Properties

Label 567.2.g.i.109.2
Level $567$
Weight $2$
Character 567.109
Analytic conductor $4.528$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(109,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.2
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 567.109
Dual form 567.2.g.i.541.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.380438 - 0.658939i) q^{2} +(0.710533 + 1.23068i) q^{4} -3.18194 q^{5} +(1.85185 + 1.88962i) q^{7} +2.60301 q^{8} +(-1.21053 + 2.09671i) q^{10} -2.23912 q^{11} +(-1.85185 + 3.20750i) q^{13} +(1.94966 - 0.501371i) q^{14} +(-0.430782 + 0.746136i) q^{16} +(-2.80150 + 4.85235i) q^{17} +(-2.21053 - 3.82876i) q^{19} +(-2.26088 - 3.91595i) q^{20} +(-0.851848 + 1.47544i) q^{22} +0.942820 q^{23} +5.12476 q^{25} +(1.40903 + 2.44051i) q^{26} +(-1.00972 + 3.62167i) q^{28} +(5.06238 + 8.76830i) q^{29} +(2.85185 + 4.93955i) q^{31} +(2.93078 + 5.07626i) q^{32} +(2.13160 + 3.69204i) q^{34} +(-5.89248 - 6.01266i) q^{35} +(-1.56238 - 2.70612i) q^{37} -3.36389 q^{38} -8.28263 q^{40} +(1.99316 - 3.45226i) q^{41} +(1.64132 + 2.84284i) q^{43} +(-1.59097 - 2.75564i) q^{44} +(0.358685 - 0.621261i) q^{46} +(-0.112725 + 0.195246i) q^{47} +(-0.141315 + 6.99857i) q^{49} +(1.94966 - 3.37690i) q^{50} -5.26320 q^{52} +(5.33009 - 9.23200i) q^{53} +7.12476 q^{55} +(4.82038 + 4.91870i) q^{56} +7.70370 q^{58} +(-1.02859 - 1.78157i) q^{59} +(2.92107 - 5.05944i) q^{61} +4.33981 q^{62} +2.73680 q^{64} +(5.89248 - 10.2061i) q^{65} +(-3.71053 - 6.42683i) q^{67} -7.96225 q^{68} +(-6.20370 + 1.59533i) q^{70} -7.26320 q^{71} +(-3.77975 + 6.54672i) q^{73} -2.37756 q^{74} +(3.14132 - 5.44092i) q^{76} +(-4.14652 - 4.23109i) q^{77} +(3.41423 - 5.91362i) q^{79} +(1.37072 - 2.37416i) q^{80} +(-1.51655 - 2.62674i) q^{82} +(-4.05555 - 7.02441i) q^{83} +(8.91423 - 15.4399i) q^{85} +2.49768 q^{86} -5.82846 q^{88} +(4.86389 + 8.42450i) q^{89} +(-9.49028 + 2.44051i) q^{91} +(0.669905 + 1.16031i) q^{92} +(0.0857699 + 0.148558i) q^{94} +(7.03379 + 12.1829i) q^{95} +(-0.421067 - 0.729309i) q^{97} +(4.55787 + 2.75564i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - 4 q^{4} - 2 q^{5} + 2 q^{7} - 18 q^{8} + q^{10} - 14 q^{11} - 2 q^{13} + 4 q^{14} - 10 q^{16} - 5 q^{19} - 13 q^{20} + 4 q^{22} - 12 q^{23} - 4 q^{25} + 17 q^{26} - 30 q^{28} + 13 q^{29}+ \cdots - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.380438 0.658939i 0.269011 0.465940i −0.699596 0.714539i \(-0.746637\pi\)
0.968607 + 0.248599i \(0.0799700\pi\)
\(3\) 0 0
\(4\) 0.710533 + 1.23068i 0.355267 + 0.615340i
\(5\) −3.18194 −1.42301 −0.711504 0.702682i \(-0.751986\pi\)
−0.711504 + 0.702682i \(0.751986\pi\)
\(6\) 0 0
\(7\) 1.85185 + 1.88962i 0.699933 + 0.714209i
\(8\) 2.60301 0.920303
\(9\) 0 0
\(10\) −1.21053 + 2.09671i −0.382804 + 0.663036i
\(11\) −2.23912 −0.675121 −0.337561 0.941304i \(-0.609602\pi\)
−0.337561 + 0.941304i \(0.609602\pi\)
\(12\) 0 0
\(13\) −1.85185 + 3.20750i −0.513610 + 0.889599i 0.486265 + 0.873811i \(0.338359\pi\)
−0.999875 + 0.0157878i \(0.994974\pi\)
\(14\) 1.94966 0.501371i 0.521068 0.133997i
\(15\) 0 0
\(16\) −0.430782 + 0.746136i −0.107695 + 0.186534i
\(17\) −2.80150 + 4.85235i −0.679465 + 1.17687i 0.295678 + 0.955288i \(0.404455\pi\)
−0.975142 + 0.221580i \(0.928879\pi\)
\(18\) 0 0
\(19\) −2.21053 3.82876i −0.507131 0.878377i −0.999966 0.00825398i \(-0.997373\pi\)
0.492835 0.870123i \(-0.335961\pi\)
\(20\) −2.26088 3.91595i −0.505547 0.875634i
\(21\) 0 0
\(22\) −0.851848 + 1.47544i −0.181615 + 0.314566i
\(23\) 0.942820 0.196592 0.0982958 0.995157i \(-0.468661\pi\)
0.0982958 + 0.995157i \(0.468661\pi\)
\(24\) 0 0
\(25\) 5.12476 1.02495
\(26\) 1.40903 + 2.44051i 0.276333 + 0.478623i
\(27\) 0 0
\(28\) −1.00972 + 3.62167i −0.190818 + 0.684431i
\(29\) 5.06238 + 8.76830i 0.940061 + 1.62823i 0.765351 + 0.643613i \(0.222565\pi\)
0.174709 + 0.984620i \(0.444101\pi\)
\(30\) 0 0
\(31\) 2.85185 + 4.93955i 0.512207 + 0.887169i 0.999900 + 0.0141534i \(0.00450531\pi\)
−0.487693 + 0.873015i \(0.662161\pi\)
\(32\) 2.93078 + 5.07626i 0.518094 + 0.897365i
\(33\) 0 0
\(34\) 2.13160 + 3.69204i 0.365566 + 0.633180i
\(35\) −5.89248 6.01266i −0.996010 1.01632i
\(36\) 0 0
\(37\) −1.56238 2.70612i −0.256854 0.444884i 0.708543 0.705667i \(-0.249353\pi\)
−0.965397 + 0.260783i \(0.916019\pi\)
\(38\) −3.36389 −0.545694
\(39\) 0 0
\(40\) −8.28263 −1.30960
\(41\) 1.99316 3.45226i 0.311280 0.539152i −0.667360 0.744735i \(-0.732576\pi\)
0.978640 + 0.205583i \(0.0659090\pi\)
\(42\) 0 0
\(43\) 1.64132 + 2.84284i 0.250298 + 0.433529i 0.963608 0.267320i \(-0.0861380\pi\)
−0.713310 + 0.700849i \(0.752805\pi\)
\(44\) −1.59097 2.75564i −0.239848 0.415429i
\(45\) 0 0
\(46\) 0.358685 0.621261i 0.0528852 0.0915999i
\(47\) −0.112725 + 0.195246i −0.0164426 + 0.0284795i −0.874130 0.485693i \(-0.838567\pi\)
0.857687 + 0.514172i \(0.171901\pi\)
\(48\) 0 0
\(49\) −0.141315 + 6.99857i −0.0201879 + 0.999796i
\(50\) 1.94966 3.37690i 0.275723 0.477566i
\(51\) 0 0
\(52\) −5.26320 −0.729874
\(53\) 5.33009 9.23200i 0.732145 1.26811i −0.223820 0.974631i \(-0.571853\pi\)
0.955965 0.293482i \(-0.0948139\pi\)
\(54\) 0 0
\(55\) 7.12476 0.960703
\(56\) 4.82038 + 4.91870i 0.644150 + 0.657288i
\(57\) 0 0
\(58\) 7.70370 1.01154
\(59\) −1.02859 1.78157i −0.133911 0.231941i 0.791270 0.611467i \(-0.209420\pi\)
−0.925181 + 0.379526i \(0.876087\pi\)
\(60\) 0 0
\(61\) 2.92107 5.05944i 0.374004 0.647794i −0.616173 0.787611i \(-0.711318\pi\)
0.990177 + 0.139816i \(0.0446512\pi\)
\(62\) 4.33981 0.551156
\(63\) 0 0
\(64\) 2.73680 0.342100
\(65\) 5.89248 10.2061i 0.730872 1.26591i
\(66\) 0 0
\(67\) −3.71053 6.42683i −0.453314 0.785163i 0.545276 0.838257i \(-0.316425\pi\)
−0.998590 + 0.0530942i \(0.983092\pi\)
\(68\) −7.96225 −0.965565
\(69\) 0 0
\(70\) −6.20370 + 1.59533i −0.741484 + 0.190679i
\(71\) −7.26320 −0.861983 −0.430992 0.902356i \(-0.641836\pi\)
−0.430992 + 0.902356i \(0.641836\pi\)
\(72\) 0 0
\(73\) −3.77975 + 6.54672i −0.442386 + 0.766236i −0.997866 0.0652944i \(-0.979201\pi\)
0.555480 + 0.831530i \(0.312535\pi\)
\(74\) −2.37756 −0.276386
\(75\) 0 0
\(76\) 3.14132 5.44092i 0.360334 0.624116i
\(77\) −4.14652 4.23109i −0.472539 0.482177i
\(78\) 0 0
\(79\) 3.41423 5.91362i 0.384131 0.665334i −0.607517 0.794306i \(-0.707834\pi\)
0.991648 + 0.128972i \(0.0411678\pi\)
\(80\) 1.37072 2.37416i 0.153252 0.265439i
\(81\) 0 0
\(82\) −1.51655 2.62674i −0.167475 0.290075i
\(83\) −4.05555 7.02441i −0.445154 0.771029i 0.552909 0.833242i \(-0.313518\pi\)
−0.998063 + 0.0622124i \(0.980184\pi\)
\(84\) 0 0
\(85\) 8.91423 15.4399i 0.966884 1.67469i
\(86\) 2.49768 0.269331
\(87\) 0 0
\(88\) −5.82846 −0.621316
\(89\) 4.86389 + 8.42450i 0.515571 + 0.892995i 0.999837 + 0.0180741i \(0.00575348\pi\)
−0.484266 + 0.874921i \(0.660913\pi\)
\(90\) 0 0
\(91\) −9.49028 + 2.44051i −0.994852 + 0.255835i
\(92\) 0.669905 + 1.16031i 0.0698424 + 0.120971i
\(93\) 0 0
\(94\) 0.0857699 + 0.148558i 0.00884649 + 0.0153226i
\(95\) 7.03379 + 12.1829i 0.721652 + 1.24994i
\(96\) 0 0
\(97\) −0.421067 0.729309i −0.0427528 0.0740501i 0.843857 0.536568i \(-0.180279\pi\)
−0.886610 + 0.462518i \(0.846946\pi\)
\(98\) 4.55787 + 2.75564i 0.460414 + 0.278362i
\(99\) 0 0
\(100\) 3.64132 + 6.30694i 0.364132 + 0.630694i
\(101\) 7.74720 0.770876 0.385438 0.922734i \(-0.374050\pi\)
0.385438 + 0.922734i \(0.374050\pi\)
\(102\) 0 0
\(103\) −2.43474 −0.239902 −0.119951 0.992780i \(-0.538274\pi\)
−0.119951 + 0.992780i \(0.538274\pi\)
\(104\) −4.82038 + 8.34914i −0.472677 + 0.818701i
\(105\) 0 0
\(106\) −4.05555 7.02441i −0.393909 0.682271i
\(107\) 5.73229 + 9.92861i 0.554161 + 0.959835i 0.997968 + 0.0637128i \(0.0202942\pi\)
−0.443807 + 0.896122i \(0.646372\pi\)
\(108\) 0 0
\(109\) 9.12476 15.8046i 0.873994 1.51380i 0.0161631 0.999869i \(-0.494855\pi\)
0.857831 0.513932i \(-0.171812\pi\)
\(110\) 2.71053 4.69478i 0.258439 0.447630i
\(111\) 0 0
\(112\) −2.20765 + 0.567717i −0.208604 + 0.0536443i
\(113\) −2.62476 + 4.54622i −0.246917 + 0.427673i −0.962669 0.270682i \(-0.912751\pi\)
0.715752 + 0.698355i \(0.246084\pi\)
\(114\) 0 0
\(115\) −3.00000 −0.279751
\(116\) −7.19398 + 12.4603i −0.667944 + 1.15691i
\(117\) 0 0
\(118\) −1.56526 −0.144094
\(119\) −14.3571 + 3.69204i −1.31611 + 0.338449i
\(120\) 0 0
\(121\) −5.98633 −0.544212
\(122\) −2.22257 3.84961i −0.201222 0.348527i
\(123\) 0 0
\(124\) −4.05267 + 7.01942i −0.363940 + 0.630363i
\(125\) −0.396990 −0.0355079
\(126\) 0 0
\(127\) 20.1053 1.78406 0.892030 0.451976i \(-0.149281\pi\)
0.892030 + 0.451976i \(0.149281\pi\)
\(128\) −4.82038 + 8.34914i −0.426065 + 0.737967i
\(129\) 0 0
\(130\) −4.48345 7.76556i −0.393224 0.681085i
\(131\) 4.08126 0.356581 0.178291 0.983978i \(-0.442943\pi\)
0.178291 + 0.983978i \(0.442943\pi\)
\(132\) 0 0
\(133\) 3.14132 11.2673i 0.272387 0.977002i
\(134\) −5.64652 −0.487785
\(135\) 0 0
\(136\) −7.29235 + 12.6307i −0.625313 + 1.08307i
\(137\) 1.88564 0.161101 0.0805506 0.996751i \(-0.474332\pi\)
0.0805506 + 0.996751i \(0.474332\pi\)
\(138\) 0 0
\(139\) 6.39768 11.0811i 0.542644 0.939887i −0.456107 0.889925i \(-0.650757\pi\)
0.998751 0.0499621i \(-0.0159101\pi\)
\(140\) 3.21286 11.5239i 0.271536 0.973951i
\(141\) 0 0
\(142\) −2.76320 + 4.78600i −0.231883 + 0.401632i
\(143\) 4.14652 7.18198i 0.346749 0.600587i
\(144\) 0 0
\(145\) −16.1082 27.9002i −1.33771 2.31699i
\(146\) 2.87592 + 4.98125i 0.238013 + 0.412251i
\(147\) 0 0
\(148\) 2.22025 3.84558i 0.182503 0.316105i
\(149\) −8.05718 −0.660070 −0.330035 0.943969i \(-0.607061\pi\)
−0.330035 + 0.943969i \(0.607061\pi\)
\(150\) 0 0
\(151\) −6.28263 −0.511273 −0.255637 0.966773i \(-0.582285\pi\)
−0.255637 + 0.966773i \(0.582285\pi\)
\(152\) −5.75404 9.96629i −0.466714 0.808373i
\(153\) 0 0
\(154\) −4.36552 + 1.12263i −0.351784 + 0.0904642i
\(155\) −9.07442 15.7174i −0.728875 1.26245i
\(156\) 0 0
\(157\) −0.351848 0.609419i −0.0280806 0.0486370i 0.851644 0.524121i \(-0.175606\pi\)
−0.879724 + 0.475484i \(0.842273\pi\)
\(158\) −2.59781 4.49954i −0.206671 0.357964i
\(159\) 0 0
\(160\) −9.32558 16.1524i −0.737252 1.27696i
\(161\) 1.74596 + 1.78157i 0.137601 + 0.140407i
\(162\) 0 0
\(163\) 9.61793 + 16.6587i 0.753334 + 1.30481i 0.946198 + 0.323588i \(0.104889\pi\)
−0.192864 + 0.981225i \(0.561778\pi\)
\(164\) 5.66484 0.442349
\(165\) 0 0
\(166\) −6.17154 −0.479004
\(167\) 11.6940 20.2546i 0.904907 1.56735i 0.0838661 0.996477i \(-0.473273\pi\)
0.821041 0.570869i \(-0.193393\pi\)
\(168\) 0 0
\(169\) −0.358685 0.621261i −0.0275911 0.0477893i
\(170\) −6.78263 11.7479i −0.520204 0.901020i
\(171\) 0 0
\(172\) −2.33242 + 4.03987i −0.177845 + 0.308037i
\(173\) −4.11956 + 7.13529i −0.313204 + 0.542486i −0.979054 0.203600i \(-0.934736\pi\)
0.665850 + 0.746086i \(0.268069\pi\)
\(174\) 0 0
\(175\) 9.49028 + 9.68385i 0.717398 + 0.732030i
\(176\) 0.964574 1.67069i 0.0727075 0.125933i
\(177\) 0 0
\(178\) 7.40164 0.554776
\(179\) 4.95486 8.58207i 0.370344 0.641454i −0.619275 0.785174i \(-0.712573\pi\)
0.989618 + 0.143721i \(0.0459066\pi\)
\(180\) 0 0
\(181\) −9.38796 −0.697802 −0.348901 0.937160i \(-0.613445\pi\)
−0.348901 + 0.937160i \(0.613445\pi\)
\(182\) −2.00232 + 7.18198i −0.148422 + 0.532364i
\(183\) 0 0
\(184\) 2.45417 0.180924
\(185\) 4.97141 + 8.61073i 0.365505 + 0.633074i
\(186\) 0 0
\(187\) 6.27292 10.8650i 0.458721 0.794528i
\(188\) −0.320380 −0.0233661
\(189\) 0 0
\(190\) 10.7037 0.776528
\(191\) −12.3691 + 21.4239i −0.894996 + 1.55018i −0.0611861 + 0.998126i \(0.519488\pi\)
−0.833810 + 0.552052i \(0.813845\pi\)
\(192\) 0 0
\(193\) 0.414230 + 0.717468i 0.0298169 + 0.0516444i 0.880549 0.473955i \(-0.157174\pi\)
−0.850732 + 0.525600i \(0.823841\pi\)
\(194\) −0.640760 −0.0460039
\(195\) 0 0
\(196\) −8.71341 + 4.79881i −0.622387 + 0.342772i
\(197\) −5.86156 −0.417619 −0.208810 0.977956i \(-0.566959\pi\)
−0.208810 + 0.977956i \(0.566959\pi\)
\(198\) 0 0
\(199\) 4.62476 8.01033i 0.327841 0.567837i −0.654242 0.756285i \(-0.727012\pi\)
0.982083 + 0.188448i \(0.0603457\pi\)
\(200\) 13.3398 0.943267
\(201\) 0 0
\(202\) 2.94733 5.10493i 0.207374 0.359182i
\(203\) −7.19398 + 25.8035i −0.504919 + 1.81105i
\(204\) 0 0
\(205\) −6.34213 + 10.9849i −0.442954 + 0.767218i
\(206\) −0.926268 + 1.60434i −0.0645362 + 0.111780i
\(207\) 0 0
\(208\) −1.59549 2.76346i −0.110627 0.191612i
\(209\) 4.94966 + 8.57306i 0.342375 + 0.593011i
\(210\) 0 0
\(211\) 6.27975 10.8768i 0.432316 0.748793i −0.564756 0.825258i \(-0.691030\pi\)
0.997072 + 0.0764645i \(0.0243632\pi\)
\(212\) 15.1488 1.04043
\(213\) 0 0
\(214\) 8.72313 0.596301
\(215\) −5.22257 9.04576i −0.356176 0.616916i
\(216\) 0 0
\(217\) −4.05267 + 14.5362i −0.275113 + 0.986781i
\(218\) −6.94282 12.0253i −0.470227 0.814457i
\(219\) 0 0
\(220\) 5.06238 + 8.76830i 0.341306 + 0.591159i
\(221\) −10.3759 17.9716i −0.697960 1.20890i
\(222\) 0 0
\(223\) 10.6940 + 18.5225i 0.716122 + 1.24036i 0.962525 + 0.271192i \(0.0874179\pi\)
−0.246403 + 0.969167i \(0.579249\pi\)
\(224\) −4.16484 + 14.9385i −0.278275 + 0.998122i
\(225\) 0 0
\(226\) 1.99712 + 3.45912i 0.132847 + 0.230097i
\(227\) 12.6224 0.837781 0.418890 0.908037i \(-0.362419\pi\)
0.418890 + 0.908037i \(0.362419\pi\)
\(228\) 0 0
\(229\) −28.9201 −1.91110 −0.955548 0.294837i \(-0.904735\pi\)
−0.955548 + 0.294837i \(0.904735\pi\)
\(230\) −1.14132 + 1.97682i −0.0752561 + 0.130347i
\(231\) 0 0
\(232\) 13.1774 + 22.8240i 0.865141 + 1.49847i
\(233\) 10.7255 + 18.5770i 0.702648 + 1.21702i 0.967534 + 0.252742i \(0.0813323\pi\)
−0.264886 + 0.964280i \(0.585334\pi\)
\(234\) 0 0
\(235\) 0.358685 0.621261i 0.0233980 0.0405266i
\(236\) 1.46169 2.53173i 0.0951482 0.164802i
\(237\) 0 0
\(238\) −3.02915 + 10.8650i −0.196350 + 0.704274i
\(239\) −3.86840 + 6.70027i −0.250226 + 0.433404i −0.963588 0.267392i \(-0.913838\pi\)
0.713362 + 0.700796i \(0.247172\pi\)
\(240\) 0 0
\(241\) 6.09166 0.392398 0.196199 0.980564i \(-0.437140\pi\)
0.196199 + 0.980564i \(0.437140\pi\)
\(242\) −2.27743 + 3.94462i −0.146399 + 0.253570i
\(243\) 0 0
\(244\) 8.30206 0.531485
\(245\) 0.449657 22.2691i 0.0287275 1.42272i
\(246\) 0 0
\(247\) 16.3743 1.04187
\(248\) 7.42339 + 12.8577i 0.471386 + 0.816464i
\(249\) 0 0
\(250\) −0.151030 + 0.261592i −0.00955199 + 0.0165445i
\(251\) 1.40164 0.0884705 0.0442352 0.999021i \(-0.485915\pi\)
0.0442352 + 0.999021i \(0.485915\pi\)
\(252\) 0 0
\(253\) −2.11109 −0.132723
\(254\) 7.64884 13.2482i 0.479931 0.831265i
\(255\) 0 0
\(256\) 6.40451 + 11.0929i 0.400282 + 0.693309i
\(257\) 17.9565 1.12010 0.560048 0.828460i \(-0.310783\pi\)
0.560048 + 0.828460i \(0.310783\pi\)
\(258\) 0 0
\(259\) 2.22025 7.96364i 0.137960 0.494836i
\(260\) 16.7472 1.03862
\(261\) 0 0
\(262\) 1.55267 2.68930i 0.0959241 0.166145i
\(263\) 7.17619 0.442503 0.221251 0.975217i \(-0.428986\pi\)
0.221251 + 0.975217i \(0.428986\pi\)
\(264\) 0 0
\(265\) −16.9601 + 29.3757i −1.04185 + 1.80453i
\(266\) −6.22941 6.35646i −0.381950 0.389740i
\(267\) 0 0
\(268\) 5.27292 9.13296i 0.322095 0.557884i
\(269\) 1.69850 2.94188i 0.103559 0.179370i −0.809590 0.586996i \(-0.800310\pi\)
0.913149 + 0.407627i \(0.133644\pi\)
\(270\) 0 0
\(271\) 5.11793 + 8.86451i 0.310892 + 0.538481i 0.978556 0.205982i \(-0.0660389\pi\)
−0.667664 + 0.744463i \(0.732706\pi\)
\(272\) −2.41367 4.18061i −0.146351 0.253487i
\(273\) 0 0
\(274\) 0.717370 1.24252i 0.0433379 0.0750634i
\(275\) −11.4750 −0.691967
\(276\) 0 0
\(277\) −3.55950 −0.213870 −0.106935 0.994266i \(-0.534104\pi\)
−0.106935 + 0.994266i \(0.534104\pi\)
\(278\) −4.86784 8.43135i −0.291954 0.505679i
\(279\) 0 0
\(280\) −15.3382 15.6510i −0.916631 0.935327i
\(281\) 3.49316 + 6.05034i 0.208385 + 0.360933i 0.951206 0.308557i \(-0.0998461\pi\)
−0.742821 + 0.669490i \(0.766513\pi\)
\(282\) 0 0
\(283\) 15.1082 + 26.1682i 0.898090 + 1.55554i 0.829933 + 0.557863i \(0.188378\pi\)
0.0681568 + 0.997675i \(0.478288\pi\)
\(284\) −5.16075 8.93867i −0.306234 0.530413i
\(285\) 0 0
\(286\) −3.15499 5.46460i −0.186558 0.323129i
\(287\) 10.2145 2.62674i 0.602942 0.155052i
\(288\) 0 0
\(289\) −7.19686 12.4653i −0.423345 0.733255i
\(290\) −24.5127 −1.43944
\(291\) 0 0
\(292\) −10.7426 −0.628661
\(293\) −7.61793 + 13.1946i −0.445044 + 0.770839i −0.998055 0.0623349i \(-0.980145\pi\)
0.553011 + 0.833174i \(0.313479\pi\)
\(294\) 0 0
\(295\) 3.27292 + 5.66886i 0.190556 + 0.330054i
\(296\) −4.06690 7.04407i −0.236383 0.409428i
\(297\) 0 0
\(298\) −3.06526 + 5.30919i −0.177566 + 0.307553i
\(299\) −1.74596 + 3.02409i −0.100971 + 0.174888i
\(300\) 0 0
\(301\) −2.33242 + 8.36597i −0.134438 + 0.482206i
\(302\) −2.39015 + 4.13987i −0.137538 + 0.238223i
\(303\) 0 0
\(304\) 3.80903 0.218463
\(305\) −9.29467 + 16.0988i −0.532211 + 0.921817i
\(306\) 0 0
\(307\) −1.03310 −0.0589623 −0.0294812 0.999565i \(-0.509386\pi\)
−0.0294812 + 0.999565i \(0.509386\pi\)
\(308\) 2.26088 8.10936i 0.128825 0.462074i
\(309\) 0 0
\(310\) −13.8090 −0.784300
\(311\) −4.66019 8.07169i −0.264255 0.457703i 0.703113 0.711078i \(-0.251793\pi\)
−0.967368 + 0.253375i \(0.918459\pi\)
\(312\) 0 0
\(313\) −3.04583 + 5.27553i −0.172160 + 0.298191i −0.939175 0.343439i \(-0.888408\pi\)
0.767014 + 0.641630i \(0.221741\pi\)
\(314\) −0.535426 −0.0302159
\(315\) 0 0
\(316\) 9.70370 0.545876
\(317\) 11.6505 20.1792i 0.654356 1.13338i −0.327699 0.944782i \(-0.606273\pi\)
0.982055 0.188595i \(-0.0603935\pi\)
\(318\) 0 0
\(319\) −11.3353 19.6333i −0.634655 1.09925i
\(320\) −8.70834 −0.486811
\(321\) 0 0
\(322\) 1.83818 0.472703i 0.102438 0.0263427i
\(323\) 24.7713 1.37831
\(324\) 0 0
\(325\) −9.49028 + 16.4377i −0.526426 + 0.911797i
\(326\) 14.6361 0.810619
\(327\) 0 0
\(328\) 5.18822 8.98627i 0.286472 0.496184i
\(329\) −0.577690 + 0.148558i −0.0318491 + 0.00819026i
\(330\) 0 0
\(331\) −7.33818 + 12.7101i −0.403343 + 0.698610i −0.994127 0.108220i \(-0.965485\pi\)
0.590784 + 0.806829i \(0.298818\pi\)
\(332\) 5.76320 9.98215i 0.316297 0.547842i
\(333\) 0 0
\(334\) −8.89768 15.4112i −0.486859 0.843265i
\(335\) 11.8067 + 20.4498i 0.645069 + 1.11729i
\(336\) 0 0
\(337\) −12.8119 + 22.1909i −0.697909 + 1.20881i 0.271281 + 0.962500i \(0.412553\pi\)
−0.969190 + 0.246314i \(0.920781\pi\)
\(338\) −0.545830 −0.0296892
\(339\) 0 0
\(340\) 25.3354 1.37401
\(341\) −6.38564 11.0603i −0.345802 0.598946i
\(342\) 0 0
\(343\) −13.4863 + 12.6933i −0.728193 + 0.685372i
\(344\) 4.27236 + 7.39994i 0.230350 + 0.398978i
\(345\) 0 0
\(346\) 3.13448 + 5.42908i 0.168511 + 0.291869i
\(347\) −5.64652 9.78005i −0.303121 0.525021i 0.673720 0.738986i \(-0.264695\pi\)
−0.976841 + 0.213966i \(0.931362\pi\)
\(348\) 0 0
\(349\) 5.64815 + 9.78289i 0.302339 + 0.523666i 0.976665 0.214767i \(-0.0688993\pi\)
−0.674327 + 0.738433i \(0.735566\pi\)
\(350\) 9.99153 2.56941i 0.534070 0.137341i
\(351\) 0 0
\(352\) −6.56238 11.3664i −0.349776 0.605830i
\(353\) −18.5023 −0.984779 −0.492390 0.870375i \(-0.663876\pi\)
−0.492390 + 0.870375i \(0.663876\pi\)
\(354\) 0 0
\(355\) 23.1111 1.22661
\(356\) −6.91191 + 11.9718i −0.366330 + 0.634503i
\(357\) 0 0
\(358\) −3.77004 6.52989i −0.199253 0.345116i
\(359\) −9.94802 17.2305i −0.525037 0.909390i −0.999575 0.0291551i \(-0.990718\pi\)
0.474538 0.880235i \(-0.342615\pi\)
\(360\) 0 0
\(361\) −0.272915 + 0.472703i −0.0143639 + 0.0248791i
\(362\) −3.57154 + 6.18609i −0.187716 + 0.325134i
\(363\) 0 0
\(364\) −9.74665 9.94544i −0.510863 0.521283i
\(365\) 12.0270 20.8313i 0.629520 1.09036i
\(366\) 0 0
\(367\) 5.75047 0.300172 0.150086 0.988673i \(-0.452045\pi\)
0.150086 + 0.988673i \(0.452045\pi\)
\(368\) −0.406150 + 0.703472i −0.0211720 + 0.0366710i
\(369\) 0 0
\(370\) 7.56526 0.393299
\(371\) 27.3155 7.02441i 1.41815 0.364689i
\(372\) 0 0
\(373\) 2.00000 0.103556 0.0517780 0.998659i \(-0.483511\pi\)
0.0517780 + 0.998659i \(0.483511\pi\)
\(374\) −4.77292 8.26693i −0.246802 0.427473i
\(375\) 0 0
\(376\) −0.293425 + 0.508226i −0.0151322 + 0.0262098i
\(377\) −37.4991 −1.93130
\(378\) 0 0
\(379\) 8.95322 0.459896 0.229948 0.973203i \(-0.426144\pi\)
0.229948 + 0.973203i \(0.426144\pi\)
\(380\) −9.99549 + 17.3127i −0.512758 + 0.888122i
\(381\) 0 0
\(382\) 9.41135 + 16.3009i 0.481527 + 0.834029i
\(383\) 20.1650 1.03038 0.515192 0.857075i \(-0.327721\pi\)
0.515192 + 0.857075i \(0.327721\pi\)
\(384\) 0 0
\(385\) 13.1940 + 13.4631i 0.672428 + 0.686142i
\(386\) 0.630356 0.0320843
\(387\) 0 0
\(388\) 0.598364 1.03640i 0.0303773 0.0526151i
\(389\) −33.5997 −1.70357 −0.851787 0.523888i \(-0.824481\pi\)
−0.851787 + 0.523888i \(0.824481\pi\)
\(390\) 0 0
\(391\) −2.64132 + 4.57489i −0.133577 + 0.231362i
\(392\) −0.367845 + 18.2174i −0.0185790 + 0.920115i
\(393\) 0 0
\(394\) −2.22996 + 3.86241i −0.112344 + 0.194585i
\(395\) −10.8639 + 18.8168i −0.546621 + 0.946776i
\(396\) 0 0
\(397\) 2.06922 + 3.58399i 0.103851 + 0.179875i 0.913268 0.407359i \(-0.133550\pi\)
−0.809417 + 0.587234i \(0.800217\pi\)
\(398\) −3.51887 6.09487i −0.176385 0.305508i
\(399\) 0 0
\(400\) −2.20765 + 3.82377i −0.110383 + 0.191189i
\(401\) 15.4692 0.772496 0.386248 0.922395i \(-0.373771\pi\)
0.386248 + 0.922395i \(0.373771\pi\)
\(402\) 0 0
\(403\) −21.1248 −1.05230
\(404\) 5.50465 + 9.53433i 0.273866 + 0.474350i
\(405\) 0 0
\(406\) 14.2661 + 14.5570i 0.708014 + 0.722454i
\(407\) 3.49837 + 6.05935i 0.173408 + 0.300351i
\(408\) 0 0
\(409\) −13.6969 23.7237i −0.677266 1.17306i −0.975801 0.218661i \(-0.929831\pi\)
0.298535 0.954399i \(-0.403502\pi\)
\(410\) 4.82558 + 8.35815i 0.238318 + 0.412780i
\(411\) 0 0
\(412\) −1.72996 2.99638i −0.0852292 0.147621i
\(413\) 1.46169 5.24284i 0.0719253 0.257983i
\(414\) 0 0
\(415\) 12.9045 + 22.3513i 0.633458 + 1.09718i
\(416\) −21.7095 −1.06439
\(417\) 0 0
\(418\) 7.53216 0.368410
\(419\) 10.5000 18.1865i 0.512959 0.888470i −0.486928 0.873442i \(-0.661883\pi\)
0.999887 0.0150285i \(-0.00478389\pi\)
\(420\) 0 0
\(421\) −9.97949 17.2850i −0.486371 0.842419i 0.513507 0.858086i \(-0.328346\pi\)
−0.999877 + 0.0156670i \(0.995013\pi\)
\(422\) −4.77812 8.27594i −0.232595 0.402867i
\(423\) 0 0
\(424\) 13.8743 24.0310i 0.673795 1.16705i
\(425\) −14.3571 + 24.8671i −0.696419 + 1.20623i
\(426\) 0 0
\(427\) 14.9698 3.84961i 0.724438 0.186296i
\(428\) −8.14596 + 14.1092i −0.393750 + 0.681995i
\(429\) 0 0
\(430\) −7.94747 −0.383261
\(431\) −10.0647 + 17.4326i −0.484800 + 0.839698i −0.999847 0.0174637i \(-0.994441\pi\)
0.515048 + 0.857162i \(0.327774\pi\)
\(432\) 0 0
\(433\) 11.8558 0.569754 0.284877 0.958564i \(-0.408047\pi\)
0.284877 + 0.958564i \(0.408047\pi\)
\(434\) 8.03667 + 8.20058i 0.385773 + 0.393641i
\(435\) 0 0
\(436\) 25.9338 1.24200
\(437\) −2.08414 3.60983i −0.0996977 0.172681i
\(438\) 0 0
\(439\) 1.07893 1.86877i 0.0514947 0.0891914i −0.839129 0.543932i \(-0.816935\pi\)
0.890624 + 0.454741i \(0.150268\pi\)
\(440\) 18.5458 0.884138
\(441\) 0 0
\(442\) −15.7896 −0.751035
\(443\) −0.981125 + 1.69936i −0.0466147 + 0.0807390i −0.888391 0.459087i \(-0.848177\pi\)
0.841777 + 0.539826i \(0.181510\pi\)
\(444\) 0 0
\(445\) −15.4766 26.8063i −0.733662 1.27074i
\(446\) 16.2736 0.770577
\(447\) 0 0
\(448\) 5.06814 + 5.17151i 0.239447 + 0.244331i
\(449\) −2.15211 −0.101564 −0.0507822 0.998710i \(-0.516171\pi\)
−0.0507822 + 0.998710i \(0.516171\pi\)
\(450\) 0 0
\(451\) −4.46294 + 7.73004i −0.210152 + 0.363993i
\(452\) −7.45993 −0.350885
\(453\) 0 0
\(454\) 4.80206 8.31741i 0.225372 0.390356i
\(455\) 30.1975 7.76556i 1.41568 0.364055i
\(456\) 0 0
\(457\) 6.55267 11.3496i 0.306521 0.530910i −0.671078 0.741387i \(-0.734168\pi\)
0.977599 + 0.210477i \(0.0675018\pi\)
\(458\) −11.0023 + 19.0566i −0.514105 + 0.890456i
\(459\) 0 0
\(460\) −2.13160 3.69204i −0.0993864 0.172142i
\(461\) −2.74364 4.75212i −0.127784 0.221328i 0.795034 0.606565i \(-0.207453\pi\)
−0.922818 + 0.385237i \(0.874120\pi\)
\(462\) 0 0
\(463\) 10.2495 17.7527i 0.476336 0.825038i −0.523296 0.852151i \(-0.675298\pi\)
0.999632 + 0.0271127i \(0.00863130\pi\)
\(464\) −8.72313 −0.404961
\(465\) 0 0
\(466\) 16.3215 0.756078
\(467\) 19.6758 + 34.0795i 0.910487 + 1.57701i 0.813377 + 0.581736i \(0.197626\pi\)
0.0971099 + 0.995274i \(0.469040\pi\)
\(468\) 0 0
\(469\) 5.27292 18.9130i 0.243481 0.873322i
\(470\) −0.272915 0.472703i −0.0125886 0.0218041i
\(471\) 0 0
\(472\) −2.67743 4.63744i −0.123239 0.213456i
\(473\) −3.67511 6.36547i −0.168982 0.292685i
\(474\) 0 0
\(475\) −11.3285 19.6215i −0.519785 0.900295i
\(476\) −14.7449 15.0456i −0.675830 0.689615i
\(477\) 0 0
\(478\) 2.94338 + 5.09808i 0.134627 + 0.233181i
\(479\) 16.7472 0.765199 0.382600 0.923914i \(-0.375029\pi\)
0.382600 + 0.923914i \(0.375029\pi\)
\(480\) 0 0
\(481\) 11.5732 0.527691
\(482\) 2.31750 4.01403i 0.105559 0.182834i
\(483\) 0 0
\(484\) −4.25348 7.36725i −0.193340 0.334875i
\(485\) 1.33981 + 2.32062i 0.0608376 + 0.105374i
\(486\) 0 0
\(487\) −2.00288 + 3.46909i −0.0907591 + 0.157199i −0.907831 0.419337i \(-0.862263\pi\)
0.817072 + 0.576536i \(0.195596\pi\)
\(488\) 7.60357 13.1698i 0.344197 0.596167i
\(489\) 0 0
\(490\) −14.5029 8.76830i −0.655173 0.396112i
\(491\) −12.3256 + 21.3485i −0.556246 + 0.963446i 0.441560 + 0.897232i \(0.354425\pi\)
−0.997805 + 0.0662140i \(0.978908\pi\)
\(492\) 0 0
\(493\) −56.7292 −2.55495
\(494\) 6.22941 10.7897i 0.280274 0.485449i
\(495\) 0 0
\(496\) −4.91410 −0.220649
\(497\) −13.4503 13.7247i −0.603330 0.615636i
\(498\) 0 0
\(499\) −24.5595 −1.09943 −0.549717 0.835351i \(-0.685265\pi\)
−0.549717 + 0.835351i \(0.685265\pi\)
\(500\) −0.282075 0.488568i −0.0126148 0.0218494i
\(501\) 0 0
\(502\) 0.533236 0.923592i 0.0237995 0.0412219i
\(503\) −12.3743 −0.551742 −0.275871 0.961195i \(-0.588966\pi\)
−0.275871 + 0.961195i \(0.588966\pi\)
\(504\) 0 0
\(505\) −24.6512 −1.09696
\(506\) −0.803140 + 1.39108i −0.0357039 + 0.0618410i
\(507\) 0 0
\(508\) 14.2855 + 24.7432i 0.633817 + 1.09780i
\(509\) −11.1956 −0.496237 −0.248118 0.968730i \(-0.579812\pi\)
−0.248118 + 0.968730i \(0.579812\pi\)
\(510\) 0 0
\(511\) −19.3703 + 4.98125i −0.856893 + 0.220357i
\(512\) −9.53543 −0.421410
\(513\) 0 0
\(514\) 6.83134 11.8322i 0.301317 0.521897i
\(515\) 7.74720 0.341383
\(516\) 0 0
\(517\) 0.252405 0.437179i 0.0111008 0.0192271i
\(518\) −4.40288 4.49268i −0.193451 0.197397i
\(519\) 0 0
\(520\) 15.3382 26.5665i 0.672623 1.16502i
\(521\) 15.8096 27.3830i 0.692631 1.19967i −0.278342 0.960482i \(-0.589785\pi\)
0.970973 0.239189i \(-0.0768817\pi\)
\(522\) 0 0
\(523\) 14.1179 + 24.4530i 0.617334 + 1.06925i 0.989970 + 0.141276i \(0.0451205\pi\)
−0.372636 + 0.927977i \(0.621546\pi\)
\(524\) 2.89987 + 5.02272i 0.126681 + 0.219419i
\(525\) 0 0
\(526\) 2.73010 4.72867i 0.119038 0.206180i
\(527\) −31.9579 −1.39211
\(528\) 0 0
\(529\) −22.1111 −0.961352
\(530\) 12.9045 + 22.3513i 0.560536 + 0.970877i
\(531\) 0 0
\(532\) 16.0985 4.13987i 0.697958 0.179486i
\(533\) 7.38207 + 12.7861i 0.319753 + 0.553829i
\(534\) 0 0
\(535\) −18.2398 31.5923i −0.788576 1.36585i
\(536\) −9.65856 16.7291i −0.417186 0.722587i
\(537\) 0 0
\(538\) −1.29235 2.23841i −0.0557170 0.0965046i
\(539\) 0.316422 15.6707i 0.0136293 0.674983i
\(540\) 0 0
\(541\) −21.4045 37.0737i −0.920252 1.59392i −0.799025 0.601298i \(-0.794650\pi\)
−0.121227 0.992625i \(-0.538683\pi\)
\(542\) 7.78822 0.334533
\(543\) 0 0
\(544\) −32.8424 −1.40811
\(545\) −29.0345 + 50.2892i −1.24370 + 2.15415i
\(546\) 0 0
\(547\) −6.77579 11.7360i −0.289712 0.501796i 0.684029 0.729455i \(-0.260226\pi\)
−0.973741 + 0.227659i \(0.926893\pi\)
\(548\) 1.33981 + 2.32062i 0.0572339 + 0.0991319i
\(549\) 0 0
\(550\) −4.36552 + 7.56130i −0.186146 + 0.322415i
\(551\) 22.3811 38.7652i 0.953468 1.65146i
\(552\) 0 0
\(553\) 17.4971 4.49954i 0.744053 0.191340i
\(554\) −1.35417 + 2.34549i −0.0575332 + 0.0996505i
\(555\) 0 0
\(556\) 18.1831 0.771133
\(557\) 16.3925 28.3926i 0.694572 1.20303i −0.275753 0.961228i \(-0.588927\pi\)
0.970325 0.241805i \(-0.0777394\pi\)
\(558\) 0 0
\(559\) −12.1579 −0.514223
\(560\) 7.02463 1.80644i 0.296845 0.0763362i
\(561\) 0 0
\(562\) 5.31573 0.224231
\(563\) −8.57730 14.8563i −0.361490 0.626119i 0.626716 0.779248i \(-0.284399\pi\)
−0.988206 + 0.153128i \(0.951065\pi\)
\(564\) 0 0
\(565\) 8.35185 14.4658i 0.351365 0.608582i
\(566\) 22.9910 0.966383
\(567\) 0 0
\(568\) −18.9062 −0.793286
\(569\) 6.44966 11.1711i 0.270384 0.468318i −0.698576 0.715535i \(-0.746183\pi\)
0.968960 + 0.247217i \(0.0795161\pi\)
\(570\) 0 0
\(571\) 0.141315 + 0.244765i 0.00591385 + 0.0102431i 0.868967 0.494870i \(-0.164784\pi\)
−0.863053 + 0.505113i \(0.831451\pi\)
\(572\) 11.7850 0.492754
\(573\) 0 0
\(574\) 2.15512 7.73004i 0.0899530 0.322645i
\(575\) 4.83173 0.201497
\(576\) 0 0
\(577\) 1.08289 1.87562i 0.0450814 0.0780832i −0.842604 0.538533i \(-0.818979\pi\)
0.887686 + 0.460450i \(0.152312\pi\)
\(578\) −10.9518 −0.455537
\(579\) 0 0
\(580\) 22.8908 39.6481i 0.950490 1.64630i
\(581\) 5.76320 20.6716i 0.239098 0.857601i
\(582\) 0 0
\(583\) −11.9347 + 20.6716i −0.494286 + 0.856129i
\(584\) −9.83873 + 17.0412i −0.407130 + 0.705169i
\(585\) 0 0
\(586\) 5.79630 + 10.0395i 0.239443 + 0.414728i
\(587\) −8.38796 14.5284i −0.346208 0.599650i 0.639364 0.768904i \(-0.279198\pi\)
−0.985573 + 0.169254i \(0.945864\pi\)
\(588\) 0 0
\(589\) 12.6082 21.8381i 0.519512 0.899822i
\(590\) 4.98057 0.205047
\(591\) 0 0
\(592\) 2.69218 0.110648
\(593\) −12.5933 21.8122i −0.517145 0.895721i −0.999802 0.0199114i \(-0.993662\pi\)
0.482657 0.875809i \(-0.339672\pi\)
\(594\) 0 0
\(595\) 45.6833 11.7479i 1.87283 0.481615i
\(596\) −5.72489 9.91581i −0.234501 0.406167i
\(597\) 0 0
\(598\) 1.32846 + 2.30096i 0.0543248 + 0.0940933i
\(599\) 14.3662 + 24.8830i 0.586987 + 1.01669i 0.994624 + 0.103548i \(0.0330195\pi\)
−0.407637 + 0.913144i \(0.633647\pi\)
\(600\) 0 0
\(601\) 18.3977 + 31.8657i 0.750457 + 1.29983i 0.947601 + 0.319455i \(0.103500\pi\)
−0.197144 + 0.980374i \(0.563167\pi\)
\(602\) 4.62532 + 4.71966i 0.188514 + 0.192359i
\(603\) 0 0
\(604\) −4.46402 7.73191i −0.181638 0.314607i
\(605\) 19.0482 0.774418
\(606\) 0 0
\(607\) 37.9007 1.53834 0.769171 0.639043i \(-0.220670\pi\)
0.769171 + 0.639043i \(0.220670\pi\)
\(608\) 12.9572 22.4425i 0.525483 0.910163i
\(609\) 0 0
\(610\) 7.07210 + 12.2492i 0.286341 + 0.495957i
\(611\) −0.417500 0.723131i −0.0168902 0.0292547i
\(612\) 0 0
\(613\) −19.0196 + 32.9428i −0.768193 + 1.33055i 0.170349 + 0.985384i \(0.445511\pi\)
−0.938542 + 0.345165i \(0.887823\pi\)
\(614\) −0.393032 + 0.680752i −0.0158615 + 0.0274729i
\(615\) 0 0
\(616\) −10.7934 11.0136i −0.434879 0.443749i
\(617\) 13.2632 22.9725i 0.533956 0.924839i −0.465257 0.885176i \(-0.654038\pi\)
0.999213 0.0396637i \(-0.0126287\pi\)
\(618\) 0 0
\(619\) 12.7037 0.510605 0.255302 0.966861i \(-0.417825\pi\)
0.255302 + 0.966861i \(0.417825\pi\)
\(620\) 12.8954 22.3354i 0.517890 0.897012i
\(621\) 0 0
\(622\) −7.09166 −0.284350
\(623\) −6.91191 + 24.7918i −0.276920 + 0.993262i
\(624\) 0 0
\(625\) −24.3606 −0.974425
\(626\) 2.31750 + 4.01403i 0.0926260 + 0.160433i
\(627\) 0 0
\(628\) 0.500000 0.866025i 0.0199522 0.0345582i
\(629\) 17.5081 0.698093
\(630\) 0 0
\(631\) 20.6764 0.823113 0.411556 0.911384i \(-0.364985\pi\)
0.411556 + 0.911384i \(0.364985\pi\)
\(632\) 8.88727 15.3932i 0.353517 0.612309i
\(633\) 0 0
\(634\) −8.86458 15.3539i −0.352057 0.609781i
\(635\) −63.9740 −2.53873
\(636\) 0 0
\(637\) −22.1862 13.4136i −0.879049 0.531465i
\(638\) −17.2495 −0.682915
\(639\) 0 0
\(640\) 15.3382 26.5665i 0.606295 1.05013i
\(641\) −27.9740 −1.10491 −0.552454 0.833543i \(-0.686308\pi\)
−0.552454 + 0.833543i \(0.686308\pi\)
\(642\) 0 0
\(643\) −13.9903 + 24.2319i −0.551723 + 0.955612i 0.446427 + 0.894820i \(0.352696\pi\)
−0.998150 + 0.0607924i \(0.980637\pi\)
\(644\) −0.951980 + 3.41458i −0.0375133 + 0.134553i
\(645\) 0 0
\(646\) 9.42395 16.3228i 0.370780 0.642210i
\(647\) −2.30834 + 3.99816i −0.0907503 + 0.157184i −0.907827 0.419345i \(-0.862260\pi\)
0.817077 + 0.576529i \(0.195593\pi\)
\(648\) 0 0
\(649\) 2.30314 + 3.98916i 0.0904061 + 0.156588i
\(650\) 7.22094 + 12.5070i 0.283228 + 0.490566i
\(651\) 0 0
\(652\) −13.6677 + 23.6732i −0.535269 + 0.927113i
\(653\) 11.5803 0.453173 0.226586 0.973991i \(-0.427243\pi\)
0.226586 + 0.973991i \(0.427243\pi\)
\(654\) 0 0
\(655\) −12.9863 −0.507418
\(656\) 1.71724 + 2.97434i 0.0670468 + 0.116129i
\(657\) 0 0
\(658\) −0.121885 + 0.437179i −0.00475156 + 0.0170430i
\(659\) −2.36840 4.10219i −0.0922598 0.159799i 0.816202 0.577767i \(-0.196076\pi\)
−0.908462 + 0.417968i \(0.862742\pi\)
\(660\) 0 0
\(661\) 6.91135 + 11.9708i 0.268820 + 0.465611i 0.968557 0.248790i \(-0.0800329\pi\)
−0.699737 + 0.714400i \(0.746700\pi\)
\(662\) 5.58345 + 9.67081i 0.217007 + 0.375867i
\(663\) 0 0
\(664\) −10.5566 18.2846i −0.409676 0.709580i
\(665\) −9.99549 + 35.8520i −0.387608 + 1.39028i
\(666\) 0 0
\(667\) 4.77292 + 8.26693i 0.184808 + 0.320097i
\(668\) 33.2359 1.28593
\(669\) 0 0
\(670\) 17.9669 0.694122
\(671\) −6.54063 + 11.3287i −0.252498 + 0.437340i
\(672\) 0 0
\(673\) −3.01367 5.21983i −0.116169 0.201210i 0.802078 0.597220i \(-0.203728\pi\)
−0.918246 + 0.396010i \(0.870395\pi\)
\(674\) 9.74828 + 16.8845i 0.375490 + 0.650367i
\(675\) 0 0
\(676\) 0.509715 0.882853i 0.0196044 0.0339559i
\(677\) 11.4428 19.8195i 0.439783 0.761727i −0.557889 0.829915i \(-0.688389\pi\)
0.997672 + 0.0681884i \(0.0217219\pi\)
\(678\) 0 0
\(679\) 0.598364 2.14622i 0.0229631 0.0823645i
\(680\) 23.2038 40.1902i 0.889826 1.54122i
\(681\) 0 0
\(682\) −9.71737 −0.372097
\(683\) −5.14940 + 8.91901i −0.197036 + 0.341277i −0.947566 0.319560i \(-0.896465\pi\)
0.750530 + 0.660836i \(0.229798\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 3.23337 + 13.7157i 0.123450 + 0.523667i
\(687\) 0 0
\(688\) −2.82819 −0.107824
\(689\) 19.7411 + 34.1925i 0.752074 + 1.30263i
\(690\) 0 0
\(691\) −14.5361 + 25.1773i −0.552980 + 0.957789i 0.445078 + 0.895492i \(0.353176\pi\)
−0.998058 + 0.0622973i \(0.980157\pi\)
\(692\) −11.7083 −0.445084
\(693\) 0 0
\(694\) −8.59261 −0.326171
\(695\) −20.3571 + 35.2594i −0.772187 + 1.33747i
\(696\) 0 0
\(697\) 11.1677 + 19.3430i 0.423007 + 0.732670i
\(698\) 8.59509 0.325329
\(699\) 0 0
\(700\) −5.17455 + 18.5602i −0.195580 + 0.701510i
\(701\) −27.4153 −1.03546 −0.517731 0.855543i \(-0.673223\pi\)
−0.517731 + 0.855543i \(0.673223\pi\)
\(702\) 0 0
\(703\) −6.90739 + 11.9640i −0.260517 + 0.451229i
\(704\) −6.12803 −0.230959
\(705\) 0 0
\(706\) −7.03899 + 12.1919i −0.264916 + 0.458848i
\(707\) 14.3466 + 14.6393i 0.539561 + 0.550566i
\(708\) 0 0
\(709\) 18.4834 32.0143i 0.694160 1.20232i −0.276302 0.961071i \(-0.589109\pi\)
0.970463 0.241250i \(-0.0775575\pi\)
\(710\) 8.79235 15.2288i 0.329971 0.571526i
\(711\) 0 0
\(712\) 12.6607 + 21.9291i 0.474481 + 0.821826i
\(713\) 2.68878 + 4.65710i 0.100696 + 0.174410i
\(714\) 0 0
\(715\) −13.1940 + 22.8526i −0.493427 + 0.854641i
\(716\) 14.0824 0.526283
\(717\) 0 0
\(718\) −15.1384 −0.564961
\(719\) −20.2599 35.0912i −0.755568 1.30868i −0.945092 0.326806i \(-0.894028\pi\)
0.189524 0.981876i \(-0.439306\pi\)
\(720\) 0 0
\(721\) −4.50877 4.60073i −0.167915 0.171340i
\(722\) 0.207655 + 0.359668i 0.00772811 + 0.0133855i
\(723\) 0 0
\(724\) −6.67046 11.5536i −0.247906 0.429385i
\(725\) 25.9435 + 44.9355i 0.963518 + 1.66886i
\(726\) 0 0
\(727\) 7.62081 + 13.1996i 0.282640 + 0.489547i 0.972034 0.234840i \(-0.0754565\pi\)
−0.689394 + 0.724386i \(0.742123\pi\)
\(728\) −24.7033 + 6.35267i −0.915565 + 0.235446i
\(729\) 0 0
\(730\) −9.15103 15.8500i −0.338695 0.586637i
\(731\) −18.3926 −0.680275
\(732\) 0 0
\(733\) 32.5789 1.20333 0.601665 0.798748i \(-0.294504\pi\)
0.601665 + 0.798748i \(0.294504\pi\)
\(734\) 2.18770 3.78921i 0.0807495 0.139862i
\(735\) 0 0
\(736\) 2.76320 + 4.78600i 0.101853 + 0.176414i
\(737\) 8.30834 + 14.3905i 0.306042 + 0.530080i
\(738\) 0 0
\(739\) −3.50684 + 6.07402i −0.129001 + 0.223436i −0.923290 0.384104i \(-0.874510\pi\)
0.794289 + 0.607540i \(0.207844\pi\)
\(740\) −7.06470 + 12.2364i −0.259704 + 0.449820i
\(741\) 0 0
\(742\) 5.76320 20.6716i 0.211574 0.758877i
\(743\) 17.5059 30.3211i 0.642229 1.11237i −0.342705 0.939443i \(-0.611343\pi\)
0.984934 0.172930i \(-0.0553234\pi\)
\(744\) 0 0
\(745\) 25.6375 0.939285
\(746\) 0.760877 1.31788i 0.0278577 0.0482509i
\(747\) 0 0
\(748\) 17.8285 0.651873
\(749\) −8.14596 + 29.2181i −0.297647 + 1.06761i
\(750\) 0 0
\(751\) −4.27687 −0.156065 −0.0780327 0.996951i \(-0.524864\pi\)
−0.0780327 + 0.996951i \(0.524864\pi\)
\(752\) −0.0971198 0.168217i −0.00354160 0.00613422i
\(753\) 0 0
\(754\) −14.2661 + 24.7096i −0.519540 + 0.899870i
\(755\) 19.9910 0.727546
\(756\) 0 0
\(757\) −34.9611 −1.27068 −0.635342 0.772231i \(-0.719141\pi\)
−0.635342 + 0.772231i \(0.719141\pi\)
\(758\) 3.40615 5.89962i 0.123717 0.214284i
\(759\) 0 0
\(760\) 18.3090 + 31.7122i 0.664138 + 1.15032i
\(761\) −4.58358 −0.166155 −0.0830773 0.996543i \(-0.526475\pi\)
−0.0830773 + 0.996543i \(0.526475\pi\)
\(762\) 0 0
\(763\) 46.7623 12.0253i 1.69291 0.435346i
\(764\) −35.1546 −1.27185
\(765\) 0 0
\(766\) 7.67154 13.2875i 0.277184 0.480097i
\(767\) 7.61917 0.275112
\(768\) 0 0
\(769\) −8.47949 + 14.6869i −0.305778 + 0.529623i −0.977434 0.211240i \(-0.932250\pi\)
0.671656 + 0.740863i \(0.265583\pi\)
\(770\) 13.8908 3.57215i 0.500591 0.128731i
\(771\) 0 0
\(772\) −0.588649 + 1.01957i −0.0211859 + 0.0366951i
\(773\) 20.1420 34.8870i 0.724458 1.25480i −0.234739 0.972058i \(-0.575424\pi\)
0.959197 0.282739i \(-0.0912430\pi\)
\(774\) 0 0
\(775\) 14.6150 + 25.3140i 0.524988 + 0.909306i
\(776\) −1.09604 1.89840i −0.0393456 0.0681485i
\(777\) 0 0
\(778\) −12.7826 + 22.1402i −0.458279 + 0.793763i
\(779\) −17.6238 −0.631439
\(780\) 0 0
\(781\) 16.2632 0.581943
\(782\) 2.00972 + 3.48093i 0.0718673 + 0.124478i
\(783\) 0 0
\(784\) −5.16101 3.12030i −0.184322 0.111439i
\(785\) 1.11956 + 1.93914i 0.0399589 + 0.0692108i
\(786\) 0 0
\(787\) −23.6053 40.8856i −0.841439 1.45742i −0.888678 0.458532i \(-0.848375\pi\)
0.0472387 0.998884i \(-0.484958\pi\)
\(788\) −4.16484 7.21371i −0.148366 0.256978i
\(789\) 0 0
\(790\) 8.26608 + 14.3173i 0.294094 + 0.509386i
\(791\) −13.4513 + 3.45912i −0.478273 + 0.122992i
\(792\) 0 0
\(793\) 10.8187 + 18.7386i 0.384185 + 0.665428i
\(794\) 3.14884 0.111748
\(795\) 0 0
\(796\) 13.1442 0.465884
\(797\) −2.01367 + 3.48778i −0.0713280 + 0.123544i −0.899484 0.436955i \(-0.856057\pi\)
0.828156 + 0.560498i \(0.189390\pi\)
\(798\) 0 0
\(799\) −0.631600 1.09396i −0.0223444 0.0387016i
\(800\) 15.0196 + 26.0146i 0.531022 + 0.919757i
\(801\) 0 0
\(802\) 5.88508 10.1933i 0.207810 0.359937i
\(803\) 8.46333 14.6589i 0.298664 0.517302i
\(804\) 0 0
\(805\) −5.55555 5.66886i −0.195807 0.199801i
\(806\) −8.03667 + 13.9199i −0.283080 + 0.490308i
\(807\) 0 0
\(808\) 20.1660 0.709439
\(809\) 5.94119 10.2904i 0.208881 0.361792i −0.742481 0.669867i \(-0.766351\pi\)
0.951362 + 0.308074i \(0.0996845\pi\)
\(810\) 0 0
\(811\) −21.1111 −0.741311 −0.370655 0.928770i \(-0.620867\pi\)
−0.370655 + 0.928770i \(0.620867\pi\)
\(812\) −36.8675 + 9.48078i −1.29379 + 0.332710i
\(813\) 0 0
\(814\) 5.32365 0.186594
\(815\) −30.6037 53.0072i −1.07200 1.85676i
\(816\) 0 0
\(817\) 7.25636 12.5684i 0.253868 0.439712i
\(818\) −20.8432 −0.728767
\(819\) 0 0
\(820\) −18.0252 −0.629467
\(821\) −18.6460 + 32.2958i −0.650749 + 1.12713i 0.332193 + 0.943211i \(0.392211\pi\)
−0.982942 + 0.183918i \(0.941122\pi\)
\(822\) 0 0
\(823\) 10.7261 + 18.5782i 0.373890 + 0.647596i 0.990160 0.139939i \(-0.0446905\pi\)
−0.616270 + 0.787535i \(0.711357\pi\)
\(824\) −6.33765 −0.220783
\(825\) 0 0
\(826\) −2.89862 2.95774i −0.100856 0.102913i
\(827\) 28.6375 0.995823 0.497912 0.867228i \(-0.334100\pi\)
0.497912 + 0.867228i \(0.334100\pi\)
\(828\) 0 0
\(829\) 19.8646 34.4065i 0.689925 1.19499i −0.281936 0.959433i \(-0.590977\pi\)
0.971862 0.235552i \(-0.0756899\pi\)
\(830\) 19.6375 0.681627
\(831\) 0 0
\(832\) −5.06814 + 8.77827i −0.175706 + 0.304332i
\(833\) −33.5636 20.2922i −1.16291 0.703085i
\(834\) 0 0
\(835\) −37.2096 + 64.4489i −1.28769 + 2.23035i
\(836\) −7.03379 + 12.1829i −0.243269 + 0.421354i
\(837\) 0 0
\(838\) −7.98921 13.8377i −0.275983 0.478016i
\(839\) −17.1803 29.7572i −0.593130 1.02733i −0.993808 0.111112i \(-0.964559\pi\)
0.400678 0.916219i \(-0.368775\pi\)
\(840\) 0 0
\(841\) −36.7554 + 63.6622i −1.26743 + 2.19525i
\(842\) −15.1863 −0.523355
\(843\) 0 0
\(844\) 17.8479 0.614350
\(845\) 1.14132 + 1.97682i 0.0392624 + 0.0680045i
\(846\) 0 0
\(847\) −11.0858 11.3119i −0.380912 0.388681i
\(848\) 4.59222 + 7.95395i 0.157697 + 0.273140i
\(849\) 0 0
\(850\) 10.9239 + 18.9208i 0.374688 + 0.648979i
\(851\) −1.47304 2.55139i −0.0504953 0.0874605i
\(852\) 0 0
\(853\) 0.757310 + 1.31170i 0.0259298 + 0.0449117i 0.878699 0.477376i \(-0.158412\pi\)
−0.852769 + 0.522288i \(0.825079\pi\)
\(854\) 3.15842 11.3287i 0.108079 0.387660i
\(855\) 0 0
\(856\) 14.9212 + 25.8443i 0.509996 + 0.883339i
\(857\) 4.50946 0.154040 0.0770201 0.997030i \(-0.475459\pi\)
0.0770201 + 0.997030i \(0.475459\pi\)
\(858\) 0 0
\(859\) 12.6063 0.430121 0.215060 0.976601i \(-0.431005\pi\)
0.215060 + 0.976601i \(0.431005\pi\)
\(860\) 7.42162 12.8546i 0.253075 0.438339i
\(861\) 0 0
\(862\) 7.65800 + 13.2640i 0.260833 + 0.451775i
\(863\) −5.33009 9.23200i −0.181439 0.314261i 0.760932 0.648832i \(-0.224742\pi\)
−0.942371 + 0.334571i \(0.891409\pi\)
\(864\) 0 0
\(865\) 13.1082 22.7041i 0.445693 0.771962i
\(866\) 4.51040 7.81225i 0.153270 0.265471i
\(867\) 0 0
\(868\) −20.7690 + 5.34092i −0.704944 + 0.181283i
\(869\) −7.64488 + 13.2413i −0.259335 + 0.449181i
\(870\) 0 0
\(871\) 27.4854 0.931307
\(872\) 23.7518 41.1394i 0.804339 1.39316i
\(873\) 0 0
\(874\) −3.17154 −0.107279
\(875\) −0.735165 0.750160i −0.0248531 0.0253600i
\(876\) 0 0
\(877\) −32.2380 −1.08860 −0.544300 0.838891i \(-0.683205\pi\)
−0.544300 + 0.838891i \(0.683205\pi\)
\(878\) −0.820935 1.42190i −0.0277052 0.0479869i
\(879\) 0 0
\(880\) −3.06922 + 5.31604i −0.103463 + 0.179204i
\(881\) 55.6375 1.87447 0.937237 0.348692i \(-0.113374\pi\)
0.937237 + 0.348692i \(0.113374\pi\)
\(882\) 0 0
\(883\) −42.4854 −1.42975 −0.714873 0.699254i \(-0.753516\pi\)
−0.714873 + 0.699254i \(0.753516\pi\)
\(884\) 14.7449 25.5389i 0.495924 0.858966i
\(885\) 0 0
\(886\) 0.746515 + 1.29300i 0.0250797 + 0.0434393i
\(887\) 8.95649 0.300730 0.150365 0.988631i \(-0.451955\pi\)
0.150365 + 0.988631i \(0.451955\pi\)
\(888\) 0 0
\(889\) 37.2320 + 37.9914i 1.24872 + 1.27419i
\(890\) −23.5516 −0.789451
\(891\) 0 0
\(892\) −15.1969 + 26.3217i −0.508829 + 0.881317i
\(893\) 0.996730 0.0333543
\(894\) 0 0
\(895\) −15.7661 + 27.3076i −0.527002 + 0.912794i
\(896\) −24.7033 + 6.35267i −0.825280 + 0.212228i
\(897\) 0 0
\(898\) −0.818745 + 1.41811i −0.0273219 + 0.0473229i
\(899\) −28.8743 + 50.0117i −0.963011 + 1.66798i
\(900\) 0 0
\(901\) 29.8646 + 51.7270i 0.994933 + 1.72327i
\(902\) 3.39575 + 5.88160i 0.113066 + 0.195836i
\(903\) 0 0
\(904\) −6.83229 + 11.8339i −0.227238 + 0.393589i
\(905\) 29.8720 0.992978
\(906\) 0 0
\(907\) 10.7874 0.358191 0.179096 0.983832i \(-0.442683\pi\)
0.179096 + 0.983832i \(0.442683\pi\)
\(908\) 8.96866 + 15.5342i 0.297636 + 0.515520i
\(909\) 0 0
\(910\) 6.37128 22.8526i 0.211206 0.757558i
\(911\) −23.7427 41.1235i −0.786630 1.36248i −0.928020 0.372530i \(-0.878490\pi\)
0.141390 0.989954i \(-0.454843\pi\)
\(912\) 0 0
\(913\) 9.08087 + 15.7285i 0.300533 + 0.520538i
\(914\) −4.98577 8.63561i −0.164915 0.285641i
\(915\) 0 0
\(916\) −20.5487 35.5914i −0.678948 1.17597i
\(917\) 7.55787 + 7.71202i 0.249583 + 0.254673i
\(918\) 0 0
\(919\) −28.1375 48.7356i −0.928170 1.60764i −0.786382 0.617741i \(-0.788048\pi\)
−0.141788 0.989897i \(-0.545285\pi\)
\(920\) −7.80903 −0.257456
\(921\) 0 0
\(922\) −4.17514 −0.137501
\(923\) 13.4503 23.2967i 0.442723 0.766820i
\(924\) 0 0
\(925\) −8.00684 13.8682i −0.263263 0.455985i
\(926\) −7.79863 13.5076i −0.256279 0.443888i
\(927\) 0 0
\(928\) −29.6735 + 51.3960i −0.974079 + 1.68716i
\(929\) 0.380438 0.658939i 0.0124818 0.0216191i −0.859717 0.510771i \(-0.829360\pi\)
0.872199 + 0.489152i \(0.162693\pi\)
\(930\) 0 0
\(931\) 27.1082 14.9295i 0.888436 0.489295i
\(932\) −15.2416 + 26.3992i −0.499255 + 0.864734i
\(933\) 0 0
\(934\) 29.9417 0.979723
\(935\) −19.9601 + 34.5718i −0.652764 + 1.13062i
\(936\) 0 0
\(937\) −30.3218 −0.990569 −0.495284 0.868731i \(-0.664936\pi\)
−0.495284 + 0.868731i \(0.664936\pi\)
\(938\) −10.4565 10.6698i −0.341417 0.348380i
\(939\) 0 0
\(940\) 1.01943 0.0332502
\(941\) 27.5406 + 47.7018i 0.897799 + 1.55503i 0.830302 + 0.557314i \(0.188168\pi\)
0.0674968 + 0.997719i \(0.478499\pi\)
\(942\) 0 0
\(943\) 1.87919 3.25486i 0.0611950 0.105993i
\(944\) 1.77239 0.0576864
\(945\) 0 0
\(946\) −5.59261 −0.181831
\(947\) 15.3103 26.5182i 0.497517 0.861725i −0.502479 0.864590i \(-0.667579\pi\)
0.999996 + 0.00286470i \(0.000911863\pi\)
\(948\) 0 0
\(949\) −13.9991 24.2471i −0.454429 0.787093i
\(950\) −17.2391 −0.559311
\(951\) 0 0
\(952\) −37.3715 + 9.61042i −1.21122 + 0.311475i
\(953\) −7.83422 −0.253775 −0.126888 0.991917i \(-0.540499\pi\)
−0.126888 + 0.991917i \(0.540499\pi\)
\(954\) 0 0
\(955\) 39.3577 68.1696i 1.27359 2.20592i
\(956\) −10.9945 −0.355588
\(957\) 0 0
\(958\) 6.37128 11.0354i 0.205847 0.356537i
\(959\) 3.49192 + 3.56314i 0.112760 + 0.115060i
\(960\) 0 0
\(961\) −0.766078 + 1.32689i −0.0247122 + 0.0428028i
\(962\) 4.40288 7.62601i 0.141955 0.245872i
\(963\) 0 0
\(964\) 4.32833 + 7.49688i 0.139406 + 0.241458i
\(965\) −1.31806 2.28294i −0.0424297 0.0734905i
\(966\) 0 0
\(967\) 2.64815 4.58673i 0.0851588 0.147499i −0.820300 0.571933i \(-0.806194\pi\)
0.905459 + 0.424434i \(0.139527\pi\)
\(968\) −15.5825 −0.500840
\(969\) 0 0
\(970\) 2.03886 0.0654639
\(971\) 26.1202 + 45.2416i 0.838239 + 1.45187i 0.891366 + 0.453284i \(0.149748\pi\)
−0.0531273 + 0.998588i \(0.516919\pi\)
\(972\) 0 0
\(973\) 32.7866 8.43135i 1.05109 0.270297i
\(974\) 1.52394 + 2.63955i 0.0488303 + 0.0845766i
\(975\) 0 0
\(976\) 2.51668 + 4.35903i 0.0805571 + 0.139529i
\(977\) −2.97304 5.14946i −0.0951161 0.164746i 0.814541 0.580106i \(-0.196989\pi\)
−0.909657 + 0.415360i \(0.863656\pi\)
\(978\) 0 0
\(979\) −10.8908 18.8635i −0.348073 0.602880i
\(980\) 27.7256 15.2695i 0.885661 0.487767i
\(981\) 0 0
\(982\) 9.37825 + 16.2436i 0.299272 + 0.518354i
\(983\) 18.5641 0.592104 0.296052 0.955172i \(-0.404330\pi\)
0.296052 + 0.955172i \(0.404330\pi\)
\(984\) 0 0
\(985\) 18.6512 0.594275
\(986\) −21.5819 + 37.3810i −0.687309 + 1.19045i
\(987\) 0 0
\(988\) 11.6345 + 20.1515i 0.370142 + 0.641105i
\(989\) 1.54746 + 2.68029i 0.0492065 + 0.0852282i
\(990\) 0 0
\(991\) −9.31875 + 16.1405i −0.296020 + 0.512721i −0.975222 0.221230i \(-0.928993\pi\)
0.679202 + 0.733951i \(0.262326\pi\)
\(992\) −16.7163 + 28.9535i −0.530743 + 0.919273i
\(993\) 0 0
\(994\) −14.1607 + 3.64156i −0.449152 + 0.115503i
\(995\) −14.7157 + 25.4884i −0.466520 + 0.808037i
\(996\) 0 0
\(997\) −30.5595 −0.967829 −0.483915 0.875115i \(-0.660785\pi\)
−0.483915 + 0.875115i \(0.660785\pi\)
\(998\) −9.34338 + 16.1832i −0.295759 + 0.512270i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.i.109.2 6
3.2 odd 2 567.2.g.h.109.2 6
7.2 even 3 567.2.h.h.352.2 6
9.2 odd 6 567.2.h.i.298.2 6
9.4 even 3 189.2.e.f.109.2 yes 6
9.5 odd 6 189.2.e.e.109.2 6
9.7 even 3 567.2.h.h.298.2 6
21.2 odd 6 567.2.h.i.352.2 6
63.2 odd 6 567.2.g.h.541.2 6
63.4 even 3 1323.2.a.x.1.2 3
63.16 even 3 inner 567.2.g.i.541.2 6
63.23 odd 6 189.2.e.e.163.2 yes 6
63.31 odd 6 1323.2.a.y.1.2 3
63.32 odd 6 1323.2.a.ba.1.2 3
63.58 even 3 189.2.e.f.163.2 yes 6
63.59 even 6 1323.2.a.z.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.e.e.109.2 6 9.5 odd 6
189.2.e.e.163.2 yes 6 63.23 odd 6
189.2.e.f.109.2 yes 6 9.4 even 3
189.2.e.f.163.2 yes 6 63.58 even 3
567.2.g.h.109.2 6 3.2 odd 2
567.2.g.h.541.2 6 63.2 odd 6
567.2.g.i.109.2 6 1.1 even 1 trivial
567.2.g.i.541.2 6 63.16 even 3 inner
567.2.h.h.298.2 6 9.7 even 3
567.2.h.h.352.2 6 7.2 even 3
567.2.h.i.298.2 6 9.2 odd 6
567.2.h.i.352.2 6 21.2 odd 6
1323.2.a.x.1.2 3 63.4 even 3
1323.2.a.y.1.2 3 63.31 odd 6
1323.2.a.z.1.2 3 63.59 even 6
1323.2.a.ba.1.2 3 63.32 odd 6