Properties

Label 567.2.g.h.109.1
Level $567$
Weight $2$
Character 567.109
Analytic conductor $4.528$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(109,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 + 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 567.109
Dual form 567.2.g.h.541.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34981 + 2.33795i) q^{2} +(-2.64400 - 4.57954i) q^{4} -1.58836 q^{5} +(1.40545 - 2.24159i) q^{7} +8.87636 q^{8} +(2.14400 - 3.71351i) q^{10} +0.300372 q^{11} +(-1.40545 + 2.43430i) q^{13} +(3.34362 + 6.31159i) q^{14} +(-6.69344 + 11.5934i) q^{16} +(-2.93818 + 5.08907i) q^{17} +(1.14400 + 1.98146i) q^{19} +(4.19963 + 7.27397i) q^{20} +(-0.405446 + 0.702253i) q^{22} +1.88874 q^{23} -2.47710 q^{25} +(-3.79418 - 6.57172i) q^{26} +(-13.9814 - 0.509538i) q^{28} +(-1.26145 - 2.18490i) q^{29} +(2.40545 + 4.16635i) q^{31} +(-9.19344 - 15.9235i) q^{32} +(-7.93199 - 13.7386i) q^{34} +(-2.23236 + 3.56046i) q^{35} +(2.23855 + 3.87728i) q^{37} -6.17673 q^{38} -14.0989 q^{40} +(-4.45489 + 7.71609i) q^{41} +(4.54944 + 7.87987i) q^{43} +(-0.794182 - 1.37556i) q^{44} +(-2.54944 + 4.41576i) q^{46} +(1.60507 - 2.78007i) q^{47} +(-3.04944 - 6.30087i) q^{49} +(3.34362 - 5.79133i) q^{50} +14.8640 q^{52} +(-1.00619 + 1.74277i) q^{53} -0.477100 q^{55} +(12.4752 - 19.8971i) q^{56} +6.81089 q^{58} +(2.44437 + 4.23377i) q^{59} +(-3.78799 + 6.56099i) q^{61} -12.9876 q^{62} +22.8640 q^{64} +(2.23236 - 3.86656i) q^{65} +(-0.356004 - 0.616617i) q^{67} +31.0741 q^{68} +(-5.31089 - 10.0251i) q^{70} -12.8640 q^{71} +(5.83743 - 10.1107i) q^{73} -12.0865 q^{74} +(6.04944 - 10.4779i) q^{76} +(0.422156 - 0.673310i) q^{77} +(-0.833104 + 1.44298i) q^{79} +(10.6316 - 18.4145i) q^{80} +(-12.0265 - 20.8306i) q^{82} +(2.71634 + 4.70484i) q^{83} +(4.66690 - 8.08330i) q^{85} -24.5636 q^{86} +2.66621 q^{88} +(4.67673 + 8.10033i) q^{89} +(3.48143 + 6.57172i) q^{91} +(-4.99381 - 8.64953i) q^{92} +(4.33310 + 7.50516i) q^{94} +(-1.81708 - 3.14728i) q^{95} +(6.28799 + 10.8911i) q^{97} +(18.8473 + 1.37556i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 4 q^{4} + 2 q^{5} + 2 q^{7} + 18 q^{8} + q^{10} + 14 q^{11} - 2 q^{13} - 4 q^{14} - 10 q^{16} - 5 q^{19} + 13 q^{20} + 4 q^{22} + 12 q^{23} - 4 q^{25} - 17 q^{26} - 30 q^{28} - 13 q^{29}+ \cdots + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34981 + 2.33795i −0.954463 + 1.65318i −0.218870 + 0.975754i \(0.570237\pi\)
−0.735593 + 0.677424i \(0.763096\pi\)
\(3\) 0 0
\(4\) −2.64400 4.57954i −1.32200 2.28977i
\(5\) −1.58836 −0.710338 −0.355169 0.934802i \(-0.615577\pi\)
−0.355169 + 0.934802i \(0.615577\pi\)
\(6\) 0 0
\(7\) 1.40545 2.24159i 0.531209 0.847241i
\(8\) 8.87636 3.13827
\(9\) 0 0
\(10\) 2.14400 3.71351i 0.677991 1.17432i
\(11\) 0.300372 0.0905655 0.0452828 0.998974i \(-0.485581\pi\)
0.0452828 + 0.998974i \(0.485581\pi\)
\(12\) 0 0
\(13\) −1.40545 + 2.43430i −0.389801 + 0.675154i −0.992422 0.122872i \(-0.960789\pi\)
0.602622 + 0.798027i \(0.294123\pi\)
\(14\) 3.34362 + 6.31159i 0.893621 + 1.68684i
\(15\) 0 0
\(16\) −6.69344 + 11.5934i −1.67336 + 2.89834i
\(17\) −2.93818 + 5.08907i −0.712613 + 1.23428i 0.251260 + 0.967920i \(0.419155\pi\)
−0.963873 + 0.266362i \(0.914178\pi\)
\(18\) 0 0
\(19\) 1.14400 + 1.98146i 0.262451 + 0.454578i 0.966893 0.255184i \(-0.0821360\pi\)
−0.704442 + 0.709762i \(0.748803\pi\)
\(20\) 4.19963 + 7.27397i 0.939065 + 1.62651i
\(21\) 0 0
\(22\) −0.405446 + 0.702253i −0.0864414 + 0.149721i
\(23\) 1.88874 0.393829 0.196914 0.980421i \(-0.436908\pi\)
0.196914 + 0.980421i \(0.436908\pi\)
\(24\) 0 0
\(25\) −2.47710 −0.495420
\(26\) −3.79418 6.57172i −0.744100 1.28882i
\(27\) 0 0
\(28\) −13.9814 0.509538i −2.64224 0.0962937i
\(29\) −1.26145 2.18490i −0.234245 0.405725i 0.724808 0.688951i \(-0.241929\pi\)
−0.959053 + 0.283226i \(0.908595\pi\)
\(30\) 0 0
\(31\) 2.40545 + 4.16635i 0.432031 + 0.748299i 0.997048 0.0767797i \(-0.0244638\pi\)
−0.565017 + 0.825079i \(0.691130\pi\)
\(32\) −9.19344 15.9235i −1.62519 2.81490i
\(33\) 0 0
\(34\) −7.93199 13.7386i −1.36032 2.35615i
\(35\) −2.23236 + 3.56046i −0.377338 + 0.601827i
\(36\) 0 0
\(37\) 2.23855 + 3.87728i 0.368015 + 0.637421i 0.989255 0.146199i \(-0.0467041\pi\)
−0.621240 + 0.783620i \(0.713371\pi\)
\(38\) −6.17673 −1.00200
\(39\) 0 0
\(40\) −14.0989 −2.22923
\(41\) −4.45489 + 7.71609i −0.695737 + 1.20505i 0.274195 + 0.961674i \(0.411589\pi\)
−0.969932 + 0.243377i \(0.921745\pi\)
\(42\) 0 0
\(43\) 4.54944 + 7.87987i 0.693783 + 1.20167i 0.970589 + 0.240742i \(0.0773908\pi\)
−0.276806 + 0.960926i \(0.589276\pi\)
\(44\) −0.794182 1.37556i −0.119727 0.207374i
\(45\) 0 0
\(46\) −2.54944 + 4.41576i −0.375895 + 0.651069i
\(47\) 1.60507 2.78007i 0.234124 0.405515i −0.724894 0.688861i \(-0.758111\pi\)
0.959018 + 0.283346i \(0.0914444\pi\)
\(48\) 0 0
\(49\) −3.04944 6.30087i −0.435635 0.900124i
\(50\) 3.34362 5.79133i 0.472860 0.819017i
\(51\) 0 0
\(52\) 14.8640 2.06126
\(53\) −1.00619 + 1.74277i −0.138211 + 0.239388i −0.926819 0.375507i \(-0.877468\pi\)
0.788609 + 0.614895i \(0.210802\pi\)
\(54\) 0 0
\(55\) −0.477100 −0.0643321
\(56\) 12.4752 19.8971i 1.66707 2.65887i
\(57\) 0 0
\(58\) 6.81089 0.894314
\(59\) 2.44437 + 4.23377i 0.318230 + 0.551190i 0.980119 0.198412i \(-0.0635784\pi\)
−0.661889 + 0.749602i \(0.730245\pi\)
\(60\) 0 0
\(61\) −3.78799 + 6.56099i −0.485003 + 0.840049i −0.999852 0.0172317i \(-0.994515\pi\)
0.514849 + 0.857281i \(0.327848\pi\)
\(62\) −12.9876 −1.64943
\(63\) 0 0
\(64\) 22.8640 2.85800
\(65\) 2.23236 3.86656i 0.276890 0.479588i
\(66\) 0 0
\(67\) −0.356004 0.616617i −0.0434928 0.0753317i 0.843460 0.537193i \(-0.180515\pi\)
−0.886952 + 0.461861i \(0.847182\pi\)
\(68\) 31.0741 3.76829
\(69\) 0 0
\(70\) −5.31089 10.0251i −0.634773 1.19823i
\(71\) −12.8640 −1.52667 −0.763337 0.646001i \(-0.776440\pi\)
−0.763337 + 0.646001i \(0.776440\pi\)
\(72\) 0 0
\(73\) 5.83743 10.1107i 0.683220 1.18337i −0.290773 0.956792i \(-0.593912\pi\)
0.973993 0.226580i \(-0.0727543\pi\)
\(74\) −12.0865 −1.40503
\(75\) 0 0
\(76\) 6.04944 10.4779i 0.693919 1.20190i
\(77\) 0.422156 0.673310i 0.0481092 0.0767308i
\(78\) 0 0
\(79\) −0.833104 + 1.44298i −0.0937315 + 0.162348i −0.909078 0.416625i \(-0.863213\pi\)
0.815347 + 0.578973i \(0.196546\pi\)
\(80\) 10.6316 18.4145i 1.18865 2.05880i
\(81\) 0 0
\(82\) −12.0265 20.8306i −1.32811 2.30035i
\(83\) 2.71634 + 4.70484i 0.298157 + 0.516423i 0.975714 0.219047i \(-0.0702948\pi\)
−0.677557 + 0.735470i \(0.736961\pi\)
\(84\) 0 0
\(85\) 4.66690 8.08330i 0.506196 0.876757i
\(86\) −24.5636 −2.64876
\(87\) 0 0
\(88\) 2.66621 0.284219
\(89\) 4.67673 + 8.10033i 0.495732 + 0.858633i 0.999988 0.00492107i \(-0.00156643\pi\)
−0.504256 + 0.863554i \(0.668233\pi\)
\(90\) 0 0
\(91\) 3.48143 + 6.57172i 0.364953 + 0.688903i
\(92\) −4.99381 8.64953i −0.520641 0.901776i
\(93\) 0 0
\(94\) 4.33310 + 7.50516i 0.446926 + 0.774098i
\(95\) −1.81708 3.14728i −0.186429 0.322904i
\(96\) 0 0
\(97\) 6.28799 + 10.8911i 0.638449 + 1.10583i 0.985773 + 0.168081i \(0.0537570\pi\)
−0.347324 + 0.937745i \(0.612910\pi\)
\(98\) 18.8473 + 1.37556i 1.90386 + 0.138953i
\(99\) 0 0
\(100\) 6.54944 + 11.3440i 0.654944 + 1.13440i
\(101\) −14.6094 −1.45369 −0.726845 0.686801i \(-0.759014\pi\)
−0.726845 + 0.686801i \(0.759014\pi\)
\(102\) 0 0
\(103\) 9.19777 0.906283 0.453142 0.891439i \(-0.350303\pi\)
0.453142 + 0.891439i \(0.350303\pi\)
\(104\) −12.4752 + 21.6078i −1.22330 + 2.11881i
\(105\) 0 0
\(106\) −2.71634 4.70484i −0.263834 0.456974i
\(107\) −6.25526 10.8344i −0.604719 1.04740i −0.992096 0.125482i \(-0.959952\pi\)
0.387377 0.921921i \(-0.373381\pi\)
\(108\) 0 0
\(109\) 1.52290 2.63774i 0.145867 0.252650i −0.783829 0.620977i \(-0.786736\pi\)
0.929696 + 0.368327i \(0.120069\pi\)
\(110\) 0.643996 1.11543i 0.0614026 0.106352i
\(111\) 0 0
\(112\) 16.5803 + 31.2978i 1.56669 + 2.95736i
\(113\) −4.97710 + 8.62059i −0.468206 + 0.810957i −0.999340 0.0363312i \(-0.988433\pi\)
0.531134 + 0.847288i \(0.321766\pi\)
\(114\) 0 0
\(115\) −3.00000 −0.279751
\(116\) −6.67054 + 11.5537i −0.619344 + 1.07274i
\(117\) 0 0
\(118\) −13.1978 −1.21495
\(119\) 7.27816 + 13.7386i 0.667188 + 1.25942i
\(120\) 0 0
\(121\) −10.9098 −0.991798
\(122\) −10.2262 17.7122i −0.925834 1.60359i
\(123\) 0 0
\(124\) 12.7200 22.0317i 1.14229 1.97850i
\(125\) 11.8764 1.06225
\(126\) 0 0
\(127\) −13.4400 −1.19260 −0.596302 0.802760i \(-0.703364\pi\)
−0.596302 + 0.802760i \(0.703364\pi\)
\(128\) −12.4752 + 21.6078i −1.10267 + 1.90987i
\(129\) 0 0
\(130\) 6.02654 + 10.4383i 0.528563 + 0.915497i
\(131\) 11.2756 0.985155 0.492577 0.870269i \(-0.336055\pi\)
0.492577 + 0.870269i \(0.336055\pi\)
\(132\) 0 0
\(133\) 6.04944 + 0.220465i 0.524553 + 0.0191168i
\(134\) 1.92216 0.166049
\(135\) 0 0
\(136\) −26.0803 + 45.1724i −2.23637 + 3.87350i
\(137\) 3.77747 0.322731 0.161366 0.986895i \(-0.448410\pi\)
0.161366 + 0.986895i \(0.448410\pi\)
\(138\) 0 0
\(139\) −8.35965 + 14.4793i −0.709056 + 1.22812i 0.256152 + 0.966637i \(0.417545\pi\)
−0.965208 + 0.261484i \(0.915788\pi\)
\(140\) 22.2076 + 0.809332i 1.87688 + 0.0684010i
\(141\) 0 0
\(142\) 17.3640 30.0753i 1.45715 2.52386i
\(143\) −0.422156 + 0.731196i −0.0353025 + 0.0611457i
\(144\) 0 0
\(145\) 2.00364 + 3.47041i 0.166393 + 0.288202i
\(146\) 15.7589 + 27.2952i 1.30422 + 2.25897i
\(147\) 0 0
\(148\) 11.8374 20.5030i 0.973031 1.68534i
\(149\) 10.8887 0.892040 0.446020 0.895023i \(-0.352841\pi\)
0.446020 + 0.895023i \(0.352841\pi\)
\(150\) 0 0
\(151\) −12.0989 −0.984593 −0.492297 0.870427i \(-0.663842\pi\)
−0.492297 + 0.870427i \(0.663842\pi\)
\(152\) 10.1545 + 17.5881i 0.823640 + 1.42659i
\(153\) 0 0
\(154\) 1.00433 + 1.89582i 0.0809313 + 0.152770i
\(155\) −3.82072 6.61769i −0.306888 0.531546i
\(156\) 0 0
\(157\) 0.0945538 + 0.163772i 0.00754622 + 0.0130704i 0.869774 0.493451i \(-0.164265\pi\)
−0.862228 + 0.506521i \(0.830931\pi\)
\(158\) −2.24907 3.89550i −0.178926 0.309910i
\(159\) 0 0
\(160\) 14.6025 + 25.2923i 1.15443 + 1.99953i
\(161\) 2.65452 4.23377i 0.209205 0.333668i
\(162\) 0 0
\(163\) 4.47779 + 7.75576i 0.350727 + 0.607478i 0.986377 0.164500i \(-0.0526010\pi\)
−0.635650 + 0.771978i \(0.719268\pi\)
\(164\) 47.1148 3.67905
\(165\) 0 0
\(166\) −14.6662 −1.13832
\(167\) 2.17054 3.75948i 0.167961 0.290917i −0.769742 0.638356i \(-0.779615\pi\)
0.937703 + 0.347438i \(0.112948\pi\)
\(168\) 0 0
\(169\) 2.54944 + 4.41576i 0.196111 + 0.339674i
\(170\) 12.5989 + 21.8219i 0.966290 + 1.67366i
\(171\) 0 0
\(172\) 24.0574 41.6687i 1.83436 3.17721i
\(173\) 3.15019 5.45628i 0.239504 0.414833i −0.721068 0.692864i \(-0.756348\pi\)
0.960572 + 0.278031i \(0.0896818\pi\)
\(174\) 0 0
\(175\) −3.48143 + 5.55264i −0.263171 + 0.419740i
\(176\) −2.01052 + 3.48232i −0.151549 + 0.262490i
\(177\) 0 0
\(178\) −25.2509 −1.89263
\(179\) 6.97091 12.0740i 0.521030 0.902451i −0.478671 0.877995i \(-0.658881\pi\)
0.999701 0.0244564i \(-0.00778548\pi\)
\(180\) 0 0
\(181\) 18.3411 1.36328 0.681641 0.731687i \(-0.261267\pi\)
0.681641 + 0.731687i \(0.261267\pi\)
\(182\) −20.0636 0.731196i −1.48721 0.0541999i
\(183\) 0 0
\(184\) 16.7651 1.23594
\(185\) −3.55563 6.15854i −0.261415 0.452785i
\(186\) 0 0
\(187\) −0.882546 + 1.52861i −0.0645382 + 0.111783i
\(188\) −16.9752 −1.23805
\(189\) 0 0
\(190\) 9.81089 0.711757
\(191\) −3.80401 + 6.58875i −0.275249 + 0.476745i −0.970198 0.242314i \(-0.922094\pi\)
0.694949 + 0.719059i \(0.255427\pi\)
\(192\) 0 0
\(193\) −3.83310 6.63913i −0.275913 0.477895i 0.694452 0.719539i \(-0.255647\pi\)
−0.970365 + 0.241644i \(0.922313\pi\)
\(194\) −33.9505 −2.43750
\(195\) 0 0
\(196\) −20.7923 + 30.6245i −1.48517 + 2.18746i
\(197\) 18.3869 1.31001 0.655005 0.755624i \(-0.272666\pi\)
0.655005 + 0.755624i \(0.272666\pi\)
\(198\) 0 0
\(199\) −2.97710 + 5.15649i −0.211041 + 0.365534i −0.952041 0.305972i \(-0.901019\pi\)
0.741000 + 0.671505i \(0.234352\pi\)
\(200\) −21.9876 −1.55476
\(201\) 0 0
\(202\) 19.7200 34.1560i 1.38749 2.40321i
\(203\) −6.67054 0.243101i −0.468180 0.0170623i
\(204\) 0 0
\(205\) 7.07598 12.2560i 0.494208 0.855994i
\(206\) −12.4153 + 21.5039i −0.865013 + 1.49825i
\(207\) 0 0
\(208\) −18.8145 32.5877i −1.30455 2.25955i
\(209\) 0.343624 + 0.595175i 0.0237690 + 0.0411691i
\(210\) 0 0
\(211\) −3.33743 + 5.78061i −0.229758 + 0.397953i −0.957736 0.287647i \(-0.907127\pi\)
0.727978 + 0.685601i \(0.240460\pi\)
\(212\) 10.6414 0.730858
\(213\) 0 0
\(214\) 33.7738 2.30873
\(215\) −7.22617 12.5161i −0.492821 0.853591i
\(216\) 0 0
\(217\) 12.7200 + 0.463566i 0.863489 + 0.0314689i
\(218\) 4.11126 + 7.12092i 0.278450 + 0.482289i
\(219\) 0 0
\(220\) 1.26145 + 2.18490i 0.0850469 + 0.147306i
\(221\) −8.25890 14.3048i −0.555554 0.962248i
\(222\) 0 0
\(223\) −3.17054 5.49153i −0.212315 0.367740i 0.740124 0.672471i \(-0.234767\pi\)
−0.952439 + 0.304731i \(0.901434\pi\)
\(224\) −48.6148 1.77172i −3.24821 0.118378i
\(225\) 0 0
\(226\) −13.4363 23.2724i −0.893771 1.54806i
\(227\) −27.0865 −1.79779 −0.898897 0.438160i \(-0.855630\pi\)
−0.898897 + 0.438160i \(0.855630\pi\)
\(228\) 0 0
\(229\) 8.19639 0.541633 0.270816 0.962631i \(-0.412706\pi\)
0.270816 + 0.962631i \(0.412706\pi\)
\(230\) 4.04944 7.01384i 0.267012 0.462479i
\(231\) 0 0
\(232\) −11.1971 19.3939i −0.735124 1.27327i
\(233\) −13.7101 23.7467i −0.898182 1.55570i −0.829817 0.558036i \(-0.811555\pi\)
−0.0683649 0.997660i \(-0.521778\pi\)
\(234\) 0 0
\(235\) −2.54944 + 4.41576i −0.166307 + 0.288053i
\(236\) 12.9258 22.3881i 0.841398 1.45734i
\(237\) 0 0
\(238\) −41.9443 1.52861i −2.71884 0.0990854i
\(239\) 13.9320 24.1309i 0.901185 1.56090i 0.0752280 0.997166i \(-0.476032\pi\)
0.825957 0.563733i \(-0.190635\pi\)
\(240\) 0 0
\(241\) −22.5302 −1.45130 −0.725648 0.688066i \(-0.758460\pi\)
−0.725648 + 0.688066i \(0.758460\pi\)
\(242\) 14.7262 25.5065i 0.946634 1.63962i
\(243\) 0 0
\(244\) 40.0617 2.56469
\(245\) 4.84362 + 10.0081i 0.309448 + 0.639392i
\(246\) 0 0
\(247\) −6.43130 −0.409214
\(248\) 21.3516 + 36.9821i 1.35583 + 2.34836i
\(249\) 0 0
\(250\) −16.0309 + 27.7663i −1.01388 + 1.75609i
\(251\) 31.2509 1.97254 0.986268 0.165152i \(-0.0528114\pi\)
0.986268 + 0.165152i \(0.0528114\pi\)
\(252\) 0 0
\(253\) 0.567323 0.0356673
\(254\) 18.1414 31.4219i 1.13830 1.97159i
\(255\) 0 0
\(256\) −10.8145 18.7313i −0.675908 1.17071i
\(257\) −10.2015 −0.636351 −0.318176 0.948032i \(-0.603070\pi\)
−0.318176 + 0.948032i \(0.603070\pi\)
\(258\) 0 0
\(259\) 11.8374 + 0.431403i 0.735542 + 0.0268060i
\(260\) −23.6094 −1.46419
\(261\) 0 0
\(262\) −15.2200 + 26.3618i −0.940294 + 1.62864i
\(263\) 28.4610 1.75498 0.877490 0.479594i \(-0.159216\pi\)
0.877490 + 0.479594i \(0.159216\pi\)
\(264\) 0 0
\(265\) 1.59820 2.76816i 0.0981764 0.170046i
\(266\) −8.68106 + 13.8457i −0.532270 + 0.848933i
\(267\) 0 0
\(268\) −1.88255 + 3.26067i −0.114995 + 0.199177i
\(269\) −7.43818 + 12.8833i −0.453514 + 0.785509i −0.998601 0.0528702i \(-0.983163\pi\)
0.545088 + 0.838379i \(0.316496\pi\)
\(270\) 0 0
\(271\) −0.0222115 0.0384714i −0.00134925 0.00233697i 0.865350 0.501168i \(-0.167096\pi\)
−0.866699 + 0.498831i \(0.833763\pi\)
\(272\) −39.3330 68.1268i −2.38492 4.13079i
\(273\) 0 0
\(274\) −5.09888 + 8.83153i −0.308035 + 0.533532i
\(275\) −0.744051 −0.0448680
\(276\) 0 0
\(277\) 15.6749 0.941812 0.470906 0.882184i \(-0.343927\pi\)
0.470906 + 0.882184i \(0.343927\pi\)
\(278\) −22.5679 39.0888i −1.35353 2.34439i
\(279\) 0 0
\(280\) −19.8152 + 31.6039i −1.18419 + 1.88869i
\(281\) −5.95489 10.3142i −0.355239 0.615292i 0.631920 0.775034i \(-0.282267\pi\)
−0.987159 + 0.159742i \(0.948934\pi\)
\(282\) 0 0
\(283\) −3.00364 5.20246i −0.178548 0.309254i 0.762835 0.646593i \(-0.223807\pi\)
−0.941383 + 0.337339i \(0.890473\pi\)
\(284\) 34.0123 + 58.9110i 2.01826 + 3.49573i
\(285\) 0 0
\(286\) −1.13967 1.97396i −0.0673898 0.116723i
\(287\) 11.0352 + 20.8306i 0.651387 + 1.22959i
\(288\) 0 0
\(289\) −8.76578 15.1828i −0.515634 0.893105i
\(290\) −10.8182 −0.635265
\(291\) 0 0
\(292\) −61.7366 −3.61286
\(293\) 2.47779 4.29166i 0.144754 0.250721i −0.784527 0.620094i \(-0.787094\pi\)
0.929281 + 0.369373i \(0.120428\pi\)
\(294\) 0 0
\(295\) −3.88255 6.72477i −0.226051 0.391531i
\(296\) 19.8702 + 34.4161i 1.15493 + 2.00040i
\(297\) 0 0
\(298\) −14.6978 + 25.4573i −0.851419 + 1.47470i
\(299\) −2.65452 + 4.59776i −0.153515 + 0.265895i
\(300\) 0 0
\(301\) 24.0574 + 0.876747i 1.38665 + 0.0505348i
\(302\) 16.3312 28.2865i 0.939758 1.62771i
\(303\) 0 0
\(304\) −30.6291 −1.75670
\(305\) 6.01671 10.4212i 0.344516 0.596719i
\(306\) 0 0
\(307\) −22.0531 −1.25864 −0.629318 0.777148i \(-0.716666\pi\)
−0.629318 + 0.777148i \(0.716666\pi\)
\(308\) −4.19963 0.153051i −0.239296 0.00872089i
\(309\) 0 0
\(310\) 20.6291 1.17165
\(311\) −3.98762 6.90676i −0.226117 0.391646i 0.730537 0.682873i \(-0.239270\pi\)
−0.956654 + 0.291227i \(0.905937\pi\)
\(312\) 0 0
\(313\) 11.2651 19.5117i 0.636741 1.10287i −0.349403 0.936973i \(-0.613616\pi\)
0.986143 0.165895i \(-0.0530511\pi\)
\(314\) −0.510520 −0.0288103
\(315\) 0 0
\(316\) 8.81089 0.495651
\(317\) 9.96905 17.2669i 0.559918 0.969806i −0.437585 0.899177i \(-0.644166\pi\)
0.997503 0.0706288i \(-0.0225006\pi\)
\(318\) 0 0
\(319\) −0.378904 0.656281i −0.0212146 0.0367447i
\(320\) −36.3163 −2.03014
\(321\) 0 0
\(322\) 6.31522 + 11.9209i 0.351934 + 0.664327i
\(323\) −13.4451 −0.748103
\(324\) 0 0
\(325\) 3.48143 6.03001i 0.193115 0.334485i
\(326\) −24.1767 −1.33903
\(327\) 0 0
\(328\) −39.5432 + 68.4908i −2.18341 + 3.78177i
\(329\) −3.97593 7.50516i −0.219200 0.413773i
\(330\) 0 0
\(331\) −11.8152 + 20.4646i −0.649423 + 1.12483i 0.333837 + 0.942631i \(0.391656\pi\)
−0.983261 + 0.182204i \(0.941677\pi\)
\(332\) 14.3640 24.8791i 0.788326 1.36542i
\(333\) 0 0
\(334\) 5.85965 + 10.1492i 0.320626 + 0.555340i
\(335\) 0.565464 + 0.979412i 0.0308946 + 0.0535110i
\(336\) 0 0
\(337\) 6.19275 10.7262i 0.337341 0.584291i −0.646591 0.762837i \(-0.723806\pi\)
0.983932 + 0.178546i \(0.0571393\pi\)
\(338\) −13.7651 −0.748722
\(339\) 0 0
\(340\) −49.3570 −2.67676
\(341\) 0.722528 + 1.25146i 0.0391271 + 0.0677701i
\(342\) 0 0
\(343\) −18.4098 2.01993i −0.994035 0.109066i
\(344\) 40.3825 + 69.9445i 2.17728 + 3.77115i
\(345\) 0 0
\(346\) 8.50433 + 14.7299i 0.457196 + 0.791886i
\(347\) 1.92216 + 3.32927i 0.103187 + 0.178725i 0.912996 0.407969i \(-0.133763\pi\)
−0.809809 + 0.586693i \(0.800429\pi\)
\(348\) 0 0
\(349\) 6.09455 + 10.5561i 0.326234 + 0.565054i 0.981761 0.190118i \(-0.0608869\pi\)
−0.655527 + 0.755171i \(0.727554\pi\)
\(350\) −8.28249 15.6344i −0.442718 0.835695i
\(351\) 0 0
\(352\) −2.76145 4.78297i −0.147186 0.254933i
\(353\) −3.56360 −0.189672 −0.0948358 0.995493i \(-0.530233\pi\)
−0.0948358 + 0.995493i \(0.530233\pi\)
\(354\) 0 0
\(355\) 20.4327 1.08445
\(356\) 24.7305 42.8345i 1.31071 2.27022i
\(357\) 0 0
\(358\) 18.8189 + 32.5952i 0.994608 + 1.72271i
\(359\) 0.483978 + 0.838275i 0.0255434 + 0.0442425i 0.878515 0.477716i \(-0.158535\pi\)
−0.852971 + 0.521958i \(0.825202\pi\)
\(360\) 0 0
\(361\) 6.88255 11.9209i 0.362239 0.627417i
\(362\) −24.7570 + 42.8805i −1.30120 + 2.25375i
\(363\) 0 0
\(364\) 20.8905 33.3189i 1.09496 1.74639i
\(365\) −9.27197 + 16.0595i −0.485317 + 0.840594i
\(366\) 0 0
\(367\) 20.9542 1.09380 0.546900 0.837198i \(-0.315808\pi\)
0.546900 + 0.837198i \(0.315808\pi\)
\(368\) −12.6421 + 21.8968i −0.659017 + 1.14145i
\(369\) 0 0
\(370\) 19.1978 0.998044
\(371\) 2.49243 + 4.70484i 0.129401 + 0.244263i
\(372\) 0 0
\(373\) 2.00000 0.103556 0.0517780 0.998659i \(-0.483511\pi\)
0.0517780 + 0.998659i \(0.483511\pi\)
\(374\) −2.38255 4.12669i −0.123199 0.213386i
\(375\) 0 0
\(376\) 14.2472 24.6769i 0.734744 1.27261i
\(377\) 7.09160 0.365236
\(378\) 0 0
\(379\) −7.14331 −0.366927 −0.183464 0.983027i \(-0.558731\pi\)
−0.183464 + 0.983027i \(0.558731\pi\)
\(380\) −9.60872 + 16.6428i −0.492917 + 0.853757i
\(381\) 0 0
\(382\) −10.2694 17.7872i −0.525429 0.910070i
\(383\) −11.9766 −0.611977 −0.305988 0.952035i \(-0.598987\pi\)
−0.305988 + 0.952035i \(0.598987\pi\)
\(384\) 0 0
\(385\) −0.670538 + 1.06946i −0.0341738 + 0.0545048i
\(386\) 20.6959 1.05339
\(387\) 0 0
\(388\) 33.2509 57.5922i 1.68806 2.92380i
\(389\) 13.7788 0.698615 0.349308 0.937008i \(-0.386417\pi\)
0.349308 + 0.937008i \(0.386417\pi\)
\(390\) 0 0
\(391\) −5.54944 + 9.61192i −0.280647 + 0.486095i
\(392\) −27.0679 55.9287i −1.36714 2.82483i
\(393\) 0 0
\(394\) −24.8189 + 42.9875i −1.25036 + 2.16568i
\(395\) 1.32327 2.29197i 0.0665810 0.115322i
\(396\) 0 0
\(397\) −4.19344 7.26325i −0.210463 0.364532i 0.741397 0.671067i \(-0.234164\pi\)
−0.951859 + 0.306535i \(0.900830\pi\)
\(398\) −8.03706 13.9206i −0.402862 0.697777i
\(399\) 0 0
\(400\) 16.5803 28.7179i 0.829016 1.43590i
\(401\) 27.6167 1.37911 0.689556 0.724233i \(-0.257806\pi\)
0.689556 + 0.724233i \(0.257806\pi\)
\(402\) 0 0
\(403\) −13.5229 −0.673624
\(404\) 38.6272 + 66.9043i 1.92178 + 3.32861i
\(405\) 0 0
\(406\) 9.57234 15.2672i 0.475067 0.757699i
\(407\) 0.672397 + 1.16463i 0.0333295 + 0.0577284i
\(408\) 0 0
\(409\) −15.2658 26.4411i −0.754844 1.30743i −0.945452 0.325762i \(-0.894379\pi\)
0.190607 0.981666i \(-0.438954\pi\)
\(410\) 19.1025 + 33.0865i 0.943407 + 1.63403i
\(411\) 0 0
\(412\) −24.3189 42.1215i −1.19810 2.07518i
\(413\) 12.9258 + 0.471067i 0.636037 + 0.0231797i
\(414\) 0 0
\(415\) −4.31453 7.47299i −0.211792 0.366835i
\(416\) 51.6835 2.53399
\(417\) 0 0
\(418\) −1.85532 −0.0907464
\(419\) −10.5000 + 18.1865i −0.512959 + 0.888470i 0.486928 + 0.873442i \(0.338117\pi\)
−0.999887 + 0.0150285i \(0.995216\pi\)
\(420\) 0 0
\(421\) −17.3647 30.0765i −0.846302 1.46584i −0.884486 0.466567i \(-0.845491\pi\)
0.0381837 0.999271i \(-0.487843\pi\)
\(422\) −9.00983 15.6055i −0.438592 0.759663i
\(423\) 0 0
\(424\) −8.93130 + 15.4695i −0.433742 + 0.751264i
\(425\) 7.27816 12.6061i 0.353043 0.611488i
\(426\) 0 0
\(427\) 9.38323 + 17.7122i 0.454087 + 0.857156i
\(428\) −33.0778 + 57.2924i −1.59887 + 2.76933i
\(429\) 0 0
\(430\) 39.0159 1.88152
\(431\) −15.8022 + 27.3701i −0.761163 + 1.31837i 0.181088 + 0.983467i \(0.442038\pi\)
−0.942251 + 0.334906i \(0.891295\pi\)
\(432\) 0 0
\(433\) −6.48576 −0.311686 −0.155843 0.987782i \(-0.549809\pi\)
−0.155843 + 0.987782i \(0.549809\pi\)
\(434\) −18.2534 + 29.1129i −0.876191 + 1.39746i
\(435\) 0 0
\(436\) −16.1062 −0.771346
\(437\) 2.16071 + 3.74245i 0.103361 + 0.179026i
\(438\) 0 0
\(439\) 7.78799 13.4892i 0.371701 0.643804i −0.618127 0.786078i \(-0.712108\pi\)
0.989827 + 0.142274i \(0.0454415\pi\)
\(440\) −4.23491 −0.201891
\(441\) 0 0
\(442\) 44.5919 2.12102
\(443\) 12.5371 21.7148i 0.595654 1.03170i −0.397800 0.917472i \(-0.630226\pi\)
0.993454 0.114231i \(-0.0364403\pi\)
\(444\) 0 0
\(445\) −7.42835 12.8663i −0.352137 0.609920i
\(446\) 17.1185 0.810587
\(447\) 0 0
\(448\) 32.1341 51.2516i 1.51819 2.42141i
\(449\) −15.2967 −0.721894 −0.360947 0.932586i \(-0.617546\pi\)
−0.360947 + 0.932586i \(0.617546\pi\)
\(450\) 0 0
\(451\) −1.33812 + 2.31770i −0.0630098 + 0.109136i
\(452\) 52.6377 2.47587
\(453\) 0 0
\(454\) 36.5617 63.3268i 1.71593 2.97207i
\(455\) −5.52978 10.4383i −0.259240 0.489354i
\(456\) 0 0
\(457\) −10.2200 + 17.7015i −0.478071 + 0.828042i −0.999684 0.0251395i \(-0.991997\pi\)
0.521613 + 0.853182i \(0.325330\pi\)
\(458\) −11.0636 + 19.1627i −0.516968 + 0.895415i
\(459\) 0 0
\(460\) 7.93199 + 13.7386i 0.369831 + 0.640566i
\(461\) 20.4091 + 35.3496i 0.950546 + 1.64639i 0.744246 + 0.667905i \(0.232809\pi\)
0.206300 + 0.978489i \(0.433858\pi\)
\(462\) 0 0
\(463\) −4.95420 + 8.58093i −0.230241 + 0.398789i −0.957879 0.287172i \(-0.907285\pi\)
0.727638 + 0.685962i \(0.240618\pi\)
\(464\) 33.7738 1.56791
\(465\) 0 0
\(466\) 74.0246 3.42912
\(467\) 8.86948 + 15.3624i 0.410430 + 0.710886i 0.994937 0.100503i \(-0.0320451\pi\)
−0.584506 + 0.811389i \(0.698712\pi\)
\(468\) 0 0
\(469\) −1.88255 0.0686074i −0.0869279 0.00316799i
\(470\) −6.88255 11.9209i −0.317468 0.549871i
\(471\) 0 0
\(472\) 21.6971 + 37.5804i 0.998689 + 1.72978i
\(473\) 1.36652 + 2.36689i 0.0628329 + 0.108830i
\(474\) 0 0
\(475\) −2.83379 4.90827i −0.130023 0.225207i
\(476\) 43.6730 69.6554i 2.00175 3.19265i
\(477\) 0 0
\(478\) 37.6112 + 65.1445i 1.72030 + 2.97964i
\(479\) −23.6094 −1.07874 −0.539371 0.842068i \(-0.681338\pi\)
−0.539371 + 0.842068i \(0.681338\pi\)
\(480\) 0 0
\(481\) −12.5846 −0.573810
\(482\) 30.4116 52.6744i 1.38521 2.39925i
\(483\) 0 0
\(484\) 28.8454 + 49.9617i 1.31115 + 2.27099i
\(485\) −9.98762 17.2991i −0.453514 0.785510i
\(486\) 0 0
\(487\) −17.4363 + 30.2006i −0.790115 + 1.36852i 0.135780 + 0.990739i \(0.456646\pi\)
−0.925895 + 0.377780i \(0.876687\pi\)
\(488\) −33.6236 + 58.2377i −1.52207 + 2.63630i
\(489\) 0 0
\(490\) −29.9363 2.18490i −1.35239 0.0987035i
\(491\) −11.6025 + 20.0962i −0.523615 + 0.906927i 0.476008 + 0.879441i \(0.342084\pi\)
−0.999622 + 0.0274860i \(0.991250\pi\)
\(492\) 0 0
\(493\) 14.8255 0.667705
\(494\) 8.68106 15.0360i 0.390579 0.676503i
\(495\) 0 0
\(496\) −64.4028 −2.89177
\(497\) −18.0796 + 28.8357i −0.810982 + 1.29346i
\(498\) 0 0
\(499\) −5.32513 −0.238386 −0.119193 0.992871i \(-0.538031\pi\)
−0.119193 + 0.992871i \(0.538031\pi\)
\(500\) −31.4010 54.3882i −1.40430 2.43231i
\(501\) 0 0
\(502\) −42.1828 + 73.0628i −1.88271 + 3.26095i
\(503\) −10.4313 −0.465109 −0.232554 0.972583i \(-0.574708\pi\)
−0.232554 + 0.972583i \(0.574708\pi\)
\(504\) 0 0
\(505\) 23.2051 1.03261
\(506\) −0.765781 + 1.32637i −0.0340431 + 0.0589644i
\(507\) 0 0
\(508\) 35.5352 + 61.5488i 1.57662 + 2.73079i
\(509\) 1.50186 0.0665687 0.0332844 0.999446i \(-0.489403\pi\)
0.0332844 + 0.999446i \(0.489403\pi\)
\(510\) 0 0
\(511\) −14.4599 27.2952i −0.639669 1.20747i
\(512\) 8.48948 0.375186
\(513\) 0 0
\(514\) 13.7701 23.8505i 0.607374 1.05200i
\(515\) −14.6094 −0.643767
\(516\) 0 0
\(517\) 0.482119 0.835055i 0.0212036 0.0367257i
\(518\) −16.9869 + 27.0930i −0.746363 + 1.19040i
\(519\) 0 0
\(520\) 19.8152 34.3210i 0.868955 1.50507i
\(521\) −18.8709 + 32.6853i −0.826747 + 1.43197i 0.0738295 + 0.997271i \(0.476478\pi\)
−0.900577 + 0.434697i \(0.856855\pi\)
\(522\) 0 0
\(523\) 8.97779 + 15.5500i 0.392571 + 0.679953i 0.992788 0.119884i \(-0.0382523\pi\)
−0.600217 + 0.799837i \(0.704919\pi\)
\(524\) −29.8127 51.6371i −1.30237 2.25578i
\(525\) 0 0
\(526\) −38.4171 + 66.5403i −1.67506 + 2.90129i
\(527\) −28.2705 −1.23148
\(528\) 0 0
\(529\) −19.4327 −0.844899
\(530\) 4.31453 + 7.47299i 0.187411 + 0.324606i
\(531\) 0 0
\(532\) −14.9851 28.2865i −0.649685 1.22638i
\(533\) −12.5222 21.6891i −0.542397 0.939459i
\(534\) 0 0
\(535\) 9.93563 + 17.2090i 0.429555 + 0.744011i
\(536\) −3.16002 5.47331i −0.136492 0.236411i
\(537\) 0 0
\(538\) −20.0803 34.7801i −0.865724 1.49948i
\(539\) −0.915967 1.89260i −0.0394535 0.0815202i
\(540\) 0 0
\(541\) −4.18547 7.24944i −0.179947 0.311678i 0.761915 0.647677i \(-0.224259\pi\)
−0.941862 + 0.335999i \(0.890926\pi\)
\(542\) 0.119925 0.00515123
\(543\) 0 0
\(544\) 108.048 4.63251
\(545\) −2.41892 + 4.18969i −0.103615 + 0.179467i
\(546\) 0 0
\(547\) −15.0538 26.0739i −0.643653 1.11484i −0.984611 0.174761i \(-0.944085\pi\)
0.340958 0.940079i \(-0.389249\pi\)
\(548\) −9.98762 17.2991i −0.426650 0.738979i
\(549\) 0 0
\(550\) 1.00433 1.73955i 0.0428248 0.0741747i
\(551\) 2.88619 4.99902i 0.122956 0.212966i
\(552\) 0 0
\(553\) 2.06368 + 3.89550i 0.0877567 + 0.165654i
\(554\) −21.1582 + 36.6470i −0.898924 + 1.55698i
\(555\) 0 0
\(556\) 88.4115 3.74948
\(557\) −8.26764 + 14.3200i −0.350311 + 0.606757i −0.986304 0.164938i \(-0.947257\pi\)
0.635993 + 0.771695i \(0.280591\pi\)
\(558\) 0 0
\(559\) −25.5760 −1.08175
\(560\) −26.3356 49.7123i −1.11288 2.10073i
\(561\) 0 0
\(562\) 32.1520 1.35625
\(563\) 11.1156 + 19.2528i 0.468466 + 0.811408i 0.999350 0.0360368i \(-0.0114733\pi\)
−0.530884 + 0.847444i \(0.678140\pi\)
\(564\) 0 0
\(565\) 7.90545 13.6926i 0.332585 0.576053i
\(566\) 16.2174 0.681670
\(567\) 0 0
\(568\) −114.185 −4.79111
\(569\) −1.15638 + 2.00290i −0.0484778 + 0.0839660i −0.889246 0.457429i \(-0.848770\pi\)
0.840768 + 0.541395i \(0.182104\pi\)
\(570\) 0 0
\(571\) 3.04944 + 5.28179i 0.127615 + 0.221036i 0.922752 0.385394i \(-0.125934\pi\)
−0.795137 + 0.606430i \(0.792601\pi\)
\(572\) 4.46472 0.186679
\(573\) 0 0
\(574\) −63.5963 2.31770i −2.65446 0.0967388i
\(575\) −4.67859 −0.195111
\(576\) 0 0
\(577\) −10.1032 + 17.4993i −0.420602 + 0.728505i −0.995998 0.0893702i \(-0.971515\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(578\) 47.3287 1.96861
\(579\) 0 0
\(580\) 10.5952 18.3515i 0.439944 0.762004i
\(581\) 14.3640 + 0.523480i 0.595918 + 0.0217176i
\(582\) 0 0
\(583\) −0.302231 + 0.523480i −0.0125171 + 0.0216803i
\(584\) 51.8151 89.7465i 2.14413 3.71374i
\(585\) 0 0
\(586\) 6.68911 + 11.5859i 0.276324 + 0.478608i
\(587\) −19.3411 33.4997i −0.798292 1.38268i −0.920728 0.390205i \(-0.872404\pi\)
0.122436 0.992476i \(-0.460929\pi\)
\(588\) 0 0
\(589\) −5.50364 + 9.53259i −0.226774 + 0.392783i
\(590\) 20.9629 0.863027
\(591\) 0 0
\(592\) −59.9344 −2.46329
\(593\) −11.8578 20.5383i −0.486941 0.843406i 0.512946 0.858421i \(-0.328554\pi\)
−0.999887 + 0.0150142i \(0.995221\pi\)
\(594\) 0 0
\(595\) −11.5604 21.8219i −0.473929 0.894611i
\(596\) −28.7898 49.8654i −1.17928 2.04256i
\(597\) 0 0
\(598\) −7.16621 12.4122i −0.293048 0.507574i
\(599\) 17.2403 + 29.8611i 0.704421 + 1.22009i 0.966900 + 0.255155i \(0.0821265\pi\)
−0.262479 + 0.964938i \(0.584540\pi\)
\(600\) 0 0
\(601\) 3.64035 + 6.30528i 0.148493 + 0.257198i 0.930671 0.365858i \(-0.119224\pi\)
−0.782178 + 0.623056i \(0.785891\pi\)
\(602\) −34.5228 + 55.0615i −1.40705 + 2.24414i
\(603\) 0 0
\(604\) 31.9894 + 55.4073i 1.30163 + 2.25449i
\(605\) 17.3287 0.704512
\(606\) 0 0
\(607\) −25.1593 −1.02118 −0.510591 0.859824i \(-0.670573\pi\)
−0.510591 + 0.859824i \(0.670573\pi\)
\(608\) 21.0345 36.4328i 0.853062 1.47755i
\(609\) 0 0
\(610\) 16.2429 + 28.1335i 0.657655 + 1.13909i
\(611\) 4.51169 + 7.81448i 0.182523 + 0.316140i
\(612\) 0 0
\(613\) 18.7731 32.5159i 0.758237 1.31330i −0.185512 0.982642i \(-0.559394\pi\)
0.943749 0.330663i \(-0.107272\pi\)
\(614\) 29.7676 51.5589i 1.20132 2.08075i
\(615\) 0 0
\(616\) 3.74721 5.97654i 0.150979 0.240802i
\(617\) 6.86398 11.8888i 0.276333 0.478623i −0.694137 0.719843i \(-0.744214\pi\)
0.970471 + 0.241219i \(0.0775473\pi\)
\(618\) 0 0
\(619\) 11.8109 0.474720 0.237360 0.971422i \(-0.423718\pi\)
0.237360 + 0.971422i \(0.423718\pi\)
\(620\) −20.2040 + 34.9943i −0.811411 + 1.40540i
\(621\) 0 0
\(622\) 21.5302 0.863282
\(623\) 24.7305 + 0.901276i 0.990807 + 0.0361089i
\(624\) 0 0
\(625\) −6.47848 −0.259139
\(626\) 30.4116 + 52.6744i 1.21549 + 2.10529i
\(627\) 0 0
\(628\) 0.500000 0.866025i 0.0199522 0.0345582i
\(629\) −26.3090 −1.04901
\(630\) 0 0
\(631\) 29.6304 1.17957 0.589785 0.807561i \(-0.299213\pi\)
0.589785 + 0.807561i \(0.299213\pi\)
\(632\) −7.39493 + 12.8084i −0.294154 + 0.509490i
\(633\) 0 0
\(634\) 26.9127 + 46.6142i 1.06884 + 1.85129i
\(635\) 21.3475 0.847152
\(636\) 0 0
\(637\) 19.6240 + 1.43226i 0.777533 + 0.0567481i
\(638\) 2.04580 0.0809940
\(639\) 0 0
\(640\) 19.8152 34.3210i 0.783265 1.35666i
\(641\) −14.6525 −0.578737 −0.289368 0.957218i \(-0.593445\pi\)
−0.289368 + 0.957218i \(0.593445\pi\)
\(642\) 0 0
\(643\) −1.01857 + 1.76421i −0.0401685 + 0.0695738i −0.885411 0.464810i \(-0.846123\pi\)
0.845242 + 0.534383i \(0.179456\pi\)
\(644\) −26.4072 0.962383i −1.04059 0.0379232i
\(645\) 0 0
\(646\) 18.1483 31.4338i 0.714036 1.23675i
\(647\) −5.89307 + 10.2071i −0.231680 + 0.401282i −0.958303 0.285755i \(-0.907756\pi\)
0.726622 + 0.687037i \(0.241089\pi\)
\(648\) 0 0
\(649\) 0.734219 + 1.27171i 0.0288206 + 0.0499188i
\(650\) 9.39857 + 16.2788i 0.368642 + 0.638507i
\(651\) 0 0
\(652\) 23.6785 41.0124i 0.927322 1.60617i
\(653\) 34.1840 1.33772 0.668862 0.743387i \(-0.266782\pi\)
0.668862 + 0.743387i \(0.266782\pi\)
\(654\) 0 0
\(655\) −17.9098 −0.699793
\(656\) −59.6370 103.294i −2.32844 4.03297i
\(657\) 0 0
\(658\) 22.9134 + 0.835055i 0.893258 + 0.0325538i
\(659\) 12.4320 + 21.5328i 0.484282 + 0.838800i 0.999837 0.0180560i \(-0.00574773\pi\)
−0.515555 + 0.856856i \(0.672414\pi\)
\(660\) 0 0
\(661\) −12.7694 22.1173i −0.496673 0.860263i 0.503320 0.864100i \(-0.332112\pi\)
−0.999993 + 0.00383747i \(0.998778\pi\)
\(662\) −31.8967 55.2467i −1.23970 2.14722i
\(663\) 0 0
\(664\) 24.1112 + 41.7618i 0.935696 + 1.62067i
\(665\) −9.60872 0.350179i −0.372610 0.0135794i
\(666\) 0 0
\(667\) −2.38255 4.12669i −0.0922525 0.159786i
\(668\) −22.9556 −0.888178
\(669\) 0 0
\(670\) −3.05308 −0.117951
\(671\) −1.13781 + 1.97074i −0.0439245 + 0.0760795i
\(672\) 0 0
\(673\) 1.90978 + 3.30783i 0.0736165 + 0.127507i 0.900484 0.434890i \(-0.143213\pi\)
−0.826867 + 0.562397i \(0.809879\pi\)
\(674\) 16.7181 + 28.9566i 0.643958 + 1.11537i
\(675\) 0 0
\(676\) 13.4814 23.3505i 0.518517 0.898097i
\(677\) −8.61126 + 14.9151i −0.330958 + 0.573236i −0.982700 0.185205i \(-0.940705\pi\)
0.651742 + 0.758441i \(0.274038\pi\)
\(678\) 0 0
\(679\) 33.2509 + 1.21179i 1.27605 + 0.0465043i
\(680\) 41.4250 71.7503i 1.58858 2.75150i
\(681\) 0 0
\(682\) −3.90112 −0.149381
\(683\) 16.8585 29.1997i 0.645072 1.11730i −0.339213 0.940709i \(-0.610161\pi\)
0.984285 0.176587i \(-0.0565058\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 29.5723 40.3145i 1.12907 1.53922i
\(687\) 0 0
\(688\) −121.806 −4.64380
\(689\) −2.82829 4.89874i −0.107749 0.186627i
\(690\) 0 0
\(691\) 12.7465 22.0776i 0.484901 0.839872i −0.514949 0.857221i \(-0.672189\pi\)
0.999850 + 0.0173484i \(0.00552246\pi\)
\(692\) −33.3163 −1.26650
\(693\) 0 0
\(694\) −10.3782 −0.393952
\(695\) 13.2782 22.9984i 0.503669 0.872381i
\(696\) 0 0
\(697\) −26.1785 45.3425i −0.991582 1.71747i
\(698\) −32.9061 −1.24551
\(699\) 0 0
\(700\) 34.6334 + 1.26218i 1.30902 + 0.0477058i
\(701\) −10.1606 −0.383762 −0.191881 0.981418i \(-0.561459\pi\)
−0.191881 + 0.981418i \(0.561459\pi\)
\(702\) 0 0
\(703\) −5.12178 + 8.87119i −0.193172 + 0.334583i
\(704\) 6.86769 0.258836
\(705\) 0 0
\(706\) 4.81020 8.33152i 0.181034 0.313561i
\(707\) −20.5327 + 32.7483i −0.772213 + 1.23163i
\(708\) 0 0
\(709\) 7.97346 13.8104i 0.299449 0.518662i −0.676561 0.736387i \(-0.736530\pi\)
0.976010 + 0.217725i \(0.0698637\pi\)
\(710\) −27.5803 + 47.7705i −1.03507 + 1.79280i
\(711\) 0 0
\(712\) 41.5123 + 71.9014i 1.55574 + 2.69462i
\(713\) 4.54325 + 7.86914i 0.170146 + 0.294702i
\(714\) 0 0
\(715\) 0.670538 1.16141i 0.0250767 0.0434341i
\(716\) −73.7242 −2.75520
\(717\) 0 0
\(718\) −2.61312 −0.0975209
\(719\) −8.20877 14.2180i −0.306136 0.530242i 0.671378 0.741115i \(-0.265703\pi\)
−0.977513 + 0.210873i \(0.932369\pi\)
\(720\) 0 0
\(721\) 12.9270 20.6176i 0.481425 0.767840i
\(722\) 18.5803 + 32.1820i 0.691488 + 1.19769i
\(723\) 0 0
\(724\) −48.4937 83.9936i −1.80226 3.12160i
\(725\) 3.12474 + 5.41220i 0.116050 + 0.201004i
\(726\) 0 0
\(727\) 17.9141 + 31.0281i 0.664397 + 1.15077i 0.979448 + 0.201695i \(0.0646451\pi\)
−0.315051 + 0.949075i \(0.602022\pi\)
\(728\) 30.9024 + 58.3329i 1.14532 + 2.16196i
\(729\) 0 0
\(730\) −25.0309 43.3547i −0.926434 1.60463i
\(731\) −53.4683 −1.97760
\(732\) 0 0
\(733\) 39.2880 1.45114 0.725568 0.688151i \(-0.241577\pi\)
0.725568 + 0.688151i \(0.241577\pi\)
\(734\) −28.2843 + 48.9898i −1.04399 + 1.80825i
\(735\) 0 0
\(736\) −17.3640 30.0753i −0.640045 1.10859i
\(737\) −0.106934 0.185214i −0.00393895 0.00682246i
\(738\) 0 0
\(739\) −1.04511 + 1.81019i −0.0384451 + 0.0665888i −0.884608 0.466336i \(-0.845574\pi\)
0.846163 + 0.532925i \(0.178907\pi\)
\(740\) −18.8022 + 32.5663i −0.691181 + 1.19716i
\(741\) 0 0
\(742\) −14.3640 0.523480i −0.527318 0.0192175i
\(743\) 15.3633 26.6100i 0.563624 0.976226i −0.433552 0.901129i \(-0.642740\pi\)
0.997176 0.0750974i \(-0.0239268\pi\)
\(744\) 0 0
\(745\) −17.2953 −0.633650
\(746\) −2.69963 + 4.67589i −0.0988404 + 0.171197i
\(747\) 0 0
\(748\) 9.33379 0.341277
\(749\) −33.0778 1.20548i −1.20864 0.0440474i
\(750\) 0 0
\(751\) 20.7738 0.758045 0.379023 0.925387i \(-0.376260\pi\)
0.379023 + 0.925387i \(0.376260\pi\)
\(752\) 21.4869 + 37.2165i 0.783548 + 1.35714i
\(753\) 0 0
\(754\) −9.57234 + 16.5798i −0.348604 + 0.603800i
\(755\) 19.2174 0.699394
\(756\) 0 0
\(757\) 16.9257 0.615176 0.307588 0.951520i \(-0.400478\pi\)
0.307588 + 0.951520i \(0.400478\pi\)
\(758\) 9.64214 16.7007i 0.350218 0.606596i
\(759\) 0 0
\(760\) −16.1291 27.9364i −0.585063 1.01336i
\(761\) −32.8392 −1.19042 −0.595210 0.803570i \(-0.702931\pi\)
−0.595210 + 0.803570i \(0.702931\pi\)
\(762\) 0 0
\(763\) −3.77238 7.12092i −0.136569 0.257795i
\(764\) 40.2312 1.45551
\(765\) 0 0
\(766\) 16.1662 28.0007i 0.584109 1.01171i
\(767\) −13.7417 −0.496184
\(768\) 0 0
\(769\) −15.8647 + 27.4784i −0.572094 + 0.990897i 0.424256 + 0.905542i \(0.360536\pi\)
−0.996351 + 0.0853545i \(0.972798\pi\)
\(770\) −1.59524 3.01126i −0.0574886 0.108518i
\(771\) 0 0
\(772\) −20.2694 + 35.1077i −0.729512 + 1.26355i
\(773\) 3.18656 5.51928i 0.114613 0.198515i −0.803012 0.595963i \(-0.796771\pi\)
0.917625 + 0.397448i \(0.130104\pi\)
\(774\) 0 0
\(775\) −5.95853 10.3205i −0.214037 0.370722i
\(776\) 55.8145 + 96.6735i 2.00362 + 3.47038i
\(777\) 0 0
\(778\) −18.5989 + 32.2142i −0.666802 + 1.15494i
\(779\) −20.3855 −0.730386
\(780\) 0 0
\(781\) −3.86398 −0.138264
\(782\) −14.9814 25.9486i −0.535735 0.927920i
\(783\) 0 0
\(784\) 93.4595 + 6.82112i 3.33784 + 0.243612i
\(785\) −0.150186 0.260130i −0.00536037 0.00928443i
\(786\) 0 0
\(787\) 9.93996 + 17.2165i 0.354321 + 0.613703i 0.987002 0.160711i \(-0.0513786\pi\)
−0.632680 + 0.774413i \(0.718045\pi\)
\(788\) −48.6148 84.2034i −1.73183 2.99962i
\(789\) 0 0
\(790\) 3.57234 + 6.18748i 0.127098 + 0.220141i
\(791\) 12.3288 + 23.2724i 0.438361 + 0.827471i
\(792\) 0 0
\(793\) −10.6476 18.4422i −0.378109 0.654903i
\(794\) 22.6414 0.803515
\(795\) 0 0
\(796\) 31.4858 1.11598
\(797\) −2.90978 + 5.03988i −0.103070 + 0.178522i −0.912948 0.408076i \(-0.866200\pi\)
0.809878 + 0.586598i \(0.199533\pi\)
\(798\) 0 0
\(799\) 9.43199 + 16.3367i 0.333680 + 0.577950i
\(800\) 22.7731 + 39.4441i 0.805149 + 1.39456i
\(801\) 0 0
\(802\) −37.2774 + 64.5663i −1.31631 + 2.27992i
\(803\) 1.75340 3.03698i 0.0618762 0.107173i
\(804\) 0 0
\(805\) −4.21634 + 6.72477i −0.148606 + 0.237017i
\(806\) 18.2534 31.6158i 0.642949 1.11362i
\(807\) 0 0
\(808\) −129.678 −4.56207
\(809\) 1.06113 1.83794i 0.0373075 0.0646184i −0.846769 0.531961i \(-0.821455\pi\)
0.884076 + 0.467343i \(0.154789\pi\)
\(810\) 0 0
\(811\) −18.4327 −0.647259 −0.323629 0.946184i \(-0.604903\pi\)
−0.323629 + 0.946184i \(0.604903\pi\)
\(812\) 16.5236 + 31.1907i 0.579864 + 1.09458i
\(813\) 0 0
\(814\) −3.63045 −0.127247
\(815\) −7.11236 12.3190i −0.249135 0.431515i
\(816\) 0 0
\(817\) −10.4091 + 18.0291i −0.364168 + 0.630757i
\(818\) 82.4239 2.88188
\(819\) 0 0
\(820\) −74.8355 −2.61337
\(821\) −22.5778 + 39.1058i −0.787969 + 1.36480i 0.139239 + 0.990259i \(0.455534\pi\)
−0.927209 + 0.374544i \(0.877799\pi\)
\(822\) 0 0
\(823\) −12.5259 21.6954i −0.436624 0.756255i 0.560803 0.827949i \(-0.310493\pi\)
−0.997427 + 0.0716948i \(0.977159\pi\)
\(824\) 81.6427 2.84416
\(825\) 0 0
\(826\) −18.5488 + 29.5840i −0.645394 + 1.02936i
\(827\) 14.2953 0.497095 0.248548 0.968620i \(-0.420047\pi\)
0.248548 + 0.968620i \(0.420047\pi\)
\(828\) 0 0
\(829\) −15.9127 + 27.5617i −0.552672 + 0.957256i 0.445409 + 0.895327i \(0.353058\pi\)
−0.998081 + 0.0619285i \(0.980275\pi\)
\(830\) 23.2953 0.808591
\(831\) 0 0
\(832\) −32.1341 + 55.6579i −1.11405 + 1.92959i
\(833\) 41.0254 + 2.99423i 1.42144 + 0.103744i
\(834\) 0 0
\(835\) −3.44760 + 5.97143i −0.119309 + 0.206650i
\(836\) 1.81708 3.14728i 0.0628451 0.108851i
\(837\) 0 0
\(838\) −28.3461 49.0969i −0.979200 1.69602i
\(839\) 8.23924 + 14.2708i 0.284450 + 0.492682i 0.972476 0.233004i \(-0.0748557\pi\)
−0.688026 + 0.725686i \(0.741522\pi\)
\(840\) 0 0
\(841\) 11.3175 19.6025i 0.390258 0.675947i
\(842\) 93.7563 3.23105
\(843\) 0 0
\(844\) 35.2967 1.21496
\(845\) −4.04944 7.01384i −0.139305 0.241283i
\(846\) 0 0
\(847\) −15.3331 + 24.4552i −0.526852 + 0.840292i
\(848\) −13.4697 23.3303i −0.462553 0.801165i
\(849\) 0 0
\(850\) 19.6483 + 34.0319i 0.673932 + 1.16728i
\(851\) 4.22803 + 7.32316i 0.144935 + 0.251035i
\(852\) 0 0
\(853\) 13.4993 + 23.3815i 0.462208 + 0.800567i 0.999071 0.0431023i \(-0.0137242\pi\)
−0.536863 + 0.843669i \(0.680391\pi\)
\(854\) −54.0759 1.97074i −1.85044 0.0674373i
\(855\) 0 0
\(856\) −55.5239 96.1702i −1.89777 3.28703i
\(857\) 39.1630 1.33778 0.668891 0.743361i \(-0.266769\pi\)
0.668891 + 0.743361i \(0.266769\pi\)
\(858\) 0 0
\(859\) 9.46844 0.323059 0.161529 0.986868i \(-0.448357\pi\)
0.161529 + 0.986868i \(0.448357\pi\)
\(860\) −38.2119 + 66.1850i −1.30302 + 2.25689i
\(861\) 0 0
\(862\) −42.6599 73.8892i −1.45300 2.51668i
\(863\) 1.00619 + 1.74277i 0.0342511 + 0.0593246i 0.882643 0.470044i \(-0.155762\pi\)
−0.848392 + 0.529369i \(0.822429\pi\)
\(864\) 0 0
\(865\) −5.00364 + 8.66656i −0.170129 + 0.294672i
\(866\) 8.75457 15.1634i 0.297492 0.515272i
\(867\) 0 0
\(868\) −31.5087 59.4773i −1.06947 2.01879i
\(869\) −0.250241 + 0.433430i −0.00848884 + 0.0147031i
\(870\) 0 0
\(871\) 2.00138 0.0678141
\(872\) 13.5178 23.4135i 0.457771 0.792882i
\(873\) 0 0
\(874\) −11.6662 −0.394615
\(875\) 16.6916 26.6219i 0.564278 0.899985i
\(876\) 0 0
\(877\) 44.6995 1.50939 0.754697 0.656073i \(-0.227784\pi\)
0.754697 + 0.656073i \(0.227784\pi\)
\(878\) 21.0247 + 36.4158i 0.709549 + 1.22897i
\(879\) 0 0
\(880\) 3.19344 5.53120i 0.107651 0.186457i
\(881\) −12.7047 −0.428033 −0.214017 0.976830i \(-0.568655\pi\)
−0.214017 + 0.976830i \(0.568655\pi\)
\(882\) 0 0
\(883\) −17.0014 −0.572142 −0.286071 0.958208i \(-0.592349\pi\)
−0.286071 + 0.958208i \(0.592349\pi\)
\(884\) −43.6730 + 75.6439i −1.46888 + 2.54418i
\(885\) 0 0
\(886\) 33.8454 + 58.6220i 1.13706 + 1.96944i
\(887\) −1.20149 −0.0403420 −0.0201710 0.999797i \(-0.506421\pi\)
−0.0201710 + 0.999797i \(0.506421\pi\)
\(888\) 0 0
\(889\) −18.8891 + 30.1269i −0.633521 + 1.01042i
\(890\) 40.1075 1.34441
\(891\) 0 0
\(892\) −16.7658 + 29.0392i −0.561360 + 0.972304i
\(893\) 7.34479 0.245784
\(894\) 0 0
\(895\) −11.0723 + 19.1779i −0.370108 + 0.641045i
\(896\) 30.9024 + 58.3329i 1.03238 + 1.94877i
\(897\) 0 0
\(898\) 20.6476 35.7628i 0.689021 1.19342i
\(899\) 6.06870 10.5113i 0.202402 0.350571i
\(900\) 0 0
\(901\) −5.91273 10.2411i −0.196982 0.341182i
\(902\) −3.61243 6.25692i −0.120281 0.208333i
\(903\) 0 0
\(904\) −44.1785 + 76.5194i −1.46936 + 2.54500i
\(905\) −29.1323 −0.968391
\(906\) 0 0
\(907\) 17.0631 0.566572 0.283286 0.959036i \(-0.408575\pi\)
0.283286 + 0.959036i \(0.408575\pi\)
\(908\) 71.6166 + 124.044i 2.37668 + 4.11653i
\(909\) 0 0
\(910\) 31.8683 + 1.16141i 1.05642 + 0.0385002i
\(911\) 11.0007 + 19.0538i 0.364469 + 0.631279i 0.988691 0.149968i \(-0.0479172\pi\)
−0.624222 + 0.781247i \(0.714584\pi\)
\(912\) 0 0
\(913\) 0.815912 + 1.41320i 0.0270027 + 0.0467701i
\(914\) −27.5901 47.7875i −0.912601 1.58067i
\(915\) 0 0
\(916\) −21.6712 37.5357i −0.716037 1.24021i
\(917\) 15.8473 25.2753i 0.523323 0.834664i
\(918\) 0 0
\(919\) 14.7953 + 25.6262i 0.488051 + 0.845329i 0.999906 0.0137429i \(-0.00437462\pi\)
−0.511854 + 0.859072i \(0.671041\pi\)
\(920\) −26.6291 −0.877934
\(921\) 0 0
\(922\) −110.194 −3.62904
\(923\) 18.0796 31.3148i 0.595098 1.03074i
\(924\) 0 0
\(925\) −5.54511 9.60442i −0.182322 0.315791i
\(926\) −13.3745 23.1653i −0.439513 0.761259i
\(927\) 0 0
\(928\) −23.1941 + 40.1734i −0.761385 + 1.31876i
\(929\) −1.34981 + 2.33795i −0.0442860 + 0.0767055i −0.887319 0.461157i \(-0.847435\pi\)
0.843033 + 0.537862i \(0.180768\pi\)
\(930\) 0 0
\(931\) 8.99636 13.2505i 0.294844 0.434268i
\(932\) −72.4992 + 125.572i −2.37479 + 4.11325i
\(933\) 0 0
\(934\) −47.8886 −1.56696
\(935\) 1.40180 2.42800i 0.0458439 0.0794040i
\(936\) 0 0
\(937\) 39.4472 1.28869 0.644343 0.764737i \(-0.277131\pi\)
0.644343 + 0.764737i \(0.277131\pi\)
\(938\) 2.70149 4.30868i 0.0882067 0.140684i
\(939\) 0 0
\(940\) 26.9629 0.879432
\(941\) −19.8622 34.4023i −0.647489 1.12148i −0.983721 0.179705i \(-0.942486\pi\)
0.336232 0.941779i \(-0.390848\pi\)
\(942\) 0 0
\(943\) −8.41411 + 14.5737i −0.274001 + 0.474584i
\(944\) −65.4449 −2.13005
\(945\) 0 0
\(946\) −7.37822 −0.239886
\(947\) 7.86515 13.6228i 0.255583 0.442683i −0.709471 0.704735i \(-0.751066\pi\)
0.965054 + 0.262052i \(0.0843993\pi\)
\(948\) 0 0
\(949\) 16.4084 + 28.4202i 0.532639 + 0.922558i
\(950\) 15.3004 0.496410
\(951\) 0 0
\(952\) 64.6035 + 121.949i 2.09381 + 3.95238i
\(953\) 30.2064 0.978482 0.489241 0.872149i \(-0.337274\pi\)
0.489241 + 0.872149i \(0.337274\pi\)
\(954\) 0 0
\(955\) 6.04216 10.4653i 0.195520 0.338650i
\(956\) −147.344 −4.76546
\(957\) 0 0
\(958\) 31.8683 55.1975i 1.02962 1.78335i
\(959\) 5.30903 8.46754i 0.171438 0.273431i
\(960\) 0 0
\(961\) 3.92766 6.80290i 0.126699 0.219448i
\(962\) 16.9869 29.4222i 0.547681 0.948611i
\(963\) 0 0
\(964\) 59.5697 + 103.178i 1.91861 + 3.32313i
\(965\) 6.08836 + 10.5454i 0.195991 + 0.339467i
\(966\) 0 0
\(967\) 3.09455 5.35992i 0.0995141 0.172364i −0.811970 0.583700i \(-0.801604\pi\)
0.911484 + 0.411336i \(0.134938\pi\)
\(968\) −96.8391 −3.11253
\(969\) 0 0
\(970\) 53.9257 1.73145
\(971\) 1.08582 + 1.88069i 0.0348455 + 0.0603542i 0.882922 0.469519i \(-0.155573\pi\)
−0.848077 + 0.529873i \(0.822239\pi\)
\(972\) 0 0
\(973\) 20.7077 + 39.0888i 0.663858 + 1.25313i
\(974\) −47.0716 81.5304i −1.50827 2.61240i
\(975\) 0 0
\(976\) −50.7094 87.8312i −1.62317 2.81141i
\(977\) 5.72803 + 9.92124i 0.183256 + 0.317409i 0.942987 0.332828i \(-0.108003\pi\)
−0.759732 + 0.650237i \(0.774670\pi\)
\(978\) 0 0
\(979\) 1.40476 + 2.43311i 0.0448962 + 0.0777626i
\(980\) 33.0258 48.6428i 1.05497 1.55384i
\(981\) 0 0
\(982\) −31.3225 54.2522i −0.999541 1.73126i
\(983\) 44.8021 1.42896 0.714482 0.699654i \(-0.246662\pi\)
0.714482 + 0.699654i \(0.246662\pi\)
\(984\) 0 0
\(985\) −29.2051 −0.930550
\(986\) −20.0116 + 34.6611i −0.637300 + 1.10384i
\(987\) 0 0
\(988\) 17.0043 + 29.4524i 0.540980 + 0.937005i
\(989\) 8.59269 + 14.8830i 0.273232 + 0.473251i
\(990\) 0 0
\(991\) 12.1476 21.0403i 0.385882 0.668368i −0.606009 0.795458i \(-0.707230\pi\)
0.991891 + 0.127090i \(0.0405637\pi\)
\(992\) 44.2286 76.6063i 1.40426 2.43225i
\(993\) 0 0
\(994\) −43.0123 81.1921i −1.36427 2.57526i
\(995\) 4.72872 8.19038i 0.149910 0.259653i
\(996\) 0 0
\(997\) −11.3251 −0.358671 −0.179335 0.983788i \(-0.557395\pi\)
−0.179335 + 0.983788i \(0.557395\pi\)
\(998\) 7.18794 12.4499i 0.227530 0.394094i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.h.109.1 6
3.2 odd 2 567.2.g.i.109.3 6
7.2 even 3 567.2.h.i.352.3 6
9.2 odd 6 567.2.h.h.298.1 6
9.4 even 3 189.2.e.e.109.1 6
9.5 odd 6 189.2.e.f.109.3 yes 6
9.7 even 3 567.2.h.i.298.3 6
21.2 odd 6 567.2.h.h.352.1 6
63.2 odd 6 567.2.g.i.541.3 6
63.4 even 3 1323.2.a.ba.1.3 3
63.16 even 3 inner 567.2.g.h.541.1 6
63.23 odd 6 189.2.e.f.163.3 yes 6
63.31 odd 6 1323.2.a.z.1.3 3
63.32 odd 6 1323.2.a.x.1.1 3
63.58 even 3 189.2.e.e.163.1 yes 6
63.59 even 6 1323.2.a.y.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.e.e.109.1 6 9.4 even 3
189.2.e.e.163.1 yes 6 63.58 even 3
189.2.e.f.109.3 yes 6 9.5 odd 6
189.2.e.f.163.3 yes 6 63.23 odd 6
567.2.g.h.109.1 6 1.1 even 1 trivial
567.2.g.h.541.1 6 63.16 even 3 inner
567.2.g.i.109.3 6 3.2 odd 2
567.2.g.i.541.3 6 63.2 odd 6
567.2.h.h.298.1 6 9.2 odd 6
567.2.h.h.352.1 6 21.2 odd 6
567.2.h.i.298.3 6 9.7 even 3
567.2.h.i.352.3 6 7.2 even 3
1323.2.a.x.1.1 3 63.32 odd 6
1323.2.a.y.1.1 3 63.59 even 6
1323.2.a.z.1.3 3 63.31 odd 6
1323.2.a.ba.1.3 3 63.4 even 3