Properties

Label 567.2.g.h.541.3
Level $567$
Weight $2$
Character 567.541
Analytic conductor $4.528$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(109,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.3
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 567.541
Dual form 567.2.g.h.109.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.730252 + 1.26483i) q^{2} +(-0.0665372 + 0.115246i) q^{4} -0.593579 q^{5} +(-2.25729 + 1.38008i) q^{7} +2.72665 q^{8} +(-0.433463 - 0.750780i) q^{10} +4.46050 q^{11} +(2.25729 + 3.90975i) q^{13} +(-3.39397 - 1.84730i) q^{14} +(2.12422 + 3.67926i) q^{16} +(0.136673 + 0.236725i) q^{17} +(-1.43346 + 2.48283i) q^{19} +(0.0394951 - 0.0684076i) q^{20} +(3.25729 + 5.64180i) q^{22} +5.05408 q^{23} -4.64766 q^{25} +(-3.29679 + 5.71021i) q^{26} +(-0.00885441 - 0.351971i) q^{28} +(-0.176168 + 0.305132i) q^{29} +(-1.25729 + 2.17770i) q^{31} +(-0.375780 + 0.650870i) q^{32} +(-0.199612 + 0.345738i) q^{34} +(1.33988 - 0.819187i) q^{35} +(3.32383 - 5.75705i) q^{37} -4.18716 q^{38} -1.61849 q^{40} +(5.44805 + 9.43630i) q^{41} +(-1.69076 + 2.92848i) q^{43} +(-0.296790 + 0.514055i) q^{44} +(3.69076 + 6.39258i) q^{46} +(-6.21780 - 10.7695i) q^{47} +(3.19076 - 6.23049i) q^{49} +(-3.39397 - 5.87852i) q^{50} -0.600777 q^{52} +(-5.66372 - 9.80984i) q^{53} -2.64766 q^{55} +(-6.15486 + 3.76300i) q^{56} -0.514589 q^{58} +(4.02704 - 6.97504i) q^{59} +(1.36693 + 2.36758i) q^{61} -3.67257 q^{62} +7.39922 q^{64} +(-1.33988 - 2.32075i) q^{65} +(-2.93346 + 5.08091i) q^{67} -0.0363754 q^{68} +(2.01459 + 1.09652i) q^{70} +2.60078 q^{71} +(-5.55768 - 9.62619i) q^{73} +9.70895 q^{74} +(-0.190757 - 0.330401i) q^{76} +(-10.0687 + 6.15585i) q^{77} +(-5.58113 - 9.66679i) q^{79} +(-1.26089 - 2.18393i) q^{80} +(-7.95691 + 13.7818i) q^{82} +(-8.27188 + 14.3273i) q^{83} +(-0.0811263 - 0.140515i) q^{85} -4.93872 q^{86} +12.1623 q^{88} +(2.68716 - 4.65430i) q^{89} +(-10.4911 - 5.71021i) q^{91} +(-0.336285 + 0.582462i) q^{92} +(9.08113 - 15.7290i) q^{94} +(0.850874 - 1.47376i) q^{95} +(1.13307 - 1.96254i) q^{97} +(10.2106 - 0.514055i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 4 q^{4} + 2 q^{5} + 2 q^{7} + 18 q^{8} + q^{10} + 14 q^{11} - 2 q^{13} - 4 q^{14} - 10 q^{16} - 5 q^{19} + 13 q^{20} + 4 q^{22} + 12 q^{23} - 4 q^{25} - 17 q^{26} - 30 q^{28} - 13 q^{29}+ \cdots + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.730252 + 1.26483i 0.516366 + 0.894373i 0.999819 + 0.0190026i \(0.00604908\pi\)
−0.483453 + 0.875370i \(0.660618\pi\)
\(3\) 0 0
\(4\) −0.0665372 + 0.115246i −0.0332686 + 0.0576229i
\(5\) −0.593579 −0.265457 −0.132728 0.991152i \(-0.542374\pi\)
−0.132728 + 0.991152i \(0.542374\pi\)
\(6\) 0 0
\(7\) −2.25729 + 1.38008i −0.853177 + 0.521621i
\(8\) 2.72665 0.964018
\(9\) 0 0
\(10\) −0.433463 0.750780i −0.137073 0.237417i
\(11\) 4.46050 1.34489 0.672446 0.740146i \(-0.265244\pi\)
0.672446 + 0.740146i \(0.265244\pi\)
\(12\) 0 0
\(13\) 2.25729 + 3.90975i 0.626061 + 1.08437i 0.988335 + 0.152298i \(0.0486672\pi\)
−0.362274 + 0.932072i \(0.617999\pi\)
\(14\) −3.39397 1.84730i −0.907076 0.493711i
\(15\) 0 0
\(16\) 2.12422 + 3.67926i 0.531055 + 0.919814i
\(17\) 0.136673 + 0.236725i 0.0331481 + 0.0574142i 0.882124 0.471018i \(-0.156113\pi\)
−0.848975 + 0.528432i \(0.822780\pi\)
\(18\) 0 0
\(19\) −1.43346 + 2.48283i −0.328859 + 0.569600i −0.982286 0.187389i \(-0.939997\pi\)
0.653427 + 0.756990i \(0.273331\pi\)
\(20\) 0.0394951 0.0684076i 0.00883138 0.0152964i
\(21\) 0 0
\(22\) 3.25729 + 5.64180i 0.694458 + 1.20284i
\(23\) 5.05408 1.05385 0.526925 0.849912i \(-0.323345\pi\)
0.526925 + 0.849912i \(0.323345\pi\)
\(24\) 0 0
\(25\) −4.64766 −0.929533
\(26\) −3.29679 + 5.71021i −0.646554 + 1.11986i
\(27\) 0 0
\(28\) −0.00885441 0.351971i −0.00167333 0.0665162i
\(29\) −0.176168 + 0.305132i −0.0327136 + 0.0566616i −0.881919 0.471402i \(-0.843748\pi\)
0.849205 + 0.528063i \(0.177082\pi\)
\(30\) 0 0
\(31\) −1.25729 + 2.17770i −0.225817 + 0.391126i −0.956564 0.291522i \(-0.905838\pi\)
0.730747 + 0.682648i \(0.239172\pi\)
\(32\) −0.375780 + 0.650870i −0.0664291 + 0.115059i
\(33\) 0 0
\(34\) −0.199612 + 0.345738i −0.0342331 + 0.0592935i
\(35\) 1.33988 0.819187i 0.226482 0.138468i
\(36\) 0 0
\(37\) 3.32383 5.75705i 0.546435 0.946452i −0.452081 0.891977i \(-0.649318\pi\)
0.998515 0.0544753i \(-0.0173486\pi\)
\(38\) −4.18716 −0.679247
\(39\) 0 0
\(40\) −1.61849 −0.255905
\(41\) 5.44805 + 9.43630i 0.850843 + 1.47370i 0.880449 + 0.474141i \(0.157241\pi\)
−0.0296061 + 0.999562i \(0.509425\pi\)
\(42\) 0 0
\(43\) −1.69076 + 2.92848i −0.257838 + 0.446589i −0.965663 0.259800i \(-0.916343\pi\)
0.707824 + 0.706388i \(0.249677\pi\)
\(44\) −0.296790 + 0.514055i −0.0447427 + 0.0774967i
\(45\) 0 0
\(46\) 3.69076 + 6.39258i 0.544172 + 0.942534i
\(47\) −6.21780 10.7695i −0.906959 1.57090i −0.818265 0.574841i \(-0.805064\pi\)
−0.0886938 0.996059i \(-0.528269\pi\)
\(48\) 0 0
\(49\) 3.19076 6.23049i 0.455822 0.890071i
\(50\) −3.39397 5.87852i −0.479980 0.831349i
\(51\) 0 0
\(52\) −0.600777 −0.0833127
\(53\) −5.66372 9.80984i −0.777971 1.34749i −0.933109 0.359593i \(-0.882916\pi\)
0.155138 0.987893i \(-0.450418\pi\)
\(54\) 0 0
\(55\) −2.64766 −0.357011
\(56\) −6.15486 + 3.76300i −0.822478 + 0.502852i
\(57\) 0 0
\(58\) −0.514589 −0.0675689
\(59\) 4.02704 6.97504i 0.524276 0.908073i −0.475324 0.879811i \(-0.657669\pi\)
0.999601 0.0282624i \(-0.00899740\pi\)
\(60\) 0 0
\(61\) 1.36693 + 2.36758i 0.175017 + 0.303138i 0.940167 0.340714i \(-0.110669\pi\)
−0.765150 + 0.643852i \(0.777335\pi\)
\(62\) −3.67257 −0.466417
\(63\) 0 0
\(64\) 7.39922 0.924903
\(65\) −1.33988 2.32075i −0.166192 0.287853i
\(66\) 0 0
\(67\) −2.93346 + 5.08091i −0.358380 + 0.620732i −0.987690 0.156422i \(-0.950004\pi\)
0.629311 + 0.777154i \(0.283337\pi\)
\(68\) −0.0363754 −0.00441117
\(69\) 0 0
\(70\) 2.01459 + 1.09652i 0.240789 + 0.131059i
\(71\) 2.60078 0.308655 0.154328 0.988020i \(-0.450679\pi\)
0.154328 + 0.988020i \(0.450679\pi\)
\(72\) 0 0
\(73\) −5.55768 9.62619i −0.650478 1.12666i −0.983007 0.183567i \(-0.941235\pi\)
0.332530 0.943093i \(-0.392098\pi\)
\(74\) 9.70895 1.12864
\(75\) 0 0
\(76\) −0.190757 0.330401i −0.0218814 0.0378996i
\(77\) −10.0687 + 6.15585i −1.14743 + 0.701525i
\(78\) 0 0
\(79\) −5.58113 9.66679i −0.627926 1.08760i −0.987967 0.154663i \(-0.950571\pi\)
0.360042 0.932936i \(-0.382763\pi\)
\(80\) −1.26089 2.18393i −0.140972 0.244171i
\(81\) 0 0
\(82\) −7.95691 + 13.7818i −0.878693 + 1.52194i
\(83\) −8.27188 + 14.3273i −0.907957 + 1.57263i −0.0910594 + 0.995845i \(0.529025\pi\)
−0.816898 + 0.576783i \(0.804308\pi\)
\(84\) 0 0
\(85\) −0.0811263 0.140515i −0.00879939 0.0152410i
\(86\) −4.93872 −0.532556
\(87\) 0 0
\(88\) 12.1623 1.29650
\(89\) 2.68716 4.65430i 0.284838 0.493354i −0.687732 0.725965i \(-0.741393\pi\)
0.972570 + 0.232611i \(0.0747268\pi\)
\(90\) 0 0
\(91\) −10.4911 5.71021i −1.09977 0.598592i
\(92\) −0.336285 + 0.582462i −0.0350601 + 0.0607259i
\(93\) 0 0
\(94\) 9.08113 15.7290i 0.936647 1.62232i
\(95\) 0.850874 1.47376i 0.0872978 0.151204i
\(96\) 0 0
\(97\) 1.13307 1.96254i 0.115046 0.199266i −0.802752 0.596313i \(-0.796632\pi\)
0.917798 + 0.397047i \(0.129965\pi\)
\(98\) 10.2106 0.514055i 1.03143 0.0519274i
\(99\) 0 0
\(100\) 0.309243 0.535624i 0.0309243 0.0535624i
\(101\) 9.35661 0.931017 0.465509 0.885043i \(-0.345871\pi\)
0.465509 + 0.885043i \(0.345871\pi\)
\(102\) 0 0
\(103\) −15.7630 −1.55318 −0.776589 0.630008i \(-0.783052\pi\)
−0.776589 + 0.630008i \(0.783052\pi\)
\(104\) 6.15486 + 10.6605i 0.603534 + 1.04535i
\(105\) 0 0
\(106\) 8.27188 14.3273i 0.803436 1.39159i
\(107\) −0.512453 + 0.887595i −0.0495407 + 0.0858070i −0.889732 0.456483i \(-0.849109\pi\)
0.840192 + 0.542290i \(0.182442\pi\)
\(108\) 0 0
\(109\) −0.647664 1.12179i −0.0620349 0.107448i 0.833340 0.552761i \(-0.186426\pi\)
−0.895375 + 0.445313i \(0.853092\pi\)
\(110\) −1.93346 3.34886i −0.184348 0.319301i
\(111\) 0 0
\(112\) −9.87266 5.37357i −0.932879 0.507755i
\(113\) −7.14766 12.3801i −0.672396 1.16462i −0.977223 0.212216i \(-0.931932\pi\)
0.304827 0.952408i \(-0.401401\pi\)
\(114\) 0 0
\(115\) −3.00000 −0.279751
\(116\) −0.0234435 0.0406053i −0.00217667 0.00377011i
\(117\) 0 0
\(118\) 11.7630 1.08287
\(119\) −0.635211 0.345738i −0.0582297 0.0316937i
\(120\) 0 0
\(121\) 8.89610 0.808737
\(122\) −1.99640 + 3.45787i −0.180746 + 0.313061i
\(123\) 0 0
\(124\) −0.167314 0.289796i −0.0150252 0.0260245i
\(125\) 5.72665 0.512207
\(126\) 0 0
\(127\) 12.3346 1.09452 0.547261 0.836962i \(-0.315671\pi\)
0.547261 + 0.836962i \(0.315671\pi\)
\(128\) 6.15486 + 10.6605i 0.544018 + 0.942267i
\(129\) 0 0
\(130\) 1.95691 3.38946i 0.171632 0.297275i
\(131\) −3.19436 −0.279092 −0.139546 0.990216i \(-0.544564\pi\)
−0.139546 + 0.990216i \(0.544564\pi\)
\(132\) 0 0
\(133\) −0.190757 7.58277i −0.0165408 0.657510i
\(134\) −8.56867 −0.740221
\(135\) 0 0
\(136\) 0.372660 + 0.645466i 0.0319553 + 0.0553483i
\(137\) 10.1082 0.863599 0.431800 0.901970i \(-0.357879\pi\)
0.431800 + 0.901970i \(0.357879\pi\)
\(138\) 0 0
\(139\) −9.03803 15.6543i −0.766596 1.32778i −0.939399 0.342827i \(-0.888616\pi\)
0.172803 0.984956i \(-0.444718\pi\)
\(140\) 0.00525579 + 0.208922i 0.000444196 + 0.0176572i
\(141\) 0 0
\(142\) 1.89922 + 3.28955i 0.159379 + 0.276053i
\(143\) 10.0687 + 17.4395i 0.841985 + 1.45836i
\(144\) 0 0
\(145\) 0.104570 0.181120i 0.00868405 0.0150412i
\(146\) 8.11702 14.0591i 0.671770 1.16354i
\(147\) 0 0
\(148\) 0.442317 + 0.766116i 0.0363582 + 0.0629743i
\(149\) 14.0541 1.15136 0.575678 0.817677i \(-0.304738\pi\)
0.575678 + 0.817677i \(0.304738\pi\)
\(150\) 0 0
\(151\) 0.381515 0.0310472 0.0155236 0.999880i \(-0.495058\pi\)
0.0155236 + 0.999880i \(0.495058\pi\)
\(152\) −3.90856 + 6.76982i −0.317026 + 0.549105i
\(153\) 0 0
\(154\) −15.1388 8.23988i −1.21992 0.663988i
\(155\) 0.746304 1.29264i 0.0599446 0.103827i
\(156\) 0 0
\(157\) 3.75729 6.50783i 0.299865 0.519381i −0.676240 0.736681i \(-0.736392\pi\)
0.976105 + 0.217300i \(0.0697251\pi\)
\(158\) 8.15126 14.1184i 0.648480 1.12320i
\(159\) 0 0
\(160\) 0.223055 0.386343i 0.0176341 0.0305431i
\(161\) −11.4086 + 6.97504i −0.899120 + 0.549710i
\(162\) 0 0
\(163\) −7.59572 + 13.1562i −0.594942 + 1.03047i 0.398613 + 0.917119i \(0.369492\pi\)
−0.993555 + 0.113351i \(0.963842\pi\)
\(164\) −1.44999 −0.113225
\(165\) 0 0
\(166\) −24.1623 −1.87535
\(167\) −4.47656 7.75362i −0.346406 0.599993i 0.639202 0.769039i \(-0.279265\pi\)
−0.985608 + 0.169046i \(0.945931\pi\)
\(168\) 0 0
\(169\) −3.69076 + 6.39258i −0.283904 + 0.491737i
\(170\) 0.118485 0.205223i 0.00908741 0.0157399i
\(171\) 0 0
\(172\) −0.224997 0.389706i −0.0171558 0.0297148i
\(173\) 5.23025 + 9.05906i 0.397649 + 0.688748i 0.993435 0.114395i \(-0.0364929\pi\)
−0.595787 + 0.803143i \(0.703160\pi\)
\(174\) 0 0
\(175\) 10.4911 6.41415i 0.793056 0.484864i
\(176\) 9.47509 + 16.4113i 0.714212 + 1.23705i
\(177\) 0 0
\(178\) 7.84922 0.588324
\(179\) 4.48395 + 7.76643i 0.335146 + 0.580490i 0.983513 0.180838i \(-0.0578810\pi\)
−0.648367 + 0.761328i \(0.724548\pi\)
\(180\) 0 0
\(181\) 5.04689 0.375132 0.187566 0.982252i \(-0.439940\pi\)
0.187566 + 0.982252i \(0.439940\pi\)
\(182\) −0.438719 17.4395i −0.0325200 1.29270i
\(183\) 0 0
\(184\) 13.7807 1.01593
\(185\) −1.97296 + 3.41726i −0.145055 + 0.251242i
\(186\) 0 0
\(187\) 0.609631 + 1.05591i 0.0445806 + 0.0772159i
\(188\) 1.65486 0.120693
\(189\) 0 0
\(190\) 2.48541 0.180311
\(191\) −6.06507 10.5050i −0.438853 0.760116i 0.558748 0.829338i \(-0.311282\pi\)
−0.997601 + 0.0692211i \(0.977949\pi\)
\(192\) 0 0
\(193\) −8.58113 + 14.8629i −0.617683 + 1.06986i 0.372224 + 0.928143i \(0.378595\pi\)
−0.989907 + 0.141716i \(0.954738\pi\)
\(194\) 3.30972 0.237624
\(195\) 0 0
\(196\) 0.505735 + 0.782282i 0.0361239 + 0.0558773i
\(197\) 0.751560 0.0535464 0.0267732 0.999642i \(-0.491477\pi\)
0.0267732 + 0.999642i \(0.491477\pi\)
\(198\) 0 0
\(199\) −5.14766 8.91601i −0.364908 0.632040i 0.623853 0.781542i \(-0.285566\pi\)
−0.988761 + 0.149502i \(0.952233\pi\)
\(200\) −12.6726 −0.896086
\(201\) 0 0
\(202\) 6.83269 + 11.8346i 0.480746 + 0.832677i
\(203\) −0.0234435 0.931900i −0.00164541 0.0654065i
\(204\) 0 0
\(205\) −3.23385 5.60119i −0.225862 0.391204i
\(206\) −11.5110 19.9376i −0.802009 1.38912i
\(207\) 0 0
\(208\) −9.58998 + 16.6103i −0.664946 + 1.15172i
\(209\) −6.39397 + 11.0747i −0.442280 + 0.766051i
\(210\) 0 0
\(211\) 8.05768 + 13.9563i 0.554714 + 0.960792i 0.997926 + 0.0643756i \(0.0205056\pi\)
−0.443212 + 0.896417i \(0.646161\pi\)
\(212\) 1.50739 0.103528
\(213\) 0 0
\(214\) −1.49688 −0.102325
\(215\) 1.00360 1.73828i 0.0684449 0.118550i
\(216\) 0 0
\(217\) −0.167314 6.65087i −0.0113580 0.451491i
\(218\) 0.945916 1.63837i 0.0640655 0.110965i
\(219\) 0 0
\(220\) 0.176168 0.305132i 0.0118773 0.0205720i
\(221\) −0.617023 + 1.06871i −0.0415054 + 0.0718895i
\(222\) 0 0
\(223\) 3.47656 6.02157i 0.232807 0.403234i −0.725826 0.687879i \(-0.758542\pi\)
0.958633 + 0.284644i \(0.0918755\pi\)
\(224\) −0.0500067 1.98781i −0.00334121 0.132816i
\(225\) 0 0
\(226\) 10.4392 18.0812i 0.694405 1.20274i
\(227\) −5.29105 −0.351180 −0.175590 0.984463i \(-0.556183\pi\)
−0.175590 + 0.984463i \(0.556183\pi\)
\(228\) 0 0
\(229\) 11.7237 0.774726 0.387363 0.921927i \(-0.373386\pi\)
0.387363 + 0.921927i \(0.373386\pi\)
\(230\) −2.19076 3.79450i −0.144454 0.250202i
\(231\) 0 0
\(232\) −0.480350 + 0.831990i −0.0315365 + 0.0546228i
\(233\) 1.93560 3.35256i 0.126805 0.219633i −0.795632 0.605780i \(-0.792861\pi\)
0.922437 + 0.386147i \(0.126194\pi\)
\(234\) 0 0
\(235\) 3.69076 + 6.39258i 0.240758 + 0.417006i
\(236\) 0.535897 + 0.928200i 0.0348839 + 0.0604207i
\(237\) 0 0
\(238\) −0.0265632 1.05591i −0.00172184 0.0684446i
\(239\) 6.19961 + 10.7380i 0.401020 + 0.694586i 0.993849 0.110742i \(-0.0353226\pi\)
−0.592830 + 0.805328i \(0.701989\pi\)
\(240\) 0 0
\(241\) −16.5615 −1.06682 −0.533409 0.845857i \(-0.679089\pi\)
−0.533409 + 0.845857i \(0.679089\pi\)
\(242\) 6.49640 + 11.2521i 0.417604 + 0.723312i
\(243\) 0 0
\(244\) −0.363806 −0.0232903
\(245\) −1.89397 + 3.69829i −0.121001 + 0.236275i
\(246\) 0 0
\(247\) −12.9430 −0.823543
\(248\) −3.42821 + 5.93783i −0.217691 + 0.377052i
\(249\) 0 0
\(250\) 4.18190 + 7.24327i 0.264487 + 0.458105i
\(251\) −1.84922 −0.116722 −0.0583608 0.998296i \(-0.518587\pi\)
−0.0583608 + 0.998296i \(0.518587\pi\)
\(252\) 0 0
\(253\) 22.5438 1.41731
\(254\) 9.00739 + 15.6013i 0.565174 + 0.978910i
\(255\) 0 0
\(256\) −1.58998 + 2.75393i −0.0993738 + 0.172120i
\(257\) −26.8420 −1.67436 −0.837180 0.546928i \(-0.815797\pi\)
−0.837180 + 0.546928i \(0.815797\pi\)
\(258\) 0 0
\(259\) 0.442317 + 17.5825i 0.0274843 + 1.09252i
\(260\) 0.356609 0.0221159
\(261\) 0 0
\(262\) −2.33269 4.04033i −0.144114 0.249612i
\(263\) −20.2848 −1.25082 −0.625408 0.780298i \(-0.715067\pi\)
−0.625408 + 0.780298i \(0.715067\pi\)
\(264\) 0 0
\(265\) 3.36186 + 5.82292i 0.206518 + 0.357699i
\(266\) 9.45165 5.77861i 0.579518 0.354310i
\(267\) 0 0
\(268\) −0.390369 0.676139i −0.0238456 0.0413018i
\(269\) −4.36333 7.55750i −0.266037 0.460789i 0.701798 0.712376i \(-0.252381\pi\)
−0.967835 + 0.251587i \(0.919048\pi\)
\(270\) 0 0
\(271\) −12.0957 + 20.9504i −0.734762 + 1.27265i 0.220065 + 0.975485i \(0.429373\pi\)
−0.954828 + 0.297161i \(0.903960\pi\)
\(272\) −0.580647 + 1.00571i −0.0352069 + 0.0609802i
\(273\) 0 0
\(274\) 7.38151 + 12.7852i 0.445934 + 0.772380i
\(275\) −20.7309 −1.25012
\(276\) 0 0
\(277\) −7.11537 −0.427521 −0.213760 0.976886i \(-0.568571\pi\)
−0.213760 + 0.976886i \(0.568571\pi\)
\(278\) 13.2001 22.8632i 0.791689 1.37125i
\(279\) 0 0
\(280\) 3.65340 2.23364i 0.218332 0.133485i
\(281\) 3.94805 6.83823i 0.235521 0.407934i −0.723903 0.689902i \(-0.757654\pi\)
0.959424 + 0.281967i \(0.0909870\pi\)
\(282\) 0 0
\(283\) −1.10457 + 1.91317i −0.0656599 + 0.113726i −0.896987 0.442058i \(-0.854249\pi\)
0.831327 + 0.555784i \(0.187582\pi\)
\(284\) −0.173048 + 0.299729i −0.0102685 + 0.0177856i
\(285\) 0 0
\(286\) −14.7053 + 25.4704i −0.869545 + 1.50610i
\(287\) −25.3207 13.7818i −1.49463 0.813512i
\(288\) 0 0
\(289\) 8.46264 14.6577i 0.497802 0.862219i
\(290\) 0.305449 0.0179366
\(291\) 0 0
\(292\) 1.47917 0.0865620
\(293\) −9.59572 16.6203i −0.560588 0.970966i −0.997445 0.0714356i \(-0.977242\pi\)
0.436858 0.899531i \(-0.356091\pi\)
\(294\) 0 0
\(295\) −2.39037 + 4.14024i −0.139173 + 0.241054i
\(296\) 9.06294 15.6975i 0.526773 0.912397i
\(297\) 0 0
\(298\) 10.2630 + 17.7761i 0.594521 + 1.02974i
\(299\) 11.4086 + 19.7602i 0.659774 + 1.14276i
\(300\) 0 0
\(301\) −0.224997 8.94382i −0.0129686 0.515513i
\(302\) 0.278602 + 0.482553i 0.0160317 + 0.0277678i
\(303\) 0 0
\(304\) −12.1800 −0.698569
\(305\) −0.811379 1.40535i −0.0464594 0.0804701i
\(306\) 0 0
\(307\) −13.9138 −0.794103 −0.397052 0.917796i \(-0.629967\pi\)
−0.397052 + 0.917796i \(0.629967\pi\)
\(308\) −0.0394951 1.56997i −0.00225044 0.0894572i
\(309\) 0 0
\(310\) 2.17996 0.123813
\(311\) 5.32743 9.22738i 0.302091 0.523237i −0.674519 0.738258i \(-0.735649\pi\)
0.976609 + 0.215021i \(0.0689821\pi\)
\(312\) 0 0
\(313\) 8.28074 + 14.3427i 0.468055 + 0.810695i 0.999334 0.0365022i \(-0.0116216\pi\)
−0.531279 + 0.847197i \(0.678288\pi\)
\(314\) 10.9751 0.619360
\(315\) 0 0
\(316\) 1.48541 0.0835609
\(317\) −13.3186 23.0685i −0.748046 1.29565i −0.948758 0.316003i \(-0.897659\pi\)
0.200712 0.979650i \(-0.435674\pi\)
\(318\) 0 0
\(319\) −0.785799 + 1.36104i −0.0439963 + 0.0762038i
\(320\) −4.39203 −0.245522
\(321\) 0 0
\(322\) −17.1534 9.33639i −0.955922 0.520297i
\(323\) −0.783663 −0.0436042
\(324\) 0 0
\(325\) −10.4911 18.1712i −0.581944 1.00796i
\(326\) −22.1872 −1.22883
\(327\) 0 0
\(328\) 14.8550 + 25.7295i 0.820227 + 1.42068i
\(329\) 28.8982 + 15.7290i 1.59321 + 0.867166i
\(330\) 0 0
\(331\) 11.6534 + 20.1843i 0.640529 + 1.10943i 0.985315 + 0.170747i \(0.0546181\pi\)
−0.344786 + 0.938681i \(0.612049\pi\)
\(332\) −1.10078 1.90660i −0.0604130 0.104638i
\(333\) 0 0
\(334\) 6.53803 11.3242i 0.357745 0.619633i
\(335\) 1.74124 3.01592i 0.0951343 0.164777i
\(336\) 0 0
\(337\) 11.6192 + 20.1250i 0.632936 + 1.09628i 0.986948 + 0.161036i \(0.0514837\pi\)
−0.354013 + 0.935241i \(0.615183\pi\)
\(338\) −10.7807 −0.586395
\(339\) 0 0
\(340\) 0.0215917 0.00117097
\(341\) −5.60817 + 9.71363i −0.303699 + 0.526023i
\(342\) 0 0
\(343\) 1.39610 + 18.4676i 0.0753825 + 0.997155i
\(344\) −4.61011 + 7.98494i −0.248560 + 0.430519i
\(345\) 0 0
\(346\) −7.63881 + 13.2308i −0.410665 + 0.711293i
\(347\) −8.56867 + 14.8414i −0.459990 + 0.796727i −0.998960 0.0455985i \(-0.985481\pi\)
0.538969 + 0.842325i \(0.318814\pi\)
\(348\) 0 0
\(349\) 9.75729 16.9001i 0.522296 0.904643i −0.477368 0.878704i \(-0.658409\pi\)
0.999664 0.0259395i \(-0.00825772\pi\)
\(350\) 15.7740 + 8.58561i 0.843157 + 0.458920i
\(351\) 0 0
\(352\) −1.67617 + 2.90321i −0.0893401 + 0.154742i
\(353\) 16.0613 0.854856 0.427428 0.904049i \(-0.359420\pi\)
0.427428 + 0.904049i \(0.359420\pi\)
\(354\) 0 0
\(355\) −1.54377 −0.0819347
\(356\) 0.357592 + 0.619368i 0.0189524 + 0.0328264i
\(357\) 0 0
\(358\) −6.54883 + 11.3429i −0.346116 + 0.599491i
\(359\) −6.93200 + 12.0066i −0.365857 + 0.633683i −0.988913 0.148494i \(-0.952557\pi\)
0.623056 + 0.782177i \(0.285891\pi\)
\(360\) 0 0
\(361\) 5.39037 + 9.33639i 0.283704 + 0.491389i
\(362\) 3.68550 + 6.38348i 0.193706 + 0.335508i
\(363\) 0 0
\(364\) 1.35613 0.829120i 0.0710805 0.0434577i
\(365\) 3.29893 + 5.71391i 0.172674 + 0.299080i
\(366\) 0 0
\(367\) 25.2953 1.32041 0.660203 0.751088i \(-0.270470\pi\)
0.660203 + 0.751088i \(0.270470\pi\)
\(368\) 10.7360 + 18.5953i 0.559652 + 0.969346i
\(369\) 0 0
\(370\) −5.76303 −0.299606
\(371\) 26.3230 + 14.3273i 1.36662 + 0.743838i
\(372\) 0 0
\(373\) 2.00000 0.103556 0.0517780 0.998659i \(-0.483511\pi\)
0.0517780 + 0.998659i \(0.483511\pi\)
\(374\) −0.890369 + 1.54216i −0.0460399 + 0.0797434i
\(375\) 0 0
\(376\) −16.9538 29.3648i −0.874325 1.51437i
\(377\) −1.59065 −0.0819229
\(378\) 0 0
\(379\) −18.8099 −0.966200 −0.483100 0.875565i \(-0.660489\pi\)
−0.483100 + 0.875565i \(0.660489\pi\)
\(380\) 0.113230 + 0.196119i 0.00580856 + 0.0100607i
\(381\) 0 0
\(382\) 8.85807 15.3426i 0.453218 0.784997i
\(383\) 35.1416 1.79565 0.897826 0.440350i \(-0.145145\pi\)
0.897826 + 0.440350i \(0.145145\pi\)
\(384\) 0 0
\(385\) 5.97656 3.65399i 0.304594 0.186224i
\(386\) −25.0656 −1.27580
\(387\) 0 0
\(388\) 0.150783 + 0.261164i 0.00765486 + 0.0132586i
\(389\) −8.37859 −0.424811 −0.212406 0.977182i \(-0.568130\pi\)
−0.212406 + 0.977182i \(0.568130\pi\)
\(390\) 0 0
\(391\) 0.690757 + 1.19643i 0.0349331 + 0.0605059i
\(392\) 8.70009 16.9884i 0.439421 0.858044i
\(393\) 0 0
\(394\) 0.548828 + 0.950599i 0.0276496 + 0.0478905i
\(395\) 3.31284 + 5.73801i 0.166687 + 0.288711i
\(396\) 0 0
\(397\) 4.62422 8.00938i 0.232083 0.401979i −0.726338 0.687338i \(-0.758779\pi\)
0.958421 + 0.285358i \(0.0921126\pi\)
\(398\) 7.51819 13.0219i 0.376853 0.652728i
\(399\) 0 0
\(400\) −9.87266 17.0999i −0.493633 0.854997i
\(401\) −0.147469 −0.00736425 −0.00368212 0.999993i \(-0.501172\pi\)
−0.00368212 + 0.999993i \(0.501172\pi\)
\(402\) 0 0
\(403\) −11.3523 −0.565500
\(404\) −0.622563 + 1.07831i −0.0309737 + 0.0536480i
\(405\) 0 0
\(406\) 1.16158 0.710174i 0.0576482 0.0352454i
\(407\) 14.8260 25.6793i 0.734896 1.27288i
\(408\) 0 0
\(409\) 1.96264 3.39939i 0.0970463 0.168089i −0.813414 0.581685i \(-0.802394\pi\)
0.910461 + 0.413595i \(0.135727\pi\)
\(410\) 4.72306 8.18057i 0.233255 0.404010i
\(411\) 0 0
\(412\) 1.04883 1.81662i 0.0516721 0.0894986i
\(413\) 0.535897 + 21.3024i 0.0263697 + 1.04822i
\(414\) 0 0
\(415\) 4.91002 8.50440i 0.241023 0.417465i
\(416\) −3.39298 −0.166355
\(417\) 0 0
\(418\) −18.6768 −0.913514
\(419\) −10.5000 18.1865i −0.512959 0.888470i −0.999887 0.0150285i \(-0.995216\pi\)
0.486928 0.873442i \(-0.338117\pi\)
\(420\) 0 0
\(421\) 12.3442 21.3807i 0.601617 1.04203i −0.390959 0.920408i \(-0.627857\pi\)
0.992576 0.121624i \(-0.0388101\pi\)
\(422\) −11.7683 + 20.3833i −0.572871 + 0.992242i
\(423\) 0 0
\(424\) −15.4430 26.7480i −0.749978 1.29900i
\(425\) −0.635211 1.10022i −0.0308122 0.0533684i
\(426\) 0 0
\(427\) −6.35301 3.45787i −0.307444 0.167338i
\(428\) −0.0681944 0.118116i −0.00329630 0.00570936i
\(429\) 0 0
\(430\) 2.93152 0.141371
\(431\) 2.73745 + 4.74140i 0.131858 + 0.228385i 0.924393 0.381442i \(-0.124572\pi\)
−0.792535 + 0.609827i \(0.791239\pi\)
\(432\) 0 0
\(433\) 23.6300 1.13558 0.567792 0.823172i \(-0.307798\pi\)
0.567792 + 0.823172i \(0.307798\pi\)
\(434\) 8.29007 5.06844i 0.397936 0.243293i
\(435\) 0 0
\(436\) 0.172375 0.00825526
\(437\) −7.24484 + 12.5484i −0.346568 + 0.600273i
\(438\) 0 0
\(439\) 2.63307 + 4.56062i 0.125670 + 0.217666i 0.921995 0.387203i \(-0.126559\pi\)
−0.796325 + 0.604869i \(0.793225\pi\)
\(440\) −7.21926 −0.344165
\(441\) 0 0
\(442\) −1.80233 −0.0857281
\(443\) −3.01819 5.22765i −0.143398 0.248373i 0.785376 0.619019i \(-0.212470\pi\)
−0.928774 + 0.370646i \(0.879136\pi\)
\(444\) 0 0
\(445\) −1.59504 + 2.76269i −0.0756122 + 0.130964i
\(446\) 10.1551 0.480856
\(447\) 0 0
\(448\) −16.7022 + 10.2115i −0.789106 + 0.482449i
\(449\) 22.1445 1.04507 0.522533 0.852619i \(-0.324987\pi\)
0.522533 + 0.852619i \(0.324987\pi\)
\(450\) 0 0
\(451\) 24.3011 + 42.0907i 1.14429 + 1.98197i
\(452\) 1.90234 0.0894787
\(453\) 0 0
\(454\) −3.86381 6.69231i −0.181337 0.314086i
\(455\) 6.22733 + 3.38946i 0.291942 + 0.158900i
\(456\) 0 0
\(457\) 2.66731 + 4.61992i 0.124772 + 0.216111i 0.921644 0.388037i \(-0.126847\pi\)
−0.796872 + 0.604148i \(0.793513\pi\)
\(458\) 8.56128 + 14.8286i 0.400042 + 0.692894i
\(459\) 0 0
\(460\) 0.199612 0.345738i 0.00930694 0.0161201i
\(461\) 14.8473 25.7162i 0.691507 1.19772i −0.279838 0.960047i \(-0.590281\pi\)
0.971344 0.237677i \(-0.0763860\pi\)
\(462\) 0 0
\(463\) −9.29533 16.1000i −0.431990 0.748229i 0.565054 0.825054i \(-0.308855\pi\)
−0.997045 + 0.0768243i \(0.975522\pi\)
\(464\) −1.49688 −0.0694909
\(465\) 0 0
\(466\) 5.65390 0.261912
\(467\) 12.3063 21.3152i 0.569468 0.986348i −0.427150 0.904181i \(-0.640482\pi\)
0.996619 0.0821676i \(-0.0261843\pi\)
\(468\) 0 0
\(469\) −0.390369 15.5175i −0.0180256 0.716532i
\(470\) −5.39037 + 9.33639i −0.248639 + 0.430656i
\(471\) 0 0
\(472\) 10.9803 19.0185i 0.505412 0.875399i
\(473\) −7.54163 + 13.0625i −0.346765 + 0.600614i
\(474\) 0 0
\(475\) 6.66225 11.5394i 0.305685 0.529462i
\(476\) 0.0821100 0.0502010i 0.00376351 0.00230096i
\(477\) 0 0
\(478\) −9.05456 + 15.6830i −0.414146 + 0.717322i
\(479\) 0.356609 0.0162939 0.00814693 0.999967i \(-0.497407\pi\)
0.00814693 + 0.999967i \(0.497407\pi\)
\(480\) 0 0
\(481\) 30.0115 1.36841
\(482\) −12.0941 20.9475i −0.550869 0.954134i
\(483\) 0 0
\(484\) −0.591922 + 1.02524i −0.0269056 + 0.0466018i
\(485\) −0.672570 + 1.16492i −0.0305398 + 0.0528965i
\(486\) 0 0
\(487\) 6.43920 + 11.1530i 0.291788 + 0.505391i 0.974233 0.225546i \(-0.0724165\pi\)
−0.682445 + 0.730937i \(0.739083\pi\)
\(488\) 3.72713 + 6.45558i 0.168719 + 0.292231i
\(489\) 0 0
\(490\) −6.06080 + 0.305132i −0.273799 + 0.0137845i
\(491\) 2.77694 + 4.80981i 0.125322 + 0.217064i 0.921859 0.387526i \(-0.126670\pi\)
−0.796537 + 0.604590i \(0.793337\pi\)
\(492\) 0 0
\(493\) −0.0963098 −0.00433758
\(494\) −9.45165 16.3707i −0.425250 0.736554i
\(495\) 0 0
\(496\) −10.6831 −0.479685
\(497\) −5.87072 + 3.58928i −0.263338 + 0.161001i
\(498\) 0 0
\(499\) −28.1154 −1.25862 −0.629308 0.777156i \(-0.716662\pi\)
−0.629308 + 0.777156i \(0.716662\pi\)
\(500\) −0.381036 + 0.659973i −0.0170404 + 0.0295149i
\(501\) 0 0
\(502\) −1.35040 2.33895i −0.0602711 0.104393i
\(503\) −16.9430 −0.755451 −0.377725 0.925918i \(-0.623294\pi\)
−0.377725 + 0.925918i \(0.623294\pi\)
\(504\) 0 0
\(505\) −5.55389 −0.247145
\(506\) 16.4626 + 28.5141i 0.731854 + 1.26761i
\(507\) 0 0
\(508\) −0.820712 + 1.42151i −0.0364132 + 0.0630695i
\(509\) 22.3025 0.988542 0.494271 0.869308i \(-0.335435\pi\)
0.494271 + 0.869308i \(0.335435\pi\)
\(510\) 0 0
\(511\) 25.8302 + 14.0591i 1.14266 + 0.621938i
\(512\) 19.9751 0.882783
\(513\) 0 0
\(514\) −19.6015 33.9507i −0.864583 1.49750i
\(515\) 9.35661 0.412301
\(516\) 0 0
\(517\) −27.7345 48.0376i −1.21976 2.11269i
\(518\) −21.9159 + 13.3991i −0.962931 + 0.588724i
\(519\) 0 0
\(520\) −3.65340 6.32787i −0.160212 0.277496i
\(521\) 6.18044 + 10.7048i 0.270770 + 0.468987i 0.969059 0.246828i \(-0.0793884\pi\)
−0.698289 + 0.715816i \(0.746055\pi\)
\(522\) 0 0
\(523\) −3.09572 + 5.36194i −0.135366 + 0.234461i −0.925737 0.378167i \(-0.876554\pi\)
0.790371 + 0.612628i \(0.209888\pi\)
\(524\) 0.212544 0.368136i 0.00928501 0.0160821i
\(525\) 0 0
\(526\) −14.8130 25.6569i −0.645879 1.11870i
\(527\) −0.687353 −0.0299416
\(528\) 0 0
\(529\) 2.54377 0.110599
\(530\) −4.91002 + 8.50440i −0.213278 + 0.369408i
\(531\) 0 0
\(532\) 0.886576 + 0.482553i 0.0384379 + 0.0209213i
\(533\) −24.5957 + 42.6010i −1.06536 + 1.84526i
\(534\) 0 0
\(535\) 0.304182 0.526858i 0.0131509 0.0227781i
\(536\) −7.99854 + 13.8539i −0.345484 + 0.598396i
\(537\) 0 0
\(538\) 6.37266 11.0378i 0.274745 0.475872i
\(539\) 14.2324 27.7912i 0.613032 1.19705i
\(540\) 0 0
\(541\) −13.4100 + 23.2268i −0.576542 + 0.998600i 0.419330 + 0.907834i \(0.362265\pi\)
−0.995872 + 0.0907660i \(0.971068\pi\)
\(542\) −35.3317 −1.51763
\(543\) 0 0
\(544\) −0.205436 −0.00880800
\(545\) 0.384440 + 0.665869i 0.0164676 + 0.0285227i
\(546\) 0 0
\(547\) 7.32957 12.6952i 0.313390 0.542807i −0.665704 0.746216i \(-0.731869\pi\)
0.979094 + 0.203409i \(0.0652021\pi\)
\(548\) −0.672570 + 1.16492i −0.0287307 + 0.0497631i
\(549\) 0 0
\(550\) −15.1388 26.2212i −0.645521 1.11808i
\(551\) −0.505061 0.874792i −0.0215163 0.0372674i
\(552\) 0 0
\(553\) 25.9392 + 14.1184i 1.10305 + 0.600375i
\(554\) −5.19601 8.99976i −0.220757 0.382363i
\(555\) 0 0
\(556\) 2.40546 0.102014
\(557\) −11.8399 20.5073i −0.501672 0.868921i −0.999998 0.00193169i \(-0.999385\pi\)
0.498326 0.866990i \(-0.333948\pi\)
\(558\) 0 0
\(559\) −15.2661 −0.645689
\(560\) 5.86021 + 3.18964i 0.247639 + 0.134787i
\(561\) 0 0
\(562\) 11.5323 0.486461
\(563\) −8.19289 + 14.1905i −0.345289 + 0.598059i −0.985406 0.170219i \(-0.945553\pi\)
0.640117 + 0.768277i \(0.278886\pi\)
\(564\) 0 0
\(565\) 4.24271 + 7.34858i 0.178492 + 0.309157i
\(566\) −3.22646 −0.135618
\(567\) 0 0
\(568\) 7.09142 0.297549
\(569\) −7.89397 13.6728i −0.330932 0.573192i 0.651763 0.758423i \(-0.274030\pi\)
−0.982695 + 0.185231i \(0.940697\pi\)
\(570\) 0 0
\(571\) −3.19076 + 5.52655i −0.133529 + 0.231279i −0.925035 0.379883i \(-0.875964\pi\)
0.791506 + 0.611162i \(0.209298\pi\)
\(572\) −2.67977 −0.112047
\(573\) 0 0
\(574\) −1.05886 42.0907i −0.0441960 1.75683i
\(575\) −23.4897 −0.979587
\(576\) 0 0
\(577\) 18.5203 + 32.0781i 0.771011 + 1.33543i 0.937009 + 0.349304i \(0.113582\pi\)
−0.165998 + 0.986126i \(0.553085\pi\)
\(578\) 24.7195 1.02819
\(579\) 0 0
\(580\) 0.0139156 + 0.0241025i 0.000577813 + 0.00100080i
\(581\) −1.10078 43.7569i −0.0456679 1.81534i
\(582\) 0 0
\(583\) −25.2630 43.7569i −1.04629 1.81222i
\(584\) −15.1539 26.2473i −0.627072 1.08612i
\(585\) 0 0
\(586\) 14.0146 24.2740i 0.578937 1.00275i
\(587\) −6.04689 + 10.4735i −0.249582 + 0.432288i −0.963410 0.268033i \(-0.913626\pi\)
0.713828 + 0.700321i \(0.246960\pi\)
\(588\) 0 0
\(589\) −3.60457 6.24330i −0.148524 0.257251i
\(590\) −6.98229 −0.287456
\(591\) 0 0
\(592\) 28.2422 1.16075
\(593\) 8.26449 14.3145i 0.339382 0.587827i −0.644935 0.764238i \(-0.723115\pi\)
0.984317 + 0.176411i \(0.0564487\pi\)
\(594\) 0 0
\(595\) 0.377048 + 0.205223i 0.0154575 + 0.00841331i
\(596\) −0.935120 + 1.61968i −0.0383040 + 0.0663445i
\(597\) 0 0
\(598\) −16.6623 + 28.8599i −0.681370 + 1.18017i
\(599\) −4.37412 + 7.57620i −0.178722 + 0.309555i −0.941443 0.337172i \(-0.890530\pi\)
0.762721 + 0.646727i \(0.223863\pi\)
\(600\) 0 0
\(601\) 2.96197 5.13028i 0.120821 0.209268i −0.799271 0.600971i \(-0.794781\pi\)
0.920092 + 0.391703i \(0.128114\pi\)
\(602\) 11.1481 6.81583i 0.454364 0.277792i
\(603\) 0 0
\(604\) −0.0253849 + 0.0439680i −0.00103290 + 0.00178903i
\(605\) −5.28054 −0.214685
\(606\) 0 0
\(607\) −0.741438 −0.0300940 −0.0150470 0.999887i \(-0.504790\pi\)
−0.0150470 + 0.999887i \(0.504790\pi\)
\(608\) −1.07733 1.86600i −0.0436916 0.0756761i
\(609\) 0 0
\(610\) 1.18502 2.05252i 0.0479802 0.0831041i
\(611\) 28.0708 48.6201i 1.13562 1.96696i
\(612\) 0 0
\(613\) −2.25350 3.90318i −0.0910181 0.157648i 0.816922 0.576749i \(-0.195679\pi\)
−0.907940 + 0.419101i \(0.862345\pi\)
\(614\) −10.1606 17.5987i −0.410048 0.710224i
\(615\) 0 0
\(616\) −27.4538 + 16.7849i −1.10614 + 0.676282i
\(617\) −8.60078 14.8970i −0.346254 0.599730i 0.639327 0.768935i \(-0.279213\pi\)
−0.985581 + 0.169205i \(0.945880\pi\)
\(618\) 0 0
\(619\) 4.48541 0.180284 0.0901419 0.995929i \(-0.471268\pi\)
0.0901419 + 0.995929i \(0.471268\pi\)
\(620\) 0.0993140 + 0.172017i 0.00398855 + 0.00690837i
\(621\) 0 0
\(622\) 15.5615 0.623958
\(623\) 0.357592 + 14.2146i 0.0143266 + 0.569496i
\(624\) 0 0
\(625\) 19.8391 0.793564
\(626\) −12.0941 + 20.9475i −0.483376 + 0.837231i
\(627\) 0 0
\(628\) 0.500000 + 0.866025i 0.0199522 + 0.0345582i
\(629\) 1.81711 0.0724531
\(630\) 0 0
\(631\) −17.3068 −0.688973 −0.344486 0.938791i \(-0.611947\pi\)
−0.344486 + 0.938791i \(0.611947\pi\)
\(632\) −15.2178 26.3580i −0.605332 1.04847i
\(633\) 0 0
\(634\) 19.4518 33.6916i 0.772531 1.33806i
\(635\) −7.32158 −0.290548
\(636\) 0 0
\(637\) 31.5621 1.58900i 1.25054 0.0629586i
\(638\) −2.29533 −0.0908729
\(639\) 0 0
\(640\) −3.65340 6.32787i −0.144413 0.250131i
\(641\) −43.3216 −1.71110 −0.855550 0.517721i \(-0.826781\pi\)
−0.855550 + 0.517721i \(0.826781\pi\)
\(642\) 0 0
\(643\) −14.9911 25.9654i −0.591193 1.02398i −0.994072 0.108723i \(-0.965324\pi\)
0.402879 0.915253i \(-0.368010\pi\)
\(644\) −0.0447509 1.77889i −0.00176343 0.0700981i
\(645\) 0 0
\(646\) −0.572272 0.991204i −0.0225157 0.0389984i
\(647\) 7.08472 + 12.2711i 0.278529 + 0.482427i 0.971019 0.239000i \(-0.0768197\pi\)
−0.692490 + 0.721427i \(0.743486\pi\)
\(648\) 0 0
\(649\) 17.9626 31.1122i 0.705095 1.22126i
\(650\) 15.3224 26.5391i 0.600993 1.04095i
\(651\) 0 0
\(652\) −1.01080 1.75075i −0.0395858 0.0685647i
\(653\) 28.3963 1.11123 0.555617 0.831439i \(-0.312482\pi\)
0.555617 + 0.831439i \(0.312482\pi\)
\(654\) 0 0
\(655\) 1.89610 0.0740869
\(656\) −23.1457 + 40.0896i −0.903689 + 1.56523i
\(657\) 0 0
\(658\) 1.20847 + 48.0376i 0.0471109 + 1.87270i
\(659\) 4.69961 8.13997i 0.183071 0.317088i −0.759854 0.650094i \(-0.774730\pi\)
0.942925 + 0.333006i \(0.108063\pi\)
\(660\) 0 0
\(661\) 6.35807 11.0125i 0.247300 0.428337i −0.715476 0.698638i \(-0.753790\pi\)
0.962776 + 0.270301i \(0.0871232\pi\)
\(662\) −17.0198 + 29.4792i −0.661495 + 1.14574i
\(663\) 0 0
\(664\) −22.5546 + 39.0656i −0.875287 + 1.51604i
\(665\) 0.113230 + 4.50098i 0.00439086 + 0.174540i
\(666\) 0 0
\(667\) −0.890369 + 1.54216i −0.0344752 + 0.0597128i
\(668\) 1.19143 0.0460978
\(669\) 0 0
\(670\) 5.08619 0.196497
\(671\) 6.09718 + 10.5606i 0.235379 + 0.407688i
\(672\) 0 0
\(673\) −17.8961 + 30.9970i −0.689844 + 1.19485i 0.282044 + 0.959401i \(0.408988\pi\)
−0.971888 + 0.235444i \(0.924346\pi\)
\(674\) −16.9698 + 29.3926i −0.653654 + 1.13216i
\(675\) 0 0
\(676\) −0.491146 0.850689i −0.0188902 0.0327188i
\(677\) −5.44592 9.43260i −0.209304 0.362524i 0.742192 0.670188i \(-0.233786\pi\)
−0.951495 + 0.307663i \(0.900453\pi\)
\(678\) 0 0
\(679\) 0.150783 + 5.99377i 0.00578653 + 0.230020i
\(680\) −0.221203 0.383136i −0.00848276 0.0146926i
\(681\) 0 0
\(682\) −16.3815 −0.627281
\(683\) −17.5079 30.3245i −0.669920 1.16034i −0.977926 0.208951i \(-0.932995\pi\)
0.308006 0.951384i \(-0.400338\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) −22.3389 + 15.2518i −0.852903 + 0.582317i
\(687\) 0 0
\(688\) −14.3662 −0.547705
\(689\) 25.5693 44.2874i 0.974115 1.68722i
\(690\) 0 0
\(691\) −4.21041 7.29264i −0.160171 0.277425i 0.774759 0.632257i \(-0.217871\pi\)
−0.934930 + 0.354832i \(0.884538\pi\)
\(692\) −1.39203 −0.0529169
\(693\) 0 0
\(694\) −25.0292 −0.950095
\(695\) 5.36479 + 9.29209i 0.203498 + 0.352469i
\(696\) 0 0
\(697\) −1.48920 + 2.57938i −0.0564076 + 0.0977009i
\(698\) 28.5012 1.07878
\(699\) 0 0
\(700\) 0.0411523 + 1.63584i 0.00155541 + 0.0618290i
\(701\) 42.7453 1.61447 0.807234 0.590231i \(-0.200963\pi\)
0.807234 + 0.590231i \(0.200963\pi\)
\(702\) 0 0
\(703\) 9.52918 + 16.5050i 0.359400 + 0.622499i
\(704\) 33.0043 1.24390
\(705\) 0 0
\(706\) 11.7288 + 20.3149i 0.441419 + 0.764560i
\(707\) −21.1206 + 12.9129i −0.794323 + 0.485638i
\(708\) 0 0
\(709\) 12.0431 + 20.8593i 0.452288 + 0.783386i 0.998528 0.0542432i \(-0.0172746\pi\)
−0.546240 + 0.837629i \(0.683941\pi\)
\(710\) −1.12734 1.95261i −0.0423083 0.0732801i
\(711\) 0 0
\(712\) 7.32695 12.6907i 0.274589 0.475602i
\(713\) −6.35447 + 11.0063i −0.237977 + 0.412188i
\(714\) 0 0
\(715\) −5.97656 10.3517i −0.223511 0.387132i
\(716\) −1.19340 −0.0445994
\(717\) 0 0
\(718\) −20.2484 −0.755665
\(719\) −21.0512 + 36.4617i −0.785076 + 1.35979i 0.143878 + 0.989595i \(0.454043\pi\)
−0.928954 + 0.370196i \(0.879291\pi\)
\(720\) 0 0
\(721\) 35.5818 21.7542i 1.32514 0.810170i
\(722\) −7.87266 + 13.6358i −0.292990 + 0.507474i
\(723\) 0 0
\(724\) −0.335806 + 0.581633i −0.0124801 + 0.0216162i
\(725\) 0.818771 1.41815i 0.0304084 0.0526689i
\(726\) 0 0
\(727\) −18.0349 + 31.2374i −0.668878 + 1.15853i 0.309340 + 0.950951i \(0.399892\pi\)
−0.978218 + 0.207579i \(0.933442\pi\)
\(728\) −28.6057 15.5698i −1.06020 0.577054i
\(729\) 0 0
\(730\) −4.81810 + 8.34519i −0.178326 + 0.308869i
\(731\) −0.924324 −0.0341874
\(732\) 0 0
\(733\) 34.1331 1.26073 0.630367 0.776297i \(-0.282904\pi\)
0.630367 + 0.776297i \(0.282904\pi\)
\(734\) 18.4720 + 31.9944i 0.681813 + 1.18093i
\(735\) 0 0
\(736\) −1.89922 + 3.28955i −0.0700063 + 0.121254i
\(737\) −13.0847 + 22.6634i −0.481982 + 0.834817i
\(738\) 0 0
\(739\) −10.9481 18.9626i −0.402731 0.697550i 0.591324 0.806434i \(-0.298606\pi\)
−0.994054 + 0.108884i \(0.965272\pi\)
\(740\) −0.262550 0.454751i −0.00965154 0.0167170i
\(741\) 0 0
\(742\) 1.10078 + 43.7569i 0.0404108 + 1.60636i
\(743\) 14.1426 + 24.4957i 0.518842 + 0.898660i 0.999760 + 0.0218950i \(0.00696995\pi\)
−0.480919 + 0.876765i \(0.659697\pi\)
\(744\) 0 0
\(745\) −8.34221 −0.305635
\(746\) 1.46050 + 2.52967i 0.0534729 + 0.0926177i
\(747\) 0 0
\(748\) −0.162253 −0.00593254
\(749\) −0.0681944 2.71079i −0.00249177 0.0990501i
\(750\) 0 0
\(751\) −14.4969 −0.528999 −0.264499 0.964386i \(-0.585207\pi\)
−0.264499 + 0.964386i \(0.585207\pi\)
\(752\) 26.4159 45.7538i 0.963291 1.66847i
\(753\) 0 0
\(754\) −1.16158 2.01191i −0.0423022 0.0732696i
\(755\) −0.226459 −0.00824169
\(756\) 0 0
\(757\) −38.9646 −1.41619 −0.708096 0.706116i \(-0.750446\pi\)
−0.708096 + 0.706116i \(0.750446\pi\)
\(758\) −13.7360 23.7914i −0.498914 0.864144i
\(759\) 0 0
\(760\) 2.32004 4.01842i 0.0841566 0.145764i
\(761\) 1.25564 0.0455168 0.0227584 0.999741i \(-0.492755\pi\)
0.0227584 + 0.999741i \(0.492755\pi\)
\(762\) 0 0
\(763\) 3.01012 + 1.63837i 0.108974 + 0.0593131i
\(764\) 1.61421 0.0584002
\(765\) 0 0
\(766\) 25.6623 + 44.4483i 0.927215 + 1.60598i
\(767\) 36.3609 1.31292
\(768\) 0 0
\(769\) 13.8442 + 23.9788i 0.499233 + 0.864697i 1.00000 0.000885409i \(-0.000281834\pi\)
−0.500767 + 0.865582i \(0.666949\pi\)
\(770\) 8.98608 + 4.89102i 0.323836 + 0.176260i
\(771\) 0 0
\(772\) −1.14193 1.97788i −0.0410989 0.0711854i
\(773\) 3.95544 + 6.85103i 0.142267 + 0.246414i 0.928350 0.371707i \(-0.121227\pi\)
−0.786083 + 0.618121i \(0.787894\pi\)
\(774\) 0 0
\(775\) 5.84348 10.1212i 0.209904 0.363565i
\(776\) 3.08950 5.35117i 0.110907 0.192096i
\(777\) 0 0
\(778\) −6.11849 10.5975i −0.219358 0.379940i
\(779\) −31.2383 −1.11923
\(780\) 0 0
\(781\) 11.6008 0.415108
\(782\) −1.00885 + 1.74739i −0.0360766 + 0.0624864i
\(783\) 0 0
\(784\) 29.7015 1.49533i 1.06077 0.0534045i
\(785\) −2.23025 + 3.86291i −0.0796011 + 0.137873i
\(786\) 0 0
\(787\) −15.8346 + 27.4264i −0.564444 + 0.977645i 0.432658 + 0.901558i \(0.357576\pi\)
−0.997101 + 0.0760866i \(0.975757\pi\)
\(788\) −0.0500067 + 0.0866142i −0.00178142 + 0.00308550i
\(789\) 0 0
\(790\) −4.83842 + 8.38039i −0.172143 + 0.298161i
\(791\) 33.2199 + 18.0812i 1.18116 + 0.642894i
\(792\) 0 0
\(793\) −6.17111 + 10.6887i −0.219142 + 0.379566i
\(794\) 13.5074 0.479359
\(795\) 0 0
\(796\) 1.37005 0.0485600
\(797\) 16.8961 + 29.2649i 0.598491 + 1.03662i 0.993044 + 0.117743i \(0.0375660\pi\)
−0.394553 + 0.918873i \(0.629101\pi\)
\(798\) 0 0
\(799\) 1.69961 2.94381i 0.0601279 0.104145i
\(800\) 1.74650 3.02502i 0.0617481 0.106951i
\(801\) 0 0
\(802\) −0.107690 0.186524i −0.00380265 0.00658638i
\(803\) −24.7901 42.9377i −0.874823 1.51524i
\(804\) 0 0
\(805\) 6.77188 4.14024i 0.238678 0.145924i
\(806\) −8.29007 14.3588i −0.292005 0.505768i
\(807\) 0 0
\(808\) 25.5122 0.897517
\(809\) 18.3801 + 31.8352i 0.646208 + 1.11927i 0.984021 + 0.178052i \(0.0569796\pi\)
−0.337813 + 0.941213i \(0.609687\pi\)
\(810\) 0 0
\(811\) 3.54377 0.124438 0.0622192 0.998063i \(-0.480182\pi\)
0.0622192 + 0.998063i \(0.480182\pi\)
\(812\) 0.108957 + 0.0593043i 0.00382366 + 0.00208117i
\(813\) 0 0
\(814\) 43.3068 1.51790
\(815\) 4.50866 7.80923i 0.157931 0.273545i
\(816\) 0 0
\(817\) −4.84728 8.39573i −0.169585 0.293729i
\(818\) 5.73289 0.200446
\(819\) 0 0
\(820\) 0.860686 0.0300565
\(821\) 10.4318 + 18.0684i 0.364073 + 0.630592i 0.988627 0.150389i \(-0.0480527\pi\)
−0.624554 + 0.780981i \(0.714719\pi\)
\(822\) 0 0
\(823\) −22.7003 + 39.3180i −0.791282 + 1.37054i 0.133891 + 0.990996i \(0.457253\pi\)
−0.925173 + 0.379545i \(0.876081\pi\)
\(824\) −42.9803 −1.49729
\(825\) 0 0
\(826\) −26.5526 + 16.2339i −0.923884 + 0.564850i
\(827\) 5.34221 0.185767 0.0928835 0.995677i \(-0.470392\pi\)
0.0928835 + 0.995677i \(0.470392\pi\)
\(828\) 0 0
\(829\) −8.45185 14.6390i −0.293545 0.508434i 0.681101 0.732190i \(-0.261502\pi\)
−0.974645 + 0.223755i \(0.928168\pi\)
\(830\) 14.3422 0.497826
\(831\) 0 0
\(832\) 16.7022 + 28.9291i 0.579046 + 1.00294i
\(833\) 1.91100 0.0962098i 0.0662123 0.00333347i
\(834\) 0 0
\(835\) 2.65719 + 4.60239i 0.0919559 + 0.159272i
\(836\) −0.850874 1.47376i −0.0294281 0.0509709i
\(837\) 0 0
\(838\) 15.3353 26.5615i 0.529749 0.917553i
\(839\) −4.91955 + 8.52091i −0.169842 + 0.294174i −0.938364 0.345649i \(-0.887659\pi\)
0.768522 + 0.639823i \(0.220992\pi\)
\(840\) 0 0
\(841\) 14.4379 + 25.0072i 0.497860 + 0.862318i
\(842\) 36.0574 1.24262
\(843\) 0 0
\(844\) −2.14454 −0.0738182
\(845\) 2.19076 3.79450i 0.0753643 0.130535i
\(846\) 0 0
\(847\) −20.0811 + 12.2773i −0.689996 + 0.421854i
\(848\) 24.0620 41.6765i 0.826291 1.43118i
\(849\) 0 0
\(850\) 0.927728 1.60687i 0.0318208 0.0551153i
\(851\) 16.7989 29.0966i 0.575860 0.997418i
\(852\) 0 0
\(853\) 27.7434 48.0529i 0.949915 1.64530i 0.204318 0.978905i \(-0.434502\pi\)
0.745597 0.666397i \(-0.232164\pi\)
\(854\) −0.265670 10.5606i −0.00909104 0.361377i
\(855\) 0 0
\(856\) −1.39728 + 2.42016i −0.0477581 + 0.0827195i
\(857\) 56.3465 1.92476 0.962380 0.271708i \(-0.0875886\pi\)
0.962380 + 0.271708i \(0.0875886\pi\)
\(858\) 0 0
\(859\) 43.9253 1.49871 0.749356 0.662168i \(-0.230363\pi\)
0.749356 + 0.662168i \(0.230363\pi\)
\(860\) 0.133553 + 0.231321i 0.00455413 + 0.00788799i
\(861\) 0 0
\(862\) −3.99806 + 6.92484i −0.136174 + 0.235861i
\(863\) 5.66372 9.80984i 0.192795 0.333931i −0.753380 0.657585i \(-0.771578\pi\)
0.946175 + 0.323654i \(0.104911\pi\)
\(864\) 0 0
\(865\) −3.10457 5.37727i −0.105559 0.182833i
\(866\) 17.2558 + 29.8880i 0.586377 + 1.01563i
\(867\) 0 0
\(868\) 0.777618 + 0.423249i 0.0263941 + 0.0143660i
\(869\) −24.8946 43.1188i −0.844493 1.46270i
\(870\) 0 0
\(871\) −26.4868 −0.897470
\(872\) −1.76595 3.05872i −0.0598028 0.103581i
\(873\) 0 0
\(874\) −21.1623 −0.715824
\(875\) −12.9267 + 7.90324i −0.437004 + 0.267178i
\(876\) 0 0
\(877\) −46.4615 −1.56889 −0.784446 0.620197i \(-0.787053\pi\)
−0.784446 + 0.620197i \(0.787053\pi\)
\(878\) −3.84562 + 6.66081i −0.129783 + 0.224791i
\(879\) 0 0
\(880\) −5.62422 9.74143i −0.189592 0.328384i
\(881\) −21.6578 −0.729669 −0.364835 0.931072i \(-0.618874\pi\)
−0.364835 + 0.931072i \(0.618874\pi\)
\(882\) 0 0
\(883\) 11.4868 0.386560 0.193280 0.981144i \(-0.438087\pi\)
0.193280 + 0.981144i \(0.438087\pi\)
\(884\) −0.0821100 0.142219i −0.00276166 0.00478333i
\(885\) 0 0
\(886\) 4.40808 7.63501i 0.148092 0.256503i
\(887\) −17.8420 −0.599076 −0.299538 0.954084i \(-0.596833\pi\)
−0.299538 + 0.954084i \(0.596833\pi\)
\(888\) 0 0
\(889\) −27.8429 + 17.0228i −0.933820 + 0.570926i
\(890\) −4.65913 −0.156174
\(891\) 0 0
\(892\) 0.462641 + 0.801318i 0.0154904 + 0.0268301i
\(893\) 35.6519 1.19305
\(894\) 0 0
\(895\) −2.66158 4.60999i −0.0889668 0.154095i
\(896\) −28.6057 15.5698i −0.955650 0.520149i
\(897\) 0 0
\(898\) 16.1711 + 28.0092i 0.539637 + 0.934678i
\(899\) −0.442991 0.767282i −0.0147746 0.0255903i
\(900\) 0 0
\(901\) 1.54815 2.68148i 0.0515765 0.0893331i
\(902\) −35.4918 + 61.4736i −1.18175 + 2.04685i
\(903\) 0 0
\(904\) −19.4892 33.7563i −0.648201 1.12272i
\(905\) −2.99573 −0.0995814
\(906\) 0 0
\(907\) −51.8506 −1.72167 −0.860835 0.508884i \(-0.830058\pi\)
−0.860835 + 0.508884i \(0.830058\pi\)
\(908\) 0.352052 0.609772i 0.0116833 0.0202360i
\(909\) 0 0
\(910\) 0.260414 + 10.3517i 0.00863265 + 0.343155i
\(911\) −3.24338 + 5.61770i −0.107458 + 0.186123i −0.914740 0.404044i \(-0.867604\pi\)
0.807282 + 0.590166i \(0.200938\pi\)
\(912\) 0 0
\(913\) −36.8968 + 63.9071i −1.22111 + 2.11502i
\(914\) −3.89562 + 6.74742i −0.128856 + 0.223185i
\(915\) 0 0
\(916\) −0.780065 + 1.35111i −0.0257741 + 0.0446420i
\(917\) 7.21060 4.40847i 0.238115 0.145580i
\(918\) 0 0
\(919\) 5.84221 10.1190i 0.192717 0.333795i −0.753433 0.657525i \(-0.771603\pi\)
0.946150 + 0.323730i \(0.104937\pi\)
\(920\) −8.17996 −0.269685
\(921\) 0 0
\(922\) 43.3690 1.42828
\(923\) 5.87072 + 10.1684i 0.193237 + 0.334696i
\(924\) 0 0
\(925\) −15.4481 + 26.7568i −0.507929 + 0.879759i
\(926\) 13.5759 23.5141i 0.446131 0.772721i
\(927\) 0 0
\(928\) −0.132401 0.229325i −0.00434627 0.00752797i
\(929\) 0.730252 + 1.26483i 0.0239588 + 0.0414979i 0.877756 0.479108i \(-0.159040\pi\)
−0.853797 + 0.520605i \(0.825706\pi\)
\(930\) 0 0
\(931\) 10.8954 + 16.8533i 0.357083 + 0.552344i
\(932\) 0.257579 + 0.446140i 0.00843727 + 0.0146138i
\(933\) 0 0
\(934\) 35.9469 1.17622
\(935\) −0.361864 0.626767i −0.0118342 0.0204975i
\(936\) 0 0
\(937\) 9.87451 0.322586 0.161293 0.986907i \(-0.448434\pi\)
0.161293 + 0.986907i \(0.448434\pi\)
\(938\) 19.3420 11.8255i 0.631539 0.386115i
\(939\) 0 0
\(940\) −0.982291 −0.0320388
\(941\) −27.0972 + 46.9337i −0.883343 + 1.52999i −0.0357414 + 0.999361i \(0.511379\pi\)
−0.847601 + 0.530633i \(0.821954\pi\)
\(942\) 0 0
\(943\) 27.5349 + 47.6919i 0.896660 + 1.55306i
\(944\) 34.2173 1.11368
\(945\) 0 0
\(946\) −22.0292 −0.716230
\(947\) 27.4451 + 47.5364i 0.891847 + 1.54472i 0.837659 + 0.546193i \(0.183924\pi\)
0.0541875 + 0.998531i \(0.482743\pi\)
\(948\) 0 0
\(949\) 25.0907 43.4583i 0.814477 1.41072i
\(950\) 19.4605 0.631382
\(951\) 0 0
\(952\) −1.73200 0.942707i −0.0561344 0.0305533i
\(953\) −27.0406 −0.875932 −0.437966 0.898991i \(-0.644301\pi\)
−0.437966 + 0.898991i \(0.644301\pi\)
\(954\) 0 0
\(955\) 3.60010 + 6.23556i 0.116497 + 0.201778i
\(956\) −1.65002 −0.0533655
\(957\) 0 0
\(958\) 0.260414 + 0.451051i 0.00841360 + 0.0145728i
\(959\) −22.8171 + 13.9501i −0.736803 + 0.450472i
\(960\) 0 0
\(961\) 12.3384 + 21.3708i 0.398014 + 0.689380i
\(962\) 21.9159 + 37.9595i 0.706599 + 1.22386i
\(963\) 0 0
\(964\) 1.10195 1.90864i 0.0354916 0.0614732i
\(965\) 5.09358 8.82234i 0.163968 0.284001i
\(966\) 0 0
\(967\) 6.75729 + 11.7040i 0.217300 + 0.376375i 0.953982 0.299865i \(-0.0969417\pi\)
−0.736682 + 0.676240i \(0.763608\pi\)
\(968\) 24.2566 0.779636
\(969\) 0 0
\(970\) −1.96458 −0.0630789
\(971\) −6.46557 + 11.1987i −0.207490 + 0.359383i −0.950923 0.309427i \(-0.899863\pi\)
0.743433 + 0.668810i \(0.233196\pi\)
\(972\) 0 0
\(973\) 42.0057 + 22.8632i 1.34664 + 0.732961i
\(974\) −9.40448 + 16.2890i −0.301339 + 0.521934i
\(975\) 0 0
\(976\) −5.80730 + 10.0585i −0.185887 + 0.321966i
\(977\) 18.2989 31.6947i 0.585435 1.01400i −0.409387 0.912361i \(-0.634257\pi\)
0.994821 0.101641i \(-0.0324094\pi\)
\(978\) 0 0
\(979\) 11.9861 20.7605i 0.383077 0.663509i
\(980\) −0.300194 0.464346i −0.00958933 0.0148330i
\(981\) 0 0
\(982\) −4.05574 + 7.02475i −0.129424 + 0.224169i
\(983\) −17.2379 −0.549805 −0.274902 0.961472i \(-0.588646\pi\)
−0.274902 + 0.961472i \(0.588646\pi\)
\(984\) 0 0
\(985\) −0.446110 −0.0142143
\(986\) −0.0703305 0.121816i −0.00223978 0.00387941i
\(987\) 0 0
\(988\) 0.861191 1.49163i 0.0273981 0.0474550i
\(989\) −8.54523 + 14.8008i −0.271722 + 0.470637i
\(990\) 0 0
\(991\) 7.67111 + 13.2867i 0.243681 + 0.422067i 0.961760 0.273894i \(-0.0883118\pi\)
−0.718079 + 0.695961i \(0.754978\pi\)
\(992\) −0.944932 1.63667i −0.0300016 0.0519643i
\(993\) 0 0
\(994\) −8.82695 4.80441i −0.279974 0.152387i
\(995\) 3.05555 + 5.29236i 0.0968673 + 0.167779i
\(996\) 0 0
\(997\) −34.1154 −1.08044 −0.540222 0.841522i \(-0.681660\pi\)
−0.540222 + 0.841522i \(0.681660\pi\)
\(998\) −20.5313 35.5613i −0.649907 1.12567i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.h.541.3 6
3.2 odd 2 567.2.g.i.541.1 6
7.4 even 3 567.2.h.i.298.1 6
9.2 odd 6 189.2.e.f.163.1 yes 6
9.4 even 3 567.2.h.i.352.1 6
9.5 odd 6 567.2.h.h.352.3 6
9.7 even 3 189.2.e.e.163.3 yes 6
21.11 odd 6 567.2.h.h.298.3 6
63.2 odd 6 1323.2.a.x.1.3 3
63.4 even 3 inner 567.2.g.h.109.3 6
63.11 odd 6 189.2.e.f.109.1 yes 6
63.16 even 3 1323.2.a.ba.1.1 3
63.25 even 3 189.2.e.e.109.3 6
63.32 odd 6 567.2.g.i.109.1 6
63.47 even 6 1323.2.a.y.1.3 3
63.61 odd 6 1323.2.a.z.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.e.e.109.3 6 63.25 even 3
189.2.e.e.163.3 yes 6 9.7 even 3
189.2.e.f.109.1 yes 6 63.11 odd 6
189.2.e.f.163.1 yes 6 9.2 odd 6
567.2.g.h.109.3 6 63.4 even 3 inner
567.2.g.h.541.3 6 1.1 even 1 trivial
567.2.g.i.109.1 6 63.32 odd 6
567.2.g.i.541.1 6 3.2 odd 2
567.2.h.h.298.3 6 21.11 odd 6
567.2.h.h.352.3 6 9.5 odd 6
567.2.h.i.298.1 6 7.4 even 3
567.2.h.i.352.1 6 9.4 even 3
1323.2.a.x.1.3 3 63.2 odd 6
1323.2.a.y.1.3 3 63.47 even 6
1323.2.a.z.1.1 3 63.61 odd 6
1323.2.a.ba.1.1 3 63.16 even 3