −0.0241298 + 0.0417940i
\(555\) 0 0
\(556\) 33.3251 1.41330
\(557\) −17.4975 + 30.3065i −0.741392 + 1.28413i 0.210470 + 0.977600i \(0.432501\pi\)
−0.951862 + 0.306528i \(0.900833\pi\)
\(558\) 0 0
\(559\) −8.44279 −0.357092
\(560\) 11.8894 + 1.46194i 0.502419 + 0.0617782i
\(561\) 0 0
\(562\) 10.6427 0.448935
\(563\) 14.5322 + 25.1705i 0.612458 + 1.06081i 0.990825 + 0.135153i \(0.0431525\pi\)
−0.378367 + 0.925656i \(0.623514\pi\)
\(564\) 0 0
\(565\) −12.0163 + 20.8128i −0.505528 + 0.875599i
\(566\) 3.55726 0.149523
\(567\) 0 0
\(568\) −5.92884 −0.248769
\(569\) −11.0163 + 19.0808i −0.461829 + 0.799911i −0.999052 0.0435292i \(-0.986140\pi\)
0.537224 + 0.843440i \(0.319473\pi\)
\(570\) 0 0
\(571\) −1.01413 1.75653i −0.0424402 0.0735086i 0.844025 0.536304i \(-0.180180\pi\)
−0.886465 + 0.462795i \(0.846847\pi\)
\(572\) −13.0351 −0.545024
\(573\) 0 0
\(574\) 4.06191 5.38838i 0.169541 0.224906i
\(575\) 1.52510 0.0636009
\(576\) 0 0
\(577\) 2.47060 4.27921i 0.102852 0.178146i −0.810006 0.586421i \(-0.800536\pi\)
0.912859 + 0.408275i \(0.133870\pi\)
\(578\) −14.8268 −0.616715
\(579\) 0 0
\(580\) −11.5360 + 19.9809i −0.479006 + 0.829663i
\(581\) −12.5824 + 16.6914i −0.522008 + 0.692476i
\(582\) 0 0
\(583\) 1.56739 2.71480i 0.0649146 0.112435i
\(584\) −4.09894 + 7.09956i −0.169615 + 0.293782i
\(585\) 0 0
\(586\) 2.35464 + 4.07836i 0.0972694 + 0.168476i
\(587\) −16.2491 28.1443i −0.670674 1.16164i −0.977713 0.209945i \(-0.932672\pi\)
0.307039 0.951697i \(-0.400662\pi\)
\(588\) 0 0
\(589\) −2.45773 + 4.25690i −0.101269 + 0.175403i
\(590\) −6.90161 −0.284135
\(591\) 0 0
\(592\) 13.7953 0.566984
\(593\) 7.77361 + 13.4643i 0.319224 + 0.552912i 0.980326 0.197384i \(-0.0632445\pi\)
−0.661103 + 0.750296i \(0.729911\pi\)
\(594\) 0 0
\(595\) −28.1232 3.45807i −1.15294 0.141767i
\(596\) −18.5812 32.1836i −0.761116 1.31829i
\(597\) 0 0
\(598\) −0.177579 0.307577i −0.00726176 0.0125777i
\(599\) −11.9942 20.7745i −0.490068 0.848822i 0.509867 0.860253i \(-0.329695\pi\)
−0.999935 + 0.0114309i \(0.996361\pi\)
\(600\) 0 0
\(601\) 0.443533 + 0.768221i 0.0180921 + 0.0313364i 0.874930 0.484250i \(-0.160907\pi\)
−0.856838 + 0.515586i \(0.827574\pi\)
\(602\) −1.74792 4.11983i −0.0712397 0.167912i
\(603\) 0 0
\(604\) 5.87946 + 10.1835i 0.239232 + 0.414362i
\(605\) 4.50061 0.182976
\(606\) 0 0
\(607\) −11.7206 −0.475725 −0.237862 0.971299i \(-0.576447\pi\)
−0.237862 + 0.971299i \(0.576447\pi\)
\(608\) −3.40738 + 5.90175i −0.138187 + 0.239348i
\(609\) 0 0
\(610\) −2.73038 4.72915i −0.110550 0.191478i
\(611\) 6.92245 + 11.9900i 0.280052 + 0.485065i
\(612\) 0 0
\(613\) 4.83845 8.38044i 0.195423 0.338483i −0.751616 0.659601i \(-0.770725\pi\)
0.947039 + 0.321118i \(0.104059\pi\)
\(614\) −2.03796 + 3.52985i −0.0822454 + 0.142453i
\(615\) 0 0
\(616\) −5.59891 13.1966i −0.225586 0.531706i
\(617\) 4.64513 8.04561i 0.187006 0.323904i −0.757245 0.653131i \(-0.773455\pi\)
0.944251 + 0.329227i \(0.106788\pi\)
\(618\) 0 0
\(619\) −30.2696 −1.21664 −0.608319 0.793693i \(-0.708156\pi\)
−0.608319 + 0.793693i \(0.708156\pi\)
\(620\) −3.87968 + 6.71980i −0.155812 + 0.269874i
\(621\) 0 0
\(622\) 1.77496 0.0711692
\(623\) 1.26875 1.68307i 0.0508313 0.0674310i
\(624\) 0 0
\(625\) −1.22483 −0.0489932
\(626\) 1.34429 + 2.32838i 0.0537288 + 0.0930609i
\(627\) 0 0
\(628\) −6.04427 + 10.4690i −0.241193 + 0.417758i
\(629\) −32.6314 −1.30110
\(630\) 0 0
\(631\) 30.5921 1.21785 0.608926 0.793227i \(-0.291600\pi\)
0.608926 + 0.793227i \(0.291600\pi\)
\(632\) −0.190240 + 0.329506i −0.00756735 + 0.0131070i
\(633\) 0 0
\(634\) 1.35887 + 2.35363i 0.0539675 + 0.0934745i
\(635\) −22.9868 −0.912202
\(636\) 0 0
\(637\) −3.58634 12.5235i −0.142096 0.496200i
\(638\) 12.2397 0.484575
\(639\) 0 0
\(640\) −7.06687 + 12.2402i −0.279343 + 0.483836i
\(641\) 32.8876 1.29898 0.649491 0.760369i \(-0.274982\pi\)
0.649491 + 0.760369i \(0.274982\pi\)
\(642\) 0 0
\(643\) −2.68598 + 4.65226i −0.105925 + 0.183467i −0.914116 0.405453i \(-0.867114\pi\)
0.808191 + 0.588921i \(0.200447\pi\)
\(644\) −1.51707 + 2.01249i −0.0597810 + 0.0793033i
\(645\) 0 0
\(646\) 2.35371 4.07675i 0.0926056 0.160398i
\(647\) −6.93041 + 12.0038i −0.272463 + 0.471919i −0.969492 0.245124i \(-0.921171\pi\)
0.697029 + 0.717043i \(0.254505\pi\)
\(648\) 0 0
\(649\) −24.5071 42.4476i −0.961988 1.66621i
\(650\) −1.03369 1.79040i −0.0405445 0.0702252i
\(651\) 0 0
\(652\) −17.8958 + 30.9965i −0.700855 + 1.21392i
\(653\) 33.2740 1.30211 0.651056 0.759030i \(-0.274326\pi\)
0.651056 + 0.759030i \(0.274326\pi\)
\(654\) 0 0
\(655\) 19.3622 0.756542
\(656\) −10.8943 18.8695i −0.425352 0.736732i
\(657\) 0 0
\(658\) −4.41762 + 5.86025i −0.172217 + 0.228456i
\(659\) −6.39450 11.0756i −0.249094 0.431444i 0.714180 0.699962i \(-0.246800\pi\)
−0.963275 + 0.268517i \(0.913466\pi\)
\(660\) 0 0
\(661\) −20.5502 35.5940i −0.799309 1.38444i −0.920066 0.391762i \(-0.871866\pi\)
0.120757 0.992682i \(-0.461468\pi\)
\(662\) −0.227271 0.393644i −0.00883312 0.0152994i
\(663\) 0 0
\(664\) −5.68656 9.84941i −0.220681 0.382231i
\(665\) 3.79356 5.03240i 0.147108 0.195148i
\(666\) 0 0
\(667\) −2.23221 3.86630i −0.0864316 0.149704i
\(668\) 19.3119 0.747200
\(669\) 0 0
\(670\) −3.45346 −0.133419
\(671\) 19.3907 33.5857i 0.748570 1.29656i
\(672\) 0 0
\(673\) −14.3446 24.8455i −0.552943 0.957725i −0.998060 0.0622526i \(-0.980172\pi\)
0.445118 0.895472i \(-0.353162\pi\)
\(674\) −2.78030 4.81563i −0.107093 0.185491i
\(675\) 0 0
\(676\) −8.87386 + 15.3700i −0.341302 + 0.591153i
\(677\) −24.7561 + 42.8788i −0.951454 + 1.64797i −0.209173 + 0.977879i \(0.567077\pi\)
−0.742281 + 0.670088i \(0.766256\pi\)
\(678\) 0 0
\(679\) 20.5129 27.2117i 0.787214 1.04429i
\(680\) 7.70852 13.3515i 0.295608 0.512009i
\(681\) 0 0
\(682\) 4.11635 0.157623
\(683\) 16.2536 28.1520i 0.621926 1.07721i −0.367201 0.930142i \(-0.619684\pi\)
0.989127 0.147065i \(-0.0469827\pi\)
\(684\) 0 0
\(685\) 9.25618 0.353661
\(686\) 5.36862 4.34277i 0.204975 0.165808i
\(687\) 0 0
\(688\) −14.4506 −0.550923
\(689\) 0.774984 + 1.34231i 0.0295245 + 0.0511380i
\(690\) 0 0
\(691\) 7.08644 12.2741i 0.269581 0.466928i −0.699173 0.714953i \(-0.746448\pi\)
0.968754 + 0.248025i \(0.0797815\pi\)
\(692\) 24.6024 0.935244
\(693\) 0 0
\(694\) 1.92324 0.0730053
\(695\) 12.7270 22.0438i 0.482762 0.836167i
\(696\) 0 0
\(697\) 25.7695 + 44.6340i 0.976088 + 1.69063i
\(698\) 9.11633 0.345058
\(699\) 0 0
\(700\) −8.83085 + 11.7147i −0.333775 + 0.442773i
\(701\) 28.1485 1.06316 0.531578 0.847010i \(-0.321599\pi\)
0.531578 + 0.847010i \(0.321599\pi\)
\(702\) 0 0
\(703\) 3.62883 6.28532i 0.136864 0.237055i
\(704\) −18.2704 −0.688591
\(705\) 0 0
\(706\) 2.77946 4.81417i 0.104606 0.181184i
\(707\) 13.2875 + 31.3186i 0.499728 + 1.17786i
\(708\) 0 0
\(709\) −12.2335 + 21.1890i −0.459438 + 0.795769i −0.998931 0.0462204i \(-0.985282\pi\)
0.539494 + 0.841990i \(0.318616\pi\)
\(710\) −1.09136 + 1.89029i −0.0409581 + 0.0709415i
\(711\) 0 0
\(712\) 0.573403 + 0.993163i 0.0214892 + 0.0372204i
\(713\) −0.750717 1.30028i −0.0281146 0.0486959i
\(714\) 0 0
\(715\) −4.97814 + 8.62240i −0.186172 + 0.322459i
\(716\) 21.3918 0.799451
\(717\) 0 0
\(718\) 0.800798 0.0298855
\(719\) −8.27732 14.3367i −0.308692 0.534670i 0.669385 0.742916i \(-0.266558\pi\)
−0.978076 + 0.208246i \(0.933225\pi\)
\(720\) 0 0
\(721\) 20.4148 + 48.1175i 0.760285 + 1.79199i
\(722\) −3.01854 5.22826i −0.112338 0.194576i
\(723\) 0 0
\(724\) −12.7515 22.0862i −0.473905 0.820828i
\(725\) −12.9937 22.5057i −0.482572 0.835840i
\(726\) 0 0
\(727\) 17.1191 + 29.6511i 0.634911 + 1.09970i 0.986534 + 0.163556i \(0.0522964\pi\)
−0.351623 + 0.936142i \(0.614370\pi\)
\(728\) 7.03495 + 0.865027i 0.260732 + 0.0320600i
\(729\) 0 0
\(730\) 1.50904 + 2.61373i 0.0558520 + 0.0967384i
\(731\) 34.1814 1.26424
\(732\) 0 0
\(733\) −12.2889 −0.453901 −0.226951 0.973906i \(-0.572876\pi\)
−0.226951 + 0.973906i \(0.572876\pi\)
\(734\) −2.95685 + 5.12141i −0.109139 + 0.189035i
\(735\) 0 0
\(736\) −1.04079 1.80270i −0.0383640 0.0664485i
\(737\) −12.2630 21.2401i −0.451712 0.782388i
\(738\) 0 0
\(739\) 21.6496 37.4982i 0.796394 1.37939i −0.125557 0.992086i \(-0.540072\pi\)
0.921950 0.387308i \(-0.126595\pi\)
\(740\) 5.72835 9.92179i 0.210578 0.364732i
\(741\) 0 0
\(742\) −0.494562 + 0.656068i −0.0181559 + 0.0240850i
\(743\) 11.9739 20.7394i 0.439281 0.760856i −0.558354 0.829603i \(-0.688567\pi\)
0.997634 + 0.0687469i \(0.0219001\pi\)
\(744\) 0 0
\(745\) −28.3849 −1.03994
\(746\) 2.18802 3.78975i 0.0801089 0.138753i
\(747\) 0 0
\(748\) 52.7737 1.92960
\(749\) −11.5156 + 15.2762i −0.420771 + 0.558179i
\(750\) 0 0
\(751\) −2.90298 −0.105931 −0.0529656 0.998596i \(-0.516867\pi\)
−0.0529656 + 0.998596i \(0.516867\pi\)
\(752\) 11.8484 + 20.5220i 0.432066 + 0.748361i
\(753\) 0 0
\(754\) −3.02592 + 5.24104i −0.110197 + 0.190867i
\(755\) 8.98156 0.326872
\(756\) 0 0
\(757\) −8.99407 −0.326895 −0.163448 0.986552i \(-0.552261\pi\)
−0.163448 + 0.986552i \(0.552261\pi\)
\(758\) 3.53086 6.11562i 0.128246 0.222129i
\(759\) 0 0
\(760\) 1.71448 + 2.96956i 0.0621906 + 0.107717i
\(761\) −38.0509 −1.37934 −0.689672 0.724122i \(-0.742245\pi\)
−0.689672 + 0.724122i \(0.742245\pi\)
\(762\) 0 0
\(763\) 25.6510 + 3.15409i 0.928630 + 0.114186i
\(764\) 14.4102 0.521344
\(765\) 0 0
\(766\) 5.53325 9.58386i 0.199924 0.346279i
\(767\) 24.2347 0.875065
\(768\) 0 0
\(769\) −11.4065 + 19.7567i −0.411330 + 0.712445i −0.995035 0.0995210i \(-0.968269\pi\)
0.583705 + 0.811966i \(0.301602\pi\)
\(770\) −5.23810 0.644084i −0.188768 0.0232112i
\(771\) 0 0
\(772\) 14.7204 25.4965i 0.529800 0.917640i
\(773\) 3.06443 5.30775i 0.110220 0.190906i −0.805639 0.592407i \(-0.798178\pi\)
0.915859 + 0.401500i \(0.131511\pi\)
\(774\) 0 0
\(775\) −4.36991 7.56890i −0.156972 0.271883i
\(776\) 9.27070 + 16.0573i 0.332799 + 0.576424i
\(777\) 0 0
\(778\) −0.238283 + 0.412718i −0.00854285 + 0.0147967i
\(779\) −11.4629 −0.410703
\(780\) 0 0
\(781\) −15.5014 −0.554683
\(782\) 0.718946 + 1.24525i 0.0257095 + 0.0445301i
\(783\) 0 0
\(784\) −6.13833 21.4351i −0.219226 0.765539i
\(785\) 4.61666 + 7.99629i 0.164776 + 0.285400i
\(786\) 0 0
\(787\) 23.2314 + 40.2379i 0.828109 + 1.43433i 0.899520 + 0.436879i \(0.143916\pi\)
−0.0714114 + 0.997447i \(0.522750\pi\)
\(788\) −3.39599 5.88202i −0.120977 0.209538i
\(789\) 0 0
\(790\) 0.0700376 + 0.121309i 0.00249182 + 0.00431597i
\(791\) 44.3979 + 5.45923i 1.57861 + 0.194108i
\(792\) 0 0
\(793\) 9.58760 + 16.6062i 0.340465 + 0.589704i
\(794\) 2.39914 0.0851422
\(795\) 0 0
\(796\) 38.5529 1.36647
\(797\) 3.81939 6.61538i 0.135290 0.234329i −0.790418 0.612568i \(-0.790137\pi\)
0.925708 + 0.378239i \(0.123470\pi\)
\(798\) 0 0
\(799\) −28.0262 48.5427i −0.991494 1.71732i
\(800\) −6.05842 10.4935i −0.214198 0.371001i
\(801\) 0 0
\(802\) 5.16223 8.94125i 0.182285 0.315727i
\(803\) −10.7170 + 18.5623i −0.378193 + 0.655050i
\(804\) 0 0
\(805\) 0.751841 + 1.77209i 0.0264989 + 0.0624578i
\(806\) −1.01765 + 1.76262i −0.0358451 + 0.0620856i
\(807\) 0 0
\(808\) −18.5107 −0.651202
\(809\) 13.8316 23.9570i 0.486293 0.842285i −0.513582 0.858040i \(-0.671682\pi\)
0.999876 + 0.0157553i \(0.00501528\pi\)
\(810\) 0 0
\(811\) −34.0746 −1.19652 −0.598261 0.801301i \(-0.704141\pi\)
−0.598261 + 0.801301i \(0.704141\pi\)
\(812\) 42.6234 + 5.24104i 1.49579 + 0.183924i
\(813\) 0 0
\(814\) −6.07779 −0.213026
\(815\) 13.6690 + 23.6753i 0.478803 + 0.829311i
\(816\) 0 0
\(817\) −3.80120 + 6.58387i −0.132987 + 0.230340i
\(818\) 4.48430 0.156790
\(819\) 0 0
\(820\) −18.0950 −0.631905
\(821\) 3.63723 6.29987i 0.126940 0.219867i −0.795549 0.605889i \(-0.792818\pi\)
0.922490 + 0.386022i \(0.126151\pi\)
\(822\) 0 0
\(823\) 2.83101 + 4.90345i 0.0986828 + 0.170924i 0.911140 0.412098i \(-0.135204\pi\)
−0.812457 + 0.583021i \(0.801870\pi\)
\(824\) −28.4396 −0.990739
\(825\) 0 0
\(826\) 5.01733 + 11.8258i 0.174575 + 0.411472i
\(827\) −35.3143 −1.22800 −0.614000 0.789306i \(-0.710440\pi\)
−0.614000 + 0.789306i \(0.710440\pi\)
\(828\) 0 0
\(829\) −14.8684 + 25.7529i −0.516402 + 0.894434i 0.483417 + 0.875390i \(0.339396\pi\)
−0.999819 + 0.0190438i \(0.993938\pi\)
\(830\) −4.18705 −0.145335
\(831\) 0 0
\(832\) 4.51683 7.82338i 0.156593 0.271227i
\(833\) 14.5196 + 50.7026i 0.503074 + 1.75674i
\(834\) 0 0
\(835\) 7.37529 12.7744i 0.255232 0.442075i
\(836\) −5.86879 + 10.1650i −0.202976 + 0.351565i
\(837\) 0 0
\(838\) −3.35915 5.81822i −0.116040 0.200987i
\(839\) 2.62529 + 4.54714i 0.0906351 + 0.156985i 0.907779 0.419450i \(-0.137777\pi\)
−0.817143 + 0.576434i \(0.804444\pi\)
\(840\) 0 0
\(841\) −23.5364 + 40.7662i −0.811600 + 1.40573i
\(842\) 6.43428 0.221740
\(843\) 0 0
\(844\) −36.9478 −1.27180
\(845\) 6.77792 + 11.7397i 0.233168 + 0.403858i
\(846\) 0 0
\(847\) −3.27185 7.71173i −0.112422 0.264978i
\(848\) 1.32645 + 2.29748i 0.0455506 + 0.0788959i
\(849\) 0 0
\(850\) 4.18497 + 7.24858i 0.143543 + 0.248624i
\(851\) 1.10843 + 1.91986i 0.0379966 + 0.0658121i
\(852\) 0 0
\(853\) −11.2458 19.4782i −0.385048 0.666922i 0.606728 0.794910i \(-0.292482\pi\)
−0.991776 + 0.127987i \(0.959148\pi\)
\(854\) −6.11840 + 8.11645i −0.209367 + 0.277739i
\(855\) 0 0
\(856\) −5.20440 9.01429i −0.177883 0.308102i
\(857\) 55.2956 1.88886 0.944432 0.328708i \(-0.106613\pi\)
0.944432 + 0.328708i \(0.106613\pi\)
\(858\) 0 0
\(859\) 51.2704 1.74932 0.874662 0.484734i \(-0.161083\pi\)
0.874662 + 0.484734i \(0.161083\pi\)
\(860\) −6.00044 + 10.3931i −0.204613 + 0.354401i
\(861\) 0 0
\(862\) 1.59715 + 2.76635i 0.0543992 + 0.0942221i
\(863\) −14.5908 25.2719i −0.496675 0.860267i 0.503317 0.864102i \(-0.332113\pi\)
−0.999993 + 0.00383494i \(0.998779\pi\)
\(864\) 0 0
\(865\) 9.39576 16.2739i 0.319466 0.553330i
\(866\) 0.296359 0.513308i 0.0100707 0.0174429i
\(867\) 0 0
\(868\) 14.3347 + 1.76262i 0.486552 + 0.0598272i
\(869\) −0.497396 + 0.861516i −0.0168730 + 0.0292249i
\(870\) 0 0
\(871\) 12.1267 0.410896
\(872\) −7.03091 + 12.1779i −0.238097 + 0.412396i
\(873\) 0 0
\(874\) −0.319806 −0.0108176
\(875\) 11.7207 + 27.6256i 0.396231 + 0.933914i
\(876\) 0 0
\(877\) 17.9605 0.606484 0.303242 0.952914i \(-0.401931\pi\)
0.303242 + 0.952914i \(0.401931\pi\)
\(878\) 4.18400 + 7.24690i 0.141203 + 0.244571i
\(879\) 0 0
\(880\) −8.52053 + 14.7580i −0.287227 + 0.497492i
\(881\) 45.7619 1.54176 0.770880 0.636981i \(-0.219817\pi\)
0.770880 + 0.636981i \(0.219817\pi\)
\(882\) 0 0
\(883\) 40.8060 1.37323 0.686615 0.727021i \(-0.259096\pi\)
0.686615 + 0.727021i \(0.259096\pi\)
\(884\) −13.0468 + 22.5977i −0.438811 + 0.760042i
\(885\) 0 0
\(886\) −4.53399 7.85310i −0.152322 0.263830i
\(887\) −38.8683 −1.30507 −0.652535 0.757759i \(-0.726294\pi\)
−0.652535 + 0.757759i \(0.726294\pi\)
\(888\) 0 0
\(889\) 16.7109 + 39.3875i 0.560465 + 1.32101i
\(890\) 0.422200 0.0141522
\(891\) 0 0
\(892\) 14.9549 25.9026i 0.500726 0.867283i
\(893\) 12.4668 0.417185
\(894\) 0 0
\(895\) 8.16962 14.1502i 0.273080 0.472989i
\(896\) 26.1108 + 3.21063i 0.872301 + 0.107259i
\(897\) 0 0
\(898\) 2.40515 4.16585i 0.0802610 0.139016i
\(899\) −12.7921 + 22.1565i −0.426639 + 0.738960i
\(900\) 0 0
\(901\) −3.13759 5.43447i −0.104528 0.181048i
\(902\) 4.79971 + 8.31334i 0.159813 + 0.276804i
\(903\) 0 0
\(904\) −12.1694 + 21.0780i −0.404748 + 0.701045i
\(905\) −19.4794 −0.647516
\(906\) 0 0
\(907\) −28.0570 −0.931617 −0.465809 0.884886i \(-0.654236\pi\)
−0.465809 + 0.884886i \(0.654236\pi\)
\(908\) 0.798126 + 1.38239i 0.0264867 + 0.0458764i
\(909\) 0 0
\(910\) 1.57077 2.08372i 0.0520704 0.0690747i
\(911\) 6.19194 + 10.7248i 0.205148 + 0.355327i 0.950180 0.311702i \(-0.100899\pi\)
−0.745032 + 0.667029i \(0.767566\pi\)
\(912\) 0 0
\(913\) −14.8679 25.7520i −0.492056 0.852266i
\(914\) 0.221426 + 0.383520i 0.00732411 + 0.0126857i
\(915\) 0 0
\(916\) 5.35577 + 9.27647i 0.176960 + 0.306503i
\(917\) −14.0759 33.1767i −0.464826 1.09559i
\(918\) 0 0
\(919\) 27.3029 + 47.2901i 0.900641 + 1.55996i 0.826664 + 0.562695i \(0.190236\pi\)
0.0739762 + 0.997260i \(0.476431\pi\)
\(920\) −1.04738 −0.0345311
\(921\) 0 0
\(922\) −6.02794 −0.198520
\(923\) 3.83227 6.63769i 0.126141 0.218482i
\(924\) 0 0
\(925\) 6.45217 + 11.1755i 0.212146 + 0.367448i
\(926\) −0.0990144 0.171498i −0.00325381 0.00563577i
\(927\) 0 0
\(928\) −17.7348 + 30.7177i −0.582175 + 1.00836i
\(929\) −6.40356 + 11.0913i −0.210094 + 0.363894i −0.951744 0.306894i \(-0.900710\pi\)
0.741650 + 0.670787i \(0.234044\pi\)
\(930\) 0 0
\(931\) −11.3808 2.84176i −0.372990 0.0931350i
\(932\) 6.87504 11.9079i 0.225199 0.390057i
\(933\) 0 0
\(934\) 8.00824 0.262037
\(935\) 20.1545 34.9086i 0.659121 1.14163i
\(936\) 0 0
\(937\) 37.9601 1.24010 0.620051 0.784562i \(-0.287112\pi\)
0.620051 + 0.784562i \(0.287112\pi\)
\(938\) 2.51059 + 5.91744i 0.0819736 + 0.193211i
\(939\) 0 0
\(940\) 19.6796 0.641879
\(941\) 9.13487 + 15.8221i 0.297788 + 0.515784i 0.975630 0.219424i \(-0.0704177\pi\)
−0.677841 + 0.735208i \(0.737084\pi\)
\(942\) 0 0
\(943\) 1.75069 3.03228i 0.0570103 0.0987447i
\(944\) 41.4798 1.35005
\(945\) 0 0
\(946\) 6.36648 0.206992
\(947\) 20.7760 35.9850i 0.675128 1.16936i −0.301303 0.953528i \(-0.597422\pi\)
0.976431 0.215828i \(-0.0692451\pi\)
\(948\) 0 0
\(949\) −5.29892 9.17799i −0.172010 0.297930i
\(950\) −1.86159 −0.0603978
\(951\) 0 0
\(952\) −28.4816 3.50214i −0.923094 0.113505i
\(953\) 26.0298 0.843186 0.421593 0.906785i \(-0.361471\pi\)
0.421593 + 0.906785i \(0.361471\pi\)
\(954\) 0 0
\(955\) 5.50332 9.53203i 0.178083 0.308449i
\(956\) −25.6835 −0.830665
\(957\) 0 0
\(958\) −5.28563 + 9.15498i −0.170771 + 0.295784i
\(959\) −6.72905 15.8603i −0.217292 0.512157i
\(960\) 0 0
\(961\) 11.1979 19.3953i 0.361222 0.625655i
\(962\) 1.50256 2.60251i 0.0484444 0.0839082i
\(963\) 0 0
\(964\) −18.3827 31.8397i −0.592066 1.02549i
\(965\) −11.2436 19.4744i −0.361943 0.626904i
\(966\) 0 0
\(967\) 7.32535 12.6879i 0.235567 0.408015i −0.723870 0.689936i \(-0.757638\pi\)
0.959437 + 0.281922i \(0.0909718\pi\)
\(968\) 4.55797 0.146499
\(969\) 0 0
\(970\) 6.82608 0.219172
\(971\) −19.5007 33.7762i −0.625808 1.08393i −0.988384 0.151977i \(-0.951436\pi\)
0.362576 0.931954i \(-0.381897\pi\)
\(972\) 0 0
\(973\) −47.0239 5.78213i −1.50752 0.185366i
\(974\) 1.46720 + 2.54126i 0.0470120 + 0.0814271i
\(975\) 0 0
\(976\) 16.4100 + 28.4230i 0.525272 + 0.909797i
\(977\) −9.55342 16.5470i −0.305641 0.529386i 0.671763 0.740766i \(-0.265537\pi\)
−0.977404 + 0.211380i \(0.932204\pi\)
\(978\) 0 0
\(979\) 1.49920 + 2.59669i 0.0479147 + 0.0829907i
\(980\) −17.9653 4.48591i −0.573881 0.143297i
\(981\) 0 0
\(982\) −5.27918 9.14381i −0.168465 0.291791i
\(983\) 12.8877 0.411055 0.205527 0.978651i \(-0.434109\pi\)
0.205527 + 0.978651i \(0.434109\pi\)
\(984\) 0 0
\(985\) −5.18776 −0.165296
\(986\) 12.2507 21.2188i 0.390141 0.675745i
\(987\) 0 0
\(988\) −2.90178 5.02602i −0.0923178 0.159899i
\(989\) −1.16108 2.01106i −0.0369203 0.0639479i
\(990\) 0 0
\(991\) 1.48644 2.57459i 0.0472184 0.0817846i −0.841450 0.540335i \(-0.818298\pi\)
0.888669 + 0.458550i \(0.151631\pi\)
\(992\) −5.96442 + 10.3307i −0.189371 + 0.327999i
\(993\) 0 0
\(994\) 4.03239 + 0.495828i 0.127900 + 0.0157267i
\(995\) 14.7235 25.5018i 0.466766 0.808462i
\(996\) 0 0
\(997\) 13.6689 0.432898 0.216449 0.976294i \(-0.430553\pi\)
0.216449 + 0.976294i \(0.430553\pi\)
\(998\) 1.27548 2.20920i 0.0403746 0.0699309i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.j.109.3 8
3.2 odd 2 567.2.g.k.109.2 8
7.2 even 3 567.2.h.k.352.2 8
9.2 odd 6 567.2.h.j.298.3 8
9.4 even 3 567.2.e.c.487.3 yes 8
9.5 odd 6 567.2.e.d.487.2 yes 8
9.7 even 3 567.2.h.k.298.2 8
21.2 odd 6 567.2.h.j.352.3 8
63.2 odd 6 567.2.g.k.541.2 8
63.4 even 3 3969.2.a.x.1.2 4
63.16 even 3 inner 567.2.g.j.541.3 8
63.23 odd 6 567.2.e.d.163.2 yes 8
63.31 odd 6 3969.2.a.w.1.2 4
63.32 odd 6 3969.2.a.s.1.3 4
63.58 even 3 567.2.e.c.163.3 8
63.59 even 6 3969.2.a.t.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.c.163.3 8 63.58 even 3
567.2.e.c.487.3 yes 8 9.4 even 3
567.2.e.d.163.2 yes 8 63.23 odd 6
567.2.e.d.487.2 yes 8 9.5 odd 6
567.2.g.j.109.3 8 1.1 even 1 trivial
567.2.g.j.541.3 8 63.16 even 3 inner
567.2.g.k.109.2 8 3.2 odd 2
567.2.g.k.541.2 8 63.2 odd 6
567.2.h.j.298.3 8 9.2 odd 6
567.2.h.j.352.3 8 21.2 odd 6
567.2.h.k.298.2 8 9.7 even 3
567.2.h.k.352.2 8 7.2 even 3
3969.2.a.s.1.3 4 63.32 odd 6
3969.2.a.t.1.3 4 63.59 even 6
3969.2.a.w.1.2 4 63.31 odd 6
3969.2.a.x.1.2 4 63.4 even 3