Properties

Label 567.2.g.b.541.1
Level $567$
Weight $2$
Character 567.541
Analytic conductor $4.528$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(109,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 567.541
Dual form 567.2.g.b.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{4} -4.00000 q^{5} +(0.500000 + 2.59808i) q^{7} -3.00000 q^{8} +(2.00000 + 3.46410i) q^{10} +2.00000 q^{11} +(-0.500000 - 0.866025i) q^{13} +(2.00000 - 1.73205i) q^{14} +(0.500000 + 0.866025i) q^{16} +(3.00000 + 5.19615i) q^{17} +(-2.00000 + 3.46410i) q^{19} +(-2.00000 + 3.46410i) q^{20} +(-1.00000 - 1.73205i) q^{22} +6.00000 q^{23} +11.0000 q^{25} +(-0.500000 + 0.866025i) q^{26} +(2.50000 + 0.866025i) q^{28} +(-1.00000 + 1.73205i) q^{29} +(-1.50000 + 2.59808i) q^{31} +(-2.50000 + 4.33013i) q^{32} +(3.00000 - 5.19615i) q^{34} +(-2.00000 - 10.3923i) q^{35} +(-1.50000 + 2.59808i) q^{37} +4.00000 q^{38} +12.0000 q^{40} +(1.00000 + 1.73205i) q^{41} +(0.500000 - 0.866025i) q^{43} +(1.00000 - 1.73205i) q^{44} +(-3.00000 - 5.19615i) q^{46} +(-3.00000 - 5.19615i) q^{47} +(-6.50000 + 2.59808i) q^{49} +(-5.50000 - 9.52628i) q^{50} -1.00000 q^{52} +(3.00000 + 5.19615i) q^{53} -8.00000 q^{55} +(-1.50000 - 7.79423i) q^{56} +2.00000 q^{58} +(-3.00000 + 5.19615i) q^{59} +(2.50000 + 4.33013i) q^{61} +3.00000 q^{62} +7.00000 q^{64} +(2.00000 + 3.46410i) q^{65} +(-3.50000 + 6.06218i) q^{67} +6.00000 q^{68} +(-8.00000 + 6.92820i) q^{70} +(3.00000 + 5.19615i) q^{73} +3.00000 q^{74} +(2.00000 + 3.46410i) q^{76} +(1.00000 + 5.19615i) q^{77} +(-5.50000 - 9.52628i) q^{79} +(-2.00000 - 3.46410i) q^{80} +(1.00000 - 1.73205i) q^{82} +(-3.00000 + 5.19615i) q^{83} +(-12.0000 - 20.7846i) q^{85} -1.00000 q^{86} -6.00000 q^{88} +(2.00000 - 3.46410i) q^{89} +(2.00000 - 1.73205i) q^{91} +(3.00000 - 5.19615i) q^{92} +(-3.00000 + 5.19615i) q^{94} +(8.00000 - 13.8564i) q^{95} +(-4.50000 + 7.79423i) q^{97} +(5.50000 + 4.33013i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{4} - 8 q^{5} + q^{7} - 6 q^{8} + 4 q^{10} + 4 q^{11} - q^{13} + 4 q^{14} + q^{16} + 6 q^{17} - 4 q^{19} - 4 q^{20} - 2 q^{22} + 12 q^{23} + 22 q^{25} - q^{26} + 5 q^{28} - 2 q^{29}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i 0.633316 0.773893i \(-0.281693\pi\)
−0.986869 + 0.161521i \(0.948360\pi\)
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) −3.00000 −1.06066
\(9\) 0 0
\(10\) 2.00000 + 3.46410i 0.632456 + 1.09545i
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i 0.788320 0.615265i \(-0.210951\pi\)
−0.926995 + 0.375073i \(0.877618\pi\)
\(14\) 2.00000 1.73205i 0.534522 0.462910i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 3.00000 + 5.19615i 0.727607 + 1.26025i 0.957892 + 0.287129i \(0.0927008\pi\)
−0.230285 + 0.973123i \(0.573966\pi\)
\(18\) 0 0
\(19\) −2.00000 + 3.46410i −0.458831 + 0.794719i −0.998899 0.0469020i \(-0.985065\pi\)
0.540068 + 0.841621i \(0.318398\pi\)
\(20\) −2.00000 + 3.46410i −0.447214 + 0.774597i
\(21\) 0 0
\(22\) −1.00000 1.73205i −0.213201 0.369274i
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) −0.500000 + 0.866025i −0.0980581 + 0.169842i
\(27\) 0 0
\(28\) 2.50000 + 0.866025i 0.472456 + 0.163663i
\(29\) −1.00000 + 1.73205i −0.185695 + 0.321634i −0.943811 0.330487i \(-0.892787\pi\)
0.758115 + 0.652121i \(0.226120\pi\)
\(30\) 0 0
\(31\) −1.50000 + 2.59808i −0.269408 + 0.466628i −0.968709 0.248199i \(-0.920161\pi\)
0.699301 + 0.714827i \(0.253495\pi\)
\(32\) −2.50000 + 4.33013i −0.441942 + 0.765466i
\(33\) 0 0
\(34\) 3.00000 5.19615i 0.514496 0.891133i
\(35\) −2.00000 10.3923i −0.338062 1.75662i
\(36\) 0 0
\(37\) −1.50000 + 2.59808i −0.246598 + 0.427121i −0.962580 0.270998i \(-0.912646\pi\)
0.715981 + 0.698119i \(0.245980\pi\)
\(38\) 4.00000 0.648886
\(39\) 0 0
\(40\) 12.0000 1.89737
\(41\) 1.00000 + 1.73205i 0.156174 + 0.270501i 0.933486 0.358614i \(-0.116751\pi\)
−0.777312 + 0.629115i \(0.783417\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 1.00000 1.73205i 0.150756 0.261116i
\(45\) 0 0
\(46\) −3.00000 5.19615i −0.442326 0.766131i
\(47\) −3.00000 5.19615i −0.437595 0.757937i 0.559908 0.828554i \(-0.310836\pi\)
−0.997503 + 0.0706177i \(0.977503\pi\)
\(48\) 0 0
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) −5.50000 9.52628i −0.777817 1.34722i
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) 3.00000 + 5.19615i 0.412082 + 0.713746i 0.995117 0.0987002i \(-0.0314685\pi\)
−0.583036 + 0.812447i \(0.698135\pi\)
\(54\) 0 0
\(55\) −8.00000 −1.07872
\(56\) −1.50000 7.79423i −0.200446 1.04155i
\(57\) 0 0
\(58\) 2.00000 0.262613
\(59\) −3.00000 + 5.19615i −0.390567 + 0.676481i −0.992524 0.122047i \(-0.961054\pi\)
0.601958 + 0.798528i \(0.294388\pi\)
\(60\) 0 0
\(61\) 2.50000 + 4.33013i 0.320092 + 0.554416i 0.980507 0.196485i \(-0.0629528\pi\)
−0.660415 + 0.750901i \(0.729619\pi\)
\(62\) 3.00000 0.381000
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 2.00000 + 3.46410i 0.248069 + 0.429669i
\(66\) 0 0
\(67\) −3.50000 + 6.06218i −0.427593 + 0.740613i −0.996659 0.0816792i \(-0.973972\pi\)
0.569066 + 0.822292i \(0.307305\pi\)
\(68\) 6.00000 0.727607
\(69\) 0 0
\(70\) −8.00000 + 6.92820i −0.956183 + 0.828079i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 3.00000 + 5.19615i 0.351123 + 0.608164i 0.986447 0.164083i \(-0.0524664\pi\)
−0.635323 + 0.772246i \(0.719133\pi\)
\(74\) 3.00000 0.348743
\(75\) 0 0
\(76\) 2.00000 + 3.46410i 0.229416 + 0.397360i
\(77\) 1.00000 + 5.19615i 0.113961 + 0.592157i
\(78\) 0 0
\(79\) −5.50000 9.52628i −0.618798 1.07179i −0.989705 0.143120i \(-0.954286\pi\)
0.370907 0.928670i \(-0.379047\pi\)
\(80\) −2.00000 3.46410i −0.223607 0.387298i
\(81\) 0 0
\(82\) 1.00000 1.73205i 0.110432 0.191273i
\(83\) −3.00000 + 5.19615i −0.329293 + 0.570352i −0.982372 0.186938i \(-0.940144\pi\)
0.653079 + 0.757290i \(0.273477\pi\)
\(84\) 0 0
\(85\) −12.0000 20.7846i −1.30158 2.25441i
\(86\) −1.00000 −0.107833
\(87\) 0 0
\(88\) −6.00000 −0.639602
\(89\) 2.00000 3.46410i 0.212000 0.367194i −0.740341 0.672232i \(-0.765336\pi\)
0.952340 + 0.305038i \(0.0986691\pi\)
\(90\) 0 0
\(91\) 2.00000 1.73205i 0.209657 0.181568i
\(92\) 3.00000 5.19615i 0.312772 0.541736i
\(93\) 0 0
\(94\) −3.00000 + 5.19615i −0.309426 + 0.535942i
\(95\) 8.00000 13.8564i 0.820783 1.42164i
\(96\) 0 0
\(97\) −4.50000 + 7.79423i −0.456906 + 0.791384i −0.998796 0.0490655i \(-0.984376\pi\)
0.541890 + 0.840450i \(0.317709\pi\)
\(98\) 5.50000 + 4.33013i 0.555584 + 0.437409i
\(99\) 0 0
\(100\) 5.50000 9.52628i 0.550000 0.952628i
\(101\) −8.00000 −0.796030 −0.398015 0.917379i \(-0.630301\pi\)
−0.398015 + 0.917379i \(0.630301\pi\)
\(102\) 0 0
\(103\) 17.0000 1.67506 0.837530 0.546392i \(-0.183999\pi\)
0.837530 + 0.546392i \(0.183999\pi\)
\(104\) 1.50000 + 2.59808i 0.147087 + 0.254762i
\(105\) 0 0
\(106\) 3.00000 5.19615i 0.291386 0.504695i
\(107\) −1.00000 + 1.73205i −0.0966736 + 0.167444i −0.910306 0.413936i \(-0.864154\pi\)
0.813632 + 0.581380i \(0.197487\pi\)
\(108\) 0 0
\(109\) −4.50000 7.79423i −0.431022 0.746552i 0.565940 0.824447i \(-0.308513\pi\)
−0.996962 + 0.0778949i \(0.975180\pi\)
\(110\) 4.00000 + 6.92820i 0.381385 + 0.660578i
\(111\) 0 0
\(112\) −2.00000 + 1.73205i −0.188982 + 0.163663i
\(113\) 8.00000 + 13.8564i 0.752577 + 1.30350i 0.946570 + 0.322498i \(0.104523\pi\)
−0.193993 + 0.981003i \(0.562144\pi\)
\(114\) 0 0
\(115\) −24.0000 −2.23801
\(116\) 1.00000 + 1.73205i 0.0928477 + 0.160817i
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) −12.0000 + 10.3923i −1.10004 + 0.952661i
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 2.50000 4.33013i 0.226339 0.392031i
\(123\) 0 0
\(124\) 1.50000 + 2.59808i 0.134704 + 0.233314i
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) −9.00000 −0.798621 −0.399310 0.916816i \(-0.630750\pi\)
−0.399310 + 0.916816i \(0.630750\pi\)
\(128\) 1.50000 + 2.59808i 0.132583 + 0.229640i
\(129\) 0 0
\(130\) 2.00000 3.46410i 0.175412 0.303822i
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) −10.0000 3.46410i −0.867110 0.300376i
\(134\) 7.00000 0.604708
\(135\) 0 0
\(136\) −9.00000 15.5885i −0.771744 1.33670i
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) −4.50000 7.79423i −0.381685 0.661098i 0.609618 0.792695i \(-0.291323\pi\)
−0.991303 + 0.131597i \(0.957989\pi\)
\(140\) −10.0000 3.46410i −0.845154 0.292770i
\(141\) 0 0
\(142\) 0 0
\(143\) −1.00000 1.73205i −0.0836242 0.144841i
\(144\) 0 0
\(145\) 4.00000 6.92820i 0.332182 0.575356i
\(146\) 3.00000 5.19615i 0.248282 0.430037i
\(147\) 0 0
\(148\) 1.50000 + 2.59808i 0.123299 + 0.213561i
\(149\) −24.0000 −1.96616 −0.983078 0.183186i \(-0.941359\pi\)
−0.983078 + 0.183186i \(0.941359\pi\)
\(150\) 0 0
\(151\) 5.00000 0.406894 0.203447 0.979086i \(-0.434786\pi\)
0.203447 + 0.979086i \(0.434786\pi\)
\(152\) 6.00000 10.3923i 0.486664 0.842927i
\(153\) 0 0
\(154\) 4.00000 3.46410i 0.322329 0.279145i
\(155\) 6.00000 10.3923i 0.481932 0.834730i
\(156\) 0 0
\(157\) −5.00000 + 8.66025i −0.399043 + 0.691164i −0.993608 0.112884i \(-0.963991\pi\)
0.594565 + 0.804048i \(0.297324\pi\)
\(158\) −5.50000 + 9.52628i −0.437557 + 0.757870i
\(159\) 0 0
\(160\) 10.0000 17.3205i 0.790569 1.36931i
\(161\) 3.00000 + 15.5885i 0.236433 + 1.22854i
\(162\) 0 0
\(163\) −9.50000 + 16.4545i −0.744097 + 1.28881i 0.206518 + 0.978443i \(0.433787\pi\)
−0.950615 + 0.310372i \(0.899546\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) −7.00000 12.1244i −0.541676 0.938211i −0.998808 0.0488118i \(-0.984457\pi\)
0.457132 0.889399i \(-0.348877\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) −12.0000 + 20.7846i −0.920358 + 1.59411i
\(171\) 0 0
\(172\) −0.500000 0.866025i −0.0381246 0.0660338i
\(173\) −8.00000 13.8564i −0.608229 1.05348i −0.991532 0.129861i \(-0.958547\pi\)
0.383304 0.923622i \(-0.374786\pi\)
\(174\) 0 0
\(175\) 5.50000 + 28.5788i 0.415761 + 2.16036i
\(176\) 1.00000 + 1.73205i 0.0753778 + 0.130558i
\(177\) 0 0
\(178\) −4.00000 −0.299813
\(179\) −2.00000 3.46410i −0.149487 0.258919i 0.781551 0.623841i \(-0.214429\pi\)
−0.931038 + 0.364922i \(0.881096\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) −2.50000 0.866025i −0.185312 0.0641941i
\(183\) 0 0
\(184\) −18.0000 −1.32698
\(185\) 6.00000 10.3923i 0.441129 0.764057i
\(186\) 0 0
\(187\) 6.00000 + 10.3923i 0.438763 + 0.759961i
\(188\) −6.00000 −0.437595
\(189\) 0 0
\(190\) −16.0000 −1.16076
\(191\) 2.00000 + 3.46410i 0.144715 + 0.250654i 0.929267 0.369410i \(-0.120440\pi\)
−0.784552 + 0.620063i \(0.787107\pi\)
\(192\) 0 0
\(193\) 12.5000 21.6506i 0.899770 1.55845i 0.0719816 0.997406i \(-0.477068\pi\)
0.827788 0.561041i \(-0.189599\pi\)
\(194\) 9.00000 0.646162
\(195\) 0 0
\(196\) −1.00000 + 6.92820i −0.0714286 + 0.494872i
\(197\) 20.0000 1.42494 0.712470 0.701702i \(-0.247576\pi\)
0.712470 + 0.701702i \(0.247576\pi\)
\(198\) 0 0
\(199\) 4.50000 + 7.79423i 0.318997 + 0.552518i 0.980279 0.197619i \(-0.0633208\pi\)
−0.661282 + 0.750137i \(0.729987\pi\)
\(200\) −33.0000 −2.33345
\(201\) 0 0
\(202\) 4.00000 + 6.92820i 0.281439 + 0.487467i
\(203\) −5.00000 1.73205i −0.350931 0.121566i
\(204\) 0 0
\(205\) −4.00000 6.92820i −0.279372 0.483887i
\(206\) −8.50000 14.7224i −0.592223 1.02576i
\(207\) 0 0
\(208\) 0.500000 0.866025i 0.0346688 0.0600481i
\(209\) −4.00000 + 6.92820i −0.276686 + 0.479234i
\(210\) 0 0
\(211\) 2.50000 + 4.33013i 0.172107 + 0.298098i 0.939156 0.343490i \(-0.111609\pi\)
−0.767049 + 0.641588i \(0.778276\pi\)
\(212\) 6.00000 0.412082
\(213\) 0 0
\(214\) 2.00000 0.136717
\(215\) −2.00000 + 3.46410i −0.136399 + 0.236250i
\(216\) 0 0
\(217\) −7.50000 2.59808i −0.509133 0.176369i
\(218\) −4.50000 + 7.79423i −0.304778 + 0.527892i
\(219\) 0 0
\(220\) −4.00000 + 6.92820i −0.269680 + 0.467099i
\(221\) 3.00000 5.19615i 0.201802 0.349531i
\(222\) 0 0
\(223\) −8.00000 + 13.8564i −0.535720 + 0.927894i 0.463409 + 0.886145i \(0.346626\pi\)
−0.999128 + 0.0417488i \(0.986707\pi\)
\(224\) −12.5000 4.33013i −0.835191 0.289319i
\(225\) 0 0
\(226\) 8.00000 13.8564i 0.532152 0.921714i
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 0 0
\(229\) −7.00000 −0.462573 −0.231287 0.972886i \(-0.574293\pi\)
−0.231287 + 0.972886i \(0.574293\pi\)
\(230\) 12.0000 + 20.7846i 0.791257 + 1.37050i
\(231\) 0 0
\(232\) 3.00000 5.19615i 0.196960 0.341144i
\(233\) 12.0000 20.7846i 0.786146 1.36165i −0.142166 0.989843i \(-0.545407\pi\)
0.928312 0.371802i \(-0.121260\pi\)
\(234\) 0 0
\(235\) 12.0000 + 20.7846i 0.782794 + 1.35584i
\(236\) 3.00000 + 5.19615i 0.195283 + 0.338241i
\(237\) 0 0
\(238\) 15.0000 + 5.19615i 0.972306 + 0.336817i
\(239\) 6.00000 + 10.3923i 0.388108 + 0.672222i 0.992195 0.124696i \(-0.0397955\pi\)
−0.604087 + 0.796918i \(0.706462\pi\)
\(240\) 0 0
\(241\) 17.0000 1.09507 0.547533 0.836784i \(-0.315567\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) 3.50000 + 6.06218i 0.224989 + 0.389692i
\(243\) 0 0
\(244\) 5.00000 0.320092
\(245\) 26.0000 10.3923i 1.66108 0.663940i
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 4.50000 7.79423i 0.285750 0.494934i
\(249\) 0 0
\(250\) 12.0000 + 20.7846i 0.758947 + 1.31453i
\(251\) 26.0000 1.64111 0.820553 0.571571i \(-0.193666\pi\)
0.820553 + 0.571571i \(0.193666\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 4.50000 + 7.79423i 0.282355 + 0.489053i
\(255\) 0 0
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) 10.0000 0.623783 0.311891 0.950118i \(-0.399037\pi\)
0.311891 + 0.950118i \(0.399037\pi\)
\(258\) 0 0
\(259\) −7.50000 2.59808i −0.466027 0.161437i
\(260\) 4.00000 0.248069
\(261\) 0 0
\(262\) 2.00000 + 3.46410i 0.123560 + 0.214013i
\(263\) 2.00000 0.123325 0.0616626 0.998097i \(-0.480360\pi\)
0.0616626 + 0.998097i \(0.480360\pi\)
\(264\) 0 0
\(265\) −12.0000 20.7846i −0.737154 1.27679i
\(266\) 2.00000 + 10.3923i 0.122628 + 0.637193i
\(267\) 0 0
\(268\) 3.50000 + 6.06218i 0.213797 + 0.370306i
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 0 0
\(271\) 5.50000 9.52628i 0.334101 0.578680i −0.649211 0.760609i \(-0.724901\pi\)
0.983312 + 0.181928i \(0.0582339\pi\)
\(272\) −3.00000 + 5.19615i −0.181902 + 0.315063i
\(273\) 0 0
\(274\) −9.00000 15.5885i −0.543710 0.941733i
\(275\) 22.0000 1.32665
\(276\) 0 0
\(277\) 13.0000 0.781094 0.390547 0.920583i \(-0.372286\pi\)
0.390547 + 0.920583i \(0.372286\pi\)
\(278\) −4.50000 + 7.79423i −0.269892 + 0.467467i
\(279\) 0 0
\(280\) 6.00000 + 31.1769i 0.358569 + 1.86318i
\(281\) −8.00000 + 13.8564i −0.477240 + 0.826604i −0.999660 0.0260845i \(-0.991696\pi\)
0.522420 + 0.852688i \(0.325029\pi\)
\(282\) 0 0
\(283\) 2.50000 4.33013i 0.148610 0.257399i −0.782104 0.623148i \(-0.785854\pi\)
0.930714 + 0.365748i \(0.119187\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −1.00000 + 1.73205i −0.0591312 + 0.102418i
\(287\) −4.00000 + 3.46410i −0.236113 + 0.204479i
\(288\) 0 0
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) −8.00000 −0.469776
\(291\) 0 0
\(292\) 6.00000 0.351123
\(293\) −11.0000 19.0526i −0.642627 1.11306i −0.984844 0.173442i \(-0.944511\pi\)
0.342217 0.939621i \(-0.388822\pi\)
\(294\) 0 0
\(295\) 12.0000 20.7846i 0.698667 1.21013i
\(296\) 4.50000 7.79423i 0.261557 0.453030i
\(297\) 0 0
\(298\) 12.0000 + 20.7846i 0.695141 + 1.20402i
\(299\) −3.00000 5.19615i −0.173494 0.300501i
\(300\) 0 0
\(301\) 2.50000 + 0.866025i 0.144098 + 0.0499169i
\(302\) −2.50000 4.33013i −0.143859 0.249171i
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) −10.0000 17.3205i −0.572598 0.991769i
\(306\) 0 0
\(307\) 25.0000 1.42683 0.713413 0.700744i \(-0.247149\pi\)
0.713413 + 0.700744i \(0.247149\pi\)
\(308\) 5.00000 + 1.73205i 0.284901 + 0.0986928i
\(309\) 0 0
\(310\) −12.0000 −0.681554
\(311\) −12.0000 + 20.7846i −0.680458 + 1.17859i 0.294384 + 0.955687i \(0.404886\pi\)
−0.974841 + 0.222900i \(0.928448\pi\)
\(312\) 0 0
\(313\) 11.0000 + 19.0526i 0.621757 + 1.07691i 0.989158 + 0.146852i \(0.0469141\pi\)
−0.367402 + 0.930062i \(0.619753\pi\)
\(314\) 10.0000 0.564333
\(315\) 0 0
\(316\) −11.0000 −0.618798
\(317\) −15.0000 25.9808i −0.842484 1.45922i −0.887788 0.460252i \(-0.847759\pi\)
0.0453045 0.998973i \(-0.485574\pi\)
\(318\) 0 0
\(319\) −2.00000 + 3.46410i −0.111979 + 0.193952i
\(320\) −28.0000 −1.56525
\(321\) 0 0
\(322\) 12.0000 10.3923i 0.668734 0.579141i
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) −5.50000 9.52628i −0.305085 0.528423i
\(326\) 19.0000 1.05231
\(327\) 0 0
\(328\) −3.00000 5.19615i −0.165647 0.286910i
\(329\) 12.0000 10.3923i 0.661581 0.572946i
\(330\) 0 0
\(331\) 14.0000 + 24.2487i 0.769510 + 1.33283i 0.937829 + 0.347097i \(0.112833\pi\)
−0.168320 + 0.985732i \(0.553834\pi\)
\(332\) 3.00000 + 5.19615i 0.164646 + 0.285176i
\(333\) 0 0
\(334\) −7.00000 + 12.1244i −0.383023 + 0.663415i
\(335\) 14.0000 24.2487i 0.764902 1.32485i
\(336\) 0 0
\(337\) −5.00000 8.66025i −0.272367 0.471754i 0.697100 0.716974i \(-0.254473\pi\)
−0.969468 + 0.245220i \(0.921140\pi\)
\(338\) −12.0000 −0.652714
\(339\) 0 0
\(340\) −24.0000 −1.30158
\(341\) −3.00000 + 5.19615i −0.162459 + 0.281387i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) −1.50000 + 2.59808i −0.0808746 + 0.140079i
\(345\) 0 0
\(346\) −8.00000 + 13.8564i −0.430083 + 0.744925i
\(347\) −8.00000 + 13.8564i −0.429463 + 0.743851i −0.996826 0.0796169i \(-0.974630\pi\)
0.567363 + 0.823468i \(0.307964\pi\)
\(348\) 0 0
\(349\) 2.50000 4.33013i 0.133822 0.231786i −0.791325 0.611396i \(-0.790608\pi\)
0.925147 + 0.379610i \(0.123942\pi\)
\(350\) 22.0000 19.0526i 1.17595 1.01840i
\(351\) 0 0
\(352\) −5.00000 + 8.66025i −0.266501 + 0.461593i
\(353\) −28.0000 −1.49029 −0.745145 0.666903i \(-0.767620\pi\)
−0.745145 + 0.666903i \(0.767620\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −2.00000 3.46410i −0.106000 0.183597i
\(357\) 0 0
\(358\) −2.00000 + 3.46410i −0.105703 + 0.183083i
\(359\) −11.0000 + 19.0526i −0.580558 + 1.00556i 0.414855 + 0.909887i \(0.363832\pi\)
−0.995413 + 0.0956683i \(0.969501\pi\)
\(360\) 0 0
\(361\) 1.50000 + 2.59808i 0.0789474 + 0.136741i
\(362\) 1.00000 + 1.73205i 0.0525588 + 0.0910346i
\(363\) 0 0
\(364\) −0.500000 2.59808i −0.0262071 0.136176i
\(365\) −12.0000 20.7846i −0.628109 1.08792i
\(366\) 0 0
\(367\) 12.0000 0.626395 0.313197 0.949688i \(-0.398600\pi\)
0.313197 + 0.949688i \(0.398600\pi\)
\(368\) 3.00000 + 5.19615i 0.156386 + 0.270868i
\(369\) 0 0
\(370\) −12.0000 −0.623850
\(371\) −12.0000 + 10.3923i −0.623009 + 0.539542i
\(372\) 0 0
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 6.00000 10.3923i 0.310253 0.537373i
\(375\) 0 0
\(376\) 9.00000 + 15.5885i 0.464140 + 0.803913i
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) −9.00000 −0.462299 −0.231149 0.972918i \(-0.574249\pi\)
−0.231149 + 0.972918i \(0.574249\pi\)
\(380\) −8.00000 13.8564i −0.410391 0.710819i
\(381\) 0 0
\(382\) 2.00000 3.46410i 0.102329 0.177239i
\(383\) −18.0000 −0.919757 −0.459879 0.887982i \(-0.652107\pi\)
−0.459879 + 0.887982i \(0.652107\pi\)
\(384\) 0 0
\(385\) −4.00000 20.7846i −0.203859 1.05928i
\(386\) −25.0000 −1.27247
\(387\) 0 0
\(388\) 4.50000 + 7.79423i 0.228453 + 0.395692i
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) 18.0000 + 31.1769i 0.910299 + 1.57668i
\(392\) 19.5000 7.79423i 0.984899 0.393668i
\(393\) 0 0
\(394\) −10.0000 17.3205i −0.503793 0.872595i
\(395\) 22.0000 + 38.1051i 1.10694 + 1.91728i
\(396\) 0 0
\(397\) 16.5000 28.5788i 0.828111 1.43433i −0.0714068 0.997447i \(-0.522749\pi\)
0.899518 0.436884i \(-0.143918\pi\)
\(398\) 4.50000 7.79423i 0.225565 0.390689i
\(399\) 0 0
\(400\) 5.50000 + 9.52628i 0.275000 + 0.476314i
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) 3.00000 0.149441
\(404\) −4.00000 + 6.92820i −0.199007 + 0.344691i
\(405\) 0 0
\(406\) 1.00000 + 5.19615i 0.0496292 + 0.257881i
\(407\) −3.00000 + 5.19615i −0.148704 + 0.257564i
\(408\) 0 0
\(409\) −2.50000 + 4.33013i −0.123617 + 0.214111i −0.921192 0.389109i \(-0.872783\pi\)
0.797574 + 0.603220i \(0.206116\pi\)
\(410\) −4.00000 + 6.92820i −0.197546 + 0.342160i
\(411\) 0 0
\(412\) 8.50000 14.7224i 0.418765 0.725322i
\(413\) −15.0000 5.19615i −0.738102 0.255686i
\(414\) 0 0
\(415\) 12.0000 20.7846i 0.589057 1.02028i
\(416\) 5.00000 0.245145
\(417\) 0 0
\(418\) 8.00000 0.391293
\(419\) 6.00000 + 10.3923i 0.293119 + 0.507697i 0.974546 0.224189i \(-0.0719734\pi\)
−0.681426 + 0.731887i \(0.738640\pi\)
\(420\) 0 0
\(421\) 5.00000 8.66025i 0.243685 0.422075i −0.718076 0.695965i \(-0.754977\pi\)
0.961761 + 0.273890i \(0.0883103\pi\)
\(422\) 2.50000 4.33013i 0.121698 0.210787i
\(423\) 0 0
\(424\) −9.00000 15.5885i −0.437079 0.757042i
\(425\) 33.0000 + 57.1577i 1.60074 + 2.77255i
\(426\) 0 0
\(427\) −10.0000 + 8.66025i −0.483934 + 0.419099i
\(428\) 1.00000 + 1.73205i 0.0483368 + 0.0837218i
\(429\) 0 0
\(430\) 4.00000 0.192897
\(431\) −9.00000 15.5885i −0.433515 0.750870i 0.563658 0.826008i \(-0.309393\pi\)
−0.997173 + 0.0751385i \(0.976060\pi\)
\(432\) 0 0
\(433\) −17.0000 −0.816968 −0.408484 0.912766i \(-0.633942\pi\)
−0.408484 + 0.912766i \(0.633942\pi\)
\(434\) 1.50000 + 7.79423i 0.0720023 + 0.374135i
\(435\) 0 0
\(436\) −9.00000 −0.431022
\(437\) −12.0000 + 20.7846i −0.574038 + 0.994263i
\(438\) 0 0
\(439\) −12.0000 20.7846i −0.572729 0.991995i −0.996284 0.0861252i \(-0.972552\pi\)
0.423556 0.905870i \(-0.360782\pi\)
\(440\) 24.0000 1.14416
\(441\) 0 0
\(442\) −6.00000 −0.285391
\(443\) 12.0000 + 20.7846i 0.570137 + 0.987507i 0.996551 + 0.0829786i \(0.0264433\pi\)
−0.426414 + 0.904528i \(0.640223\pi\)
\(444\) 0 0
\(445\) −8.00000 + 13.8564i −0.379236 + 0.656857i
\(446\) 16.0000 0.757622
\(447\) 0 0
\(448\) 3.50000 + 18.1865i 0.165359 + 0.859233i
\(449\) −36.0000 −1.69895 −0.849473 0.527633i \(-0.823080\pi\)
−0.849473 + 0.527633i \(0.823080\pi\)
\(450\) 0 0
\(451\) 2.00000 + 3.46410i 0.0941763 + 0.163118i
\(452\) 16.0000 0.752577
\(453\) 0 0
\(454\) −9.00000 15.5885i −0.422391 0.731603i
\(455\) −8.00000 + 6.92820i −0.375046 + 0.324799i
\(456\) 0 0
\(457\) −6.50000 11.2583i −0.304057 0.526642i 0.672994 0.739648i \(-0.265008\pi\)
−0.977051 + 0.213006i \(0.931675\pi\)
\(458\) 3.50000 + 6.06218i 0.163544 + 0.283267i
\(459\) 0 0
\(460\) −12.0000 + 20.7846i −0.559503 + 0.969087i
\(461\) 1.00000 1.73205i 0.0465746 0.0806696i −0.841798 0.539792i \(-0.818503\pi\)
0.888373 + 0.459123i \(0.151836\pi\)
\(462\) 0 0
\(463\) 16.0000 + 27.7128i 0.743583 + 1.28792i 0.950854 + 0.309640i \(0.100209\pi\)
−0.207271 + 0.978284i \(0.566458\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) −24.0000 −1.11178
\(467\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(468\) 0 0
\(469\) −17.5000 6.06218i −0.808075 0.279925i
\(470\) 12.0000 20.7846i 0.553519 0.958723i
\(471\) 0 0
\(472\) 9.00000 15.5885i 0.414259 0.717517i
\(473\) 1.00000 1.73205i 0.0459800 0.0796398i
\(474\) 0 0
\(475\) −22.0000 + 38.1051i −1.00943 + 1.74838i
\(476\) 3.00000 + 15.5885i 0.137505 + 0.714496i
\(477\) 0 0
\(478\) 6.00000 10.3923i 0.274434 0.475333i
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) 3.00000 0.136788
\(482\) −8.50000 14.7224i −0.387164 0.670588i
\(483\) 0 0
\(484\) −3.50000 + 6.06218i −0.159091 + 0.275554i
\(485\) 18.0000 31.1769i 0.817338 1.41567i
\(486\) 0 0
\(487\) −8.00000 13.8564i −0.362515 0.627894i 0.625859 0.779936i \(-0.284748\pi\)
−0.988374 + 0.152042i \(0.951415\pi\)
\(488\) −7.50000 12.9904i −0.339509 0.588047i
\(489\) 0 0
\(490\) −22.0000 17.3205i −0.993859 0.782461i
\(491\) −17.0000 29.4449i −0.767199 1.32883i −0.939076 0.343710i \(-0.888316\pi\)
0.171877 0.985118i \(-0.445017\pi\)
\(492\) 0 0
\(493\) −12.0000 −0.540453
\(494\) −2.00000 3.46410i −0.0899843 0.155857i
\(495\) 0 0
\(496\) −3.00000 −0.134704
\(497\) 0 0
\(498\) 0 0
\(499\) −17.0000 −0.761025 −0.380512 0.924776i \(-0.624252\pi\)
−0.380512 + 0.924776i \(0.624252\pi\)
\(500\) −12.0000 + 20.7846i −0.536656 + 0.929516i
\(501\) 0 0
\(502\) −13.0000 22.5167i −0.580218 1.00497i
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) 32.0000 1.42398
\(506\) −6.00000 10.3923i −0.266733 0.461994i
\(507\) 0 0
\(508\) −4.50000 + 7.79423i −0.199655 + 0.345813i
\(509\) 22.0000 0.975133 0.487566 0.873086i \(-0.337885\pi\)
0.487566 + 0.873086i \(0.337885\pi\)
\(510\) 0 0
\(511\) −12.0000 + 10.3923i −0.530849 + 0.459728i
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) −5.00000 8.66025i −0.220541 0.381987i
\(515\) −68.0000 −2.99644
\(516\) 0 0
\(517\) −6.00000 10.3923i −0.263880 0.457053i
\(518\) 1.50000 + 7.79423i 0.0659062 + 0.342459i
\(519\) 0 0
\(520\) −6.00000 10.3923i −0.263117 0.455733i
\(521\) −9.00000 15.5885i −0.394297 0.682943i 0.598714 0.800963i \(-0.295679\pi\)
−0.993011 + 0.118020i \(0.962345\pi\)
\(522\) 0 0
\(523\) 8.50000 14.7224i 0.371679 0.643767i −0.618145 0.786064i \(-0.712116\pi\)
0.989824 + 0.142297i \(0.0454489\pi\)
\(524\) −2.00000 + 3.46410i −0.0873704 + 0.151330i
\(525\) 0 0
\(526\) −1.00000 1.73205i −0.0436021 0.0755210i
\(527\) −18.0000 −0.784092
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −12.0000 + 20.7846i −0.521247 + 0.902826i
\(531\) 0 0
\(532\) −8.00000 + 6.92820i −0.346844 + 0.300376i
\(533\) 1.00000 1.73205i 0.0433148 0.0750234i
\(534\) 0 0
\(535\) 4.00000 6.92820i 0.172935 0.299532i
\(536\) 10.5000 18.1865i 0.453531 0.785539i
\(537\) 0 0
\(538\) 0 0
\(539\) −13.0000 + 5.19615i −0.559950 + 0.223814i
\(540\) 0 0
\(541\) 5.00000 8.66025i 0.214967 0.372333i −0.738296 0.674477i \(-0.764369\pi\)
0.953262 + 0.302144i \(0.0977023\pi\)
\(542\) −11.0000 −0.472490
\(543\) 0 0
\(544\) −30.0000 −1.28624
\(545\) 18.0000 + 31.1769i 0.771035 + 1.33547i
\(546\) 0 0
\(547\) −21.5000 + 37.2391i −0.919274 + 1.59223i −0.118753 + 0.992924i \(0.537890\pi\)
−0.800521 + 0.599305i \(0.795444\pi\)
\(548\) 9.00000 15.5885i 0.384461 0.665906i
\(549\) 0 0
\(550\) −11.0000 19.0526i −0.469042 0.812404i
\(551\) −4.00000 6.92820i −0.170406 0.295151i
\(552\) 0 0
\(553\) 22.0000 19.0526i 0.935535 0.810197i
\(554\) −6.50000 11.2583i −0.276159 0.478321i
\(555\) 0 0
\(556\) −9.00000 −0.381685
\(557\) 14.0000 + 24.2487i 0.593199 + 1.02745i 0.993798 + 0.111198i \(0.0354686\pi\)
−0.400599 + 0.916253i \(0.631198\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) 8.00000 6.92820i 0.338062 0.292770i
\(561\) 0 0
\(562\) 16.0000 0.674919
\(563\) 5.00000 8.66025i 0.210725 0.364986i −0.741217 0.671266i \(-0.765751\pi\)
0.951942 + 0.306280i \(0.0990842\pi\)
\(564\) 0 0
\(565\) −32.0000 55.4256i −1.34625 2.33177i
\(566\) −5.00000 −0.210166
\(567\) 0 0
\(568\) 0 0
\(569\) −16.0000 27.7128i −0.670755 1.16178i −0.977690 0.210051i \(-0.932637\pi\)
0.306935 0.951730i \(-0.400696\pi\)
\(570\) 0 0
\(571\) 8.00000 13.8564i 0.334790 0.579873i −0.648655 0.761083i \(-0.724668\pi\)
0.983444 + 0.181210i \(0.0580014\pi\)
\(572\) −2.00000 −0.0836242
\(573\) 0 0
\(574\) 5.00000 + 1.73205i 0.208696 + 0.0722944i
\(575\) 66.0000 2.75239
\(576\) 0 0
\(577\) 8.50000 + 14.7224i 0.353860 + 0.612903i 0.986922 0.161198i \(-0.0515357\pi\)
−0.633062 + 0.774101i \(0.718202\pi\)
\(578\) 19.0000 0.790296
\(579\) 0 0
\(580\) −4.00000 6.92820i −0.166091 0.287678i
\(581\) −15.0000 5.19615i −0.622305 0.215573i
\(582\) 0 0
\(583\) 6.00000 + 10.3923i 0.248495 + 0.430405i
\(584\) −9.00000 15.5885i −0.372423 0.645055i
\(585\) 0 0
\(586\) −11.0000 + 19.0526i −0.454406 + 0.787054i
\(587\) 14.0000 24.2487i 0.577842 1.00085i −0.417885 0.908500i \(-0.637228\pi\)
0.995726 0.0923513i \(-0.0294383\pi\)
\(588\) 0 0
\(589\) −6.00000 10.3923i −0.247226 0.428207i
\(590\) −24.0000 −0.988064
\(591\) 0 0
\(592\) −3.00000 −0.123299
\(593\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(594\) 0 0
\(595\) 48.0000 41.5692i 1.96781 1.70417i
\(596\) −12.0000 + 20.7846i −0.491539 + 0.851371i
\(597\) 0 0
\(598\) −3.00000 + 5.19615i −0.122679 + 0.212486i
\(599\) −6.00000 + 10.3923i −0.245153 + 0.424618i −0.962175 0.272433i \(-0.912172\pi\)
0.717021 + 0.697051i \(0.245505\pi\)
\(600\) 0 0
\(601\) 16.5000 28.5788i 0.673049 1.16576i −0.303986 0.952676i \(-0.598318\pi\)
0.977035 0.213079i \(-0.0683491\pi\)
\(602\) −0.500000 2.59808i −0.0203785 0.105890i
\(603\) 0 0
\(604\) 2.50000 4.33013i 0.101724 0.176190i
\(605\) 28.0000 1.13836
\(606\) 0 0
\(607\) −16.0000 −0.649420 −0.324710 0.945814i \(-0.605267\pi\)
−0.324710 + 0.945814i \(0.605267\pi\)
\(608\) −10.0000 17.3205i −0.405554 0.702439i
\(609\) 0 0
\(610\) −10.0000 + 17.3205i −0.404888 + 0.701287i
\(611\) −3.00000 + 5.19615i −0.121367 + 0.210214i
\(612\) 0 0
\(613\) −3.50000 6.06218i −0.141364 0.244849i 0.786647 0.617403i \(-0.211815\pi\)
−0.928010 + 0.372554i \(0.878482\pi\)
\(614\) −12.5000 21.6506i −0.504459 0.873749i
\(615\) 0 0
\(616\) −3.00000 15.5885i −0.120873 0.628077i
\(617\) 9.00000 + 15.5885i 0.362326 + 0.627568i 0.988343 0.152242i \(-0.0486493\pi\)
−0.626017 + 0.779809i \(0.715316\pi\)
\(618\) 0 0
\(619\) −41.0000 −1.64793 −0.823965 0.566641i \(-0.808243\pi\)
−0.823965 + 0.566641i \(0.808243\pi\)
\(620\) −6.00000 10.3923i −0.240966 0.417365i
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) 10.0000 + 3.46410i 0.400642 + 0.138786i
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 11.0000 19.0526i 0.439648 0.761493i
\(627\) 0 0
\(628\) 5.00000 + 8.66025i 0.199522 + 0.345582i
\(629\) −18.0000 −0.717707
\(630\) 0 0
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) 16.5000 + 28.5788i 0.656335 + 1.13681i
\(633\) 0 0
\(634\) −15.0000 + 25.9808i −0.595726 + 1.03183i
\(635\) 36.0000 1.42862
\(636\) 0 0
\(637\) 5.50000 + 4.33013i 0.217918 + 0.171566i
\(638\) 4.00000 0.158362
\(639\) 0 0
\(640\) −6.00000 10.3923i −0.237171 0.410792i
\(641\) 6.00000 0.236986 0.118493 0.992955i \(-0.462194\pi\)
0.118493 + 0.992955i \(0.462194\pi\)
\(642\) 0 0
\(643\) 12.5000 + 21.6506i 0.492952 + 0.853818i 0.999967 0.00811944i \(-0.00258453\pi\)
−0.507015 + 0.861937i \(0.669251\pi\)
\(644\) 15.0000 + 5.19615i 0.591083 + 0.204757i
\(645\) 0 0
\(646\) 12.0000 + 20.7846i 0.472134 + 0.817760i
\(647\) −14.0000 24.2487i −0.550397 0.953315i −0.998246 0.0592060i \(-0.981143\pi\)
0.447849 0.894109i \(-0.352190\pi\)
\(648\) 0 0
\(649\) −6.00000 + 10.3923i −0.235521 + 0.407934i
\(650\) −5.50000 + 9.52628i −0.215728 + 0.373651i
\(651\) 0 0
\(652\) 9.50000 + 16.4545i 0.372049 + 0.644407i
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) 16.0000 0.625172
\(656\) −1.00000 + 1.73205i −0.0390434 + 0.0676252i
\(657\) 0 0
\(658\) −15.0000 5.19615i −0.584761 0.202567i
\(659\) −6.00000 + 10.3923i −0.233727 + 0.404827i −0.958902 0.283738i \(-0.908425\pi\)
0.725175 + 0.688565i \(0.241759\pi\)
\(660\) 0 0
\(661\) 7.00000 12.1244i 0.272268 0.471583i −0.697174 0.716902i \(-0.745559\pi\)
0.969442 + 0.245319i \(0.0788928\pi\)
\(662\) 14.0000 24.2487i 0.544125 0.942453i
\(663\) 0 0
\(664\) 9.00000 15.5885i 0.349268 0.604949i
\(665\) 40.0000 + 13.8564i 1.55113 + 0.537328i
\(666\) 0 0
\(667\) −6.00000 + 10.3923i −0.232321 + 0.402392i
\(668\) −14.0000 −0.541676
\(669\) 0 0
\(670\) −28.0000 −1.08173
\(671\) 5.00000 + 8.66025i 0.193023 + 0.334325i
\(672\) 0 0
\(673\) −11.0000 + 19.0526i −0.424019 + 0.734422i −0.996328 0.0856156i \(-0.972714\pi\)
0.572309 + 0.820038i \(0.306048\pi\)
\(674\) −5.00000 + 8.66025i −0.192593 + 0.333581i
\(675\) 0 0
\(676\) −6.00000 10.3923i −0.230769 0.399704i
\(677\) −6.00000 10.3923i −0.230599 0.399409i 0.727386 0.686229i \(-0.240735\pi\)
−0.957984 + 0.286820i \(0.907402\pi\)
\(678\) 0 0
\(679\) −22.5000 7.79423i −0.863471 0.299115i
\(680\) 36.0000 + 62.3538i 1.38054 + 2.39116i
\(681\) 0 0
\(682\) 6.00000 0.229752
\(683\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(684\) 0 0
\(685\) −72.0000 −2.75098
\(686\) −8.50000 + 16.4545i −0.324532 + 0.628235i
\(687\) 0 0
\(688\) 1.00000 0.0381246
\(689\) 3.00000 5.19615i 0.114291 0.197958i
\(690\) 0 0
\(691\) −20.5000 35.5070i −0.779857 1.35075i −0.932024 0.362397i \(-0.881959\pi\)
0.152167 0.988355i \(-0.451375\pi\)
\(692\) −16.0000 −0.608229
\(693\) 0 0
\(694\) 16.0000 0.607352
\(695\) 18.0000 + 31.1769i 0.682779 + 1.18261i
\(696\) 0 0
\(697\) −6.00000 + 10.3923i −0.227266 + 0.393637i
\(698\) −5.00000 −0.189253
\(699\) 0 0
\(700\) 27.5000 + 9.52628i 1.03940 + 0.360060i
\(701\) 24.0000 0.906467 0.453234 0.891392i \(-0.350270\pi\)
0.453234 + 0.891392i \(0.350270\pi\)
\(702\) 0 0
\(703\) −6.00000 10.3923i −0.226294 0.391953i
\(704\) 14.0000 0.527645
\(705\) 0 0
\(706\) 14.0000 + 24.2487i 0.526897 + 0.912612i
\(707\) −4.00000 20.7846i −0.150435 0.781686i
\(708\) 0 0
\(709\) −10.5000 18.1865i −0.394336 0.683010i 0.598680 0.800988i \(-0.295692\pi\)
−0.993016 + 0.117978i \(0.962359\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −6.00000 + 10.3923i −0.224860 + 0.389468i
\(713\) −9.00000 + 15.5885i −0.337053 + 0.583792i
\(714\) 0 0
\(715\) 4.00000 + 6.92820i 0.149592 + 0.259100i
\(716\) −4.00000 −0.149487
\(717\) 0 0
\(718\) 22.0000 0.821033
\(719\) 24.0000 41.5692i 0.895049 1.55027i 0.0613050 0.998119i \(-0.480474\pi\)
0.833744 0.552151i \(-0.186193\pi\)
\(720\) 0 0
\(721\) 8.50000 + 44.1673i 0.316557 + 1.64488i
\(722\) 1.50000 2.59808i 0.0558242 0.0966904i
\(723\) 0 0
\(724\) −1.00000 + 1.73205i −0.0371647 + 0.0643712i
\(725\) −11.0000 + 19.0526i −0.408530 + 0.707594i
\(726\) 0 0
\(727\) −20.5000 + 35.5070i −0.760303 + 1.31688i 0.182392 + 0.983226i \(0.441616\pi\)
−0.942694 + 0.333657i \(0.891717\pi\)
\(728\) −6.00000 + 5.19615i −0.222375 + 0.192582i
\(729\) 0 0
\(730\) −12.0000 + 20.7846i −0.444140 + 0.769273i
\(731\) 6.00000 0.221918
\(732\) 0 0
\(733\) 21.0000 0.775653 0.387826 0.921732i \(-0.373226\pi\)
0.387826 + 0.921732i \(0.373226\pi\)
\(734\) −6.00000 10.3923i −0.221464 0.383587i
\(735\) 0 0
\(736\) −15.0000 + 25.9808i −0.552907 + 0.957664i
\(737\) −7.00000 + 12.1244i −0.257848 + 0.446606i
\(738\) 0 0
\(739\) 4.50000 + 7.79423i 0.165535 + 0.286715i 0.936845 0.349744i \(-0.113732\pi\)
−0.771310 + 0.636460i \(0.780398\pi\)
\(740\) −6.00000 10.3923i −0.220564 0.382029i
\(741\) 0 0
\(742\) 15.0000 + 5.19615i 0.550667 + 0.190757i
\(743\) 21.0000 + 36.3731i 0.770415 + 1.33440i 0.937336 + 0.348428i \(0.113284\pi\)
−0.166920 + 0.985970i \(0.553382\pi\)
\(744\) 0 0
\(745\) 96.0000 3.51717
\(746\) −13.0000 22.5167i −0.475964 0.824394i
\(747\) 0 0
\(748\) 12.0000 0.438763
\(749\) −5.00000 1.73205i −0.182696 0.0632878i
\(750\) 0 0
\(751\) −8.00000 −0.291924 −0.145962 0.989290i \(-0.546628\pi\)
−0.145962 + 0.989290i \(0.546628\pi\)
\(752\) 3.00000 5.19615i 0.109399 0.189484i
\(753\) 0 0
\(754\) −1.00000 1.73205i −0.0364179 0.0630776i
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) 17.0000 0.617876 0.308938 0.951082i \(-0.400027\pi\)
0.308938 + 0.951082i \(0.400027\pi\)
\(758\) 4.50000 + 7.79423i 0.163447 + 0.283099i
\(759\) 0 0
\(760\) −24.0000 + 41.5692i −0.870572 + 1.50787i
\(761\) −48.0000 −1.74000 −0.869999 0.493053i \(-0.835881\pi\)
−0.869999 + 0.493053i \(0.835881\pi\)
\(762\) 0 0
\(763\) 18.0000 15.5885i 0.651644 0.564340i
\(764\) 4.00000 0.144715
\(765\) 0 0
\(766\) 9.00000 + 15.5885i 0.325183 + 0.563234i
\(767\) 6.00000 0.216647
\(768\) 0 0
\(769\) 5.00000 + 8.66025i 0.180305 + 0.312297i 0.941984 0.335657i \(-0.108958\pi\)
−0.761680 + 0.647954i \(0.775625\pi\)
\(770\) −16.0000 + 13.8564i −0.576600 + 0.499350i
\(771\) 0 0
\(772\) −12.5000 21.6506i −0.449885 0.779223i
\(773\) −8.00000 13.8564i −0.287740 0.498380i 0.685530 0.728044i \(-0.259571\pi\)
−0.973270 + 0.229664i \(0.926237\pi\)
\(774\) 0 0
\(775\) −16.5000 + 28.5788i −0.592697 + 1.02658i
\(776\) 13.5000 23.3827i 0.484622 0.839390i
\(777\) 0 0
\(778\) 6.00000 + 10.3923i 0.215110 + 0.372582i
\(779\) −8.00000 −0.286630
\(780\) 0 0
\(781\) 0 0
\(782\) 18.0000 31.1769i 0.643679 1.11488i
\(783\) 0 0
\(784\) −5.50000 4.33013i −0.196429 0.154647i
\(785\) 20.0000 34.6410i 0.713831 1.23639i
\(786\) 0 0
\(787\) 23.5000 40.7032i 0.837685 1.45091i −0.0541413 0.998533i \(-0.517242\pi\)
0.891826 0.452379i \(-0.149425\pi\)
\(788\) 10.0000 17.3205i 0.356235 0.617018i
\(789\) 0 0
\(790\) 22.0000 38.1051i 0.782725 1.35572i
\(791\) −32.0000 + 27.7128i −1.13779 + 0.985354i
\(792\) 0 0
\(793\) 2.50000 4.33013i 0.0887776 0.153767i
\(794\) −33.0000 −1.17113
\(795\) 0 0
\(796\) 9.00000 0.318997
\(797\) −7.00000 12.1244i −0.247953 0.429467i 0.715005 0.699119i \(-0.246424\pi\)
−0.962958 + 0.269653i \(0.913091\pi\)
\(798\) 0 0
\(799\) 18.0000 31.1769i 0.636794 1.10296i
\(800\) −27.5000 + 47.6314i −0.972272 + 1.68402i
\(801\) 0 0
\(802\) −15.0000 25.9808i −0.529668 0.917413i
\(803\) 6.00000 + 10.3923i 0.211735 + 0.366736i
\(804\) 0 0
\(805\) −12.0000 62.3538i −0.422944 2.19768i
\(806\) −1.50000 2.59808i −0.0528352 0.0915133i
\(807\) 0 0
\(808\) 24.0000 0.844317
\(809\) 15.0000 + 25.9808i 0.527372 + 0.913435i 0.999491 + 0.0319002i \(0.0101559\pi\)
−0.472119 + 0.881535i \(0.656511\pi\)
\(810\) 0 0
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) −4.00000 + 3.46410i −0.140372 + 0.121566i
\(813\) 0 0
\(814\) 6.00000 0.210300
\(815\) 38.0000 65.8179i 1.33108 2.30550i
\(816\) 0 0
\(817\) 2.00000 + 3.46410i 0.0699711 + 0.121194i
\(818\) 5.00000 0.174821
\(819\) 0 0
\(820\) −8.00000 −0.279372
\(821\) −11.0000 19.0526i −0.383903 0.664939i 0.607714 0.794156i \(-0.292087\pi\)
−0.991616 + 0.129217i \(0.958754\pi\)
\(822\) 0 0
\(823\) −22.5000 + 38.9711i −0.784301 + 1.35845i 0.145115 + 0.989415i \(0.453645\pi\)
−0.929416 + 0.369034i \(0.879689\pi\)
\(824\) −51.0000 −1.77667
\(825\) 0 0
\(826\) 3.00000 + 15.5885i 0.104383 + 0.542392i
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 5.00000 + 8.66025i 0.173657 + 0.300783i 0.939696 0.342012i \(-0.111108\pi\)
−0.766039 + 0.642795i \(0.777775\pi\)
\(830\) −24.0000 −0.833052
\(831\) 0 0
\(832\) −3.50000 6.06218i −0.121341 0.210168i
\(833\) −33.0000 25.9808i −1.14338 0.900180i
\(834\) 0 0
\(835\) 28.0000 + 48.4974i 0.968980 + 1.67832i
\(836\) 4.00000 + 6.92820i 0.138343 + 0.239617i
\(837\) 0 0
\(838\) 6.00000 10.3923i 0.207267 0.358996i
\(839\) −13.0000 + 22.5167i −0.448810 + 0.777361i −0.998309 0.0581329i \(-0.981485\pi\)
0.549499 + 0.835494i \(0.314819\pi\)
\(840\) 0 0
\(841\) 12.5000 + 21.6506i 0.431034 + 0.746574i
\(842\) −10.0000 −0.344623
\(843\) 0 0
\(844\) 5.00000 0.172107
\(845\) −24.0000 + 41.5692i −0.825625 + 1.43002i
\(846\) 0 0
\(847\) −3.50000 18.1865i −0.120261 0.624897i
\(848\) −3.00000 + 5.19615i −0.103020 + 0.178437i
\(849\) 0 0
\(850\) 33.0000 57.1577i 1.13189 1.96049i
\(851\) −9.00000 + 15.5885i −0.308516 + 0.534365i
\(852\) 0 0
\(853\) −13.0000 + 22.5167i −0.445112 + 0.770956i −0.998060 0.0622597i \(-0.980169\pi\)
0.552948 + 0.833215i \(0.313503\pi\)
\(854\) 12.5000 + 4.33013i 0.427741 + 0.148174i
\(855\) 0 0
\(856\) 3.00000 5.19615i 0.102538 0.177601i
\(857\) −16.0000 −0.546550 −0.273275 0.961936i \(-0.588107\pi\)
−0.273275 + 0.961936i \(0.588107\pi\)
\(858\) 0 0
\(859\) −25.0000 −0.852989 −0.426494 0.904490i \(-0.640252\pi\)
−0.426494 + 0.904490i \(0.640252\pi\)
\(860\) 2.00000 + 3.46410i 0.0681994 + 0.118125i
\(861\) 0 0
\(862\) −9.00000 + 15.5885i −0.306541 + 0.530945i
\(863\) −18.0000 + 31.1769i −0.612727 + 1.06127i 0.378052 + 0.925785i \(0.376594\pi\)
−0.990779 + 0.135490i \(0.956739\pi\)
\(864\) 0 0
\(865\) 32.0000 + 55.4256i 1.08803 + 1.88453i
\(866\) 8.50000 + 14.7224i 0.288842 + 0.500289i
\(867\) 0 0
\(868\) −6.00000 + 5.19615i −0.203653 + 0.176369i
\(869\) −11.0000 19.0526i −0.373149 0.646314i
\(870\) 0 0
\(871\) 7.00000 0.237186
\(872\) 13.5000 + 23.3827i 0.457168 + 0.791838i
\(873\) 0 0
\(874\) 24.0000 0.811812
\(875\) −12.0000 62.3538i −0.405674 2.10794i
\(876\) 0 0
\(877\) 7.00000 0.236373 0.118187 0.992991i \(-0.462292\pi\)
0.118187 + 0.992991i \(0.462292\pi\)
\(878\) −12.0000 + 20.7846i −0.404980 + 0.701447i
\(879\) 0 0
\(880\) −4.00000 6.92820i −0.134840 0.233550i
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) 0 0
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) −3.00000 5.19615i −0.100901 0.174766i
\(885\) 0 0
\(886\) 12.0000 20.7846i 0.403148 0.698273i
\(887\) 22.0000 0.738688 0.369344 0.929293i \(-0.379582\pi\)
0.369344 + 0.929293i \(0.379582\pi\)
\(888\) 0 0
\(889\) −4.50000 23.3827i −0.150925 0.784230i
\(890\) 16.0000 0.536321
\(891\) 0 0
\(892\) 8.00000 + 13.8564i 0.267860 + 0.463947i
\(893\) 24.0000 0.803129
\(894\) 0 0
\(895\) 8.00000 + 13.8564i 0.267411 + 0.463169i
\(896\) −6.00000 + 5.19615i −0.200446 + 0.173591i
\(897\) 0 0
\(898\) 18.0000 + 31.1769i 0.600668 + 1.04039i
\(899\) −3.00000 5.19615i −0.100056 0.173301i
\(900\) 0 0
\(901\) −18.0000 + 31.1769i −0.599667 + 1.03865i
\(902\) 2.00000 3.46410i 0.0665927 0.115342i
\(903\) 0 0
\(904\) −24.0000 41.5692i −0.798228 1.38257i
\(905\) 8.00000 0.265929
\(906\) 0 0
\(907\) −13.0000 −0.431658 −0.215829 0.976431i \(-0.569245\pi\)
−0.215829 + 0.976431i \(0.569245\pi\)
\(908\) 9.00000 15.5885i 0.298675 0.517321i
\(909\) 0 0
\(910\) 10.0000 + 3.46410i 0.331497 + 0.114834i
\(911\) 9.00000 15.5885i 0.298183 0.516469i −0.677537 0.735489i \(-0.736953\pi\)
0.975720 + 0.219020i \(0.0702860\pi\)
\(912\) 0 0
\(913\) −6.00000 + 10.3923i −0.198571 + 0.343935i
\(914\) −6.50000 + 11.2583i −0.215001 + 0.372392i
\(915\) 0 0
\(916\) −3.50000 + 6.06218i −0.115643 + 0.200300i
\(917\) −2.00000 10.3923i −0.0660458 0.343184i
\(918\) 0 0
\(919\) −14.5000 + 25.1147i −0.478311 + 0.828459i −0.999691 0.0248659i \(-0.992084\pi\)
0.521380 + 0.853325i \(0.325417\pi\)
\(920\) 72.0000 2.37377
\(921\) 0 0
\(922\) −2.00000 −0.0658665
\(923\) 0 0
\(924\) 0 0
\(925\) −16.5000 + 28.5788i −0.542517 + 0.939666i
\(926\) 16.0000 27.7128i 0.525793 0.910700i
\(927\) 0 0
\(928\) −5.00000 8.66025i −0.164133 0.284287i
\(929\) −2.00000 3.46410i −0.0656179 0.113653i 0.831350 0.555749i \(-0.187569\pi\)
−0.896968 + 0.442096i \(0.854235\pi\)
\(930\) 0 0
\(931\) 4.00000 27.7128i 0.131095 0.908251i
\(932\) −12.0000 20.7846i −0.393073 0.680823i
\(933\) 0 0
\(934\) 0 0
\(935\) −24.0000 41.5692i −0.784884 1.35946i
\(936\) 0 0
\(937\) −21.0000 −0.686040 −0.343020 0.939328i \(-0.611450\pi\)
−0.343020 + 0.939328i \(0.611450\pi\)
\(938\) 3.50000 + 18.1865i 0.114279 + 0.593811i
\(939\) 0 0
\(940\) 24.0000 0.782794
\(941\) −23.0000 + 39.8372i −0.749779 + 1.29865i 0.198150 + 0.980172i \(0.436507\pi\)
−0.947929 + 0.318483i \(0.896827\pi\)
\(942\) 0 0
\(943\) 6.00000 + 10.3923i 0.195387 + 0.338420i
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) −2.00000 −0.0650256
\(947\) 13.0000 + 22.5167i 0.422443 + 0.731693i 0.996178 0.0873481i \(-0.0278392\pi\)
−0.573735 + 0.819041i \(0.694506\pi\)
\(948\) 0 0
\(949\) 3.00000 5.19615i 0.0973841 0.168674i
\(950\) 44.0000 1.42755
\(951\) 0 0
\(952\) 36.0000 31.1769i 1.16677 1.01045i
\(953\) −14.0000 −0.453504 −0.226752 0.973952i \(-0.572811\pi\)
−0.226752 + 0.973952i \(0.572811\pi\)
\(954\) 0 0
\(955\) −8.00000 13.8564i −0.258874 0.448383i
\(956\) 12.0000 0.388108
\(957\) 0 0
\(958\) −8.00000 13.8564i −0.258468 0.447680i
\(959\) 9.00000 + 46.7654i 0.290625 + 1.51013i
\(960\) 0 0
\(961\) 11.0000 + 19.0526i 0.354839 + 0.614599i
\(962\) −1.50000 2.59808i −0.0483619 0.0837653i
\(963\) 0 0
\(964\) 8.50000 14.7224i 0.273767 0.474178i
\(965\) −50.0000 + 86.6025i −1.60956 + 2.78783i
\(966\) 0 0
\(967\) 8.50000 + 14.7224i 0.273342 + 0.473441i 0.969715 0.244238i \(-0.0785377\pi\)
−0.696374 + 0.717679i \(0.745204\pi\)
\(968\) 21.0000 0.674966
\(969\) 0 0
\(970\) −36.0000 −1.15589
\(971\) 6.00000 10.3923i 0.192549 0.333505i −0.753545 0.657396i \(-0.771658\pi\)
0.946094 + 0.323891i \(0.104991\pi\)
\(972\) 0 0
\(973\) 18.0000 15.5885i 0.577054 0.499743i
\(974\) −8.00000 + 13.8564i −0.256337 + 0.443988i
\(975\) 0 0
\(976\) −2.50000 + 4.33013i −0.0800230 + 0.138604i
\(977\) −3.00000 + 5.19615i −0.0959785 + 0.166240i −0.910017 0.414572i \(-0.863931\pi\)
0.814038 + 0.580812i \(0.197265\pi\)
\(978\) 0 0
\(979\) 4.00000 6.92820i 0.127841 0.221426i
\(980\) 4.00000 27.7128i 0.127775 0.885253i
\(981\) 0 0
\(982\) −17.0000 + 29.4449i −0.542492 + 0.939623i
\(983\) −36.0000 −1.14822 −0.574111 0.818778i \(-0.694652\pi\)
−0.574111 + 0.818778i \(0.694652\pi\)
\(984\) 0 0
\(985\) −80.0000 −2.54901
\(986\) 6.00000 + 10.3923i 0.191079 + 0.330958i
\(987\) 0 0
\(988\) 2.00000 3.46410i 0.0636285 0.110208i
\(989\) 3.00000 5.19615i 0.0953945 0.165228i
\(990\) 0 0
\(991\) 27.5000 + 47.6314i 0.873566 + 1.51306i 0.858282 + 0.513178i \(0.171532\pi\)
0.0152841 + 0.999883i \(0.495135\pi\)
\(992\) −7.50000 12.9904i −0.238125 0.412445i
\(993\) 0 0
\(994\) 0 0
\(995\) −18.0000 31.1769i −0.570638 0.988375i
\(996\) 0 0
\(997\) −29.0000 −0.918439 −0.459220 0.888323i \(-0.651871\pi\)
−0.459220 + 0.888323i \(0.651871\pi\)
\(998\) 8.50000 + 14.7224i 0.269063 + 0.466030i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.b.541.1 2
3.2 odd 2 567.2.g.e.541.1 2
7.4 even 3 567.2.h.e.298.1 2
9.2 odd 6 189.2.e.c.163.1 yes 2
9.4 even 3 567.2.h.e.352.1 2
9.5 odd 6 567.2.h.b.352.1 2
9.7 even 3 189.2.e.a.163.1 yes 2
21.11 odd 6 567.2.h.b.298.1 2
63.2 odd 6 1323.2.a.g.1.1 1
63.4 even 3 inner 567.2.g.b.109.1 2
63.11 odd 6 189.2.e.c.109.1 yes 2
63.16 even 3 1323.2.a.m.1.1 1
63.25 even 3 189.2.e.a.109.1 2
63.32 odd 6 567.2.g.e.109.1 2
63.47 even 6 1323.2.a.d.1.1 1
63.61 odd 6 1323.2.a.p.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.e.a.109.1 2 63.25 even 3
189.2.e.a.163.1 yes 2 9.7 even 3
189.2.e.c.109.1 yes 2 63.11 odd 6
189.2.e.c.163.1 yes 2 9.2 odd 6
567.2.g.b.109.1 2 63.4 even 3 inner
567.2.g.b.541.1 2 1.1 even 1 trivial
567.2.g.e.109.1 2 63.32 odd 6
567.2.g.e.541.1 2 3.2 odd 2
567.2.h.b.298.1 2 21.11 odd 6
567.2.h.b.352.1 2 9.5 odd 6
567.2.h.e.298.1 2 7.4 even 3
567.2.h.e.352.1 2 9.4 even 3
1323.2.a.d.1.1 1 63.47 even 6
1323.2.a.g.1.1 1 63.2 odd 6
1323.2.a.m.1.1 1 63.16 even 3
1323.2.a.p.1.1 1 63.61 odd 6