Properties

Label 567.2.g.i.541.1
Level $567$
Weight $2$
Character 567.541
Analytic conductor $4.528$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(109,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(0.500000 + 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 567.541
Dual form 567.2.g.i.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.730252 - 1.26483i) q^{2} +(-0.0665372 + 0.115246i) q^{4} +0.593579 q^{5} +(-2.25729 + 1.38008i) q^{7} -2.72665 q^{8} +(-0.433463 - 0.750780i) q^{10} -4.46050 q^{11} +(2.25729 + 3.90975i) q^{13} +(3.39397 + 1.84730i) q^{14} +(2.12422 + 3.67926i) q^{16} +(-0.136673 - 0.236725i) q^{17} +(-1.43346 + 2.48283i) q^{19} +(-0.0394951 + 0.0684076i) q^{20} +(3.25729 + 5.64180i) q^{22} -5.05408 q^{23} -4.64766 q^{25} +(3.29679 - 5.71021i) q^{26} +(-0.00885441 - 0.351971i) q^{28} +(0.176168 - 0.305132i) q^{29} +(-1.25729 + 2.17770i) q^{31} +(0.375780 - 0.650870i) q^{32} +(-0.199612 + 0.345738i) q^{34} +(-1.33988 + 0.819187i) q^{35} +(3.32383 - 5.75705i) q^{37} +4.18716 q^{38} -1.61849 q^{40} +(-5.44805 - 9.43630i) q^{41} +(-1.69076 + 2.92848i) q^{43} +(0.296790 - 0.514055i) q^{44} +(3.69076 + 6.39258i) q^{46} +(6.21780 + 10.7695i) q^{47} +(3.19076 - 6.23049i) q^{49} +(3.39397 + 5.87852i) q^{50} -0.600777 q^{52} +(5.66372 + 9.80984i) q^{53} -2.64766 q^{55} +(6.15486 - 3.76300i) q^{56} -0.514589 q^{58} +(-4.02704 + 6.97504i) q^{59} +(1.36693 + 2.36758i) q^{61} +3.67257 q^{62} +7.39922 q^{64} +(1.33988 + 2.32075i) q^{65} +(-2.93346 + 5.08091i) q^{67} +0.0363754 q^{68} +(2.01459 + 1.09652i) q^{70} -2.60078 q^{71} +(-5.55768 - 9.62619i) q^{73} -9.70895 q^{74} +(-0.190757 - 0.330401i) q^{76} +(10.0687 - 6.15585i) q^{77} +(-5.58113 - 9.66679i) q^{79} +(1.26089 + 2.18393i) q^{80} +(-7.95691 + 13.7818i) q^{82} +(8.27188 - 14.3273i) q^{83} +(-0.0811263 - 0.140515i) q^{85} +4.93872 q^{86} +12.1623 q^{88} +(-2.68716 + 4.65430i) q^{89} +(-10.4911 - 5.71021i) q^{91} +(0.336285 - 0.582462i) q^{92} +(9.08113 - 15.7290i) q^{94} +(-0.850874 + 1.47376i) q^{95} +(1.13307 - 1.96254i) q^{97} +(-10.2106 + 0.514055i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - 4 q^{4} - 2 q^{5} + 2 q^{7} - 18 q^{8} + q^{10} - 14 q^{11} - 2 q^{13} + 4 q^{14} - 10 q^{16} - 5 q^{19} - 13 q^{20} + 4 q^{22} - 12 q^{23} - 4 q^{25} + 17 q^{26} - 30 q^{28} + 13 q^{29}+ \cdots - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.730252 1.26483i −0.516366 0.894373i −0.999819 0.0190026i \(-0.993951\pi\)
0.483453 0.875370i \(-0.339382\pi\)
\(3\) 0 0
\(4\) −0.0665372 + 0.115246i −0.0332686 + 0.0576229i
\(5\) 0.593579 0.265457 0.132728 0.991152i \(-0.457626\pi\)
0.132728 + 0.991152i \(0.457626\pi\)
\(6\) 0 0
\(7\) −2.25729 + 1.38008i −0.853177 + 0.521621i
\(8\) −2.72665 −0.964018
\(9\) 0 0
\(10\) −0.433463 0.750780i −0.137073 0.237417i
\(11\) −4.46050 −1.34489 −0.672446 0.740146i \(-0.734756\pi\)
−0.672446 + 0.740146i \(0.734756\pi\)
\(12\) 0 0
\(13\) 2.25729 + 3.90975i 0.626061 + 1.08437i 0.988335 + 0.152298i \(0.0486672\pi\)
−0.362274 + 0.932072i \(0.617999\pi\)
\(14\) 3.39397 + 1.84730i 0.907076 + 0.493711i
\(15\) 0 0
\(16\) 2.12422 + 3.67926i 0.531055 + 0.919814i
\(17\) −0.136673 0.236725i −0.0331481 0.0574142i 0.848975 0.528432i \(-0.177220\pi\)
−0.882124 + 0.471018i \(0.843887\pi\)
\(18\) 0 0
\(19\) −1.43346 + 2.48283i −0.328859 + 0.569600i −0.982286 0.187389i \(-0.939997\pi\)
0.653427 + 0.756990i \(0.273331\pi\)
\(20\) −0.0394951 + 0.0684076i −0.00883138 + 0.0152964i
\(21\) 0 0
\(22\) 3.25729 + 5.64180i 0.694458 + 1.20284i
\(23\) −5.05408 −1.05385 −0.526925 0.849912i \(-0.676655\pi\)
−0.526925 + 0.849912i \(0.676655\pi\)
\(24\) 0 0
\(25\) −4.64766 −0.929533
\(26\) 3.29679 5.71021i 0.646554 1.11986i
\(27\) 0 0
\(28\) −0.00885441 0.351971i −0.00167333 0.0665162i
\(29\) 0.176168 0.305132i 0.0327136 0.0566616i −0.849205 0.528063i \(-0.822918\pi\)
0.881919 + 0.471402i \(0.156252\pi\)
\(30\) 0 0
\(31\) −1.25729 + 2.17770i −0.225817 + 0.391126i −0.956564 0.291522i \(-0.905838\pi\)
0.730747 + 0.682648i \(0.239172\pi\)
\(32\) 0.375780 0.650870i 0.0664291 0.115059i
\(33\) 0 0
\(34\) −0.199612 + 0.345738i −0.0342331 + 0.0592935i
\(35\) −1.33988 + 0.819187i −0.226482 + 0.138468i
\(36\) 0 0
\(37\) 3.32383 5.75705i 0.546435 0.946452i −0.452081 0.891977i \(-0.649318\pi\)
0.998515 0.0544753i \(-0.0173486\pi\)
\(38\) 4.18716 0.679247
\(39\) 0 0
\(40\) −1.61849 −0.255905
\(41\) −5.44805 9.43630i −0.850843 1.47370i −0.880449 0.474141i \(-0.842759\pi\)
0.0296061 0.999562i \(-0.490575\pi\)
\(42\) 0 0
\(43\) −1.69076 + 2.92848i −0.257838 + 0.446589i −0.965663 0.259800i \(-0.916343\pi\)
0.707824 + 0.706388i \(0.249677\pi\)
\(44\) 0.296790 0.514055i 0.0447427 0.0774967i
\(45\) 0 0
\(46\) 3.69076 + 6.39258i 0.544172 + 0.942534i
\(47\) 6.21780 + 10.7695i 0.906959 + 1.57090i 0.818265 + 0.574841i \(0.194936\pi\)
0.0886938 + 0.996059i \(0.471731\pi\)
\(48\) 0 0
\(49\) 3.19076 6.23049i 0.455822 0.890071i
\(50\) 3.39397 + 5.87852i 0.479980 + 0.831349i
\(51\) 0 0
\(52\) −0.600777 −0.0833127
\(53\) 5.66372 + 9.80984i 0.777971 + 1.34749i 0.933109 + 0.359593i \(0.117084\pi\)
−0.155138 + 0.987893i \(0.549582\pi\)
\(54\) 0 0
\(55\) −2.64766 −0.357011
\(56\) 6.15486 3.76300i 0.822478 0.502852i
\(57\) 0 0
\(58\) −0.514589 −0.0675689
\(59\) −4.02704 + 6.97504i −0.524276 + 0.908073i 0.475324 + 0.879811i \(0.342331\pi\)
−0.999601 + 0.0282624i \(0.991003\pi\)
\(60\) 0 0
\(61\) 1.36693 + 2.36758i 0.175017 + 0.303138i 0.940167 0.340714i \(-0.110669\pi\)
−0.765150 + 0.643852i \(0.777335\pi\)
\(62\) 3.67257 0.466417
\(63\) 0 0
\(64\) 7.39922 0.924903
\(65\) 1.33988 + 2.32075i 0.166192 + 0.287853i
\(66\) 0 0
\(67\) −2.93346 + 5.08091i −0.358380 + 0.620732i −0.987690 0.156422i \(-0.950004\pi\)
0.629311 + 0.777154i \(0.283337\pi\)
\(68\) 0.0363754 0.00441117
\(69\) 0 0
\(70\) 2.01459 + 1.09652i 0.240789 + 0.131059i
\(71\) −2.60078 −0.308655 −0.154328 0.988020i \(-0.549321\pi\)
−0.154328 + 0.988020i \(0.549321\pi\)
\(72\) 0 0
\(73\) −5.55768 9.62619i −0.650478 1.12666i −0.983007 0.183567i \(-0.941235\pi\)
0.332530 0.943093i \(-0.392098\pi\)
\(74\) −9.70895 −1.12864
\(75\) 0 0
\(76\) −0.190757 0.330401i −0.0218814 0.0378996i
\(77\) 10.0687 6.15585i 1.14743 0.701525i
\(78\) 0 0
\(79\) −5.58113 9.66679i −0.627926 1.08760i −0.987967 0.154663i \(-0.950571\pi\)
0.360042 0.932936i \(-0.382763\pi\)
\(80\) 1.26089 + 2.18393i 0.140972 + 0.244171i
\(81\) 0 0
\(82\) −7.95691 + 13.7818i −0.878693 + 1.52194i
\(83\) 8.27188 14.3273i 0.907957 1.57263i 0.0910594 0.995845i \(-0.470975\pi\)
0.816898 0.576783i \(-0.195692\pi\)
\(84\) 0 0
\(85\) −0.0811263 0.140515i −0.00879939 0.0152410i
\(86\) 4.93872 0.532556
\(87\) 0 0
\(88\) 12.1623 1.29650
\(89\) −2.68716 + 4.65430i −0.284838 + 0.493354i −0.972570 0.232611i \(-0.925273\pi\)
0.687732 + 0.725965i \(0.258607\pi\)
\(90\) 0 0
\(91\) −10.4911 5.71021i −1.09977 0.598592i
\(92\) 0.336285 0.582462i 0.0350601 0.0607259i
\(93\) 0 0
\(94\) 9.08113 15.7290i 0.936647 1.62232i
\(95\) −0.850874 + 1.47376i −0.0872978 + 0.151204i
\(96\) 0 0
\(97\) 1.13307 1.96254i 0.115046 0.199266i −0.802752 0.596313i \(-0.796632\pi\)
0.917798 + 0.397047i \(0.129965\pi\)
\(98\) −10.2106 + 0.514055i −1.03143 + 0.0519274i
\(99\) 0 0
\(100\) 0.309243 0.535624i 0.0309243 0.0535624i
\(101\) −9.35661 −0.931017 −0.465509 0.885043i \(-0.654129\pi\)
−0.465509 + 0.885043i \(0.654129\pi\)
\(102\) 0 0
\(103\) −15.7630 −1.55318 −0.776589 0.630008i \(-0.783052\pi\)
−0.776589 + 0.630008i \(0.783052\pi\)
\(104\) −6.15486 10.6605i −0.603534 1.04535i
\(105\) 0 0
\(106\) 8.27188 14.3273i 0.803436 1.39159i
\(107\) 0.512453 0.887595i 0.0495407 0.0858070i −0.840192 0.542290i \(-0.817558\pi\)
0.889732 + 0.456483i \(0.150891\pi\)
\(108\) 0 0
\(109\) −0.647664 1.12179i −0.0620349 0.107448i 0.833340 0.552761i \(-0.186426\pi\)
−0.895375 + 0.445313i \(0.853092\pi\)
\(110\) 1.93346 + 3.34886i 0.184348 + 0.319301i
\(111\) 0 0
\(112\) −9.87266 5.37357i −0.932879 0.507755i
\(113\) 7.14766 + 12.3801i 0.672396 + 1.16462i 0.977223 + 0.212216i \(0.0680679\pi\)
−0.304827 + 0.952408i \(0.598599\pi\)
\(114\) 0 0
\(115\) −3.00000 −0.279751
\(116\) 0.0234435 + 0.0406053i 0.00217667 + 0.00377011i
\(117\) 0 0
\(118\) 11.7630 1.08287
\(119\) 0.635211 + 0.345738i 0.0582297 + 0.0316937i
\(120\) 0 0
\(121\) 8.89610 0.808737
\(122\) 1.99640 3.45787i 0.180746 0.313061i
\(123\) 0 0
\(124\) −0.167314 0.289796i −0.0150252 0.0260245i
\(125\) −5.72665 −0.512207
\(126\) 0 0
\(127\) 12.3346 1.09452 0.547261 0.836962i \(-0.315671\pi\)
0.547261 + 0.836962i \(0.315671\pi\)
\(128\) −6.15486 10.6605i −0.544018 0.942267i
\(129\) 0 0
\(130\) 1.95691 3.38946i 0.171632 0.297275i
\(131\) 3.19436 0.279092 0.139546 0.990216i \(-0.455436\pi\)
0.139546 + 0.990216i \(0.455436\pi\)
\(132\) 0 0
\(133\) −0.190757 7.58277i −0.0165408 0.657510i
\(134\) 8.56867 0.740221
\(135\) 0 0
\(136\) 0.372660 + 0.645466i 0.0319553 + 0.0553483i
\(137\) −10.1082 −0.863599 −0.431800 0.901970i \(-0.642121\pi\)
−0.431800 + 0.901970i \(0.642121\pi\)
\(138\) 0 0
\(139\) −9.03803 15.6543i −0.766596 1.32778i −0.939399 0.342827i \(-0.888616\pi\)
0.172803 0.984956i \(-0.444718\pi\)
\(140\) −0.00525579 0.208922i −0.000444196 0.0176572i
\(141\) 0 0
\(142\) 1.89922 + 3.28955i 0.159379 + 0.276053i
\(143\) −10.0687 17.4395i −0.841985 1.45836i
\(144\) 0 0
\(145\) 0.104570 0.181120i 0.00868405 0.0150412i
\(146\) −8.11702 + 14.0591i −0.671770 + 1.16354i
\(147\) 0 0
\(148\) 0.442317 + 0.766116i 0.0363582 + 0.0629743i
\(149\) −14.0541 −1.15136 −0.575678 0.817677i \(-0.695262\pi\)
−0.575678 + 0.817677i \(0.695262\pi\)
\(150\) 0 0
\(151\) 0.381515 0.0310472 0.0155236 0.999880i \(-0.495058\pi\)
0.0155236 + 0.999880i \(0.495058\pi\)
\(152\) 3.90856 6.76982i 0.317026 0.549105i
\(153\) 0 0
\(154\) −15.1388 8.23988i −1.21992 0.663988i
\(155\) −0.746304 + 1.29264i −0.0599446 + 0.103827i
\(156\) 0 0
\(157\) 3.75729 6.50783i 0.299865 0.519381i −0.676240 0.736681i \(-0.736392\pi\)
0.976105 + 0.217300i \(0.0697251\pi\)
\(158\) −8.15126 + 14.1184i −0.648480 + 1.12320i
\(159\) 0 0
\(160\) 0.223055 0.386343i 0.0176341 0.0305431i
\(161\) 11.4086 6.97504i 0.899120 0.549710i
\(162\) 0 0
\(163\) −7.59572 + 13.1562i −0.594942 + 1.03047i 0.398613 + 0.917119i \(0.369492\pi\)
−0.993555 + 0.113351i \(0.963842\pi\)
\(164\) 1.44999 0.113225
\(165\) 0 0
\(166\) −24.1623 −1.87535
\(167\) 4.47656 + 7.75362i 0.346406 + 0.599993i 0.985608 0.169046i \(-0.0540685\pi\)
−0.639202 + 0.769039i \(0.720735\pi\)
\(168\) 0 0
\(169\) −3.69076 + 6.39258i −0.283904 + 0.491737i
\(170\) −0.118485 + 0.205223i −0.00908741 + 0.0157399i
\(171\) 0 0
\(172\) −0.224997 0.389706i −0.0171558 0.0297148i
\(173\) −5.23025 9.05906i −0.397649 0.688748i 0.595787 0.803143i \(-0.296840\pi\)
−0.993435 + 0.114395i \(0.963507\pi\)
\(174\) 0 0
\(175\) 10.4911 6.41415i 0.793056 0.484864i
\(176\) −9.47509 16.4113i −0.714212 1.23705i
\(177\) 0 0
\(178\) 7.84922 0.588324
\(179\) −4.48395 7.76643i −0.335146 0.580490i 0.648367 0.761328i \(-0.275452\pi\)
−0.983513 + 0.180838i \(0.942119\pi\)
\(180\) 0 0
\(181\) 5.04689 0.375132 0.187566 0.982252i \(-0.439940\pi\)
0.187566 + 0.982252i \(0.439940\pi\)
\(182\) 0.438719 + 17.4395i 0.0325200 + 1.29270i
\(183\) 0 0
\(184\) 13.7807 1.01593
\(185\) 1.97296 3.41726i 0.145055 0.251242i
\(186\) 0 0
\(187\) 0.609631 + 1.05591i 0.0445806 + 0.0772159i
\(188\) −1.65486 −0.120693
\(189\) 0 0
\(190\) 2.48541 0.180311
\(191\) 6.06507 + 10.5050i 0.438853 + 0.760116i 0.997601 0.0692211i \(-0.0220514\pi\)
−0.558748 + 0.829338i \(0.688718\pi\)
\(192\) 0 0
\(193\) −8.58113 + 14.8629i −0.617683 + 1.06986i 0.372224 + 0.928143i \(0.378595\pi\)
−0.989907 + 0.141716i \(0.954738\pi\)
\(194\) −3.30972 −0.237624
\(195\) 0 0
\(196\) 0.505735 + 0.782282i 0.0361239 + 0.0558773i
\(197\) −0.751560 −0.0535464 −0.0267732 0.999642i \(-0.508523\pi\)
−0.0267732 + 0.999642i \(0.508523\pi\)
\(198\) 0 0
\(199\) −5.14766 8.91601i −0.364908 0.632040i 0.623853 0.781542i \(-0.285566\pi\)
−0.988761 + 0.149502i \(0.952233\pi\)
\(200\) 12.6726 0.896086
\(201\) 0 0
\(202\) 6.83269 + 11.8346i 0.480746 + 0.832677i
\(203\) 0.0234435 + 0.931900i 0.00164541 + 0.0654065i
\(204\) 0 0
\(205\) −3.23385 5.60119i −0.225862 0.391204i
\(206\) 11.5110 + 19.9376i 0.802009 + 1.38912i
\(207\) 0 0
\(208\) −9.58998 + 16.6103i −0.664946 + 1.15172i
\(209\) 6.39397 11.0747i 0.442280 0.766051i
\(210\) 0 0
\(211\) 8.05768 + 13.9563i 0.554714 + 0.960792i 0.997926 + 0.0643756i \(0.0205056\pi\)
−0.443212 + 0.896417i \(0.646161\pi\)
\(212\) −1.50739 −0.103528
\(213\) 0 0
\(214\) −1.49688 −0.102325
\(215\) −1.00360 + 1.73828i −0.0684449 + 0.118550i
\(216\) 0 0
\(217\) −0.167314 6.65087i −0.0113580 0.451491i
\(218\) −0.945916 + 1.63837i −0.0640655 + 0.110965i
\(219\) 0 0
\(220\) 0.176168 0.305132i 0.0118773 0.0205720i
\(221\) 0.617023 1.06871i 0.0415054 0.0718895i
\(222\) 0 0
\(223\) 3.47656 6.02157i 0.232807 0.403234i −0.725826 0.687879i \(-0.758542\pi\)
0.958633 + 0.284644i \(0.0918755\pi\)
\(224\) 0.0500067 + 1.98781i 0.00334121 + 0.132816i
\(225\) 0 0
\(226\) 10.4392 18.0812i 0.694405 1.20274i
\(227\) 5.29105 0.351180 0.175590 0.984463i \(-0.443817\pi\)
0.175590 + 0.984463i \(0.443817\pi\)
\(228\) 0 0
\(229\) 11.7237 0.774726 0.387363 0.921927i \(-0.373386\pi\)
0.387363 + 0.921927i \(0.373386\pi\)
\(230\) 2.19076 + 3.79450i 0.144454 + 0.250202i
\(231\) 0 0
\(232\) −0.480350 + 0.831990i −0.0315365 + 0.0546228i
\(233\) −1.93560 + 3.35256i −0.126805 + 0.219633i −0.922437 0.386147i \(-0.873806\pi\)
0.795632 + 0.605780i \(0.207139\pi\)
\(234\) 0 0
\(235\) 3.69076 + 6.39258i 0.240758 + 0.417006i
\(236\) −0.535897 0.928200i −0.0348839 0.0604207i
\(237\) 0 0
\(238\) −0.0265632 1.05591i −0.00172184 0.0684446i
\(239\) −6.19961 10.7380i −0.401020 0.694586i 0.592830 0.805328i \(-0.298011\pi\)
−0.993849 + 0.110742i \(0.964677\pi\)
\(240\) 0 0
\(241\) −16.5615 −1.06682 −0.533409 0.845857i \(-0.679089\pi\)
−0.533409 + 0.845857i \(0.679089\pi\)
\(242\) −6.49640 11.2521i −0.417604 0.723312i
\(243\) 0 0
\(244\) −0.363806 −0.0232903
\(245\) 1.89397 3.69829i 0.121001 0.236275i
\(246\) 0 0
\(247\) −12.9430 −0.823543
\(248\) 3.42821 5.93783i 0.217691 0.377052i
\(249\) 0 0
\(250\) 4.18190 + 7.24327i 0.264487 + 0.458105i
\(251\) 1.84922 0.116722 0.0583608 0.998296i \(-0.481413\pi\)
0.0583608 + 0.998296i \(0.481413\pi\)
\(252\) 0 0
\(253\) 22.5438 1.41731
\(254\) −9.00739 15.6013i −0.565174 0.978910i
\(255\) 0 0
\(256\) −1.58998 + 2.75393i −0.0993738 + 0.172120i
\(257\) 26.8420 1.67436 0.837180 0.546928i \(-0.184203\pi\)
0.837180 + 0.546928i \(0.184203\pi\)
\(258\) 0 0
\(259\) 0.442317 + 17.5825i 0.0274843 + 1.09252i
\(260\) −0.356609 −0.0221159
\(261\) 0 0
\(262\) −2.33269 4.04033i −0.144114 0.249612i
\(263\) 20.2848 1.25082 0.625408 0.780298i \(-0.284933\pi\)
0.625408 + 0.780298i \(0.284933\pi\)
\(264\) 0 0
\(265\) 3.36186 + 5.82292i 0.206518 + 0.357699i
\(266\) −9.45165 + 5.77861i −0.579518 + 0.354310i
\(267\) 0 0
\(268\) −0.390369 0.676139i −0.0238456 0.0413018i
\(269\) 4.36333 + 7.55750i 0.266037 + 0.460789i 0.967835 0.251587i \(-0.0809524\pi\)
−0.701798 + 0.712376i \(0.747619\pi\)
\(270\) 0 0
\(271\) −12.0957 + 20.9504i −0.734762 + 1.27265i 0.220065 + 0.975485i \(0.429373\pi\)
−0.954828 + 0.297161i \(0.903960\pi\)
\(272\) 0.580647 1.00571i 0.0352069 0.0609802i
\(273\) 0 0
\(274\) 7.38151 + 12.7852i 0.445934 + 0.772380i
\(275\) 20.7309 1.25012
\(276\) 0 0
\(277\) −7.11537 −0.427521 −0.213760 0.976886i \(-0.568571\pi\)
−0.213760 + 0.976886i \(0.568571\pi\)
\(278\) −13.2001 + 22.8632i −0.791689 + 1.37125i
\(279\) 0 0
\(280\) 3.65340 2.23364i 0.218332 0.133485i
\(281\) −3.94805 + 6.83823i −0.235521 + 0.407934i −0.959424 0.281967i \(-0.909013\pi\)
0.723903 + 0.689902i \(0.242346\pi\)
\(282\) 0 0
\(283\) −1.10457 + 1.91317i −0.0656599 + 0.113726i −0.896987 0.442058i \(-0.854249\pi\)
0.831327 + 0.555784i \(0.187582\pi\)
\(284\) 0.173048 0.299729i 0.0102685 0.0177856i
\(285\) 0 0
\(286\) −14.7053 + 25.4704i −0.869545 + 1.50610i
\(287\) 25.3207 + 13.7818i 1.49463 + 0.813512i
\(288\) 0 0
\(289\) 8.46264 14.6577i 0.497802 0.862219i
\(290\) −0.305449 −0.0179366
\(291\) 0 0
\(292\) 1.47917 0.0865620
\(293\) 9.59572 + 16.6203i 0.560588 + 0.970966i 0.997445 + 0.0714356i \(0.0227581\pi\)
−0.436858 + 0.899531i \(0.643909\pi\)
\(294\) 0 0
\(295\) −2.39037 + 4.14024i −0.139173 + 0.241054i
\(296\) −9.06294 + 15.6975i −0.526773 + 0.912397i
\(297\) 0 0
\(298\) 10.2630 + 17.7761i 0.594521 + 1.02974i
\(299\) −11.4086 19.7602i −0.659774 1.14276i
\(300\) 0 0
\(301\) −0.224997 8.94382i −0.0129686 0.515513i
\(302\) −0.278602 0.482553i −0.0160317 0.0277678i
\(303\) 0 0
\(304\) −12.1800 −0.698569
\(305\) 0.811379 + 1.40535i 0.0464594 + 0.0804701i
\(306\) 0 0
\(307\) −13.9138 −0.794103 −0.397052 0.917796i \(-0.629967\pi\)
−0.397052 + 0.917796i \(0.629967\pi\)
\(308\) 0.0394951 + 1.56997i 0.00225044 + 0.0894572i
\(309\) 0 0
\(310\) 2.17996 0.123813
\(311\) −5.32743 + 9.22738i −0.302091 + 0.523237i −0.976609 0.215021i \(-0.931018\pi\)
0.674519 + 0.738258i \(0.264351\pi\)
\(312\) 0 0
\(313\) 8.28074 + 14.3427i 0.468055 + 0.810695i 0.999334 0.0365022i \(-0.0116216\pi\)
−0.531279 + 0.847197i \(0.678288\pi\)
\(314\) −10.9751 −0.619360
\(315\) 0 0
\(316\) 1.48541 0.0835609
\(317\) 13.3186 + 23.0685i 0.748046 + 1.29565i 0.948758 + 0.316003i \(0.102341\pi\)
−0.200712 + 0.979650i \(0.564326\pi\)
\(318\) 0 0
\(319\) −0.785799 + 1.36104i −0.0439963 + 0.0762038i
\(320\) 4.39203 0.245522
\(321\) 0 0
\(322\) −17.1534 9.33639i −0.955922 0.520297i
\(323\) 0.783663 0.0436042
\(324\) 0 0
\(325\) −10.4911 18.1712i −0.581944 1.00796i
\(326\) 22.1872 1.22883
\(327\) 0 0
\(328\) 14.8550 + 25.7295i 0.820227 + 1.42068i
\(329\) −28.8982 15.7290i −1.59321 0.867166i
\(330\) 0 0
\(331\) 11.6534 + 20.1843i 0.640529 + 1.10943i 0.985315 + 0.170747i \(0.0546181\pi\)
−0.344786 + 0.938681i \(0.612049\pi\)
\(332\) 1.10078 + 1.90660i 0.0604130 + 0.104638i
\(333\) 0 0
\(334\) 6.53803 11.3242i 0.357745 0.619633i
\(335\) −1.74124 + 3.01592i −0.0951343 + 0.164777i
\(336\) 0 0
\(337\) 11.6192 + 20.1250i 0.632936 + 1.09628i 0.986948 + 0.161036i \(0.0514837\pi\)
−0.354013 + 0.935241i \(0.615183\pi\)
\(338\) 10.7807 0.586395
\(339\) 0 0
\(340\) 0.0215917 0.00117097
\(341\) 5.60817 9.71363i 0.303699 0.526023i
\(342\) 0 0
\(343\) 1.39610 + 18.4676i 0.0753825 + 0.997155i
\(344\) 4.61011 7.98494i 0.248560 0.430519i
\(345\) 0 0
\(346\) −7.63881 + 13.2308i −0.410665 + 0.711293i
\(347\) 8.56867 14.8414i 0.459990 0.796727i −0.538969 0.842325i \(-0.681186\pi\)
0.998960 + 0.0455985i \(0.0145195\pi\)
\(348\) 0 0
\(349\) 9.75729 16.9001i 0.522296 0.904643i −0.477368 0.878704i \(-0.658409\pi\)
0.999664 0.0259395i \(-0.00825772\pi\)
\(350\) −15.7740 8.58561i −0.843157 0.458920i
\(351\) 0 0
\(352\) −1.67617 + 2.90321i −0.0893401 + 0.154742i
\(353\) −16.0613 −0.854856 −0.427428 0.904049i \(-0.640580\pi\)
−0.427428 + 0.904049i \(0.640580\pi\)
\(354\) 0 0
\(355\) −1.54377 −0.0819347
\(356\) −0.357592 0.619368i −0.0189524 0.0328264i
\(357\) 0 0
\(358\) −6.54883 + 11.3429i −0.346116 + 0.599491i
\(359\) 6.93200 12.0066i 0.365857 0.633683i −0.623056 0.782177i \(-0.714109\pi\)
0.988913 + 0.148494i \(0.0474426\pi\)
\(360\) 0 0
\(361\) 5.39037 + 9.33639i 0.283704 + 0.491389i
\(362\) −3.68550 6.38348i −0.193706 0.335508i
\(363\) 0 0
\(364\) 1.35613 0.829120i 0.0710805 0.0434577i
\(365\) −3.29893 5.71391i −0.172674 0.299080i
\(366\) 0 0
\(367\) 25.2953 1.32041 0.660203 0.751088i \(-0.270470\pi\)
0.660203 + 0.751088i \(0.270470\pi\)
\(368\) −10.7360 18.5953i −0.559652 0.969346i
\(369\) 0 0
\(370\) −5.76303 −0.299606
\(371\) −26.3230 14.3273i −1.36662 0.743838i
\(372\) 0 0
\(373\) 2.00000 0.103556 0.0517780 0.998659i \(-0.483511\pi\)
0.0517780 + 0.998659i \(0.483511\pi\)
\(374\) 0.890369 1.54216i 0.0460399 0.0797434i
\(375\) 0 0
\(376\) −16.9538 29.3648i −0.874325 1.51437i
\(377\) 1.59065 0.0819229
\(378\) 0 0
\(379\) −18.8099 −0.966200 −0.483100 0.875565i \(-0.660489\pi\)
−0.483100 + 0.875565i \(0.660489\pi\)
\(380\) −0.113230 0.196119i −0.00580856 0.0100607i
\(381\) 0 0
\(382\) 8.85807 15.3426i 0.453218 0.784997i
\(383\) −35.1416 −1.79565 −0.897826 0.440350i \(-0.854855\pi\)
−0.897826 + 0.440350i \(0.854855\pi\)
\(384\) 0 0
\(385\) 5.97656 3.65399i 0.304594 0.186224i
\(386\) 25.0656 1.27580
\(387\) 0 0
\(388\) 0.150783 + 0.261164i 0.00765486 + 0.0132586i
\(389\) 8.37859 0.424811 0.212406 0.977182i \(-0.431870\pi\)
0.212406 + 0.977182i \(0.431870\pi\)
\(390\) 0 0
\(391\) 0.690757 + 1.19643i 0.0349331 + 0.0605059i
\(392\) −8.70009 + 16.9884i −0.439421 + 0.858044i
\(393\) 0 0
\(394\) 0.548828 + 0.950599i 0.0276496 + 0.0478905i
\(395\) −3.31284 5.73801i −0.166687 0.288711i
\(396\) 0 0
\(397\) 4.62422 8.00938i 0.232083 0.401979i −0.726338 0.687338i \(-0.758779\pi\)
0.958421 + 0.285358i \(0.0921126\pi\)
\(398\) −7.51819 + 13.0219i −0.376853 + 0.652728i
\(399\) 0 0
\(400\) −9.87266 17.0999i −0.493633 0.854997i
\(401\) 0.147469 0.00736425 0.00368212 0.999993i \(-0.498828\pi\)
0.00368212 + 0.999993i \(0.498828\pi\)
\(402\) 0 0
\(403\) −11.3523 −0.565500
\(404\) 0.622563 1.07831i 0.0309737 0.0536480i
\(405\) 0 0
\(406\) 1.16158 0.710174i 0.0576482 0.0352454i
\(407\) −14.8260 + 25.6793i −0.734896 + 1.27288i
\(408\) 0 0
\(409\) 1.96264 3.39939i 0.0970463 0.168089i −0.813414 0.581685i \(-0.802394\pi\)
0.910461 + 0.413595i \(0.135727\pi\)
\(410\) −4.72306 + 8.18057i −0.233255 + 0.404010i
\(411\) 0 0
\(412\) 1.04883 1.81662i 0.0516721 0.0894986i
\(413\) −0.535897 21.3024i −0.0263697 1.04822i
\(414\) 0 0
\(415\) 4.91002 8.50440i 0.241023 0.417465i
\(416\) 3.39298 0.166355
\(417\) 0 0
\(418\) −18.6768 −0.913514
\(419\) 10.5000 + 18.1865i 0.512959 + 0.888470i 0.999887 + 0.0150285i \(0.00478389\pi\)
−0.486928 + 0.873442i \(0.661883\pi\)
\(420\) 0 0
\(421\) 12.3442 21.3807i 0.601617 1.04203i −0.390959 0.920408i \(-0.627857\pi\)
0.992576 0.121624i \(-0.0388101\pi\)
\(422\) 11.7683 20.3833i 0.572871 0.992242i
\(423\) 0 0
\(424\) −15.4430 26.7480i −0.749978 1.29900i
\(425\) 0.635211 + 1.10022i 0.0308122 + 0.0533684i
\(426\) 0 0
\(427\) −6.35301 3.45787i −0.307444 0.167338i
\(428\) 0.0681944 + 0.118116i 0.00329630 + 0.00570936i
\(429\) 0 0
\(430\) 2.93152 0.141371
\(431\) −2.73745 4.74140i −0.131858 0.228385i 0.792535 0.609827i \(-0.208761\pi\)
−0.924393 + 0.381442i \(0.875428\pi\)
\(432\) 0 0
\(433\) 23.6300 1.13558 0.567792 0.823172i \(-0.307798\pi\)
0.567792 + 0.823172i \(0.307798\pi\)
\(434\) −8.29007 + 5.06844i −0.397936 + 0.243293i
\(435\) 0 0
\(436\) 0.172375 0.00825526
\(437\) 7.24484 12.5484i 0.346568 0.600273i
\(438\) 0 0
\(439\) 2.63307 + 4.56062i 0.125670 + 0.217666i 0.921995 0.387203i \(-0.126559\pi\)
−0.796325 + 0.604869i \(0.793225\pi\)
\(440\) 7.21926 0.344165
\(441\) 0 0
\(442\) −1.80233 −0.0857281
\(443\) 3.01819 + 5.22765i 0.143398 + 0.248373i 0.928774 0.370646i \(-0.120864\pi\)
−0.785376 + 0.619019i \(0.787530\pi\)
\(444\) 0 0
\(445\) −1.59504 + 2.76269i −0.0756122 + 0.130964i
\(446\) −10.1551 −0.480856
\(447\) 0 0
\(448\) −16.7022 + 10.2115i −0.789106 + 0.482449i
\(449\) −22.1445 −1.04507 −0.522533 0.852619i \(-0.675013\pi\)
−0.522533 + 0.852619i \(0.675013\pi\)
\(450\) 0 0
\(451\) 24.3011 + 42.0907i 1.14429 + 1.98197i
\(452\) −1.90234 −0.0894787
\(453\) 0 0
\(454\) −3.86381 6.69231i −0.181337 0.314086i
\(455\) −6.22733 3.38946i −0.291942 0.158900i
\(456\) 0 0
\(457\) 2.66731 + 4.61992i 0.124772 + 0.216111i 0.921644 0.388037i \(-0.126847\pi\)
−0.796872 + 0.604148i \(0.793513\pi\)
\(458\) −8.56128 14.8286i −0.400042 0.692894i
\(459\) 0 0
\(460\) 0.199612 0.345738i 0.00930694 0.0161201i
\(461\) −14.8473 + 25.7162i −0.691507 + 1.19772i 0.279838 + 0.960047i \(0.409719\pi\)
−0.971344 + 0.237677i \(0.923614\pi\)
\(462\) 0 0
\(463\) −9.29533 16.1000i −0.431990 0.748229i 0.565054 0.825054i \(-0.308855\pi\)
−0.997045 + 0.0768243i \(0.975522\pi\)
\(464\) 1.49688 0.0694909
\(465\) 0 0
\(466\) 5.65390 0.261912
\(467\) −12.3063 + 21.3152i −0.569468 + 0.986348i 0.427150 + 0.904181i \(0.359518\pi\)
−0.996619 + 0.0821676i \(0.973816\pi\)
\(468\) 0 0
\(469\) −0.390369 15.5175i −0.0180256 0.716532i
\(470\) 5.39037 9.33639i 0.248639 0.430656i
\(471\) 0 0
\(472\) 10.9803 19.0185i 0.505412 0.875399i
\(473\) 7.54163 13.0625i 0.346765 0.600614i
\(474\) 0 0
\(475\) 6.66225 11.5394i 0.305685 0.529462i
\(476\) −0.0821100 + 0.0502010i −0.00376351 + 0.00230096i
\(477\) 0 0
\(478\) −9.05456 + 15.6830i −0.414146 + 0.717322i
\(479\) −0.356609 −0.0162939 −0.00814693 0.999967i \(-0.502593\pi\)
−0.00814693 + 0.999967i \(0.502593\pi\)
\(480\) 0 0
\(481\) 30.0115 1.36841
\(482\) 12.0941 + 20.9475i 0.550869 + 0.954134i
\(483\) 0 0
\(484\) −0.591922 + 1.02524i −0.0269056 + 0.0466018i
\(485\) 0.672570 1.16492i 0.0305398 0.0528965i
\(486\) 0 0
\(487\) 6.43920 + 11.1530i 0.291788 + 0.505391i 0.974233 0.225546i \(-0.0724165\pi\)
−0.682445 + 0.730937i \(0.739083\pi\)
\(488\) −3.72713 6.45558i −0.168719 0.292231i
\(489\) 0 0
\(490\) −6.06080 + 0.305132i −0.273799 + 0.0137845i
\(491\) −2.77694 4.80981i −0.125322 0.217064i 0.796537 0.604590i \(-0.206663\pi\)
−0.921859 + 0.387526i \(0.873330\pi\)
\(492\) 0 0
\(493\) −0.0963098 −0.00433758
\(494\) 9.45165 + 16.3707i 0.425250 + 0.736554i
\(495\) 0 0
\(496\) −10.6831 −0.479685
\(497\) 5.87072 3.58928i 0.263338 0.161001i
\(498\) 0 0
\(499\) −28.1154 −1.25862 −0.629308 0.777156i \(-0.716662\pi\)
−0.629308 + 0.777156i \(0.716662\pi\)
\(500\) 0.381036 0.659973i 0.0170404 0.0295149i
\(501\) 0 0
\(502\) −1.35040 2.33895i −0.0602711 0.104393i
\(503\) 16.9430 0.755451 0.377725 0.925918i \(-0.376706\pi\)
0.377725 + 0.925918i \(0.376706\pi\)
\(504\) 0 0
\(505\) −5.55389 −0.247145
\(506\) −16.4626 28.5141i −0.731854 1.26761i
\(507\) 0 0
\(508\) −0.820712 + 1.42151i −0.0364132 + 0.0630695i
\(509\) −22.3025 −0.988542 −0.494271 0.869308i \(-0.664565\pi\)
−0.494271 + 0.869308i \(0.664565\pi\)
\(510\) 0 0
\(511\) 25.8302 + 14.0591i 1.14266 + 0.621938i
\(512\) −19.9751 −0.882783
\(513\) 0 0
\(514\) −19.6015 33.9507i −0.864583 1.49750i
\(515\) −9.35661 −0.412301
\(516\) 0 0
\(517\) −27.7345 48.0376i −1.21976 2.11269i
\(518\) 21.9159 13.3991i 0.962931 0.588724i
\(519\) 0 0
\(520\) −3.65340 6.32787i −0.160212 0.277496i
\(521\) −6.18044 10.7048i −0.270770 0.468987i 0.698289 0.715816i \(-0.253945\pi\)
−0.969059 + 0.246828i \(0.920612\pi\)
\(522\) 0 0
\(523\) −3.09572 + 5.36194i −0.135366 + 0.234461i −0.925737 0.378167i \(-0.876554\pi\)
0.790371 + 0.612628i \(0.209888\pi\)
\(524\) −0.212544 + 0.368136i −0.00928501 + 0.0160821i
\(525\) 0 0
\(526\) −14.8130 25.6569i −0.645879 1.11870i
\(527\) 0.687353 0.0299416
\(528\) 0 0
\(529\) 2.54377 0.110599
\(530\) 4.91002 8.50440i 0.213278 0.369408i
\(531\) 0 0
\(532\) 0.886576 + 0.482553i 0.0384379 + 0.0209213i
\(533\) 24.5957 42.6010i 1.06536 1.84526i
\(534\) 0 0
\(535\) 0.304182 0.526858i 0.0131509 0.0227781i
\(536\) 7.99854 13.8539i 0.345484 0.598396i
\(537\) 0 0
\(538\) 6.37266 11.0378i 0.274745 0.475872i
\(539\) −14.2324 + 27.7912i −0.613032 + 1.19705i
\(540\) 0 0
\(541\) −13.4100 + 23.2268i −0.576542 + 0.998600i 0.419330 + 0.907834i \(0.362265\pi\)
−0.995872 + 0.0907660i \(0.971068\pi\)
\(542\) 35.3317 1.51763
\(543\) 0 0
\(544\) −0.205436 −0.00880800
\(545\) −0.384440 0.665869i −0.0164676 0.0285227i
\(546\) 0 0
\(547\) 7.32957 12.6952i 0.313390 0.542807i −0.665704 0.746216i \(-0.731869\pi\)
0.979094 + 0.203409i \(0.0652021\pi\)
\(548\) 0.672570 1.16492i 0.0287307 0.0497631i
\(549\) 0 0
\(550\) −15.1388 26.2212i −0.645521 1.11808i
\(551\) 0.505061 + 0.874792i 0.0215163 + 0.0372674i
\(552\) 0 0
\(553\) 25.9392 + 14.1184i 1.10305 + 0.600375i
\(554\) 5.19601 + 8.99976i 0.220757 + 0.382363i
\(555\) 0 0
\(556\) 2.40546 0.102014
\(557\) 11.8399 + 20.5073i 0.501672 + 0.868921i 0.999998 + 0.00193169i \(0.000614877\pi\)
−0.498326 + 0.866990i \(0.666052\pi\)
\(558\) 0 0
\(559\) −15.2661 −0.645689
\(560\) −5.86021 3.18964i −0.247639 0.134787i
\(561\) 0 0
\(562\) 11.5323 0.486461
\(563\) 8.19289 14.1905i 0.345289 0.598059i −0.640117 0.768277i \(-0.721114\pi\)
0.985406 + 0.170219i \(0.0544475\pi\)
\(564\) 0 0
\(565\) 4.24271 + 7.34858i 0.178492 + 0.309157i
\(566\) 3.22646 0.135618
\(567\) 0 0
\(568\) 7.09142 0.297549
\(569\) 7.89397 + 13.6728i 0.330932 + 0.573192i 0.982695 0.185231i \(-0.0593035\pi\)
−0.651763 + 0.758423i \(0.725970\pi\)
\(570\) 0 0
\(571\) −3.19076 + 5.52655i −0.133529 + 0.231279i −0.925035 0.379883i \(-0.875964\pi\)
0.791506 + 0.611162i \(0.209298\pi\)
\(572\) 2.67977 0.112047
\(573\) 0 0
\(574\) −1.05886 42.0907i −0.0441960 1.75683i
\(575\) 23.4897 0.979587
\(576\) 0 0
\(577\) 18.5203 + 32.0781i 0.771011 + 1.33543i 0.937009 + 0.349304i \(0.113582\pi\)
−0.165998 + 0.986126i \(0.553085\pi\)
\(578\) −24.7195 −1.02819
\(579\) 0 0
\(580\) 0.0139156 + 0.0241025i 0.000577813 + 0.00100080i
\(581\) 1.10078 + 43.7569i 0.0456679 + 1.81534i
\(582\) 0 0
\(583\) −25.2630 43.7569i −1.04629 1.81222i
\(584\) 15.1539 + 26.2473i 0.627072 + 1.08612i
\(585\) 0 0
\(586\) 14.0146 24.2740i 0.578937 1.00275i
\(587\) 6.04689 10.4735i 0.249582 0.432288i −0.713828 0.700321i \(-0.753040\pi\)
0.963410 + 0.268033i \(0.0863735\pi\)
\(588\) 0 0
\(589\) −3.60457 6.24330i −0.148524 0.257251i
\(590\) 6.98229 0.287456
\(591\) 0 0
\(592\) 28.2422 1.16075
\(593\) −8.26449 + 14.3145i −0.339382 + 0.587827i −0.984317 0.176411i \(-0.943551\pi\)
0.644935 + 0.764238i \(0.276885\pi\)
\(594\) 0 0
\(595\) 0.377048 + 0.205223i 0.0154575 + 0.00841331i
\(596\) 0.935120 1.61968i 0.0383040 0.0663445i
\(597\) 0 0
\(598\) −16.6623 + 28.8599i −0.681370 + 1.18017i
\(599\) 4.37412 7.57620i 0.178722 0.309555i −0.762721 0.646727i \(-0.776137\pi\)
0.941443 + 0.337172i \(0.109470\pi\)
\(600\) 0 0
\(601\) 2.96197 5.13028i 0.120821 0.209268i −0.799271 0.600971i \(-0.794781\pi\)
0.920092 + 0.391703i \(0.128114\pi\)
\(602\) −11.1481 + 6.81583i −0.454364 + 0.277792i
\(603\) 0 0
\(604\) −0.0253849 + 0.0439680i −0.00103290 + 0.00178903i
\(605\) 5.28054 0.214685
\(606\) 0 0
\(607\) −0.741438 −0.0300940 −0.0150470 0.999887i \(-0.504790\pi\)
−0.0150470 + 0.999887i \(0.504790\pi\)
\(608\) 1.07733 + 1.86600i 0.0436916 + 0.0756761i
\(609\) 0 0
\(610\) 1.18502 2.05252i 0.0479802 0.0831041i
\(611\) −28.0708 + 48.6201i −1.13562 + 1.96696i
\(612\) 0 0
\(613\) −2.25350 3.90318i −0.0910181 0.157648i 0.816922 0.576749i \(-0.195679\pi\)
−0.907940 + 0.419101i \(0.862345\pi\)
\(614\) 10.1606 + 17.5987i 0.410048 + 0.710224i
\(615\) 0 0
\(616\) −27.4538 + 16.7849i −1.10614 + 0.676282i
\(617\) 8.60078 + 14.8970i 0.346254 + 0.599730i 0.985581 0.169205i \(-0.0541201\pi\)
−0.639327 + 0.768935i \(0.720787\pi\)
\(618\) 0 0
\(619\) 4.48541 0.180284 0.0901419 0.995929i \(-0.471268\pi\)
0.0901419 + 0.995929i \(0.471268\pi\)
\(620\) −0.0993140 0.172017i −0.00398855 0.00690837i
\(621\) 0 0
\(622\) 15.5615 0.623958
\(623\) −0.357592 14.2146i −0.0143266 0.569496i
\(624\) 0 0
\(625\) 19.8391 0.793564
\(626\) 12.0941 20.9475i 0.483376 0.837231i
\(627\) 0 0
\(628\) 0.500000 + 0.866025i 0.0199522 + 0.0345582i
\(629\) −1.81711 −0.0724531
\(630\) 0 0
\(631\) −17.3068 −0.688973 −0.344486 0.938791i \(-0.611947\pi\)
−0.344486 + 0.938791i \(0.611947\pi\)
\(632\) 15.2178 + 26.3580i 0.605332 + 1.04847i
\(633\) 0 0
\(634\) 19.4518 33.6916i 0.772531 1.33806i
\(635\) 7.32158 0.290548
\(636\) 0 0
\(637\) 31.5621 1.58900i 1.25054 0.0629586i
\(638\) 2.29533 0.0908729
\(639\) 0 0
\(640\) −3.65340 6.32787i −0.144413 0.250131i
\(641\) 43.3216 1.71110 0.855550 0.517721i \(-0.173219\pi\)
0.855550 + 0.517721i \(0.173219\pi\)
\(642\) 0 0
\(643\) −14.9911 25.9654i −0.591193 1.02398i −0.994072 0.108723i \(-0.965324\pi\)
0.402879 0.915253i \(-0.368010\pi\)
\(644\) 0.0447509 + 1.77889i 0.00176343 + 0.0700981i
\(645\) 0 0
\(646\) −0.572272 0.991204i −0.0225157 0.0389984i
\(647\) −7.08472 12.2711i −0.278529 0.482427i 0.692490 0.721427i \(-0.256514\pi\)
−0.971019 + 0.239000i \(0.923180\pi\)
\(648\) 0 0
\(649\) 17.9626 31.1122i 0.705095 1.22126i
\(650\) −15.3224 + 26.5391i −0.600993 + 1.04095i
\(651\) 0 0
\(652\) −1.01080 1.75075i −0.0395858 0.0685647i
\(653\) −28.3963 −1.11123 −0.555617 0.831439i \(-0.687518\pi\)
−0.555617 + 0.831439i \(0.687518\pi\)
\(654\) 0 0
\(655\) 1.89610 0.0740869
\(656\) 23.1457 40.0896i 0.903689 1.56523i
\(657\) 0 0
\(658\) 1.20847 + 48.0376i 0.0471109 + 1.87270i
\(659\) −4.69961 + 8.13997i −0.183071 + 0.317088i −0.942925 0.333006i \(-0.891937\pi\)
0.759854 + 0.650094i \(0.225270\pi\)
\(660\) 0 0
\(661\) 6.35807 11.0125i 0.247300 0.428337i −0.715476 0.698638i \(-0.753790\pi\)
0.962776 + 0.270301i \(0.0871232\pi\)
\(662\) 17.0198 29.4792i 0.661495 1.14574i
\(663\) 0 0
\(664\) −22.5546 + 39.0656i −0.875287 + 1.51604i
\(665\) −0.113230 4.50098i −0.00439086 0.174540i
\(666\) 0 0
\(667\) −0.890369 + 1.54216i −0.0344752 + 0.0597128i
\(668\) −1.19143 −0.0460978
\(669\) 0 0
\(670\) 5.08619 0.196497
\(671\) −6.09718 10.5606i −0.235379 0.407688i
\(672\) 0 0
\(673\) −17.8961 + 30.9970i −0.689844 + 1.19485i 0.282044 + 0.959401i \(0.408988\pi\)
−0.971888 + 0.235444i \(0.924346\pi\)
\(674\) 16.9698 29.3926i 0.653654 1.13216i
\(675\) 0 0
\(676\) −0.491146 0.850689i −0.0188902 0.0327188i
\(677\) 5.44592 + 9.43260i 0.209304 + 0.362524i 0.951495 0.307663i \(-0.0995470\pi\)
−0.742192 + 0.670188i \(0.766214\pi\)
\(678\) 0 0
\(679\) 0.150783 + 5.99377i 0.00578653 + 0.230020i
\(680\) 0.221203 + 0.383136i 0.00848276 + 0.0146926i
\(681\) 0 0
\(682\) −16.3815 −0.627281
\(683\) 17.5079 + 30.3245i 0.669920 + 1.16034i 0.977926 + 0.208951i \(0.0670050\pi\)
−0.308006 + 0.951384i \(0.599662\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 22.3389 15.2518i 0.852903 0.582317i
\(687\) 0 0
\(688\) −14.3662 −0.547705
\(689\) −25.5693 + 44.2874i −0.974115 + 1.68722i
\(690\) 0 0
\(691\) −4.21041 7.29264i −0.160171 0.277425i 0.774759 0.632257i \(-0.217871\pi\)
−0.934930 + 0.354832i \(0.884538\pi\)
\(692\) 1.39203 0.0529169
\(693\) 0 0
\(694\) −25.0292 −0.950095
\(695\) −5.36479 9.29209i −0.203498 0.352469i
\(696\) 0 0
\(697\) −1.48920 + 2.57938i −0.0564076 + 0.0977009i
\(698\) −28.5012 −1.07878
\(699\) 0 0
\(700\) 0.0411523 + 1.63584i 0.00155541 + 0.0618290i
\(701\) −42.7453 −1.61447 −0.807234 0.590231i \(-0.799037\pi\)
−0.807234 + 0.590231i \(0.799037\pi\)
\(702\) 0 0
\(703\) 9.52918 + 16.5050i 0.359400 + 0.622499i
\(704\) −33.0043 −1.24390
\(705\) 0 0
\(706\) 11.7288 + 20.3149i 0.441419 + 0.764560i
\(707\) 21.1206 12.9129i 0.794323 0.485638i
\(708\) 0 0
\(709\) 12.0431 + 20.8593i 0.452288 + 0.783386i 0.998528 0.0542432i \(-0.0172746\pi\)
−0.546240 + 0.837629i \(0.683941\pi\)
\(710\) 1.12734 + 1.95261i 0.0423083 + 0.0732801i
\(711\) 0 0
\(712\) 7.32695 12.6907i 0.274589 0.475602i
\(713\) 6.35447 11.0063i 0.237977 0.412188i
\(714\) 0 0
\(715\) −5.97656 10.3517i −0.223511 0.387132i
\(716\) 1.19340 0.0445994
\(717\) 0 0
\(718\) −20.2484 −0.755665
\(719\) 21.0512 36.4617i 0.785076 1.35979i −0.143878 0.989595i \(-0.545957\pi\)
0.928954 0.370196i \(-0.120709\pi\)
\(720\) 0 0
\(721\) 35.5818 21.7542i 1.32514 0.810170i
\(722\) 7.87266 13.6358i 0.292990 0.507474i
\(723\) 0 0
\(724\) −0.335806 + 0.581633i −0.0124801 + 0.0216162i
\(725\) −0.818771 + 1.41815i −0.0304084 + 0.0526689i
\(726\) 0 0
\(727\) −18.0349 + 31.2374i −0.668878 + 1.15853i 0.309340 + 0.950951i \(0.399892\pi\)
−0.978218 + 0.207579i \(0.933442\pi\)
\(728\) 28.6057 + 15.5698i 1.06020 + 0.577054i
\(729\) 0 0
\(730\) −4.81810 + 8.34519i −0.178326 + 0.308869i
\(731\) 0.924324 0.0341874
\(732\) 0 0
\(733\) 34.1331 1.26073 0.630367 0.776297i \(-0.282904\pi\)
0.630367 + 0.776297i \(0.282904\pi\)
\(734\) −18.4720 31.9944i −0.681813 1.18093i
\(735\) 0 0
\(736\) −1.89922 + 3.28955i −0.0700063 + 0.121254i
\(737\) 13.0847 22.6634i 0.481982 0.834817i
\(738\) 0 0
\(739\) −10.9481 18.9626i −0.402731 0.697550i 0.591324 0.806434i \(-0.298606\pi\)
−0.994054 + 0.108884i \(0.965272\pi\)
\(740\) 0.262550 + 0.454751i 0.00965154 + 0.0167170i
\(741\) 0 0
\(742\) 1.10078 + 43.7569i 0.0404108 + 1.60636i
\(743\) −14.1426 24.4957i −0.518842 0.898660i −0.999760 0.0218950i \(-0.993030\pi\)
0.480919 0.876765i \(-0.340303\pi\)
\(744\) 0 0
\(745\) −8.34221 −0.305635
\(746\) −1.46050 2.52967i −0.0534729 0.0926177i
\(747\) 0 0
\(748\) −0.162253 −0.00593254
\(749\) 0.0681944 + 2.71079i 0.00249177 + 0.0990501i
\(750\) 0 0
\(751\) −14.4969 −0.528999 −0.264499 0.964386i \(-0.585207\pi\)
−0.264499 + 0.964386i \(0.585207\pi\)
\(752\) −26.4159 + 45.7538i −0.963291 + 1.66847i
\(753\) 0 0
\(754\) −1.16158 2.01191i −0.0423022 0.0732696i
\(755\) 0.226459 0.00824169
\(756\) 0 0
\(757\) −38.9646 −1.41619 −0.708096 0.706116i \(-0.750446\pi\)
−0.708096 + 0.706116i \(0.750446\pi\)
\(758\) 13.7360 + 23.7914i 0.498914 + 0.864144i
\(759\) 0 0
\(760\) 2.32004 4.01842i 0.0841566 0.145764i
\(761\) −1.25564 −0.0455168 −0.0227584 0.999741i \(-0.507245\pi\)
−0.0227584 + 0.999741i \(0.507245\pi\)
\(762\) 0 0
\(763\) 3.01012 + 1.63837i 0.108974 + 0.0593131i
\(764\) −1.61421 −0.0584002
\(765\) 0 0
\(766\) 25.6623 + 44.4483i 0.927215 + 1.60598i
\(767\) −36.3609 −1.31292
\(768\) 0 0
\(769\) 13.8442 + 23.9788i 0.499233 + 0.864697i 1.00000 0.000885409i \(-0.000281834\pi\)
−0.500767 + 0.865582i \(0.666949\pi\)
\(770\) −8.98608 4.89102i −0.323836 0.176260i
\(771\) 0 0
\(772\) −1.14193 1.97788i −0.0410989 0.0711854i
\(773\) −3.95544 6.85103i −0.142267 0.246414i 0.786083 0.618121i \(-0.212106\pi\)
−0.928350 + 0.371707i \(0.878773\pi\)
\(774\) 0 0
\(775\) 5.84348 10.1212i 0.209904 0.363565i
\(776\) −3.08950 + 5.35117i −0.110907 + 0.192096i
\(777\) 0 0
\(778\) −6.11849 10.5975i −0.219358 0.379940i
\(779\) 31.2383 1.11923
\(780\) 0 0
\(781\) 11.6008 0.415108
\(782\) 1.00885 1.74739i 0.0360766 0.0624864i
\(783\) 0 0
\(784\) 29.7015 1.49533i 1.06077 0.0534045i
\(785\) 2.23025 3.86291i 0.0796011 0.137873i
\(786\) 0 0
\(787\) −15.8346 + 27.4264i −0.564444 + 0.977645i 0.432658 + 0.901558i \(0.357576\pi\)
−0.997101 + 0.0760866i \(0.975757\pi\)
\(788\) 0.0500067 0.0866142i 0.00178142 0.00308550i
\(789\) 0 0
\(790\) −4.83842 + 8.38039i −0.172143 + 0.298161i
\(791\) −33.2199 18.0812i −1.18116 0.642894i
\(792\) 0 0
\(793\) −6.17111 + 10.6887i −0.219142 + 0.379566i
\(794\) −13.5074 −0.479359
\(795\) 0 0
\(796\) 1.37005 0.0485600
\(797\) −16.8961 29.2649i −0.598491 1.03662i −0.993044 0.117743i \(-0.962434\pi\)
0.394553 0.918873i \(-0.370899\pi\)
\(798\) 0 0
\(799\) 1.69961 2.94381i 0.0601279 0.104145i
\(800\) −1.74650 + 3.02502i −0.0617481 + 0.106951i
\(801\) 0 0
\(802\) −0.107690 0.186524i −0.00380265 0.00658638i
\(803\) 24.7901 + 42.9377i 0.874823 + 1.51524i
\(804\) 0 0
\(805\) 6.77188 4.14024i 0.238678 0.145924i
\(806\) 8.29007 + 14.3588i 0.292005 + 0.505768i
\(807\) 0 0
\(808\) 25.5122 0.897517
\(809\) −18.3801 31.8352i −0.646208 1.11927i −0.984021 0.178052i \(-0.943020\pi\)
0.337813 0.941213i \(-0.390313\pi\)
\(810\) 0 0
\(811\) 3.54377 0.124438 0.0622192 0.998063i \(-0.480182\pi\)
0.0622192 + 0.998063i \(0.480182\pi\)
\(812\) −0.108957 0.0593043i −0.00382366 0.00208117i
\(813\) 0 0
\(814\) 43.3068 1.51790
\(815\) −4.50866 + 7.80923i −0.157931 + 0.273545i
\(816\) 0 0
\(817\) −4.84728 8.39573i −0.169585 0.293729i
\(818\) −5.73289 −0.200446
\(819\) 0 0
\(820\) 0.860686 0.0300565
\(821\) −10.4318 18.0684i −0.364073 0.630592i 0.624554 0.780981i \(-0.285281\pi\)
−0.988627 + 0.150389i \(0.951947\pi\)
\(822\) 0 0
\(823\) −22.7003 + 39.3180i −0.791282 + 1.37054i 0.133891 + 0.990996i \(0.457253\pi\)
−0.925173 + 0.379545i \(0.876081\pi\)
\(824\) 42.9803 1.49729
\(825\) 0 0
\(826\) −26.5526 + 16.2339i −0.923884 + 0.564850i
\(827\) −5.34221 −0.185767 −0.0928835 0.995677i \(-0.529608\pi\)
−0.0928835 + 0.995677i \(0.529608\pi\)
\(828\) 0 0
\(829\) −8.45185 14.6390i −0.293545 0.508434i 0.681101 0.732190i \(-0.261502\pi\)
−0.974645 + 0.223755i \(0.928168\pi\)
\(830\) −14.3422 −0.497826
\(831\) 0 0
\(832\) 16.7022 + 28.9291i 0.579046 + 1.00294i
\(833\) −1.91100 + 0.0962098i −0.0662123 + 0.00333347i
\(834\) 0 0
\(835\) 2.65719 + 4.60239i 0.0919559 + 0.159272i
\(836\) 0.850874 + 1.47376i 0.0294281 + 0.0509709i
\(837\) 0 0
\(838\) 15.3353 26.5615i 0.529749 0.917553i
\(839\) 4.91955 8.52091i 0.169842 0.294174i −0.768522 0.639823i \(-0.779008\pi\)
0.938364 + 0.345649i \(0.112341\pi\)
\(840\) 0 0
\(841\) 14.4379 + 25.0072i 0.497860 + 0.862318i
\(842\) −36.0574 −1.24262
\(843\) 0 0
\(844\) −2.14454 −0.0738182
\(845\) −2.19076 + 3.79450i −0.0753643 + 0.130535i
\(846\) 0 0
\(847\) −20.0811 + 12.2773i −0.689996 + 0.421854i
\(848\) −24.0620 + 41.6765i −0.826291 + 1.43118i
\(849\) 0 0
\(850\) 0.927728 1.60687i 0.0318208 0.0551153i
\(851\) −16.7989 + 29.0966i −0.575860 + 0.997418i
\(852\) 0 0
\(853\) 27.7434 48.0529i 0.949915 1.64530i 0.204318 0.978905i \(-0.434502\pi\)
0.745597 0.666397i \(-0.232164\pi\)
\(854\) 0.265670 + 10.5606i 0.00909104 + 0.361377i
\(855\) 0 0
\(856\) −1.39728 + 2.42016i −0.0477581 + 0.0827195i
\(857\) −56.3465 −1.92476 −0.962380 0.271708i \(-0.912411\pi\)
−0.962380 + 0.271708i \(0.912411\pi\)
\(858\) 0 0
\(859\) 43.9253 1.49871 0.749356 0.662168i \(-0.230363\pi\)
0.749356 + 0.662168i \(0.230363\pi\)
\(860\) −0.133553 0.231321i −0.00455413 0.00788799i
\(861\) 0 0
\(862\) −3.99806 + 6.92484i −0.136174 + 0.235861i
\(863\) −5.66372 + 9.80984i −0.192795 + 0.333931i −0.946175 0.323654i \(-0.895089\pi\)
0.753380 + 0.657585i \(0.228422\pi\)
\(864\) 0 0
\(865\) −3.10457 5.37727i −0.105559 0.182833i
\(866\) −17.2558 29.8880i −0.586377 1.01563i
\(867\) 0 0
\(868\) 0.777618 + 0.423249i 0.0263941 + 0.0143660i
\(869\) 24.8946 + 43.1188i 0.844493 + 1.46270i
\(870\) 0 0
\(871\) −26.4868 −0.897470
\(872\) 1.76595 + 3.05872i 0.0598028 + 0.103581i
\(873\) 0 0
\(874\) −21.1623 −0.715824
\(875\) 12.9267 7.90324i 0.437004 0.267178i
\(876\) 0 0
\(877\) −46.4615 −1.56889 −0.784446 0.620197i \(-0.787053\pi\)
−0.784446 + 0.620197i \(0.787053\pi\)
\(878\) 3.84562 6.66081i 0.129783 0.224791i
\(879\) 0 0
\(880\) −5.62422 9.74143i −0.189592 0.328384i
\(881\) 21.6578 0.729669 0.364835 0.931072i \(-0.381126\pi\)
0.364835 + 0.931072i \(0.381126\pi\)
\(882\) 0 0
\(883\) 11.4868 0.386560 0.193280 0.981144i \(-0.438087\pi\)
0.193280 + 0.981144i \(0.438087\pi\)
\(884\) 0.0821100 + 0.142219i 0.00276166 + 0.00478333i
\(885\) 0 0
\(886\) 4.40808 7.63501i 0.148092 0.256503i
\(887\) 17.8420 0.599076 0.299538 0.954084i \(-0.403167\pi\)
0.299538 + 0.954084i \(0.403167\pi\)
\(888\) 0 0
\(889\) −27.8429 + 17.0228i −0.933820 + 0.570926i
\(890\) 4.65913 0.156174
\(891\) 0 0
\(892\) 0.462641 + 0.801318i 0.0154904 + 0.0268301i
\(893\) −35.6519 −1.19305
\(894\) 0 0
\(895\) −2.66158 4.60999i −0.0889668 0.154095i
\(896\) 28.6057 + 15.5698i 0.955650 + 0.520149i
\(897\) 0 0
\(898\) 16.1711 + 28.0092i 0.539637 + 0.934678i
\(899\) 0.442991 + 0.767282i 0.0147746 + 0.0255903i
\(900\) 0 0
\(901\) 1.54815 2.68148i 0.0515765 0.0893331i
\(902\) 35.4918 61.4736i 1.18175 2.04685i
\(903\) 0 0
\(904\) −19.4892 33.7563i −0.648201 1.12272i
\(905\) 2.99573 0.0995814
\(906\) 0 0
\(907\) −51.8506 −1.72167 −0.860835 0.508884i \(-0.830058\pi\)
−0.860835 + 0.508884i \(0.830058\pi\)
\(908\) −0.352052 + 0.609772i −0.0116833 + 0.0202360i
\(909\) 0 0
\(910\) 0.260414 + 10.3517i 0.00863265 + 0.343155i
\(911\) 3.24338 5.61770i 0.107458 0.186123i −0.807282 0.590166i \(-0.799062\pi\)
0.914740 + 0.404044i \(0.132396\pi\)
\(912\) 0 0
\(913\) −36.8968 + 63.9071i −1.22111 + 2.11502i
\(914\) 3.89562 6.74742i 0.128856 0.223185i
\(915\) 0 0
\(916\) −0.780065 + 1.35111i −0.0257741 + 0.0446420i
\(917\) −7.21060 + 4.40847i −0.238115 + 0.145580i
\(918\) 0 0
\(919\) 5.84221 10.1190i 0.192717 0.333795i −0.753433 0.657525i \(-0.771603\pi\)
0.946150 + 0.323730i \(0.104937\pi\)
\(920\) 8.17996 0.269685
\(921\) 0 0
\(922\) 43.3690 1.42828
\(923\) −5.87072 10.1684i −0.193237 0.334696i
\(924\) 0 0
\(925\) −15.4481 + 26.7568i −0.507929 + 0.879759i
\(926\) −13.5759 + 23.5141i −0.446131 + 0.772721i
\(927\) 0 0
\(928\) −0.132401 0.229325i −0.00434627 0.00752797i
\(929\) −0.730252 1.26483i −0.0239588 0.0414979i 0.853797 0.520605i \(-0.174294\pi\)
−0.877756 + 0.479108i \(0.840960\pi\)
\(930\) 0 0
\(931\) 10.8954 + 16.8533i 0.357083 + 0.552344i
\(932\) −0.257579 0.446140i −0.00843727 0.0146138i
\(933\) 0 0
\(934\) 35.9469 1.17622
\(935\) 0.361864 + 0.626767i 0.0118342 + 0.0204975i
\(936\) 0 0
\(937\) 9.87451 0.322586 0.161293 0.986907i \(-0.448434\pi\)
0.161293 + 0.986907i \(0.448434\pi\)
\(938\) −19.3420 + 11.8255i −0.631539 + 0.386115i
\(939\) 0 0
\(940\) −0.982291 −0.0320388
\(941\) 27.0972 46.9337i 0.883343 1.52999i 0.0357414 0.999361i \(-0.488621\pi\)
0.847601 0.530633i \(-0.178046\pi\)
\(942\) 0 0
\(943\) 27.5349 + 47.6919i 0.896660 + 1.55306i
\(944\) −34.2173 −1.11368
\(945\) 0 0
\(946\) −22.0292 −0.716230
\(947\) −27.4451 47.5364i −0.891847 1.54472i −0.837659 0.546193i \(-0.816076\pi\)
−0.0541875 0.998531i \(-0.517257\pi\)
\(948\) 0 0
\(949\) 25.0907 43.4583i 0.814477 1.41072i
\(950\) −19.4605 −0.631382
\(951\) 0 0
\(952\) −1.73200 0.942707i −0.0561344 0.0305533i
\(953\) 27.0406 0.875932 0.437966 0.898991i \(-0.355699\pi\)
0.437966 + 0.898991i \(0.355699\pi\)
\(954\) 0 0
\(955\) 3.60010 + 6.23556i 0.116497 + 0.201778i
\(956\) 1.65002 0.0533655
\(957\) 0 0
\(958\) 0.260414 + 0.451051i 0.00841360 + 0.0145728i
\(959\) 22.8171 13.9501i 0.736803 0.450472i
\(960\) 0 0
\(961\) 12.3384 + 21.3708i 0.398014 + 0.689380i
\(962\) −21.9159 37.9595i −0.706599 1.22386i
\(963\) 0 0
\(964\) 1.10195 1.90864i 0.0354916 0.0614732i
\(965\) −5.09358 + 8.82234i −0.163968 + 0.284001i
\(966\) 0 0
\(967\) 6.75729 + 11.7040i 0.217300 + 0.376375i 0.953982 0.299865i \(-0.0969417\pi\)
−0.736682 + 0.676240i \(0.763608\pi\)
\(968\) −24.2566 −0.779636
\(969\) 0 0
\(970\) −1.96458 −0.0630789
\(971\) 6.46557 11.1987i 0.207490 0.359383i −0.743433 0.668810i \(-0.766804\pi\)
0.950923 + 0.309427i \(0.100137\pi\)
\(972\) 0 0
\(973\) 42.0057 + 22.8632i 1.34664 + 0.732961i
\(974\) 9.40448 16.2890i 0.301339 0.521934i
\(975\) 0 0
\(976\) −5.80730 + 10.0585i −0.185887 + 0.321966i
\(977\) −18.2989 + 31.6947i −0.585435 + 1.01400i 0.409387 + 0.912361i \(0.365743\pi\)
−0.994821 + 0.101641i \(0.967591\pi\)
\(978\) 0 0
\(979\) 11.9861 20.7605i 0.383077 0.663509i
\(980\) 0.300194 + 0.464346i 0.00958933 + 0.0148330i
\(981\) 0 0
\(982\) −4.05574 + 7.02475i −0.129424 + 0.224169i
\(983\) 17.2379 0.549805 0.274902 0.961472i \(-0.411354\pi\)
0.274902 + 0.961472i \(0.411354\pi\)
\(984\) 0 0
\(985\) −0.446110 −0.0142143
\(986\) 0.0703305 + 0.121816i 0.00223978 + 0.00387941i
\(987\) 0 0
\(988\) 0.861191 1.49163i 0.0273981 0.0474550i
\(989\) 8.54523 14.8008i 0.271722 0.470637i
\(990\) 0 0
\(991\) 7.67111 + 13.2867i 0.243681 + 0.422067i 0.961760 0.273894i \(-0.0883118\pi\)
−0.718079 + 0.695961i \(0.754978\pi\)
\(992\) 0.944932 + 1.63667i 0.0300016 + 0.0519643i
\(993\) 0 0
\(994\) −8.82695 4.80441i −0.279974 0.152387i
\(995\) −3.05555 5.29236i −0.0968673 0.167779i
\(996\) 0 0
\(997\) −34.1154 −1.08044 −0.540222 0.841522i \(-0.681660\pi\)
−0.540222 + 0.841522i \(0.681660\pi\)
\(998\) 20.5313 + 35.5613i 0.649907 + 1.12567i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.i.541.1 6
3.2 odd 2 567.2.g.h.541.3 6
7.4 even 3 567.2.h.h.298.3 6
9.2 odd 6 189.2.e.e.163.3 yes 6
9.4 even 3 567.2.h.h.352.3 6
9.5 odd 6 567.2.h.i.352.1 6
9.7 even 3 189.2.e.f.163.1 yes 6
21.11 odd 6 567.2.h.i.298.1 6
63.2 odd 6 1323.2.a.ba.1.1 3
63.4 even 3 inner 567.2.g.i.109.1 6
63.11 odd 6 189.2.e.e.109.3 6
63.16 even 3 1323.2.a.x.1.3 3
63.25 even 3 189.2.e.f.109.1 yes 6
63.32 odd 6 567.2.g.h.109.3 6
63.47 even 6 1323.2.a.z.1.1 3
63.61 odd 6 1323.2.a.y.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.e.e.109.3 6 63.11 odd 6
189.2.e.e.163.3 yes 6 9.2 odd 6
189.2.e.f.109.1 yes 6 63.25 even 3
189.2.e.f.163.1 yes 6 9.7 even 3
567.2.g.h.109.3 6 63.32 odd 6
567.2.g.h.541.3 6 3.2 odd 2
567.2.g.i.109.1 6 63.4 even 3 inner
567.2.g.i.541.1 6 1.1 even 1 trivial
567.2.h.h.298.3 6 7.4 even 3
567.2.h.h.352.3 6 9.4 even 3
567.2.h.i.298.1 6 21.11 odd 6
567.2.h.i.352.1 6 9.5 odd 6
1323.2.a.x.1.3 3 63.16 even 3
1323.2.a.y.1.3 3 63.61 odd 6
1323.2.a.z.1.1 3 63.47 even 6
1323.2.a.ba.1.1 3 63.2 odd 6