Properties

Label 567.2.g.h.541.2
Level $567$
Weight $2$
Character 567.541
Analytic conductor $4.528$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(109,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.2
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 567.541
Dual form 567.2.g.h.109.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.380438 - 0.658939i) q^{2} +(0.710533 - 1.23068i) q^{4} +3.18194 q^{5} +(1.85185 - 1.88962i) q^{7} -2.60301 q^{8} +(-1.21053 - 2.09671i) q^{10} +2.23912 q^{11} +(-1.85185 - 3.20750i) q^{13} +(-1.94966 - 0.501371i) q^{14} +(-0.430782 - 0.746136i) q^{16} +(2.80150 + 4.85235i) q^{17} +(-2.21053 + 3.82876i) q^{19} +(2.26088 - 3.91595i) q^{20} +(-0.851848 - 1.47544i) q^{22} -0.942820 q^{23} +5.12476 q^{25} +(-1.40903 + 2.44051i) q^{26} +(-1.00972 - 3.62167i) q^{28} +(-5.06238 + 8.76830i) q^{29} +(2.85185 - 4.93955i) q^{31} +(-2.93078 + 5.07626i) q^{32} +(2.13160 - 3.69204i) q^{34} +(5.89248 - 6.01266i) q^{35} +(-1.56238 + 2.70612i) q^{37} +3.36389 q^{38} -8.28263 q^{40} +(-1.99316 - 3.45226i) q^{41} +(1.64132 - 2.84284i) q^{43} +(1.59097 - 2.75564i) q^{44} +(0.358685 + 0.621261i) q^{46} +(0.112725 + 0.195246i) q^{47} +(-0.141315 - 6.99857i) q^{49} +(-1.94966 - 3.37690i) q^{50} -5.26320 q^{52} +(-5.33009 - 9.23200i) q^{53} +7.12476 q^{55} +(-4.82038 + 4.91870i) q^{56} +7.70370 q^{58} +(1.02859 - 1.78157i) q^{59} +(2.92107 + 5.05944i) q^{61} -4.33981 q^{62} +2.73680 q^{64} +(-5.89248 - 10.2061i) q^{65} +(-3.71053 + 6.42683i) q^{67} +7.96225 q^{68} +(-6.20370 - 1.59533i) q^{70} +7.26320 q^{71} +(-3.77975 - 6.54672i) q^{73} +2.37756 q^{74} +(3.14132 + 5.44092i) q^{76} +(4.14652 - 4.23109i) q^{77} +(3.41423 + 5.91362i) q^{79} +(-1.37072 - 2.37416i) q^{80} +(-1.51655 + 2.62674i) q^{82} +(4.05555 - 7.02441i) q^{83} +(8.91423 + 15.4399i) q^{85} -2.49768 q^{86} -5.82846 q^{88} +(-4.86389 + 8.42450i) q^{89} +(-9.49028 - 2.44051i) q^{91} +(-0.669905 + 1.16031i) q^{92} +(0.0857699 - 0.148558i) q^{94} +(-7.03379 + 12.1829i) q^{95} +(-0.421067 + 0.729309i) q^{97} +(-4.55787 + 2.75564i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 4 q^{4} + 2 q^{5} + 2 q^{7} + 18 q^{8} + q^{10} + 14 q^{11} - 2 q^{13} - 4 q^{14} - 10 q^{16} - 5 q^{19} + 13 q^{20} + 4 q^{22} + 12 q^{23} - 4 q^{25} - 17 q^{26} - 30 q^{28} - 13 q^{29}+ \cdots + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.380438 0.658939i −0.269011 0.465940i 0.699596 0.714539i \(-0.253363\pi\)
−0.968607 + 0.248599i \(0.920030\pi\)
\(3\) 0 0
\(4\) 0.710533 1.23068i 0.355267 0.615340i
\(5\) 3.18194 1.42301 0.711504 0.702682i \(-0.248014\pi\)
0.711504 + 0.702682i \(0.248014\pi\)
\(6\) 0 0
\(7\) 1.85185 1.88962i 0.699933 0.714209i
\(8\) −2.60301 −0.920303
\(9\) 0 0
\(10\) −1.21053 2.09671i −0.382804 0.663036i
\(11\) 2.23912 0.675121 0.337561 0.941304i \(-0.390398\pi\)
0.337561 + 0.941304i \(0.390398\pi\)
\(12\) 0 0
\(13\) −1.85185 3.20750i −0.513610 0.889599i −0.999875 0.0157878i \(-0.994974\pi\)
0.486265 0.873811i \(-0.338359\pi\)
\(14\) −1.94966 0.501371i −0.521068 0.133997i
\(15\) 0 0
\(16\) −0.430782 0.746136i −0.107695 0.186534i
\(17\) 2.80150 + 4.85235i 0.679465 + 1.17687i 0.975142 + 0.221580i \(0.0711213\pi\)
−0.295678 + 0.955288i \(0.595545\pi\)
\(18\) 0 0
\(19\) −2.21053 + 3.82876i −0.507131 + 0.878377i 0.492835 + 0.870123i \(0.335961\pi\)
−0.999966 + 0.00825398i \(0.997373\pi\)
\(20\) 2.26088 3.91595i 0.505547 0.875634i
\(21\) 0 0
\(22\) −0.851848 1.47544i −0.181615 0.314566i
\(23\) −0.942820 −0.196592 −0.0982958 0.995157i \(-0.531339\pi\)
−0.0982958 + 0.995157i \(0.531339\pi\)
\(24\) 0 0
\(25\) 5.12476 1.02495
\(26\) −1.40903 + 2.44051i −0.276333 + 0.478623i
\(27\) 0 0
\(28\) −1.00972 3.62167i −0.190818 0.684431i
\(29\) −5.06238 + 8.76830i −0.940061 + 1.62823i −0.174709 + 0.984620i \(0.555899\pi\)
−0.765351 + 0.643613i \(0.777435\pi\)
\(30\) 0 0
\(31\) 2.85185 4.93955i 0.512207 0.887169i −0.487693 0.873015i \(-0.662161\pi\)
0.999900 0.0141534i \(-0.00450531\pi\)
\(32\) −2.93078 + 5.07626i −0.518094 + 0.897365i
\(33\) 0 0
\(34\) 2.13160 3.69204i 0.365566 0.633180i
\(35\) 5.89248 6.01266i 0.996010 1.01632i
\(36\) 0 0
\(37\) −1.56238 + 2.70612i −0.256854 + 0.444884i −0.965397 0.260783i \(-0.916019\pi\)
0.708543 + 0.705667i \(0.249353\pi\)
\(38\) 3.36389 0.545694
\(39\) 0 0
\(40\) −8.28263 −1.30960
\(41\) −1.99316 3.45226i −0.311280 0.539152i 0.667360 0.744735i \(-0.267424\pi\)
−0.978640 + 0.205583i \(0.934091\pi\)
\(42\) 0 0
\(43\) 1.64132 2.84284i 0.250298 0.433529i −0.713310 0.700849i \(-0.752805\pi\)
0.963608 + 0.267320i \(0.0861380\pi\)
\(44\) 1.59097 2.75564i 0.239848 0.415429i
\(45\) 0 0
\(46\) 0.358685 + 0.621261i 0.0528852 + 0.0915999i
\(47\) 0.112725 + 0.195246i 0.0164426 + 0.0284795i 0.874130 0.485693i \(-0.161433\pi\)
−0.857687 + 0.514172i \(0.828099\pi\)
\(48\) 0 0
\(49\) −0.141315 6.99857i −0.0201879 0.999796i
\(50\) −1.94966 3.37690i −0.275723 0.477566i
\(51\) 0 0
\(52\) −5.26320 −0.729874
\(53\) −5.33009 9.23200i −0.732145 1.26811i −0.955965 0.293482i \(-0.905186\pi\)
0.223820 0.974631i \(-0.428147\pi\)
\(54\) 0 0
\(55\) 7.12476 0.960703
\(56\) −4.82038 + 4.91870i −0.644150 + 0.657288i
\(57\) 0 0
\(58\) 7.70370 1.01154
\(59\) 1.02859 1.78157i 0.133911 0.231941i −0.791270 0.611467i \(-0.790580\pi\)
0.925181 + 0.379526i \(0.123913\pi\)
\(60\) 0 0
\(61\) 2.92107 + 5.05944i 0.374004 + 0.647794i 0.990177 0.139816i \(-0.0446512\pi\)
−0.616173 + 0.787611i \(0.711318\pi\)
\(62\) −4.33981 −0.551156
\(63\) 0 0
\(64\) 2.73680 0.342100
\(65\) −5.89248 10.2061i −0.730872 1.26591i
\(66\) 0 0
\(67\) −3.71053 + 6.42683i −0.453314 + 0.785163i −0.998590 0.0530942i \(-0.983092\pi\)
0.545276 + 0.838257i \(0.316425\pi\)
\(68\) 7.96225 0.965565
\(69\) 0 0
\(70\) −6.20370 1.59533i −0.741484 0.190679i
\(71\) 7.26320 0.861983 0.430992 0.902356i \(-0.358164\pi\)
0.430992 + 0.902356i \(0.358164\pi\)
\(72\) 0 0
\(73\) −3.77975 6.54672i −0.442386 0.766236i 0.555480 0.831530i \(-0.312535\pi\)
−0.997866 + 0.0652944i \(0.979201\pi\)
\(74\) 2.37756 0.276386
\(75\) 0 0
\(76\) 3.14132 + 5.44092i 0.360334 + 0.624116i
\(77\) 4.14652 4.23109i 0.472539 0.482177i
\(78\) 0 0
\(79\) 3.41423 + 5.91362i 0.384131 + 0.665334i 0.991648 0.128972i \(-0.0411678\pi\)
−0.607517 + 0.794306i \(0.707834\pi\)
\(80\) −1.37072 2.37416i −0.153252 0.265439i
\(81\) 0 0
\(82\) −1.51655 + 2.62674i −0.167475 + 0.290075i
\(83\) 4.05555 7.02441i 0.445154 0.771029i −0.552909 0.833242i \(-0.686482\pi\)
0.998063 + 0.0622124i \(0.0198156\pi\)
\(84\) 0 0
\(85\) 8.91423 + 15.4399i 0.966884 + 1.67469i
\(86\) −2.49768 −0.269331
\(87\) 0 0
\(88\) −5.82846 −0.621316
\(89\) −4.86389 + 8.42450i −0.515571 + 0.892995i 0.484266 + 0.874921i \(0.339087\pi\)
−0.999837 + 0.0180741i \(0.994247\pi\)
\(90\) 0 0
\(91\) −9.49028 2.44051i −0.994852 0.255835i
\(92\) −0.669905 + 1.16031i −0.0698424 + 0.120971i
\(93\) 0 0
\(94\) 0.0857699 0.148558i 0.00884649 0.0153226i
\(95\) −7.03379 + 12.1829i −0.721652 + 1.24994i
\(96\) 0 0
\(97\) −0.421067 + 0.729309i −0.0427528 + 0.0740501i −0.886610 0.462518i \(-0.846946\pi\)
0.843857 + 0.536568i \(0.180279\pi\)
\(98\) −4.55787 + 2.75564i −0.460414 + 0.278362i
\(99\) 0 0
\(100\) 3.64132 6.30694i 0.364132 0.630694i
\(101\) −7.74720 −0.770876 −0.385438 0.922734i \(-0.625950\pi\)
−0.385438 + 0.922734i \(0.625950\pi\)
\(102\) 0 0
\(103\) −2.43474 −0.239902 −0.119951 0.992780i \(-0.538274\pi\)
−0.119951 + 0.992780i \(0.538274\pi\)
\(104\) 4.82038 + 8.34914i 0.472677 + 0.818701i
\(105\) 0 0
\(106\) −4.05555 + 7.02441i −0.393909 + 0.682271i
\(107\) −5.73229 + 9.92861i −0.554161 + 0.959835i 0.443807 + 0.896122i \(0.353628\pi\)
−0.997968 + 0.0637128i \(0.979706\pi\)
\(108\) 0 0
\(109\) 9.12476 + 15.8046i 0.873994 + 1.51380i 0.857831 + 0.513932i \(0.171812\pi\)
0.0161631 + 0.999869i \(0.494855\pi\)
\(110\) −2.71053 4.69478i −0.258439 0.447630i
\(111\) 0 0
\(112\) −2.20765 0.567717i −0.208604 0.0536443i
\(113\) 2.62476 + 4.54622i 0.246917 + 0.427673i 0.962669 0.270682i \(-0.0872492\pi\)
−0.715752 + 0.698355i \(0.753916\pi\)
\(114\) 0 0
\(115\) −3.00000 −0.279751
\(116\) 7.19398 + 12.4603i 0.667944 + 1.15691i
\(117\) 0 0
\(118\) −1.56526 −0.144094
\(119\) 14.3571 + 3.69204i 1.31611 + 0.338449i
\(120\) 0 0
\(121\) −5.98633 −0.544212
\(122\) 2.22257 3.84961i 0.201222 0.348527i
\(123\) 0 0
\(124\) −4.05267 7.01942i −0.363940 0.630363i
\(125\) 0.396990 0.0355079
\(126\) 0 0
\(127\) 20.1053 1.78406 0.892030 0.451976i \(-0.149281\pi\)
0.892030 + 0.451976i \(0.149281\pi\)
\(128\) 4.82038 + 8.34914i 0.426065 + 0.737967i
\(129\) 0 0
\(130\) −4.48345 + 7.76556i −0.393224 + 0.681085i
\(131\) −4.08126 −0.356581 −0.178291 0.983978i \(-0.557057\pi\)
−0.178291 + 0.983978i \(0.557057\pi\)
\(132\) 0 0
\(133\) 3.14132 + 11.2673i 0.272387 + 0.977002i
\(134\) 5.64652 0.487785
\(135\) 0 0
\(136\) −7.29235 12.6307i −0.625313 1.08307i
\(137\) −1.88564 −0.161101 −0.0805506 0.996751i \(-0.525668\pi\)
−0.0805506 + 0.996751i \(0.525668\pi\)
\(138\) 0 0
\(139\) 6.39768 + 11.0811i 0.542644 + 0.939887i 0.998751 + 0.0499621i \(0.0159101\pi\)
−0.456107 + 0.889925i \(0.650757\pi\)
\(140\) −3.21286 11.5239i −0.271536 0.973951i
\(141\) 0 0
\(142\) −2.76320 4.78600i −0.231883 0.401632i
\(143\) −4.14652 7.18198i −0.346749 0.600587i
\(144\) 0 0
\(145\) −16.1082 + 27.9002i −1.33771 + 2.31699i
\(146\) −2.87592 + 4.98125i −0.238013 + 0.412251i
\(147\) 0 0
\(148\) 2.22025 + 3.84558i 0.182503 + 0.316105i
\(149\) 8.05718 0.660070 0.330035 0.943969i \(-0.392939\pi\)
0.330035 + 0.943969i \(0.392939\pi\)
\(150\) 0 0
\(151\) −6.28263 −0.511273 −0.255637 0.966773i \(-0.582285\pi\)
−0.255637 + 0.966773i \(0.582285\pi\)
\(152\) 5.75404 9.96629i 0.466714 0.808373i
\(153\) 0 0
\(154\) −4.36552 1.12263i −0.351784 0.0904642i
\(155\) 9.07442 15.7174i 0.728875 1.26245i
\(156\) 0 0
\(157\) −0.351848 + 0.609419i −0.0280806 + 0.0486370i −0.879724 0.475484i \(-0.842273\pi\)
0.851644 + 0.524121i \(0.175606\pi\)
\(158\) 2.59781 4.49954i 0.206671 0.357964i
\(159\) 0 0
\(160\) −9.32558 + 16.1524i −0.737252 + 1.27696i
\(161\) −1.74596 + 1.78157i −0.137601 + 0.140407i
\(162\) 0 0
\(163\) 9.61793 16.6587i 0.753334 1.30481i −0.192864 0.981225i \(-0.561778\pi\)
0.946198 0.323588i \(-0.104889\pi\)
\(164\) −5.66484 −0.442349
\(165\) 0 0
\(166\) −6.17154 −0.479004
\(167\) −11.6940 20.2546i −0.904907 1.56735i −0.821041 0.570869i \(-0.806607\pi\)
−0.0838661 0.996477i \(-0.526727\pi\)
\(168\) 0 0
\(169\) −0.358685 + 0.621261i −0.0275911 + 0.0477893i
\(170\) 6.78263 11.7479i 0.520204 0.901020i
\(171\) 0 0
\(172\) −2.33242 4.03987i −0.177845 0.308037i
\(173\) 4.11956 + 7.13529i 0.313204 + 0.542486i 0.979054 0.203600i \(-0.0652641\pi\)
−0.665850 + 0.746086i \(0.731931\pi\)
\(174\) 0 0
\(175\) 9.49028 9.68385i 0.717398 0.732030i
\(176\) −0.964574 1.67069i −0.0727075 0.125933i
\(177\) 0 0
\(178\) 7.40164 0.554776
\(179\) −4.95486 8.58207i −0.370344 0.641454i 0.619275 0.785174i \(-0.287427\pi\)
−0.989618 + 0.143721i \(0.954093\pi\)
\(180\) 0 0
\(181\) −9.38796 −0.697802 −0.348901 0.937160i \(-0.613445\pi\)
−0.348901 + 0.937160i \(0.613445\pi\)
\(182\) 2.00232 + 7.18198i 0.148422 + 0.532364i
\(183\) 0 0
\(184\) 2.45417 0.180924
\(185\) −4.97141 + 8.61073i −0.365505 + 0.633074i
\(186\) 0 0
\(187\) 6.27292 + 10.8650i 0.458721 + 0.794528i
\(188\) 0.320380 0.0233661
\(189\) 0 0
\(190\) 10.7037 0.776528
\(191\) 12.3691 + 21.4239i 0.894996 + 1.55018i 0.833810 + 0.552052i \(0.186155\pi\)
0.0611861 + 0.998126i \(0.480512\pi\)
\(192\) 0 0
\(193\) 0.414230 0.717468i 0.0298169 0.0516444i −0.850732 0.525600i \(-0.823841\pi\)
0.880549 + 0.473955i \(0.157174\pi\)
\(194\) 0.640760 0.0460039
\(195\) 0 0
\(196\) −8.71341 4.79881i −0.622387 0.342772i
\(197\) 5.86156 0.417619 0.208810 0.977956i \(-0.433041\pi\)
0.208810 + 0.977956i \(0.433041\pi\)
\(198\) 0 0
\(199\) 4.62476 + 8.01033i 0.327841 + 0.567837i 0.982083 0.188448i \(-0.0603457\pi\)
−0.654242 + 0.756285i \(0.727012\pi\)
\(200\) −13.3398 −0.943267
\(201\) 0 0
\(202\) 2.94733 + 5.10493i 0.207374 + 0.359182i
\(203\) 7.19398 + 25.8035i 0.504919 + 1.81105i
\(204\) 0 0
\(205\) −6.34213 10.9849i −0.442954 0.767218i
\(206\) 0.926268 + 1.60434i 0.0645362 + 0.111780i
\(207\) 0 0
\(208\) −1.59549 + 2.76346i −0.110627 + 0.191612i
\(209\) −4.94966 + 8.57306i −0.342375 + 0.593011i
\(210\) 0 0
\(211\) 6.27975 + 10.8768i 0.432316 + 0.748793i 0.997072 0.0764645i \(-0.0243632\pi\)
−0.564756 + 0.825258i \(0.691030\pi\)
\(212\) −15.1488 −1.04043
\(213\) 0 0
\(214\) 8.72313 0.596301
\(215\) 5.22257 9.04576i 0.356176 0.616916i
\(216\) 0 0
\(217\) −4.05267 14.5362i −0.275113 0.986781i
\(218\) 6.94282 12.0253i 0.470227 0.814457i
\(219\) 0 0
\(220\) 5.06238 8.76830i 0.341306 0.591159i
\(221\) 10.3759 17.9716i 0.697960 1.20890i
\(222\) 0 0
\(223\) 10.6940 18.5225i 0.716122 1.24036i −0.246403 0.969167i \(-0.579249\pi\)
0.962525 0.271192i \(-0.0874179\pi\)
\(224\) 4.16484 + 14.9385i 0.278275 + 0.998122i
\(225\) 0 0
\(226\) 1.99712 3.45912i 0.132847 0.230097i
\(227\) −12.6224 −0.837781 −0.418890 0.908037i \(-0.637581\pi\)
−0.418890 + 0.908037i \(0.637581\pi\)
\(228\) 0 0
\(229\) −28.9201 −1.91110 −0.955548 0.294837i \(-0.904735\pi\)
−0.955548 + 0.294837i \(0.904735\pi\)
\(230\) 1.14132 + 1.97682i 0.0752561 + 0.130347i
\(231\) 0 0
\(232\) 13.1774 22.8240i 0.865141 1.49847i
\(233\) −10.7255 + 18.5770i −0.702648 + 1.21702i 0.264886 + 0.964280i \(0.414666\pi\)
−0.967534 + 0.252742i \(0.918668\pi\)
\(234\) 0 0
\(235\) 0.358685 + 0.621261i 0.0233980 + 0.0405266i
\(236\) −1.46169 2.53173i −0.0951482 0.164802i
\(237\) 0 0
\(238\) −3.02915 10.8650i −0.196350 0.704274i
\(239\) 3.86840 + 6.70027i 0.250226 + 0.433404i 0.963588 0.267392i \(-0.0861617\pi\)
−0.713362 + 0.700796i \(0.752828\pi\)
\(240\) 0 0
\(241\) 6.09166 0.392398 0.196199 0.980564i \(-0.437140\pi\)
0.196199 + 0.980564i \(0.437140\pi\)
\(242\) 2.27743 + 3.94462i 0.146399 + 0.253570i
\(243\) 0 0
\(244\) 8.30206 0.531485
\(245\) −0.449657 22.2691i −0.0287275 1.42272i
\(246\) 0 0
\(247\) 16.3743 1.04187
\(248\) −7.42339 + 12.8577i −0.471386 + 0.816464i
\(249\) 0 0
\(250\) −0.151030 0.261592i −0.00955199 0.0165445i
\(251\) −1.40164 −0.0884705 −0.0442352 0.999021i \(-0.514085\pi\)
−0.0442352 + 0.999021i \(0.514085\pi\)
\(252\) 0 0
\(253\) −2.11109 −0.132723
\(254\) −7.64884 13.2482i −0.479931 0.831265i
\(255\) 0 0
\(256\) 6.40451 11.0929i 0.400282 0.693309i
\(257\) −17.9565 −1.12010 −0.560048 0.828460i \(-0.689217\pi\)
−0.560048 + 0.828460i \(0.689217\pi\)
\(258\) 0 0
\(259\) 2.22025 + 7.96364i 0.137960 + 0.494836i
\(260\) −16.7472 −1.03862
\(261\) 0 0
\(262\) 1.55267 + 2.68930i 0.0959241 + 0.166145i
\(263\) −7.17619 −0.442503 −0.221251 0.975217i \(-0.571014\pi\)
−0.221251 + 0.975217i \(0.571014\pi\)
\(264\) 0 0
\(265\) −16.9601 29.3757i −1.04185 1.80453i
\(266\) 6.22941 6.35646i 0.381950 0.389740i
\(267\) 0 0
\(268\) 5.27292 + 9.13296i 0.322095 + 0.557884i
\(269\) −1.69850 2.94188i −0.103559 0.179370i 0.809590 0.586996i \(-0.199690\pi\)
−0.913149 + 0.407627i \(0.866356\pi\)
\(270\) 0 0
\(271\) 5.11793 8.86451i 0.310892 0.538481i −0.667664 0.744463i \(-0.732706\pi\)
0.978556 + 0.205982i \(0.0660389\pi\)
\(272\) 2.41367 4.18061i 0.146351 0.253487i
\(273\) 0 0
\(274\) 0.717370 + 1.24252i 0.0433379 + 0.0750634i
\(275\) 11.4750 0.691967
\(276\) 0 0
\(277\) −3.55950 −0.213870 −0.106935 0.994266i \(-0.534104\pi\)
−0.106935 + 0.994266i \(0.534104\pi\)
\(278\) 4.86784 8.43135i 0.291954 0.505679i
\(279\) 0 0
\(280\) −15.3382 + 15.6510i −0.916631 + 0.935327i
\(281\) −3.49316 + 6.05034i −0.208385 + 0.360933i −0.951206 0.308557i \(-0.900154\pi\)
0.742821 + 0.669490i \(0.233487\pi\)
\(282\) 0 0
\(283\) 15.1082 26.1682i 0.898090 1.55554i 0.0681568 0.997675i \(-0.478288\pi\)
0.829933 0.557863i \(-0.188378\pi\)
\(284\) 5.16075 8.93867i 0.306234 0.530413i
\(285\) 0 0
\(286\) −3.15499 + 5.46460i −0.186558 + 0.323129i
\(287\) −10.2145 2.62674i −0.602942 0.155052i
\(288\) 0 0
\(289\) −7.19686 + 12.4653i −0.423345 + 0.733255i
\(290\) 24.5127 1.43944
\(291\) 0 0
\(292\) −10.7426 −0.628661
\(293\) 7.61793 + 13.1946i 0.445044 + 0.770839i 0.998055 0.0623349i \(-0.0198547\pi\)
−0.553011 + 0.833174i \(0.686521\pi\)
\(294\) 0 0
\(295\) 3.27292 5.66886i 0.190556 0.330054i
\(296\) 4.06690 7.04407i 0.236383 0.409428i
\(297\) 0 0
\(298\) −3.06526 5.30919i −0.177566 0.307553i
\(299\) 1.74596 + 3.02409i 0.100971 + 0.174888i
\(300\) 0 0
\(301\) −2.33242 8.36597i −0.134438 0.482206i
\(302\) 2.39015 + 4.13987i 0.137538 + 0.238223i
\(303\) 0 0
\(304\) 3.80903 0.218463
\(305\) 9.29467 + 16.0988i 0.532211 + 0.921817i
\(306\) 0 0
\(307\) −1.03310 −0.0589623 −0.0294812 0.999565i \(-0.509386\pi\)
−0.0294812 + 0.999565i \(0.509386\pi\)
\(308\) −2.26088 8.10936i −0.128825 0.462074i
\(309\) 0 0
\(310\) −13.8090 −0.784300
\(311\) 4.66019 8.07169i 0.264255 0.457703i −0.703113 0.711078i \(-0.748207\pi\)
0.967368 + 0.253375i \(0.0815406\pi\)
\(312\) 0 0
\(313\) −3.04583 5.27553i −0.172160 0.298191i 0.767014 0.641630i \(-0.221741\pi\)
−0.939175 + 0.343439i \(0.888408\pi\)
\(314\) 0.535426 0.0302159
\(315\) 0 0
\(316\) 9.70370 0.545876
\(317\) −11.6505 20.1792i −0.654356 1.13338i −0.982055 0.188595i \(-0.939607\pi\)
0.327699 0.944782i \(-0.393727\pi\)
\(318\) 0 0
\(319\) −11.3353 + 19.6333i −0.634655 + 1.09925i
\(320\) 8.70834 0.486811
\(321\) 0 0
\(322\) 1.83818 + 0.472703i 0.102438 + 0.0263427i
\(323\) −24.7713 −1.37831
\(324\) 0 0
\(325\) −9.49028 16.4377i −0.526426 0.911797i
\(326\) −14.6361 −0.810619
\(327\) 0 0
\(328\) 5.18822 + 8.98627i 0.286472 + 0.496184i
\(329\) 0.577690 + 0.148558i 0.0318491 + 0.00819026i
\(330\) 0 0
\(331\) −7.33818 12.7101i −0.403343 0.698610i 0.590784 0.806829i \(-0.298818\pi\)
−0.994127 + 0.108220i \(0.965485\pi\)
\(332\) −5.76320 9.98215i −0.316297 0.547842i
\(333\) 0 0
\(334\) −8.89768 + 15.4112i −0.486859 + 0.843265i
\(335\) −11.8067 + 20.4498i −0.645069 + 1.11729i
\(336\) 0 0
\(337\) −12.8119 22.1909i −0.697909 1.20881i −0.969190 0.246314i \(-0.920781\pi\)
0.271281 0.962500i \(-0.412553\pi\)
\(338\) 0.545830 0.0296892
\(339\) 0 0
\(340\) 25.3354 1.37401
\(341\) 6.38564 11.0603i 0.345802 0.598946i
\(342\) 0 0
\(343\) −13.4863 12.6933i −0.728193 0.685372i
\(344\) −4.27236 + 7.39994i −0.230350 + 0.398978i
\(345\) 0 0
\(346\) 3.13448 5.42908i 0.168511 0.291869i
\(347\) 5.64652 9.78005i 0.303121 0.525021i −0.673720 0.738986i \(-0.735305\pi\)
0.976841 + 0.213966i \(0.0686381\pi\)
\(348\) 0 0
\(349\) 5.64815 9.78289i 0.302339 0.523666i −0.674327 0.738433i \(-0.735566\pi\)
0.976665 + 0.214767i \(0.0688993\pi\)
\(350\) −9.99153 2.56941i −0.534070 0.137341i
\(351\) 0 0
\(352\) −6.56238 + 11.3664i −0.349776 + 0.605830i
\(353\) 18.5023 0.984779 0.492390 0.870375i \(-0.336124\pi\)
0.492390 + 0.870375i \(0.336124\pi\)
\(354\) 0 0
\(355\) 23.1111 1.22661
\(356\) 6.91191 + 11.9718i 0.366330 + 0.634503i
\(357\) 0 0
\(358\) −3.77004 + 6.52989i −0.199253 + 0.345116i
\(359\) 9.94802 17.2305i 0.525037 0.909390i −0.474538 0.880235i \(-0.657385\pi\)
0.999575 0.0291551i \(-0.00928167\pi\)
\(360\) 0 0
\(361\) −0.272915 0.472703i −0.0143639 0.0248791i
\(362\) 3.57154 + 6.18609i 0.187716 + 0.325134i
\(363\) 0 0
\(364\) −9.74665 + 9.94544i −0.510863 + 0.521283i
\(365\) −12.0270 20.8313i −0.629520 1.09036i
\(366\) 0 0
\(367\) 5.75047 0.300172 0.150086 0.988673i \(-0.452045\pi\)
0.150086 + 0.988673i \(0.452045\pi\)
\(368\) 0.406150 + 0.703472i 0.0211720 + 0.0366710i
\(369\) 0 0
\(370\) 7.56526 0.393299
\(371\) −27.3155 7.02441i −1.41815 0.364689i
\(372\) 0 0
\(373\) 2.00000 0.103556 0.0517780 0.998659i \(-0.483511\pi\)
0.0517780 + 0.998659i \(0.483511\pi\)
\(374\) 4.77292 8.26693i 0.246802 0.427473i
\(375\) 0 0
\(376\) −0.293425 0.508226i −0.0151322 0.0262098i
\(377\) 37.4991 1.93130
\(378\) 0 0
\(379\) 8.95322 0.459896 0.229948 0.973203i \(-0.426144\pi\)
0.229948 + 0.973203i \(0.426144\pi\)
\(380\) 9.99549 + 17.3127i 0.512758 + 0.888122i
\(381\) 0 0
\(382\) 9.41135 16.3009i 0.481527 0.834029i
\(383\) −20.1650 −1.03038 −0.515192 0.857075i \(-0.672279\pi\)
−0.515192 + 0.857075i \(0.672279\pi\)
\(384\) 0 0
\(385\) 13.1940 13.4631i 0.672428 0.686142i
\(386\) −0.630356 −0.0320843
\(387\) 0 0
\(388\) 0.598364 + 1.03640i 0.0303773 + 0.0526151i
\(389\) 33.5997 1.70357 0.851787 0.523888i \(-0.175519\pi\)
0.851787 + 0.523888i \(0.175519\pi\)
\(390\) 0 0
\(391\) −2.64132 4.57489i −0.133577 0.231362i
\(392\) 0.367845 + 18.2174i 0.0185790 + 0.920115i
\(393\) 0 0
\(394\) −2.22996 3.86241i −0.112344 0.194585i
\(395\) 10.8639 + 18.8168i 0.546621 + 0.946776i
\(396\) 0 0
\(397\) 2.06922 3.58399i 0.103851 0.179875i −0.809417 0.587234i \(-0.800217\pi\)
0.913268 + 0.407359i \(0.133550\pi\)
\(398\) 3.51887 6.09487i 0.176385 0.305508i
\(399\) 0 0
\(400\) −2.20765 3.82377i −0.110383 0.191189i
\(401\) −15.4692 −0.772496 −0.386248 0.922395i \(-0.626229\pi\)
−0.386248 + 0.922395i \(0.626229\pi\)
\(402\) 0 0
\(403\) −21.1248 −1.05230
\(404\) −5.50465 + 9.53433i −0.273866 + 0.474350i
\(405\) 0 0
\(406\) 14.2661 14.5570i 0.708014 0.722454i
\(407\) −3.49837 + 6.05935i −0.173408 + 0.300351i
\(408\) 0 0
\(409\) −13.6969 + 23.7237i −0.677266 + 1.17306i 0.298535 + 0.954399i \(0.403502\pi\)
−0.975801 + 0.218661i \(0.929831\pi\)
\(410\) −4.82558 + 8.35815i −0.238318 + 0.412780i
\(411\) 0 0
\(412\) −1.72996 + 2.99638i −0.0852292 + 0.147621i
\(413\) −1.46169 5.24284i −0.0719253 0.257983i
\(414\) 0 0
\(415\) 12.9045 22.3513i 0.633458 1.09718i
\(416\) 21.7095 1.06439
\(417\) 0 0
\(418\) 7.53216 0.368410
\(419\) −10.5000 18.1865i −0.512959 0.888470i −0.999887 0.0150285i \(-0.995216\pi\)
0.486928 0.873442i \(-0.338117\pi\)
\(420\) 0 0
\(421\) −9.97949 + 17.2850i −0.486371 + 0.842419i −0.999877 0.0156670i \(-0.995013\pi\)
0.513507 + 0.858086i \(0.328346\pi\)
\(422\) 4.77812 8.27594i 0.232595 0.402867i
\(423\) 0 0
\(424\) 13.8743 + 24.0310i 0.673795 + 1.16705i
\(425\) 14.3571 + 24.8671i 0.696419 + 1.20623i
\(426\) 0 0
\(427\) 14.9698 + 3.84961i 0.724438 + 0.186296i
\(428\) 8.14596 + 14.1092i 0.393750 + 0.681995i
\(429\) 0 0
\(430\) −7.94747 −0.383261
\(431\) 10.0647 + 17.4326i 0.484800 + 0.839698i 0.999847 0.0174637i \(-0.00555914\pi\)
−0.515048 + 0.857162i \(0.672226\pi\)
\(432\) 0 0
\(433\) 11.8558 0.569754 0.284877 0.958564i \(-0.408047\pi\)
0.284877 + 0.958564i \(0.408047\pi\)
\(434\) −8.03667 + 8.20058i −0.385773 + 0.393641i
\(435\) 0 0
\(436\) 25.9338 1.24200
\(437\) 2.08414 3.60983i 0.0996977 0.172681i
\(438\) 0 0
\(439\) 1.07893 + 1.86877i 0.0514947 + 0.0891914i 0.890624 0.454741i \(-0.150268\pi\)
−0.839129 + 0.543932i \(0.816935\pi\)
\(440\) −18.5458 −0.884138
\(441\) 0 0
\(442\) −15.7896 −0.751035
\(443\) 0.981125 + 1.69936i 0.0466147 + 0.0807390i 0.888391 0.459087i \(-0.151823\pi\)
−0.841777 + 0.539826i \(0.818490\pi\)
\(444\) 0 0
\(445\) −15.4766 + 26.8063i −0.733662 + 1.27074i
\(446\) −16.2736 −0.770577
\(447\) 0 0
\(448\) 5.06814 5.17151i 0.239447 0.244331i
\(449\) 2.15211 0.101564 0.0507822 0.998710i \(-0.483829\pi\)
0.0507822 + 0.998710i \(0.483829\pi\)
\(450\) 0 0
\(451\) −4.46294 7.73004i −0.210152 0.363993i
\(452\) 7.45993 0.350885
\(453\) 0 0
\(454\) 4.80206 + 8.31741i 0.225372 + 0.390356i
\(455\) −30.1975 7.76556i −1.41568 0.364055i
\(456\) 0 0
\(457\) 6.55267 + 11.3496i 0.306521 + 0.530910i 0.977599 0.210477i \(-0.0675018\pi\)
−0.671078 + 0.741387i \(0.734168\pi\)
\(458\) 11.0023 + 19.0566i 0.514105 + 0.890456i
\(459\) 0 0
\(460\) −2.13160 + 3.69204i −0.0993864 + 0.172142i
\(461\) 2.74364 4.75212i 0.127784 0.221328i −0.795034 0.606565i \(-0.792547\pi\)
0.922818 + 0.385237i \(0.125880\pi\)
\(462\) 0 0
\(463\) 10.2495 + 17.7527i 0.476336 + 0.825038i 0.999632 0.0271127i \(-0.00863130\pi\)
−0.523296 + 0.852151i \(0.675298\pi\)
\(464\) 8.72313 0.404961
\(465\) 0 0
\(466\) 16.3215 0.756078
\(467\) −19.6758 + 34.0795i −0.910487 + 1.57701i −0.0971099 + 0.995274i \(0.530960\pi\)
−0.813377 + 0.581736i \(0.802374\pi\)
\(468\) 0 0
\(469\) 5.27292 + 18.9130i 0.243481 + 0.873322i
\(470\) 0.272915 0.472703i 0.0125886 0.0218041i
\(471\) 0 0
\(472\) −2.67743 + 4.63744i −0.123239 + 0.213456i
\(473\) 3.67511 6.36547i 0.168982 0.292685i
\(474\) 0 0
\(475\) −11.3285 + 19.6215i −0.519785 + 0.900295i
\(476\) 14.7449 15.0456i 0.675830 0.689615i
\(477\) 0 0
\(478\) 2.94338 5.09808i 0.134627 0.233181i
\(479\) −16.7472 −0.765199 −0.382600 0.923914i \(-0.624971\pi\)
−0.382600 + 0.923914i \(0.624971\pi\)
\(480\) 0 0
\(481\) 11.5732 0.527691
\(482\) −2.31750 4.01403i −0.105559 0.182834i
\(483\) 0 0
\(484\) −4.25348 + 7.36725i −0.193340 + 0.334875i
\(485\) −1.33981 + 2.32062i −0.0608376 + 0.105374i
\(486\) 0 0
\(487\) −2.00288 3.46909i −0.0907591 0.157199i 0.817072 0.576536i \(-0.195596\pi\)
−0.907831 + 0.419337i \(0.862263\pi\)
\(488\) −7.60357 13.1698i −0.344197 0.596167i
\(489\) 0 0
\(490\) −14.5029 + 8.76830i −0.655173 + 0.396112i
\(491\) 12.3256 + 21.3485i 0.556246 + 0.963446i 0.997805 + 0.0662140i \(0.0210920\pi\)
−0.441560 + 0.897232i \(0.645575\pi\)
\(492\) 0 0
\(493\) −56.7292 −2.55495
\(494\) −6.22941 10.7897i −0.280274 0.485449i
\(495\) 0 0
\(496\) −4.91410 −0.220649
\(497\) 13.4503 13.7247i 0.603330 0.615636i
\(498\) 0 0
\(499\) −24.5595 −1.09943 −0.549717 0.835351i \(-0.685265\pi\)
−0.549717 + 0.835351i \(0.685265\pi\)
\(500\) 0.282075 0.488568i 0.0126148 0.0218494i
\(501\) 0 0
\(502\) 0.533236 + 0.923592i 0.0237995 + 0.0412219i
\(503\) 12.3743 0.551742 0.275871 0.961195i \(-0.411034\pi\)
0.275871 + 0.961195i \(0.411034\pi\)
\(504\) 0 0
\(505\) −24.6512 −1.09696
\(506\) 0.803140 + 1.39108i 0.0357039 + 0.0618410i
\(507\) 0 0
\(508\) 14.2855 24.7432i 0.633817 1.09780i
\(509\) 11.1956 0.496237 0.248118 0.968730i \(-0.420188\pi\)
0.248118 + 0.968730i \(0.420188\pi\)
\(510\) 0 0
\(511\) −19.3703 4.98125i −0.856893 0.220357i
\(512\) 9.53543 0.421410
\(513\) 0 0
\(514\) 6.83134 + 11.8322i 0.301317 + 0.521897i
\(515\) −7.74720 −0.341383
\(516\) 0 0
\(517\) 0.252405 + 0.437179i 0.0111008 + 0.0192271i
\(518\) 4.40288 4.49268i 0.193451 0.197397i
\(519\) 0 0
\(520\) 15.3382 + 26.5665i 0.672623 + 1.16502i
\(521\) −15.8096 27.3830i −0.692631 1.19967i −0.970973 0.239189i \(-0.923118\pi\)
0.278342 0.960482i \(-0.410215\pi\)
\(522\) 0 0
\(523\) 14.1179 24.4530i 0.617334 1.06925i −0.372636 0.927977i \(-0.621546\pi\)
0.989970 0.141276i \(-0.0451205\pi\)
\(524\) −2.89987 + 5.02272i −0.126681 + 0.219419i
\(525\) 0 0
\(526\) 2.73010 + 4.72867i 0.119038 + 0.206180i
\(527\) 31.9579 1.39211
\(528\) 0 0
\(529\) −22.1111 −0.961352
\(530\) −12.9045 + 22.3513i −0.560536 + 0.970877i
\(531\) 0 0
\(532\) 16.0985 + 4.13987i 0.697958 + 0.179486i
\(533\) −7.38207 + 12.7861i −0.319753 + 0.553829i
\(534\) 0 0
\(535\) −18.2398 + 31.5923i −0.788576 + 1.36585i
\(536\) 9.65856 16.7291i 0.417186 0.722587i
\(537\) 0 0
\(538\) −1.29235 + 2.23841i −0.0557170 + 0.0965046i
\(539\) −0.316422 15.6707i −0.0136293 0.674983i
\(540\) 0 0
\(541\) −21.4045 + 37.0737i −0.920252 + 1.59392i −0.121227 + 0.992625i \(0.538683\pi\)
−0.799025 + 0.601298i \(0.794650\pi\)
\(542\) −7.78822 −0.334533
\(543\) 0 0
\(544\) −32.8424 −1.40811
\(545\) 29.0345 + 50.2892i 1.24370 + 2.15415i
\(546\) 0 0
\(547\) −6.77579 + 11.7360i −0.289712 + 0.501796i −0.973741 0.227659i \(-0.926893\pi\)
0.684029 + 0.729455i \(0.260226\pi\)
\(548\) −1.33981 + 2.32062i −0.0572339 + 0.0991319i
\(549\) 0 0
\(550\) −4.36552 7.56130i −0.186146 0.322415i
\(551\) −22.3811 38.7652i −0.953468 1.65146i
\(552\) 0 0
\(553\) 17.4971 + 4.49954i 0.744053 + 0.191340i
\(554\) 1.35417 + 2.34549i 0.0575332 + 0.0996505i
\(555\) 0 0
\(556\) 18.1831 0.771133
\(557\) −16.3925 28.3926i −0.694572 1.20303i −0.970325 0.241805i \(-0.922261\pi\)
0.275753 0.961228i \(-0.411073\pi\)
\(558\) 0 0
\(559\) −12.1579 −0.514223
\(560\) −7.02463 1.80644i −0.296845 0.0763362i
\(561\) 0 0
\(562\) 5.31573 0.224231
\(563\) 8.57730 14.8563i 0.361490 0.626119i −0.626716 0.779248i \(-0.715601\pi\)
0.988206 + 0.153128i \(0.0489348\pi\)
\(564\) 0 0
\(565\) 8.35185 + 14.4658i 0.351365 + 0.608582i
\(566\) −22.9910 −0.966383
\(567\) 0 0
\(568\) −18.9062 −0.793286
\(569\) −6.44966 11.1711i −0.270384 0.468318i 0.698576 0.715535i \(-0.253817\pi\)
−0.968960 + 0.247217i \(0.920484\pi\)
\(570\) 0 0
\(571\) 0.141315 0.244765i 0.00591385 0.0102431i −0.863053 0.505113i \(-0.831451\pi\)
0.868967 + 0.494870i \(0.164784\pi\)
\(572\) −11.7850 −0.492754
\(573\) 0 0
\(574\) 2.15512 + 7.73004i 0.0899530 + 0.322645i
\(575\) −4.83173 −0.201497
\(576\) 0 0
\(577\) 1.08289 + 1.87562i 0.0450814 + 0.0780832i 0.887686 0.460450i \(-0.152312\pi\)
−0.842604 + 0.538533i \(0.818979\pi\)
\(578\) 10.9518 0.455537
\(579\) 0 0
\(580\) 22.8908 + 39.6481i 0.950490 + 1.64630i
\(581\) −5.76320 20.6716i −0.239098 0.857601i
\(582\) 0 0
\(583\) −11.9347 20.6716i −0.494286 0.856129i
\(584\) 9.83873 + 17.0412i 0.407130 + 0.705169i
\(585\) 0 0
\(586\) 5.79630 10.0395i 0.239443 0.414728i
\(587\) 8.38796 14.5284i 0.346208 0.599650i −0.639364 0.768904i \(-0.720802\pi\)
0.985573 + 0.169254i \(0.0541357\pi\)
\(588\) 0 0
\(589\) 12.6082 + 21.8381i 0.519512 + 0.899822i
\(590\) −4.98057 −0.205047
\(591\) 0 0
\(592\) 2.69218 0.110648
\(593\) 12.5933 21.8122i 0.517145 0.895721i −0.482657 0.875809i \(-0.660328\pi\)
0.999802 0.0199114i \(-0.00633841\pi\)
\(594\) 0 0
\(595\) 45.6833 + 11.7479i 1.87283 + 0.481615i
\(596\) 5.72489 9.91581i 0.234501 0.406167i
\(597\) 0 0
\(598\) 1.32846 2.30096i 0.0543248 0.0940933i
\(599\) −14.3662 + 24.8830i −0.586987 + 1.01669i 0.407637 + 0.913144i \(0.366353\pi\)
−0.994624 + 0.103548i \(0.966980\pi\)
\(600\) 0 0
\(601\) 18.3977 31.8657i 0.750457 1.29983i −0.197144 0.980374i \(-0.563167\pi\)
0.947601 0.319455i \(-0.103500\pi\)
\(602\) −4.62532 + 4.71966i −0.188514 + 0.192359i
\(603\) 0 0
\(604\) −4.46402 + 7.73191i −0.181638 + 0.314607i
\(605\) −19.0482 −0.774418
\(606\) 0 0
\(607\) 37.9007 1.53834 0.769171 0.639043i \(-0.220670\pi\)
0.769171 + 0.639043i \(0.220670\pi\)
\(608\) −12.9572 22.4425i −0.525483 0.910163i
\(609\) 0 0
\(610\) 7.07210 12.2492i 0.286341 0.495957i
\(611\) 0.417500 0.723131i 0.0168902 0.0292547i
\(612\) 0 0
\(613\) −19.0196 32.9428i −0.768193 1.33055i −0.938542 0.345165i \(-0.887823\pi\)
0.170349 0.985384i \(-0.445511\pi\)
\(614\) 0.393032 + 0.680752i 0.0158615 + 0.0274729i
\(615\) 0 0
\(616\) −10.7934 + 11.0136i −0.434879 + 0.443749i
\(617\) −13.2632 22.9725i −0.533956 0.924839i −0.999213 0.0396637i \(-0.987371\pi\)
0.465257 0.885176i \(-0.345962\pi\)
\(618\) 0 0
\(619\) 12.7037 0.510605 0.255302 0.966861i \(-0.417825\pi\)
0.255302 + 0.966861i \(0.417825\pi\)
\(620\) −12.8954 22.3354i −0.517890 0.897012i
\(621\) 0 0
\(622\) −7.09166 −0.284350
\(623\) 6.91191 + 24.7918i 0.276920 + 0.993262i
\(624\) 0 0
\(625\) −24.3606 −0.974425
\(626\) −2.31750 + 4.01403i −0.0926260 + 0.160433i
\(627\) 0 0
\(628\) 0.500000 + 0.866025i 0.0199522 + 0.0345582i
\(629\) −17.5081 −0.698093
\(630\) 0 0
\(631\) 20.6764 0.823113 0.411556 0.911384i \(-0.364985\pi\)
0.411556 + 0.911384i \(0.364985\pi\)
\(632\) −8.88727 15.3932i −0.353517 0.612309i
\(633\) 0 0
\(634\) −8.86458 + 15.3539i −0.352057 + 0.609781i
\(635\) 63.9740 2.53873
\(636\) 0 0
\(637\) −22.1862 + 13.4136i −0.879049 + 0.531465i
\(638\) 17.2495 0.682915
\(639\) 0 0
\(640\) 15.3382 + 26.5665i 0.606295 + 1.05013i
\(641\) 27.9740 1.10491 0.552454 0.833543i \(-0.313692\pi\)
0.552454 + 0.833543i \(0.313692\pi\)
\(642\) 0 0
\(643\) −13.9903 24.2319i −0.551723 0.955612i −0.998150 0.0607924i \(-0.980637\pi\)
0.446427 0.894820i \(-0.352696\pi\)
\(644\) 0.951980 + 3.41458i 0.0375133 + 0.134553i
\(645\) 0 0
\(646\) 9.42395 + 16.3228i 0.370780 + 0.642210i
\(647\) 2.30834 + 3.99816i 0.0907503 + 0.157184i 0.907827 0.419345i \(-0.137740\pi\)
−0.817077 + 0.576529i \(0.804407\pi\)
\(648\) 0 0
\(649\) 2.30314 3.98916i 0.0904061 0.156588i
\(650\) −7.22094 + 12.5070i −0.283228 + 0.490566i
\(651\) 0 0
\(652\) −13.6677 23.6732i −0.535269 0.927113i
\(653\) −11.5803 −0.453173 −0.226586 0.973991i \(-0.572757\pi\)
−0.226586 + 0.973991i \(0.572757\pi\)
\(654\) 0 0
\(655\) −12.9863 −0.507418
\(656\) −1.71724 + 2.97434i −0.0670468 + 0.116129i
\(657\) 0 0
\(658\) −0.121885 0.437179i −0.00475156 0.0170430i
\(659\) 2.36840 4.10219i 0.0922598 0.159799i −0.816202 0.577767i \(-0.803924\pi\)
0.908462 + 0.417968i \(0.137258\pi\)
\(660\) 0 0
\(661\) 6.91135 11.9708i 0.268820 0.465611i −0.699737 0.714400i \(-0.746700\pi\)
0.968557 + 0.248790i \(0.0800329\pi\)
\(662\) −5.58345 + 9.67081i −0.217007 + 0.375867i
\(663\) 0 0
\(664\) −10.5566 + 18.2846i −0.409676 + 0.709580i
\(665\) 9.99549 + 35.8520i 0.387608 + 1.39028i
\(666\) 0 0
\(667\) 4.77292 8.26693i 0.184808 0.320097i
\(668\) −33.2359 −1.28593
\(669\) 0 0
\(670\) 17.9669 0.694122
\(671\) 6.54063 + 11.3287i 0.252498 + 0.437340i
\(672\) 0 0
\(673\) −3.01367 + 5.21983i −0.116169 + 0.201210i −0.918246 0.396010i \(-0.870395\pi\)
0.802078 + 0.597220i \(0.203728\pi\)
\(674\) −9.74828 + 16.8845i −0.375490 + 0.650367i
\(675\) 0 0
\(676\) 0.509715 + 0.882853i 0.0196044 + 0.0339559i
\(677\) −11.4428 19.8195i −0.439783 0.761727i 0.557889 0.829915i \(-0.311611\pi\)
−0.997672 + 0.0681884i \(0.978278\pi\)
\(678\) 0 0
\(679\) 0.598364 + 2.14622i 0.0229631 + 0.0823645i
\(680\) −23.2038 40.1902i −0.889826 1.54122i
\(681\) 0 0
\(682\) −9.71737 −0.372097
\(683\) 5.14940 + 8.91901i 0.197036 + 0.341277i 0.947566 0.319560i \(-0.103535\pi\)
−0.750530 + 0.660836i \(0.770202\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) −3.23337 + 13.7157i −0.123450 + 0.523667i
\(687\) 0 0
\(688\) −2.82819 −0.107824
\(689\) −19.7411 + 34.1925i −0.752074 + 1.30263i
\(690\) 0 0
\(691\) −14.5361 25.1773i −0.552980 0.957789i −0.998058 0.0622973i \(-0.980157\pi\)
0.445078 0.895492i \(-0.353176\pi\)
\(692\) 11.7083 0.445084
\(693\) 0 0
\(694\) −8.59261 −0.326171
\(695\) 20.3571 + 35.2594i 0.772187 + 1.33747i
\(696\) 0 0
\(697\) 11.1677 19.3430i 0.423007 0.732670i
\(698\) −8.59509 −0.325329
\(699\) 0 0
\(700\) −5.17455 18.5602i −0.195580 0.701510i
\(701\) 27.4153 1.03546 0.517731 0.855543i \(-0.326777\pi\)
0.517731 + 0.855543i \(0.326777\pi\)
\(702\) 0 0
\(703\) −6.90739 11.9640i −0.260517 0.451229i
\(704\) 6.12803 0.230959
\(705\) 0 0
\(706\) −7.03899 12.1919i −0.264916 0.458848i
\(707\) −14.3466 + 14.6393i −0.539561 + 0.550566i
\(708\) 0 0
\(709\) 18.4834 + 32.0143i 0.694160 + 1.20232i 0.970463 + 0.241250i \(0.0775575\pi\)
−0.276302 + 0.961071i \(0.589109\pi\)
\(710\) −8.79235 15.2288i −0.329971 0.571526i
\(711\) 0 0
\(712\) 12.6607 21.9291i 0.474481 0.821826i
\(713\) −2.68878 + 4.65710i −0.100696 + 0.174410i
\(714\) 0 0
\(715\) −13.1940 22.8526i −0.493427 0.854641i
\(716\) −14.0824 −0.526283
\(717\) 0 0
\(718\) −15.1384 −0.564961
\(719\) 20.2599 35.0912i 0.755568 1.30868i −0.189524 0.981876i \(-0.560694\pi\)
0.945092 0.326806i \(-0.105972\pi\)
\(720\) 0 0
\(721\) −4.50877 + 4.60073i −0.167915 + 0.171340i
\(722\) −0.207655 + 0.359668i −0.00772811 + 0.0133855i
\(723\) 0 0
\(724\) −6.67046 + 11.5536i −0.247906 + 0.429385i
\(725\) −25.9435 + 44.9355i −0.963518 + 1.66886i
\(726\) 0 0
\(727\) 7.62081 13.1996i 0.282640 0.489547i −0.689394 0.724386i \(-0.742123\pi\)
0.972034 + 0.234840i \(0.0754565\pi\)
\(728\) 24.7033 + 6.35267i 0.915565 + 0.235446i
\(729\) 0 0
\(730\) −9.15103 + 15.8500i −0.338695 + 0.586637i
\(731\) 18.3926 0.680275
\(732\) 0 0
\(733\) 32.5789 1.20333 0.601665 0.798748i \(-0.294504\pi\)
0.601665 + 0.798748i \(0.294504\pi\)
\(734\) −2.18770 3.78921i −0.0807495 0.139862i
\(735\) 0 0
\(736\) 2.76320 4.78600i 0.101853 0.176414i
\(737\) −8.30834 + 14.3905i −0.306042 + 0.530080i
\(738\) 0 0
\(739\) −3.50684 6.07402i −0.129001 0.223436i 0.794289 0.607540i \(-0.207844\pi\)
−0.923290 + 0.384104i \(0.874510\pi\)
\(740\) 7.06470 + 12.2364i 0.259704 + 0.449820i
\(741\) 0 0
\(742\) 5.76320 + 20.6716i 0.211574 + 0.758877i
\(743\) −17.5059 30.3211i −0.642229 1.11237i −0.984934 0.172930i \(-0.944677\pi\)
0.342705 0.939443i \(-0.388657\pi\)
\(744\) 0 0
\(745\) 25.6375 0.939285
\(746\) −0.760877 1.31788i −0.0278577 0.0482509i
\(747\) 0 0
\(748\) 17.8285 0.651873
\(749\) 8.14596 + 29.2181i 0.297647 + 1.06761i
\(750\) 0 0
\(751\) −4.27687 −0.156065 −0.0780327 0.996951i \(-0.524864\pi\)
−0.0780327 + 0.996951i \(0.524864\pi\)
\(752\) 0.0971198 0.168217i 0.00354160 0.00613422i
\(753\) 0 0
\(754\) −14.2661 24.7096i −0.519540 0.899870i
\(755\) −19.9910 −0.727546
\(756\) 0 0
\(757\) −34.9611 −1.27068 −0.635342 0.772231i \(-0.719141\pi\)
−0.635342 + 0.772231i \(0.719141\pi\)
\(758\) −3.40615 5.89962i −0.123717 0.214284i
\(759\) 0 0
\(760\) 18.3090 31.7122i 0.664138 1.15032i
\(761\) 4.58358 0.166155 0.0830773 0.996543i \(-0.473525\pi\)
0.0830773 + 0.996543i \(0.473525\pi\)
\(762\) 0 0
\(763\) 46.7623 + 12.0253i 1.69291 + 0.435346i
\(764\) 35.1546 1.27185
\(765\) 0 0
\(766\) 7.67154 + 13.2875i 0.277184 + 0.480097i
\(767\) −7.61917 −0.275112
\(768\) 0 0
\(769\) −8.47949 14.6869i −0.305778 0.529623i 0.671656 0.740863i \(-0.265583\pi\)
−0.977434 + 0.211240i \(0.932250\pi\)
\(770\) −13.8908 3.57215i −0.500591 0.128731i
\(771\) 0 0
\(772\) −0.588649 1.01957i −0.0211859 0.0366951i
\(773\) −20.1420 34.8870i −0.724458 1.25480i −0.959197 0.282739i \(-0.908757\pi\)
0.234739 0.972058i \(-0.424576\pi\)
\(774\) 0 0
\(775\) 14.6150 25.3140i 0.524988 0.909306i
\(776\) 1.09604 1.89840i 0.0393456 0.0681485i
\(777\) 0 0
\(778\) −12.7826 22.1402i −0.458279 0.793763i
\(779\) 17.6238 0.631439
\(780\) 0 0
\(781\) 16.2632 0.581943
\(782\) −2.00972 + 3.48093i −0.0718673 + 0.124478i
\(783\) 0 0
\(784\) −5.16101 + 3.12030i −0.184322 + 0.111439i
\(785\) −1.11956 + 1.93914i −0.0399589 + 0.0692108i
\(786\) 0 0
\(787\) −23.6053 + 40.8856i −0.841439 + 1.45742i 0.0472387 + 0.998884i \(0.484958\pi\)
−0.888678 + 0.458532i \(0.848375\pi\)
\(788\) 4.16484 7.21371i 0.148366 0.256978i
\(789\) 0 0
\(790\) 8.26608 14.3173i 0.294094 0.509386i
\(791\) 13.4513 + 3.45912i 0.478273 + 0.122992i
\(792\) 0 0
\(793\) 10.8187 18.7386i 0.384185 0.665428i
\(794\) −3.14884 −0.111748
\(795\) 0 0
\(796\) 13.1442 0.465884
\(797\) 2.01367 + 3.48778i 0.0713280 + 0.123544i 0.899484 0.436955i \(-0.143943\pi\)
−0.828156 + 0.560498i \(0.810610\pi\)
\(798\) 0 0
\(799\) −0.631600 + 1.09396i −0.0223444 + 0.0387016i
\(800\) −15.0196 + 26.0146i −0.531022 + 0.919757i
\(801\) 0 0
\(802\) 5.88508 + 10.1933i 0.207810 + 0.359937i
\(803\) −8.46333 14.6589i −0.298664 0.517302i
\(804\) 0 0
\(805\) −5.55555 + 5.66886i −0.195807 + 0.199801i
\(806\) 8.03667 + 13.9199i 0.283080 + 0.490308i
\(807\) 0 0
\(808\) 20.1660 0.709439
\(809\) −5.94119 10.2904i −0.208881 0.361792i 0.742481 0.669867i \(-0.233649\pi\)
−0.951362 + 0.308074i \(0.900315\pi\)
\(810\) 0 0
\(811\) −21.1111 −0.741311 −0.370655 0.928770i \(-0.620867\pi\)
−0.370655 + 0.928770i \(0.620867\pi\)
\(812\) 36.8675 + 9.48078i 1.29379 + 0.332710i
\(813\) 0 0
\(814\) 5.32365 0.186594
\(815\) 30.6037 53.0072i 1.07200 1.85676i
\(816\) 0 0
\(817\) 7.25636 + 12.5684i 0.253868 + 0.439712i
\(818\) 20.8432 0.728767
\(819\) 0 0
\(820\) −18.0252 −0.629467
\(821\) 18.6460 + 32.2958i 0.650749 + 1.12713i 0.982942 + 0.183918i \(0.0588781\pi\)
−0.332193 + 0.943211i \(0.607789\pi\)
\(822\) 0 0
\(823\) 10.7261 18.5782i 0.373890 0.647596i −0.616270 0.787535i \(-0.711357\pi\)
0.990160 + 0.139939i \(0.0446905\pi\)
\(824\) 6.33765 0.220783
\(825\) 0 0
\(826\) −2.89862 + 2.95774i −0.100856 + 0.102913i
\(827\) −28.6375 −0.995823 −0.497912 0.867228i \(-0.665900\pi\)
−0.497912 + 0.867228i \(0.665900\pi\)
\(828\) 0 0
\(829\) 19.8646 + 34.4065i 0.689925 + 1.19499i 0.971862 + 0.235552i \(0.0756899\pi\)
−0.281936 + 0.959433i \(0.590977\pi\)
\(830\) −19.6375 −0.681627
\(831\) 0 0
\(832\) −5.06814 8.77827i −0.175706 0.304332i
\(833\) 33.5636 20.2922i 1.16291 0.703085i
\(834\) 0 0
\(835\) −37.2096 64.4489i −1.28769 2.23035i
\(836\) 7.03379 + 12.1829i 0.243269 + 0.421354i
\(837\) 0 0
\(838\) −7.98921 + 13.8377i −0.275983 + 0.478016i
\(839\) 17.1803 29.7572i 0.593130 1.02733i −0.400678 0.916219i \(-0.631225\pi\)
0.993808 0.111112i \(-0.0354414\pi\)
\(840\) 0 0
\(841\) −36.7554 63.6622i −1.26743 2.19525i
\(842\) 15.1863 0.523355
\(843\) 0 0
\(844\) 17.8479 0.614350
\(845\) −1.14132 + 1.97682i −0.0392624 + 0.0680045i
\(846\) 0 0
\(847\) −11.0858 + 11.3119i −0.380912 + 0.388681i
\(848\) −4.59222 + 7.95395i −0.157697 + 0.273140i
\(849\) 0 0
\(850\) 10.9239 18.9208i 0.374688 0.648979i
\(851\) 1.47304 2.55139i 0.0504953 0.0874605i
\(852\) 0 0
\(853\) 0.757310 1.31170i 0.0259298 0.0449117i −0.852769 0.522288i \(-0.825079\pi\)
0.878699 + 0.477376i \(0.158412\pi\)
\(854\) −3.15842 11.3287i −0.108079 0.387660i
\(855\) 0 0
\(856\) 14.9212 25.8443i 0.509996 0.883339i
\(857\) −4.50946 −0.154040 −0.0770201 0.997030i \(-0.524541\pi\)
−0.0770201 + 0.997030i \(0.524541\pi\)
\(858\) 0 0
\(859\) 12.6063 0.430121 0.215060 0.976601i \(-0.431005\pi\)
0.215060 + 0.976601i \(0.431005\pi\)
\(860\) −7.42162 12.8546i −0.253075 0.438339i
\(861\) 0 0
\(862\) 7.65800 13.2640i 0.260833 0.451775i
\(863\) 5.33009 9.23200i 0.181439 0.314261i −0.760932 0.648832i \(-0.775258\pi\)
0.942371 + 0.334571i \(0.108591\pi\)
\(864\) 0 0
\(865\) 13.1082 + 22.7041i 0.445693 + 0.771962i
\(866\) −4.51040 7.81225i −0.153270 0.265471i
\(867\) 0 0
\(868\) −20.7690 5.34092i −0.704944 0.181283i
\(869\) 7.64488 + 13.2413i 0.259335 + 0.449181i
\(870\) 0 0
\(871\) 27.4854 0.931307
\(872\) −23.7518 41.1394i −0.804339 1.39316i
\(873\) 0 0
\(874\) −3.17154 −0.107279
\(875\) 0.735165 0.750160i 0.0248531 0.0253600i
\(876\) 0 0
\(877\) −32.2380 −1.08860 −0.544300 0.838891i \(-0.683205\pi\)
−0.544300 + 0.838891i \(0.683205\pi\)
\(878\) 0.820935 1.42190i 0.0277052 0.0479869i
\(879\) 0 0
\(880\) −3.06922 5.31604i −0.103463 0.179204i
\(881\) −55.6375 −1.87447 −0.937237 0.348692i \(-0.886626\pi\)
−0.937237 + 0.348692i \(0.886626\pi\)
\(882\) 0 0
\(883\) −42.4854 −1.42975 −0.714873 0.699254i \(-0.753516\pi\)
−0.714873 + 0.699254i \(0.753516\pi\)
\(884\) −14.7449 25.5389i −0.495924 0.858966i
\(885\) 0 0
\(886\) 0.746515 1.29300i 0.0250797 0.0434393i
\(887\) −8.95649 −0.300730 −0.150365 0.988631i \(-0.548045\pi\)
−0.150365 + 0.988631i \(0.548045\pi\)
\(888\) 0 0
\(889\) 37.2320 37.9914i 1.24872 1.27419i
\(890\) 23.5516 0.789451
\(891\) 0 0
\(892\) −15.1969 26.3217i −0.508829 0.881317i
\(893\) −0.996730 −0.0333543
\(894\) 0 0
\(895\) −15.7661 27.3076i −0.527002 0.912794i
\(896\) 24.7033 + 6.35267i 0.825280 + 0.212228i
\(897\) 0 0
\(898\) −0.818745 1.41811i −0.0273219 0.0473229i
\(899\) 28.8743 + 50.0117i 0.963011 + 1.66798i
\(900\) 0 0
\(901\) 29.8646 51.7270i 0.994933 1.72327i
\(902\) −3.39575 + 5.88160i −0.113066 + 0.195836i
\(903\) 0 0
\(904\) −6.83229 11.8339i −0.227238 0.393589i
\(905\) −29.8720 −0.992978
\(906\) 0 0
\(907\) 10.7874 0.358191 0.179096 0.983832i \(-0.442683\pi\)
0.179096 + 0.983832i \(0.442683\pi\)
\(908\) −8.96866 + 15.5342i −0.297636 + 0.515520i
\(909\) 0 0
\(910\) 6.37128 + 22.8526i 0.211206 + 0.757558i
\(911\) 23.7427 41.1235i 0.786630 1.36248i −0.141390 0.989954i \(-0.545157\pi\)
0.928020 0.372530i \(-0.121510\pi\)
\(912\) 0 0
\(913\) 9.08087 15.7285i 0.300533 0.520538i
\(914\) 4.98577 8.63561i 0.164915 0.285641i
\(915\) 0 0
\(916\) −20.5487 + 35.5914i −0.678948 + 1.17597i
\(917\) −7.55787 + 7.71202i −0.249583 + 0.254673i
\(918\) 0 0
\(919\) −28.1375 + 48.7356i −0.928170 + 1.60764i −0.141788 + 0.989897i \(0.545285\pi\)
−0.786382 + 0.617741i \(0.788048\pi\)
\(920\) 7.80903 0.257456
\(921\) 0 0
\(922\) −4.17514 −0.137501
\(923\) −13.4503 23.2967i −0.442723 0.766820i
\(924\) 0 0
\(925\) −8.00684 + 13.8682i −0.263263 + 0.455985i
\(926\) 7.79863 13.5076i 0.256279 0.443888i
\(927\) 0 0
\(928\) −29.6735 51.3960i −0.974079 1.68716i
\(929\) −0.380438 0.658939i −0.0124818 0.0216191i 0.859717 0.510771i \(-0.170640\pi\)
−0.872199 + 0.489152i \(0.837307\pi\)
\(930\) 0 0
\(931\) 27.1082 + 14.9295i 0.888436 + 0.489295i
\(932\) 15.2416 + 26.3992i 0.499255 + 0.864734i
\(933\) 0 0
\(934\) 29.9417 0.979723
\(935\) 19.9601 + 34.5718i 0.652764 + 1.13062i
\(936\) 0 0
\(937\) −30.3218 −0.990569 −0.495284 0.868731i \(-0.664936\pi\)
−0.495284 + 0.868731i \(0.664936\pi\)
\(938\) 10.4565 10.6698i 0.341417 0.348380i
\(939\) 0 0
\(940\) 1.01943 0.0332502
\(941\) −27.5406 + 47.7018i −0.897799 + 1.55503i −0.0674968 + 0.997719i \(0.521501\pi\)
−0.830302 + 0.557314i \(0.811832\pi\)
\(942\) 0 0
\(943\) 1.87919 + 3.25486i 0.0611950 + 0.105993i
\(944\) −1.77239 −0.0576864
\(945\) 0 0
\(946\) −5.59261 −0.181831
\(947\) −15.3103 26.5182i −0.497517 0.861725i 0.502479 0.864590i \(-0.332421\pi\)
−0.999996 + 0.00286470i \(0.999088\pi\)
\(948\) 0 0
\(949\) −13.9991 + 24.2471i −0.454429 + 0.787093i
\(950\) 17.2391 0.559311
\(951\) 0 0
\(952\) −37.3715 9.61042i −1.21122 0.311475i
\(953\) 7.83422 0.253775 0.126888 0.991917i \(-0.459501\pi\)
0.126888 + 0.991917i \(0.459501\pi\)
\(954\) 0 0
\(955\) 39.3577 + 68.1696i 1.27359 + 2.20592i
\(956\) 10.9945 0.355588
\(957\) 0 0
\(958\) 6.37128 + 11.0354i 0.205847 + 0.356537i
\(959\) −3.49192 + 3.56314i −0.112760 + 0.115060i
\(960\) 0 0
\(961\) −0.766078 1.32689i −0.0247122 0.0428028i
\(962\) −4.40288 7.62601i −0.141955 0.245872i
\(963\) 0 0
\(964\) 4.32833 7.49688i 0.139406 0.241458i
\(965\) 1.31806 2.28294i 0.0424297 0.0734905i
\(966\) 0 0
\(967\) 2.64815 + 4.58673i 0.0851588 + 0.147499i 0.905459 0.424434i \(-0.139527\pi\)
−0.820300 + 0.571933i \(0.806194\pi\)
\(968\) 15.5825 0.500840
\(969\) 0 0
\(970\) 2.03886 0.0654639
\(971\) −26.1202 + 45.2416i −0.838239 + 1.45187i 0.0531273 + 0.998588i \(0.483081\pi\)
−0.891366 + 0.453284i \(0.850252\pi\)
\(972\) 0 0
\(973\) 32.7866 + 8.43135i 1.05109 + 0.270297i
\(974\) −1.52394 + 2.63955i −0.0488303 + 0.0845766i
\(975\) 0 0
\(976\) 2.51668 4.35903i 0.0805571 0.139529i
\(977\) 2.97304 5.14946i 0.0951161 0.164746i −0.814541 0.580106i \(-0.803011\pi\)
0.909657 + 0.415360i \(0.136344\pi\)
\(978\) 0 0
\(979\) −10.8908 + 18.8635i −0.348073 + 0.602880i
\(980\) −27.7256 15.2695i −0.885661 0.487767i
\(981\) 0 0
\(982\) 9.37825 16.2436i 0.299272 0.518354i
\(983\) −18.5641 −0.592104 −0.296052 0.955172i \(-0.595670\pi\)
−0.296052 + 0.955172i \(0.595670\pi\)
\(984\) 0 0
\(985\) 18.6512 0.594275
\(986\) 21.5819 + 37.3810i 0.687309 + 1.19045i
\(987\) 0 0
\(988\) 11.6345 20.1515i 0.370142 0.641105i
\(989\) −1.54746 + 2.68029i −0.0492065 + 0.0852282i
\(990\) 0 0
\(991\) −9.31875 16.1405i −0.296020 0.512721i 0.679202 0.733951i \(-0.262326\pi\)
−0.975222 + 0.221230i \(0.928993\pi\)
\(992\) 16.7163 + 28.9535i 0.530743 + 0.919273i
\(993\) 0 0
\(994\) −14.1607 3.64156i −0.449152 0.115503i
\(995\) 14.7157 + 25.4884i 0.466520 + 0.808037i
\(996\) 0 0
\(997\) −30.5595 −0.967829 −0.483915 0.875115i \(-0.660785\pi\)
−0.483915 + 0.875115i \(0.660785\pi\)
\(998\) 9.34338 + 16.1832i 0.295759 + 0.512270i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.h.541.2 6
3.2 odd 2 567.2.g.i.541.2 6
7.4 even 3 567.2.h.i.298.2 6
9.2 odd 6 189.2.e.f.163.2 yes 6
9.4 even 3 567.2.h.i.352.2 6
9.5 odd 6 567.2.h.h.352.2 6
9.7 even 3 189.2.e.e.163.2 yes 6
21.11 odd 6 567.2.h.h.298.2 6
63.2 odd 6 1323.2.a.x.1.2 3
63.4 even 3 inner 567.2.g.h.109.2 6
63.11 odd 6 189.2.e.f.109.2 yes 6
63.16 even 3 1323.2.a.ba.1.2 3
63.25 even 3 189.2.e.e.109.2 6
63.32 odd 6 567.2.g.i.109.2 6
63.47 even 6 1323.2.a.y.1.2 3
63.61 odd 6 1323.2.a.z.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.e.e.109.2 6 63.25 even 3
189.2.e.e.163.2 yes 6 9.7 even 3
189.2.e.f.109.2 yes 6 63.11 odd 6
189.2.e.f.163.2 yes 6 9.2 odd 6
567.2.g.h.109.2 6 63.4 even 3 inner
567.2.g.h.541.2 6 1.1 even 1 trivial
567.2.g.i.109.2 6 63.32 odd 6
567.2.g.i.541.2 6 3.2 odd 2
567.2.h.h.298.2 6 21.11 odd 6
567.2.h.h.352.2 6 9.5 odd 6
567.2.h.i.298.2 6 7.4 even 3
567.2.h.i.352.2 6 9.4 even 3
1323.2.a.x.1.2 3 63.2 odd 6
1323.2.a.y.1.2 3 63.47 even 6
1323.2.a.z.1.2 3 63.61 odd 6
1323.2.a.ba.1.2 3 63.16 even 3