Properties

 Label 567.2.g.d Level $567$ Weight $2$ Character orbit 567.g Analytic conductor $4.528$ Analytic rank $0$ Dimension $2$ CM discriminant -3 Inner twists $4$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [567,2,Mod(109,567)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(567, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([2, 4]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("567.109");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$567 = 3^{4} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 567.g (of order $$3$$, degree $$2$$, not minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$4.52751779461$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 63) Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 2 \zeta_{6} q^{4} + ( - \zeta_{6} + 3) q^{7}+O(q^{10})$$ q + 2*z * q^4 + (-z + 3) * q^7 $$q + 2 \zeta_{6} q^{4} + ( - \zeta_{6} + 3) q^{7} + ( - 7 \zeta_{6} + 7) q^{13} + (4 \zeta_{6} - 4) q^{16} + 7 \zeta_{6} q^{19} - 5 q^{25} + (4 \zeta_{6} + 2) q^{28} + 7 \zeta_{6} q^{31} + \zeta_{6} q^{37} - 5 \zeta_{6} q^{43} + ( - 5 \zeta_{6} + 8) q^{49} + 14 q^{52} + (14 \zeta_{6} - 14) q^{61} - 8 q^{64} - 11 \zeta_{6} q^{67} + ( - 7 \zeta_{6} + 7) q^{73} + (14 \zeta_{6} - 14) q^{76} + ( - 13 \zeta_{6} + 13) q^{79} + ( - 21 \zeta_{6} + 14) q^{91} - 14 \zeta_{6} q^{97} +O(q^{100})$$ q + 2*z * q^4 + (-z + 3) * q^7 + (-7*z + 7) * q^13 + (4*z - 4) * q^16 + 7*z * q^19 - 5 * q^25 + (4*z + 2) * q^28 + 7*z * q^31 + z * q^37 - 5*z * q^43 + (-5*z + 8) * q^49 + 14 * q^52 + (14*z - 14) * q^61 - 8 * q^64 - 11*z * q^67 + (-7*z + 7) * q^73 + (14*z - 14) * q^76 + (-13*z + 13) * q^79 + (-21*z + 14) * q^91 - 14*z * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{4} + 5 q^{7}+O(q^{10})$$ 2 * q + 2 * q^4 + 5 * q^7 $$2 q + 2 q^{4} + 5 q^{7} + 7 q^{13} - 4 q^{16} + 7 q^{19} - 10 q^{25} + 8 q^{28} + 7 q^{31} + q^{37} - 5 q^{43} + 11 q^{49} + 28 q^{52} - 14 q^{61} - 16 q^{64} - 11 q^{67} + 7 q^{73} - 14 q^{76} + 13 q^{79} + 7 q^{91} - 14 q^{97}+O(q^{100})$$ 2 * q + 2 * q^4 + 5 * q^7 + 7 * q^13 - 4 * q^16 + 7 * q^19 - 10 * q^25 + 8 * q^28 + 7 * q^31 + q^37 - 5 * q^43 + 11 * q^49 + 28 * q^52 - 14 * q^61 - 16 * q^64 - 11 * q^67 + 7 * q^73 - 14 * q^76 + 13 * q^79 + 7 * q^91 - 14 * q^97

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/567\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$407$$ $$\chi(n)$$ $$-\zeta_{6}$$ $$-1 + \zeta_{6}$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
109.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 0 1.00000 + 1.73205i 0 0 2.50000 0.866025i 0 0 0
541.1 0 0 1.00000 1.73205i 0 0 2.50000 + 0.866025i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
63.g even 3 1 inner
63.n odd 6 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 567.2.g.d 2
3.b odd 2 1 CM 567.2.g.d 2
7.c even 3 1 567.2.h.c 2
9.c even 3 1 63.2.e.a 2
9.c even 3 1 567.2.h.c 2
9.d odd 6 1 63.2.e.a 2
9.d odd 6 1 567.2.h.c 2
21.h odd 6 1 567.2.h.c 2
36.f odd 6 1 1008.2.s.j 2
36.h even 6 1 1008.2.s.j 2
63.g even 3 1 441.2.a.d 1
63.g even 3 1 inner 567.2.g.d 2
63.h even 3 1 63.2.e.a 2
63.i even 6 1 441.2.e.c 2
63.j odd 6 1 63.2.e.a 2
63.k odd 6 1 441.2.a.e 1
63.l odd 6 1 441.2.e.c 2
63.n odd 6 1 441.2.a.d 1
63.n odd 6 1 inner 567.2.g.d 2
63.o even 6 1 441.2.e.c 2
63.s even 6 1 441.2.a.e 1
63.t odd 6 1 441.2.e.c 2
252.n even 6 1 7056.2.a.bf 1
252.o even 6 1 7056.2.a.y 1
252.u odd 6 1 1008.2.s.j 2
252.bb even 6 1 1008.2.s.j 2
252.bl odd 6 1 7056.2.a.y 1
252.bn odd 6 1 7056.2.a.bf 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.e.a 2 9.c even 3 1
63.2.e.a 2 9.d odd 6 1
63.2.e.a 2 63.h even 3 1
63.2.e.a 2 63.j odd 6 1
441.2.a.d 1 63.g even 3 1
441.2.a.d 1 63.n odd 6 1
441.2.a.e 1 63.k odd 6 1
441.2.a.e 1 63.s even 6 1
441.2.e.c 2 63.i even 6 1
441.2.e.c 2 63.l odd 6 1
441.2.e.c 2 63.o even 6 1
441.2.e.c 2 63.t odd 6 1
567.2.g.d 2 1.a even 1 1 trivial
567.2.g.d 2 3.b odd 2 1 CM
567.2.g.d 2 63.g even 3 1 inner
567.2.g.d 2 63.n odd 6 1 inner
567.2.h.c 2 7.c even 3 1
567.2.h.c 2 9.c even 3 1
567.2.h.c 2 9.d odd 6 1
567.2.h.c 2 21.h odd 6 1
1008.2.s.j 2 36.f odd 6 1
1008.2.s.j 2 36.h even 6 1
1008.2.s.j 2 252.u odd 6 1
1008.2.s.j 2 252.bb even 6 1
7056.2.a.y 1 252.o even 6 1
7056.2.a.y 1 252.bl odd 6 1
7056.2.a.bf 1 252.n even 6 1
7056.2.a.bf 1 252.bn odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(567, [\chi])$$:

 $$T_{2}$$ T2 $$T_{13}^{2} - 7T_{13} + 49$$ T13^2 - 7*T13 + 49

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2} - 5T + 7$$
$11$ $$T^{2}$$
$13$ $$T^{2} - 7T + 49$$
$17$ $$T^{2}$$
$19$ $$T^{2} - 7T + 49$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$T^{2} - 7T + 49$$
$37$ $$T^{2} - T + 1$$
$41$ $$T^{2}$$
$43$ $$T^{2} + 5T + 25$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$T^{2} + 14T + 196$$
$67$ $$T^{2} + 11T + 121$$
$71$ $$T^{2}$$
$73$ $$T^{2} - 7T + 49$$
$79$ $$T^{2} - 13T + 169$$
$83$ $$T^{2}$$
$89$ $$T^{2}$$
$97$ $$T^{2} + 14T + 196$$