Properties

Label 567.2.f.n.379.3
Level $567$
Weight $2$
Character 567.379
Analytic conductor $4.528$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [567,2,Mod(190,567)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(567, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("567.190"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-2,0,0,4,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 379.3
Root \(0.228425 - 1.39564i\) of defining polynomial
Character \(\chi\) \(=\) 567.379
Dual form 567.2.f.n.190.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.228425 - 0.395644i) q^{2} +(0.895644 + 1.55130i) q^{4} +(2.18890 + 3.79129i) q^{5} +(0.500000 - 0.866025i) q^{7} +1.73205 q^{8} +2.00000 q^{10} +(1.32288 - 2.29129i) q^{11} +(-2.00000 - 3.46410i) q^{13} +(-0.228425 - 0.395644i) q^{14} +(-1.39564 + 2.41733i) q^{16} +3.46410 q^{17} -3.58258 q^{19} +(-3.92095 + 6.79129i) q^{20} +(-0.604356 - 1.04678i) q^{22} +(1.73205 + 3.00000i) q^{23} +(-7.08258 + 12.2674i) q^{25} -1.82740 q^{26} +1.79129 q^{28} +(-0.913701 + 1.58258i) q^{29} +(-4.58258 - 7.93725i) q^{31} +(2.36965 + 4.10436i) q^{32} +(0.791288 - 1.37055i) q^{34} +4.37780 q^{35} +3.00000 q^{37} +(-0.818350 + 1.41742i) q^{38} +(3.79129 + 6.56670i) q^{40} +(-2.18890 - 3.79129i) q^{41} +(4.29129 - 7.43273i) q^{43} +4.73930 q^{44} +1.58258 q^{46} +(-1.37055 + 2.37386i) q^{47} +(-0.500000 - 0.866025i) q^{49} +(3.23568 + 5.60436i) q^{50} +(3.58258 - 6.20520i) q^{52} -8.66025 q^{53} +11.5826 q^{55} +(0.866025 - 1.50000i) q^{56} +(0.417424 + 0.723000i) q^{58} +(-1.73205 - 3.00000i) q^{59} +(-1.20871 + 2.09355i) q^{61} -4.18710 q^{62} -3.41742 q^{64} +(8.75560 - 15.1652i) q^{65} +(0.291288 + 0.504525i) q^{67} +(3.10260 + 5.37386i) q^{68} +(1.00000 - 1.73205i) q^{70} +11.4014 q^{71} -3.16515 q^{73} +(0.685275 - 1.18693i) q^{74} +(-3.20871 - 5.55765i) q^{76} +(-1.32288 - 2.29129i) q^{77} +(4.29129 - 7.43273i) q^{79} -12.2197 q^{80} -2.00000 q^{82} +(-3.10260 + 5.37386i) q^{83} +(7.58258 + 13.1334i) q^{85} +(-1.96048 - 3.39564i) q^{86} +(2.29129 - 3.96863i) q^{88} +8.75560 q^{89} -4.00000 q^{91} +(-3.10260 + 5.37386i) q^{92} +(0.626136 + 1.08450i) q^{94} +(-7.84190 - 13.5826i) q^{95} +(-3.79129 + 6.56670i) q^{97} -0.456850 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} + 4 q^{7} + 16 q^{10} - 16 q^{13} - 2 q^{16} + 8 q^{19} - 14 q^{22} - 20 q^{25} - 4 q^{28} - 12 q^{34} + 24 q^{37} + 12 q^{40} + 16 q^{43} - 24 q^{46} - 4 q^{49} - 8 q^{52} + 56 q^{55} + 40 q^{58}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.228425 0.395644i 0.161521 0.279763i −0.773893 0.633316i \(-0.781693\pi\)
0.935414 + 0.353553i \(0.115027\pi\)
\(3\) 0 0
\(4\) 0.895644 + 1.55130i 0.447822 + 0.775650i
\(5\) 2.18890 + 3.79129i 0.978906 + 1.69552i 0.666390 + 0.745603i \(0.267838\pi\)
0.312516 + 0.949913i \(0.398828\pi\)
\(6\) 0 0
\(7\) 0.500000 0.866025i 0.188982 0.327327i
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) 1.32288 2.29129i 0.398862 0.690849i −0.594724 0.803930i \(-0.702739\pi\)
0.993586 + 0.113081i \(0.0360719\pi\)
\(12\) 0 0
\(13\) −2.00000 3.46410i −0.554700 0.960769i −0.997927 0.0643593i \(-0.979500\pi\)
0.443227 0.896410i \(-0.353834\pi\)
\(14\) −0.228425 0.395644i −0.0610492 0.105740i
\(15\) 0 0
\(16\) −1.39564 + 2.41733i −0.348911 + 0.604332i
\(17\) 3.46410 0.840168 0.420084 0.907485i \(-0.362001\pi\)
0.420084 + 0.907485i \(0.362001\pi\)
\(18\) 0 0
\(19\) −3.58258 −0.821899 −0.410950 0.911658i \(-0.634803\pi\)
−0.410950 + 0.911658i \(0.634803\pi\)
\(20\) −3.92095 + 6.79129i −0.876751 + 1.51858i
\(21\) 0 0
\(22\) −0.604356 1.04678i −0.128849 0.223173i
\(23\) 1.73205 + 3.00000i 0.361158 + 0.625543i 0.988152 0.153481i \(-0.0490483\pi\)
−0.626994 + 0.779024i \(0.715715\pi\)
\(24\) 0 0
\(25\) −7.08258 + 12.2674i −1.41652 + 2.45348i
\(26\) −1.82740 −0.358383
\(27\) 0 0
\(28\) 1.79129 0.338522
\(29\) −0.913701 + 1.58258i −0.169670 + 0.293877i −0.938304 0.345812i \(-0.887603\pi\)
0.768634 + 0.639689i \(0.220937\pi\)
\(30\) 0 0
\(31\) −4.58258 7.93725i −0.823055 1.42557i −0.903397 0.428806i \(-0.858935\pi\)
0.0803419 0.996767i \(-0.474399\pi\)
\(32\) 2.36965 + 4.10436i 0.418899 + 0.725555i
\(33\) 0 0
\(34\) 0.791288 1.37055i 0.135705 0.235048i
\(35\) 4.37780 0.739984
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) −0.818350 + 1.41742i −0.132754 + 0.229937i
\(39\) 0 0
\(40\) 3.79129 + 6.56670i 0.599455 + 1.03829i
\(41\) −2.18890 3.79129i −0.341849 0.592100i 0.642927 0.765927i \(-0.277720\pi\)
−0.984776 + 0.173828i \(0.944386\pi\)
\(42\) 0 0
\(43\) 4.29129 7.43273i 0.654415 1.13348i −0.327625 0.944808i \(-0.606248\pi\)
0.982040 0.188673i \(-0.0604185\pi\)
\(44\) 4.73930 0.714477
\(45\) 0 0
\(46\) 1.58258 0.233338
\(47\) −1.37055 + 2.37386i −0.199915 + 0.346264i −0.948501 0.316775i \(-0.897400\pi\)
0.748585 + 0.663038i \(0.230733\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 3.23568 + 5.60436i 0.457594 + 0.792576i
\(51\) 0 0
\(52\) 3.58258 6.20520i 0.496814 0.860507i
\(53\) −8.66025 −1.18958 −0.594789 0.803882i \(-0.702764\pi\)
−0.594789 + 0.803882i \(0.702764\pi\)
\(54\) 0 0
\(55\) 11.5826 1.56179
\(56\) 0.866025 1.50000i 0.115728 0.200446i
\(57\) 0 0
\(58\) 0.417424 + 0.723000i 0.0548105 + 0.0949346i
\(59\) −1.73205 3.00000i −0.225494 0.390567i 0.730974 0.682406i \(-0.239066\pi\)
−0.956467 + 0.291839i \(0.905733\pi\)
\(60\) 0 0
\(61\) −1.20871 + 2.09355i −0.154760 + 0.268052i −0.932972 0.359950i \(-0.882794\pi\)
0.778212 + 0.628002i \(0.216127\pi\)
\(62\) −4.18710 −0.531762
\(63\) 0 0
\(64\) −3.41742 −0.427178
\(65\) 8.75560 15.1652i 1.08600 1.88101i
\(66\) 0 0
\(67\) 0.291288 + 0.504525i 0.0355865 + 0.0616376i 0.883270 0.468865i \(-0.155337\pi\)
−0.847684 + 0.530502i \(0.822003\pi\)
\(68\) 3.10260 + 5.37386i 0.376246 + 0.651677i
\(69\) 0 0
\(70\) 1.00000 1.73205i 0.119523 0.207020i
\(71\) 11.4014 1.35309 0.676546 0.736400i \(-0.263476\pi\)
0.676546 + 0.736400i \(0.263476\pi\)
\(72\) 0 0
\(73\) −3.16515 −0.370453 −0.185226 0.982696i \(-0.559302\pi\)
−0.185226 + 0.982696i \(0.559302\pi\)
\(74\) 0.685275 1.18693i 0.0796616 0.137978i
\(75\) 0 0
\(76\) −3.20871 5.55765i −0.368065 0.637506i
\(77\) −1.32288 2.29129i −0.150756 0.261116i
\(78\) 0 0
\(79\) 4.29129 7.43273i 0.482808 0.836247i −0.516998 0.855987i \(-0.672950\pi\)
0.999805 + 0.0197396i \(0.00628371\pi\)
\(80\) −12.2197 −1.36620
\(81\) 0 0
\(82\) −2.00000 −0.220863
\(83\) −3.10260 + 5.37386i −0.340555 + 0.589858i −0.984536 0.175183i \(-0.943948\pi\)
0.643981 + 0.765041i \(0.277282\pi\)
\(84\) 0 0
\(85\) 7.58258 + 13.1334i 0.822446 + 1.42452i
\(86\) −1.96048 3.39564i −0.211404 0.366162i
\(87\) 0 0
\(88\) 2.29129 3.96863i 0.244252 0.423057i
\(89\) 8.75560 0.928092 0.464046 0.885811i \(-0.346397\pi\)
0.464046 + 0.885811i \(0.346397\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) −3.10260 + 5.37386i −0.323469 + 0.560264i
\(93\) 0 0
\(94\) 0.626136 + 1.08450i 0.0645810 + 0.111858i
\(95\) −7.84190 13.5826i −0.804562 1.39354i
\(96\) 0 0
\(97\) −3.79129 + 6.56670i −0.384947 + 0.666748i −0.991762 0.128096i \(-0.959114\pi\)
0.606815 + 0.794843i \(0.292447\pi\)
\(98\) −0.456850 −0.0461488
\(99\) 0 0
\(100\) −25.3739 −2.53739
\(101\) 0.913701 1.58258i 0.0909166 0.157472i −0.816980 0.576665i \(-0.804354\pi\)
0.907897 + 0.419193i \(0.137687\pi\)
\(102\) 0 0
\(103\) −1.79129 3.10260i −0.176501 0.305708i 0.764179 0.645004i \(-0.223144\pi\)
−0.940680 + 0.339296i \(0.889811\pi\)
\(104\) −3.46410 6.00000i −0.339683 0.588348i
\(105\) 0 0
\(106\) −1.97822 + 3.42638i −0.192142 + 0.332799i
\(107\) 11.2107 1.08377 0.541887 0.840451i \(-0.317710\pi\)
0.541887 + 0.840451i \(0.317710\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 2.64575 4.58258i 0.252262 0.436931i
\(111\) 0 0
\(112\) 1.39564 + 2.41733i 0.131876 + 0.228416i
\(113\) −6.97588 12.0826i −0.656235 1.13663i −0.981583 0.191038i \(-0.938814\pi\)
0.325347 0.945595i \(-0.394519\pi\)
\(114\) 0 0
\(115\) −7.58258 + 13.1334i −0.707079 + 1.22470i
\(116\) −3.27340 −0.303928
\(117\) 0 0
\(118\) −1.58258 −0.145688
\(119\) 1.73205 3.00000i 0.158777 0.275010i
\(120\) 0 0
\(121\) 2.00000 + 3.46410i 0.181818 + 0.314918i
\(122\) 0.552200 + 0.956439i 0.0499939 + 0.0865919i
\(123\) 0 0
\(124\) 8.20871 14.2179i 0.737164 1.27681i
\(125\) −40.1232 −3.58873
\(126\) 0 0
\(127\) −7.41742 −0.658190 −0.329095 0.944297i \(-0.606744\pi\)
−0.329095 + 0.944297i \(0.606744\pi\)
\(128\) −5.51993 + 9.56080i −0.487897 + 0.845063i
\(129\) 0 0
\(130\) −4.00000 6.92820i −0.350823 0.607644i
\(131\) −9.21245 15.9564i −0.804896 1.39412i −0.916361 0.400352i \(-0.868888\pi\)
0.111465 0.993768i \(-0.464446\pi\)
\(132\) 0 0
\(133\) −1.79129 + 3.10260i −0.155324 + 0.269030i
\(134\) 0.266150 0.0229918
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) −8.80328 + 15.2477i −0.752115 + 1.30270i 0.194681 + 0.980867i \(0.437633\pi\)
−0.946796 + 0.321835i \(0.895700\pi\)
\(138\) 0 0
\(139\) 3.79129 + 6.56670i 0.321573 + 0.556980i 0.980813 0.194952i \(-0.0624552\pi\)
−0.659240 + 0.751933i \(0.729122\pi\)
\(140\) 3.92095 + 6.79129i 0.331381 + 0.573969i
\(141\) 0 0
\(142\) 2.60436 4.51088i 0.218553 0.378544i
\(143\) −10.5830 −0.884995
\(144\) 0 0
\(145\) −8.00000 −0.664364
\(146\) −0.723000 + 1.25227i −0.0598359 + 0.103639i
\(147\) 0 0
\(148\) 2.68693 + 4.65390i 0.220864 + 0.382548i
\(149\) 5.33918 + 9.24773i 0.437402 + 0.757603i 0.997488 0.0708313i \(-0.0225652\pi\)
−0.560086 + 0.828435i \(0.689232\pi\)
\(150\) 0 0
\(151\) 10.2913 17.8250i 0.837493 1.45058i −0.0544912 0.998514i \(-0.517354\pi\)
0.891984 0.452066i \(-0.149313\pi\)
\(152\) −6.20520 −0.503308
\(153\) 0 0
\(154\) −1.20871 −0.0974008
\(155\) 20.0616 34.7477i 1.61139 2.79100i
\(156\) 0 0
\(157\) −0.417424 0.723000i −0.0333141 0.0577017i 0.848888 0.528573i \(-0.177273\pi\)
−0.882202 + 0.470872i \(0.843939\pi\)
\(158\) −1.96048 3.39564i −0.155967 0.270143i
\(159\) 0 0
\(160\) −10.3739 + 17.9681i −0.820126 + 1.42050i
\(161\) 3.46410 0.273009
\(162\) 0 0
\(163\) 14.5826 1.14220 0.571098 0.820882i \(-0.306518\pi\)
0.571098 + 0.820882i \(0.306518\pi\)
\(164\) 3.92095 6.79129i 0.306175 0.530310i
\(165\) 0 0
\(166\) 1.41742 + 2.45505i 0.110013 + 0.190549i
\(167\) −1.27520 2.20871i −0.0986780 0.170915i 0.812460 0.583017i \(-0.198128\pi\)
−0.911138 + 0.412102i \(0.864795\pi\)
\(168\) 0 0
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 6.92820 0.531369
\(171\) 0 0
\(172\) 15.3739 1.17225
\(173\) 5.74835 9.95644i 0.437039 0.756974i −0.560420 0.828208i \(-0.689360\pi\)
0.997460 + 0.0712342i \(0.0226938\pi\)
\(174\) 0 0
\(175\) 7.08258 + 12.2674i 0.535392 + 0.927327i
\(176\) 3.69253 + 6.39564i 0.278335 + 0.482090i
\(177\) 0 0
\(178\) 2.00000 3.46410i 0.149906 0.259645i
\(179\) 1.63670 0.122333 0.0611664 0.998128i \(-0.480518\pi\)
0.0611664 + 0.998128i \(0.480518\pi\)
\(180\) 0 0
\(181\) 13.1652 0.978558 0.489279 0.872127i \(-0.337260\pi\)
0.489279 + 0.872127i \(0.337260\pi\)
\(182\) −0.913701 + 1.58258i −0.0677280 + 0.117308i
\(183\) 0 0
\(184\) 3.00000 + 5.19615i 0.221163 + 0.383065i
\(185\) 6.56670 + 11.3739i 0.482794 + 0.836223i
\(186\) 0 0
\(187\) 4.58258 7.93725i 0.335111 0.580429i
\(188\) −4.91010 −0.358106
\(189\) 0 0
\(190\) −7.16515 −0.519815
\(191\) 3.05493 5.29129i 0.221047 0.382864i −0.734079 0.679064i \(-0.762386\pi\)
0.955126 + 0.296200i \(0.0957193\pi\)
\(192\) 0 0
\(193\) −7.00000 12.1244i −0.503871 0.872730i −0.999990 0.00447566i \(-0.998575\pi\)
0.496119 0.868255i \(-0.334758\pi\)
\(194\) 1.73205 + 3.00000i 0.124354 + 0.215387i
\(195\) 0 0
\(196\) 0.895644 1.55130i 0.0639746 0.110807i
\(197\) 0.0953502 0.00679342 0.00339671 0.999994i \(-0.498919\pi\)
0.00339671 + 0.999994i \(0.498919\pi\)
\(198\) 0 0
\(199\) −16.7477 −1.18721 −0.593607 0.804755i \(-0.702297\pi\)
−0.593607 + 0.804755i \(0.702297\pi\)
\(200\) −12.2674 + 21.2477i −0.867435 + 1.50244i
\(201\) 0 0
\(202\) −0.417424 0.723000i −0.0293699 0.0508701i
\(203\) 0.913701 + 1.58258i 0.0641292 + 0.111075i
\(204\) 0 0
\(205\) 9.58258 16.5975i 0.669276 1.15922i
\(206\) −1.63670 −0.114034
\(207\) 0 0
\(208\) 11.1652 0.774164
\(209\) −4.73930 + 8.20871i −0.327824 + 0.567808i
\(210\) 0 0
\(211\) −5.87386 10.1738i −0.404373 0.700395i 0.589875 0.807495i \(-0.299177\pi\)
−0.994248 + 0.107099i \(0.965844\pi\)
\(212\) −7.75650 13.4347i −0.532719 0.922696i
\(213\) 0 0
\(214\) 2.56080 4.43543i 0.175052 0.303200i
\(215\) 37.5728 2.56244
\(216\) 0 0
\(217\) −9.16515 −0.622171
\(218\) 1.37055 2.37386i 0.0928254 0.160778i
\(219\) 0 0
\(220\) 10.3739 + 17.9681i 0.699406 + 1.21141i
\(221\) −6.92820 12.0000i −0.466041 0.807207i
\(222\) 0 0
\(223\) −11.0000 + 19.0526i −0.736614 + 1.27585i 0.217397 + 0.976083i \(0.430243\pi\)
−0.954011 + 0.299770i \(0.903090\pi\)
\(224\) 4.73930 0.316658
\(225\) 0 0
\(226\) −6.37386 −0.423983
\(227\) −6.56670 + 11.3739i −0.435847 + 0.754910i −0.997364 0.0725554i \(-0.976885\pi\)
0.561517 + 0.827465i \(0.310218\pi\)
\(228\) 0 0
\(229\) −10.9564 18.9771i −0.724022 1.25404i −0.959375 0.282133i \(-0.908958\pi\)
0.235353 0.971910i \(-0.424375\pi\)
\(230\) 3.46410 + 6.00000i 0.228416 + 0.395628i
\(231\) 0 0
\(232\) −1.58258 + 2.74110i −0.103901 + 0.179962i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) 3.10260 5.37386i 0.201962 0.349809i
\(237\) 0 0
\(238\) −0.791288 1.37055i −0.0512916 0.0888396i
\(239\) 12.6289 + 21.8739i 0.816894 + 1.41490i 0.907960 + 0.419058i \(0.137639\pi\)
−0.0910652 + 0.995845i \(0.529027\pi\)
\(240\) 0 0
\(241\) −9.20871 + 15.9500i −0.593185 + 1.02743i 0.400615 + 0.916247i \(0.368797\pi\)
−0.993800 + 0.111181i \(0.964537\pi\)
\(242\) 1.82740 0.117470
\(243\) 0 0
\(244\) −4.33030 −0.277219
\(245\) 2.18890 3.79129i 0.139844 0.242216i
\(246\) 0 0
\(247\) 7.16515 + 12.4104i 0.455908 + 0.789655i
\(248\) −7.93725 13.7477i −0.504016 0.872982i
\(249\) 0 0
\(250\) −9.16515 + 15.8745i −0.579655 + 1.00399i
\(251\) −7.84190 −0.494977 −0.247488 0.968891i \(-0.579605\pi\)
−0.247488 + 0.968891i \(0.579605\pi\)
\(252\) 0 0
\(253\) 9.16515 0.576208
\(254\) −1.69433 + 2.93466i −0.106311 + 0.184137i
\(255\) 0 0
\(256\) −0.895644 1.55130i −0.0559777 0.0969563i
\(257\) 5.10080 + 8.83485i 0.318179 + 0.551103i 0.980108 0.198464i \(-0.0635953\pi\)
−0.661929 + 0.749567i \(0.730262\pi\)
\(258\) 0 0
\(259\) 1.50000 2.59808i 0.0932055 0.161437i
\(260\) 31.3676 1.94534
\(261\) 0 0
\(262\) −8.41742 −0.520030
\(263\) −2.14123 + 3.70871i −0.132034 + 0.228689i −0.924460 0.381278i \(-0.875484\pi\)
0.792427 + 0.609967i \(0.208817\pi\)
\(264\) 0 0
\(265\) −18.9564 32.8335i −1.16448 2.01695i
\(266\) 0.818350 + 1.41742i 0.0501763 + 0.0869079i
\(267\) 0 0
\(268\) −0.521780 + 0.903750i −0.0318728 + 0.0552053i
\(269\) 6.92820 0.422420 0.211210 0.977441i \(-0.432260\pi\)
0.211210 + 0.977441i \(0.432260\pi\)
\(270\) 0 0
\(271\) 8.74773 0.531387 0.265693 0.964058i \(-0.414399\pi\)
0.265693 + 0.964058i \(0.414399\pi\)
\(272\) −4.83465 + 8.37386i −0.293144 + 0.507740i
\(273\) 0 0
\(274\) 4.02178 + 6.96593i 0.242965 + 0.420827i
\(275\) 18.7387 + 32.4564i 1.12999 + 1.95720i
\(276\) 0 0
\(277\) −3.50000 + 6.06218i −0.210295 + 0.364241i −0.951807 0.306699i \(-0.900776\pi\)
0.741512 + 0.670940i \(0.234109\pi\)
\(278\) 3.46410 0.207763
\(279\) 0 0
\(280\) 7.58258 0.453146
\(281\) −14.8178 + 25.6652i −0.883955 + 1.53105i −0.0370478 + 0.999313i \(0.511795\pi\)
−0.846907 + 0.531741i \(0.821538\pi\)
\(282\) 0 0
\(283\) −8.79129 15.2270i −0.522588 0.905149i −0.999655 0.0262816i \(-0.991633\pi\)
0.477067 0.878867i \(-0.341700\pi\)
\(284\) 10.2116 + 17.6869i 0.605944 + 1.04953i
\(285\) 0 0
\(286\) −2.41742 + 4.18710i −0.142945 + 0.247589i
\(287\) −4.37780 −0.258413
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) −1.82740 + 3.16515i −0.107309 + 0.185864i
\(291\) 0 0
\(292\) −2.83485 4.91010i −0.165897 0.287342i
\(293\) −10.8492 18.7913i −0.633814 1.09780i −0.986765 0.162157i \(-0.948155\pi\)
0.352951 0.935642i \(-0.385178\pi\)
\(294\) 0 0
\(295\) 7.58258 13.1334i 0.441475 0.764656i
\(296\) 5.19615 0.302020
\(297\) 0 0
\(298\) 4.87841 0.282599
\(299\) 6.92820 12.0000i 0.400668 0.693978i
\(300\) 0 0
\(301\) −4.29129 7.43273i −0.247346 0.428415i
\(302\) −4.70158 8.14337i −0.270545 0.468598i
\(303\) 0 0
\(304\) 5.00000 8.66025i 0.286770 0.496700i
\(305\) −10.5830 −0.605981
\(306\) 0 0
\(307\) 16.3303 0.932020 0.466010 0.884780i \(-0.345691\pi\)
0.466010 + 0.884780i \(0.345691\pi\)
\(308\) 2.36965 4.10436i 0.135023 0.233867i
\(309\) 0 0
\(310\) −9.16515 15.8745i −0.520546 0.901611i
\(311\) 9.02175 + 15.6261i 0.511577 + 0.886077i 0.999910 + 0.0134197i \(0.00427174\pi\)
−0.488333 + 0.872657i \(0.662395\pi\)
\(312\) 0 0
\(313\) 0.582576 1.00905i 0.0329291 0.0570349i −0.849091 0.528246i \(-0.822850\pi\)
0.882020 + 0.471211i \(0.156183\pi\)
\(314\) −0.381401 −0.0215237
\(315\) 0 0
\(316\) 15.3739 0.864847
\(317\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 0 0
\(319\) 2.41742 + 4.18710i 0.135350 + 0.234433i
\(320\) −7.48040 12.9564i −0.418167 0.724287i
\(321\) 0 0
\(322\) 0.791288 1.37055i 0.0440967 0.0763778i
\(323\) −12.4104 −0.690533
\(324\) 0 0
\(325\) 56.6606 3.14296
\(326\) 3.33103 5.76951i 0.184489 0.319543i
\(327\) 0 0
\(328\) −3.79129 6.56670i −0.209339 0.362586i
\(329\) 1.37055 + 2.37386i 0.0755609 + 0.130875i
\(330\) 0 0
\(331\) −7.16515 + 12.4104i −0.393832 + 0.682138i −0.992951 0.118522i \(-0.962184\pi\)
0.599119 + 0.800660i \(0.295518\pi\)
\(332\) −11.1153 −0.610032
\(333\) 0 0
\(334\) −1.16515 −0.0637542
\(335\) −1.27520 + 2.20871i −0.0696716 + 0.120675i
\(336\) 0 0
\(337\) 10.0826 + 17.4635i 0.549233 + 0.951299i 0.998327 + 0.0578150i \(0.0184133\pi\)
−0.449094 + 0.893484i \(0.648253\pi\)
\(338\) 0.685275 + 1.18693i 0.0372741 + 0.0645606i
\(339\) 0 0
\(340\) −13.5826 + 23.5257i −0.736619 + 1.27586i
\(341\) −24.2487 −1.31314
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 7.43273 12.8739i 0.400746 0.694112i
\(345\) 0 0
\(346\) −2.62614 4.54860i −0.141182 0.244534i
\(347\) 18.0157 + 31.2042i 0.967135 + 1.67513i 0.703765 + 0.710432i \(0.251501\pi\)
0.263370 + 0.964695i \(0.415166\pi\)
\(348\) 0 0
\(349\) 12.3739 21.4322i 0.662358 1.14724i −0.317637 0.948212i \(-0.602889\pi\)
0.979994 0.199025i \(-0.0637774\pi\)
\(350\) 6.47135 0.345908
\(351\) 0 0
\(352\) 12.5390 0.668332
\(353\) −17.8727 + 30.9564i −0.951268 + 1.64765i −0.208583 + 0.978005i \(0.566885\pi\)
−0.742686 + 0.669640i \(0.766448\pi\)
\(354\) 0 0
\(355\) 24.9564 + 43.2258i 1.32455 + 2.29419i
\(356\) 7.84190 + 13.5826i 0.415620 + 0.719875i
\(357\) 0 0
\(358\) 0.373864 0.647551i 0.0197593 0.0342241i
\(359\) 30.3586 1.60226 0.801132 0.598488i \(-0.204232\pi\)
0.801132 + 0.598488i \(0.204232\pi\)
\(360\) 0 0
\(361\) −6.16515 −0.324482
\(362\) 3.00725 5.20871i 0.158058 0.273764i
\(363\) 0 0
\(364\) −3.58258 6.20520i −0.187778 0.325241i
\(365\) −6.92820 12.0000i −0.362639 0.628109i
\(366\) 0 0
\(367\) 4.41742 7.65120i 0.230588 0.399390i −0.727394 0.686221i \(-0.759268\pi\)
0.957981 + 0.286831i \(0.0926018\pi\)
\(368\) −9.66930 −0.504047
\(369\) 0 0
\(370\) 6.00000 0.311925
\(371\) −4.33013 + 7.50000i −0.224809 + 0.389381i
\(372\) 0 0
\(373\) 3.66515 + 6.34823i 0.189774 + 0.328699i 0.945175 0.326564i \(-0.105891\pi\)
−0.755401 + 0.655263i \(0.772558\pi\)
\(374\) −2.09355 3.62614i −0.108255 0.187503i
\(375\) 0 0
\(376\) −2.37386 + 4.11165i −0.122423 + 0.212042i
\(377\) 7.30960 0.376464
\(378\) 0 0
\(379\) −28.9129 −1.48515 −0.742577 0.669760i \(-0.766397\pi\)
−0.742577 + 0.669760i \(0.766397\pi\)
\(380\) 14.0471 24.3303i 0.720601 1.24812i
\(381\) 0 0
\(382\) −1.39564 2.41733i −0.0714074 0.123681i
\(383\) 9.66930 + 16.7477i 0.494078 + 0.855769i 0.999977 0.00682424i \(-0.00217224\pi\)
−0.505898 + 0.862593i \(0.668839\pi\)
\(384\) 0 0
\(385\) 5.79129 10.0308i 0.295151 0.511217i
\(386\) −6.39590 −0.325543
\(387\) 0 0
\(388\) −13.5826 −0.689551
\(389\) 15.8745 27.4955i 0.804869 1.39407i −0.111510 0.993763i \(-0.535569\pi\)
0.916379 0.400312i \(-0.131098\pi\)
\(390\) 0 0
\(391\) 6.00000 + 10.3923i 0.303433 + 0.525561i
\(392\) −0.866025 1.50000i −0.0437409 0.0757614i
\(393\) 0 0
\(394\) 0.0217804 0.0377247i 0.00109728 0.00190054i
\(395\) 37.5728 1.89049
\(396\) 0 0
\(397\) −1.58258 −0.0794272 −0.0397136 0.999211i \(-0.512645\pi\)
−0.0397136 + 0.999211i \(0.512645\pi\)
\(398\) −3.82560 + 6.62614i −0.191760 + 0.332138i
\(399\) 0 0
\(400\) −19.7695 34.2418i −0.988475 1.71209i
\(401\) −7.07123 12.2477i −0.353120 0.611622i 0.633674 0.773600i \(-0.281546\pi\)
−0.986794 + 0.161978i \(0.948213\pi\)
\(402\) 0 0
\(403\) −18.3303 + 31.7490i −0.913097 + 1.58153i
\(404\) 3.27340 0.162858
\(405\) 0 0
\(406\) 0.834849 0.0414328
\(407\) 3.96863 6.87386i 0.196718 0.340725i
\(408\) 0 0
\(409\) −4.62614 8.01270i −0.228748 0.396203i 0.728690 0.684844i \(-0.240130\pi\)
−0.957437 + 0.288642i \(0.906796\pi\)
\(410\) −4.37780 7.58258i −0.216204 0.374477i
\(411\) 0 0
\(412\) 3.20871 5.55765i 0.158082 0.273806i
\(413\) −3.46410 −0.170457
\(414\) 0 0
\(415\) −27.1652 −1.33348
\(416\) 9.47860 16.4174i 0.464727 0.804930i
\(417\) 0 0
\(418\) 2.16515 + 3.75015i 0.105901 + 0.183426i
\(419\) −9.30780 16.1216i −0.454716 0.787591i 0.543956 0.839114i \(-0.316926\pi\)
−0.998672 + 0.0515226i \(0.983593\pi\)
\(420\) 0 0
\(421\) 8.08258 13.9994i 0.393921 0.682291i −0.599042 0.800718i \(-0.704452\pi\)
0.992963 + 0.118427i \(0.0377851\pi\)
\(422\) −5.36695 −0.261259
\(423\) 0 0
\(424\) −15.0000 −0.728464
\(425\) −24.5348 + 42.4955i −1.19011 + 2.06133i
\(426\) 0 0
\(427\) 1.20871 + 2.09355i 0.0584937 + 0.101314i
\(428\) 10.0408 + 17.3911i 0.485338 + 0.840630i
\(429\) 0 0
\(430\) 8.58258 14.8655i 0.413889 0.716876i
\(431\) −36.6591 −1.76581 −0.882904 0.469554i \(-0.844415\pi\)
−0.882904 + 0.469554i \(0.844415\pi\)
\(432\) 0 0
\(433\) −21.9129 −1.05307 −0.526533 0.850155i \(-0.676508\pi\)
−0.526533 + 0.850155i \(0.676508\pi\)
\(434\) −2.09355 + 3.62614i −0.100494 + 0.174060i
\(435\) 0 0
\(436\) 5.37386 + 9.30780i 0.257361 + 0.445763i
\(437\) −6.20520 10.7477i −0.296835 0.514134i
\(438\) 0 0
\(439\) −12.7913 + 22.1552i −0.610495 + 1.05741i 0.380662 + 0.924714i \(0.375696\pi\)
−0.991157 + 0.132694i \(0.957637\pi\)
\(440\) 20.0616 0.956400
\(441\) 0 0
\(442\) −6.33030 −0.301102
\(443\) −8.66025 + 15.0000i −0.411461 + 0.712672i −0.995050 0.0993779i \(-0.968315\pi\)
0.583589 + 0.812049i \(0.301648\pi\)
\(444\) 0 0
\(445\) 19.1652 + 33.1950i 0.908515 + 1.57359i
\(446\) 5.02535 + 8.70417i 0.237957 + 0.412154i
\(447\) 0 0
\(448\) −1.70871 + 2.95958i −0.0807291 + 0.139827i
\(449\) 26.5529 1.25311 0.626554 0.779378i \(-0.284465\pi\)
0.626554 + 0.779378i \(0.284465\pi\)
\(450\) 0 0
\(451\) −11.5826 −0.545402
\(452\) 12.4958 21.6434i 0.587753 1.01802i
\(453\) 0 0
\(454\) 3.00000 + 5.19615i 0.140797 + 0.243868i
\(455\) −8.75560 15.1652i −0.410469 0.710953i
\(456\) 0 0
\(457\) −15.6652 + 27.1328i −0.732785 + 1.26922i 0.222904 + 0.974841i \(0.428447\pi\)
−0.955688 + 0.294380i \(0.904887\pi\)
\(458\) −10.0109 −0.467779
\(459\) 0 0
\(460\) −27.1652 −1.26658
\(461\) −6.66205 + 11.5390i −0.310283 + 0.537426i −0.978424 0.206609i \(-0.933757\pi\)
0.668141 + 0.744035i \(0.267090\pi\)
\(462\) 0 0
\(463\) −10.4564 18.1111i −0.485952 0.841693i 0.513918 0.857839i \(-0.328194\pi\)
−0.999870 + 0.0161460i \(0.994860\pi\)
\(464\) −2.55040 4.41742i −0.118399 0.205074i
\(465\) 0 0
\(466\) 0 0
\(467\) −6.20520 −0.287143 −0.143571 0.989640i \(-0.545859\pi\)
−0.143571 + 0.989640i \(0.545859\pi\)
\(468\) 0 0
\(469\) 0.582576 0.0269008
\(470\) −2.74110 + 4.74773i −0.126438 + 0.218996i
\(471\) 0 0
\(472\) −3.00000 5.19615i −0.138086 0.239172i
\(473\) −11.3537 19.6652i −0.522043 0.904205i
\(474\) 0 0
\(475\) 25.3739 43.9488i 1.16423 2.01651i
\(476\) 6.20520 0.284415
\(477\) 0 0
\(478\) 11.5390 0.527782
\(479\) 12.3151 21.3303i 0.562689 0.974606i −0.434571 0.900637i \(-0.643100\pi\)
0.997261 0.0739690i \(-0.0235666\pi\)
\(480\) 0 0
\(481\) −6.00000 10.3923i −0.273576 0.473848i
\(482\) 4.20700 + 7.28674i 0.191624 + 0.331902i
\(483\) 0 0
\(484\) −3.58258 + 6.20520i −0.162844 + 0.282055i
\(485\) −33.1950 −1.50731
\(486\) 0 0
\(487\) −6.58258 −0.298285 −0.149142 0.988816i \(-0.547651\pi\)
−0.149142 + 0.988816i \(0.547651\pi\)
\(488\) −2.09355 + 3.62614i −0.0947706 + 0.164147i
\(489\) 0 0
\(490\) −1.00000 1.73205i −0.0451754 0.0782461i
\(491\) −11.2107 19.4174i −0.505930 0.876296i −0.999976 0.00686071i \(-0.997816\pi\)
0.494047 0.869435i \(-0.335517\pi\)
\(492\) 0 0
\(493\) −3.16515 + 5.48220i −0.142551 + 0.246906i
\(494\) 6.54680 0.294555
\(495\) 0 0
\(496\) 25.5826 1.14869
\(497\) 5.70068 9.87386i 0.255710 0.442903i
\(498\) 0 0
\(499\) 10.0000 + 17.3205i 0.447661 + 0.775372i 0.998233 0.0594153i \(-0.0189236\pi\)
−0.550572 + 0.834788i \(0.685590\pi\)
\(500\) −35.9361 62.2432i −1.60711 2.78360i
\(501\) 0 0
\(502\) −1.79129 + 3.10260i −0.0799491 + 0.138476i
\(503\) −5.48220 −0.244439 −0.122220 0.992503i \(-0.539001\pi\)
−0.122220 + 0.992503i \(0.539001\pi\)
\(504\) 0 0
\(505\) 8.00000 0.355995
\(506\) 2.09355 3.62614i 0.0930697 0.161201i
\(507\) 0 0
\(508\) −6.64337 11.5067i −0.294752 0.510525i
\(509\) 9.57395 + 16.5826i 0.424358 + 0.735010i 0.996360 0.0852424i \(-0.0271665\pi\)
−0.572002 + 0.820252i \(0.693833\pi\)
\(510\) 0 0
\(511\) −1.58258 + 2.74110i −0.0700090 + 0.121259i
\(512\) −22.8981 −1.01196
\(513\) 0 0
\(514\) 4.66061 0.205570
\(515\) 7.84190 13.5826i 0.345556 0.598520i
\(516\) 0 0
\(517\) 3.62614 + 6.28065i 0.159477 + 0.276223i
\(518\) −0.685275 1.18693i −0.0301093 0.0521508i
\(519\) 0 0
\(520\) 15.1652 26.2668i 0.665036 1.15188i
\(521\) 3.46410 0.151765 0.0758825 0.997117i \(-0.475823\pi\)
0.0758825 + 0.997117i \(0.475823\pi\)
\(522\) 0 0
\(523\) −6.41742 −0.280614 −0.140307 0.990108i \(-0.544809\pi\)
−0.140307 + 0.990108i \(0.544809\pi\)
\(524\) 16.5022 28.5826i 0.720900 1.24864i
\(525\) 0 0
\(526\) 0.978220 + 1.69433i 0.0426524 + 0.0738761i
\(527\) −15.8745 27.4955i −0.691504 1.19772i
\(528\) 0 0
\(529\) 5.50000 9.52628i 0.239130 0.414186i
\(530\) −17.3205 −0.752355
\(531\) 0 0
\(532\) −6.41742 −0.278231
\(533\) −8.75560 + 15.1652i −0.379247 + 0.656876i
\(534\) 0 0
\(535\) 24.5390 + 42.5028i 1.06091 + 1.83756i
\(536\) 0.504525 + 0.873864i 0.0217922 + 0.0377452i
\(537\) 0 0
\(538\) 1.58258 2.74110i 0.0682297 0.118177i
\(539\) −2.64575 −0.113961
\(540\) 0 0
\(541\) 11.0000 0.472927 0.236463 0.971640i \(-0.424012\pi\)
0.236463 + 0.971640i \(0.424012\pi\)
\(542\) 1.99820 3.46099i 0.0858301 0.148662i
\(543\) 0 0
\(544\) 8.20871 + 14.2179i 0.351946 + 0.609588i
\(545\) 13.1334 + 22.7477i 0.562573 + 0.974406i
\(546\) 0 0
\(547\) 6.45644 11.1829i 0.276057 0.478145i −0.694344 0.719643i \(-0.744305\pi\)
0.970401 + 0.241498i \(0.0776387\pi\)
\(548\) −31.5384 −1.34725
\(549\) 0 0
\(550\) 17.1216 0.730067
\(551\) 3.27340 5.66970i 0.139452 0.241537i
\(552\) 0 0
\(553\) −4.29129 7.43273i −0.182484 0.316072i
\(554\) 1.59898 + 2.76951i 0.0679340 + 0.117665i
\(555\) 0 0
\(556\) −6.79129 + 11.7629i −0.288015 + 0.498856i
\(557\) 12.5058 0.529886 0.264943 0.964264i \(-0.414647\pi\)
0.264943 + 0.964264i \(0.414647\pi\)
\(558\) 0 0
\(559\) −34.3303 −1.45202
\(560\) −6.10985 + 10.5826i −0.258188 + 0.447195i
\(561\) 0 0
\(562\) 6.76951 + 11.7251i 0.285554 + 0.494595i
\(563\) 20.8800 + 36.1652i 0.879985 + 1.52418i 0.851355 + 0.524589i \(0.175781\pi\)
0.0286300 + 0.999590i \(0.490886\pi\)
\(564\) 0 0
\(565\) 30.5390 52.8951i 1.28479 2.22531i
\(566\) −8.03260 −0.337636
\(567\) 0 0
\(568\) 19.7477 0.828596
\(569\) −5.96683 + 10.3348i −0.250142 + 0.433259i −0.963565 0.267475i \(-0.913811\pi\)
0.713422 + 0.700734i \(0.247144\pi\)
\(570\) 0 0
\(571\) 0.417424 + 0.723000i 0.0174687 + 0.0302566i 0.874628 0.484795i \(-0.161106\pi\)
−0.857159 + 0.515052i \(0.827773\pi\)
\(572\) −9.47860 16.4174i −0.396320 0.686447i
\(573\) 0 0
\(574\) −1.00000 + 1.73205i −0.0417392 + 0.0722944i
\(575\) −49.0695 −2.04634
\(576\) 0 0
\(577\) 32.7477 1.36331 0.681653 0.731676i \(-0.261261\pi\)
0.681653 + 0.731676i \(0.261261\pi\)
\(578\) −1.14213 + 1.97822i −0.0475062 + 0.0822831i
\(579\) 0 0
\(580\) −7.16515 12.4104i −0.297517 0.515314i
\(581\) 3.10260 + 5.37386i 0.128718 + 0.222945i
\(582\) 0 0
\(583\) −11.4564 + 19.8431i −0.474477 + 0.821819i
\(584\) −5.48220 −0.226855
\(585\) 0 0
\(586\) −9.91288 −0.409497
\(587\) 4.28245 7.41742i 0.176756 0.306150i −0.764012 0.645202i \(-0.776773\pi\)
0.940767 + 0.339052i \(0.110106\pi\)
\(588\) 0 0
\(589\) 16.4174 + 28.4358i 0.676468 + 1.17168i
\(590\) −3.46410 6.00000i −0.142615 0.247016i
\(591\) 0 0
\(592\) −4.18693 + 7.25198i −0.172082 + 0.298054i
\(593\) −43.5873 −1.78992 −0.894958 0.446150i \(-0.852795\pi\)
−0.894958 + 0.446150i \(0.852795\pi\)
\(594\) 0 0
\(595\) 15.1652 0.621711
\(596\) −9.56400 + 16.5653i −0.391757 + 0.678543i
\(597\) 0 0
\(598\) −3.16515 5.48220i −0.129433 0.224184i
\(599\) −2.23658 3.87386i −0.0913840 0.158282i 0.816710 0.577049i \(-0.195796\pi\)
−0.908094 + 0.418767i \(0.862462\pi\)
\(600\) 0 0
\(601\) −2.20871 + 3.82560i −0.0900952 + 0.156050i −0.907551 0.419942i \(-0.862050\pi\)
0.817456 + 0.575991i \(0.195384\pi\)
\(602\) −3.92095 −0.159806
\(603\) 0 0
\(604\) 36.8693 1.50019
\(605\) −8.75560 + 15.1652i −0.355966 + 0.616551i
\(606\) 0 0
\(607\) −10.7913 18.6911i −0.438005 0.758647i 0.559531 0.828810i \(-0.310981\pi\)
−0.997536 + 0.0701630i \(0.977648\pi\)
\(608\) −8.48945 14.7042i −0.344293 0.596333i
\(609\) 0 0
\(610\) −2.41742 + 4.18710i −0.0978786 + 0.169531i
\(611\) 10.9644 0.443572
\(612\) 0 0
\(613\) 1.00000 0.0403896 0.0201948 0.999796i \(-0.493571\pi\)
0.0201948 + 0.999796i \(0.493571\pi\)
\(614\) 3.73025 6.46099i 0.150541 0.260744i
\(615\) 0 0
\(616\) −2.29129 3.96863i −0.0923186 0.159901i
\(617\) −12.4104 21.4955i −0.499624 0.865374i 0.500376 0.865808i \(-0.333195\pi\)
−1.00000 0.000433948i \(0.999862\pi\)
\(618\) 0 0
\(619\) 13.9564 24.1733i 0.560957 0.971605i −0.436457 0.899725i \(-0.643767\pi\)
0.997413 0.0718801i \(-0.0228999\pi\)
\(620\) 71.8722 2.88646
\(621\) 0 0
\(622\) 8.24318 0.330521
\(623\) 4.37780 7.58258i 0.175393 0.303789i
\(624\) 0 0
\(625\) −52.4129 90.7818i −2.09652 3.63127i
\(626\) −0.266150 0.460985i −0.0106375 0.0184247i
\(627\) 0 0
\(628\) 0.747727 1.29510i 0.0298376 0.0516802i
\(629\) 10.3923 0.414368
\(630\) 0 0
\(631\) −31.1652 −1.24067 −0.620333 0.784339i \(-0.713002\pi\)
−0.620333 + 0.784339i \(0.713002\pi\)
\(632\) 7.43273 12.8739i 0.295658 0.512095i
\(633\) 0 0
\(634\) 0 0
\(635\) −16.2360 28.1216i −0.644306 1.11597i
\(636\) 0 0
\(637\) −2.00000 + 3.46410i −0.0792429 + 0.137253i
\(638\) 2.20880 0.0874473
\(639\) 0 0
\(640\) −48.3303 −1.91042
\(641\) −6.06218 + 10.5000i −0.239442 + 0.414725i −0.960554 0.278093i \(-0.910298\pi\)
0.721113 + 0.692818i \(0.243631\pi\)
\(642\) 0 0
\(643\) 17.1652 + 29.7309i 0.676927 + 1.17247i 0.975901 + 0.218212i \(0.0700223\pi\)
−0.298974 + 0.954261i \(0.596644\pi\)
\(644\) 3.10260 + 5.37386i 0.122260 + 0.211760i
\(645\) 0 0
\(646\) −2.83485 + 4.91010i −0.111536 + 0.193185i
\(647\) 11.3060 0.444485 0.222242 0.974991i \(-0.428662\pi\)
0.222242 + 0.974991i \(0.428662\pi\)
\(648\) 0 0
\(649\) −9.16515 −0.359764
\(650\) 12.9427 22.4174i 0.507655 0.879284i
\(651\) 0 0
\(652\) 13.0608 + 22.6220i 0.511500 + 0.885944i
\(653\) −6.06218 10.5000i −0.237231 0.410897i 0.722687 0.691175i \(-0.242907\pi\)
−0.959919 + 0.280278i \(0.909573\pi\)
\(654\) 0 0
\(655\) 40.3303 69.8541i 1.57584 2.72943i
\(656\) 12.2197 0.477099
\(657\) 0 0
\(658\) 1.25227 0.0488187
\(659\) −3.24563 + 5.62159i −0.126432 + 0.218986i −0.922292 0.386495i \(-0.873686\pi\)
0.795860 + 0.605481i \(0.207019\pi\)
\(660\) 0 0
\(661\) 4.00000 + 6.92820i 0.155582 + 0.269476i 0.933271 0.359174i \(-0.116941\pi\)
−0.777689 + 0.628649i \(0.783608\pi\)
\(662\) 3.27340 + 5.66970i 0.127224 + 0.220359i
\(663\) 0 0
\(664\) −5.37386 + 9.30780i −0.208546 + 0.361213i
\(665\) −15.6838 −0.608192
\(666\) 0 0
\(667\) −6.33030 −0.245110
\(668\) 2.28425 3.95644i 0.0883803 0.153079i
\(669\) 0 0
\(670\) 0.582576 + 1.00905i 0.0225069 + 0.0389830i
\(671\) 3.19795 + 5.53901i 0.123456 + 0.213831i
\(672\) 0 0
\(673\) −14.2477 + 24.6778i −0.549210 + 0.951259i 0.449119 + 0.893472i \(0.351738\pi\)
−0.998329 + 0.0577870i \(0.981596\pi\)
\(674\) 9.21245 0.354850
\(675\) 0 0
\(676\) −5.37386 −0.206687
\(677\) −5.91915 + 10.2523i −0.227492 + 0.394027i −0.957064 0.289877i \(-0.906386\pi\)
0.729573 + 0.683903i \(0.239719\pi\)
\(678\) 0 0
\(679\) 3.79129 + 6.56670i 0.145496 + 0.252007i
\(680\) 13.1334 + 22.7477i 0.503643 + 0.872336i
\(681\) 0 0
\(682\) −5.53901 + 9.59386i −0.212100 + 0.367368i
\(683\) 4.47315 0.171160 0.0855802 0.996331i \(-0.472726\pi\)
0.0855802 + 0.996331i \(0.472726\pi\)
\(684\) 0 0
\(685\) −77.0780 −2.94500
\(686\) −0.228425 + 0.395644i −0.00872131 + 0.0151058i
\(687\) 0 0
\(688\) 11.9782 + 20.7469i 0.456665 + 0.790968i
\(689\) 17.3205 + 30.0000i 0.659859 + 1.14291i
\(690\) 0 0
\(691\) −5.41742 + 9.38325i −0.206089 + 0.356956i −0.950479 0.310789i \(-0.899407\pi\)
0.744390 + 0.667745i \(0.232740\pi\)
\(692\) 20.5939 0.782863
\(693\) 0 0
\(694\) 16.4610 0.624850
\(695\) −16.5975 + 28.7477i −0.629579 + 1.09046i
\(696\) 0 0
\(697\) −7.58258 13.1334i −0.287211 0.497463i
\(698\) −5.65300 9.79129i −0.213969 0.370606i
\(699\) 0 0
\(700\) −12.6869 + 21.9744i −0.479521 + 0.830555i
\(701\) −29.4449 −1.11212 −0.556059 0.831143i \(-0.687687\pi\)
−0.556059 + 0.831143i \(0.687687\pi\)
\(702\) 0 0
\(703\) −10.7477 −0.405358
\(704\) −4.52083 + 7.83030i −0.170385 + 0.295116i
\(705\) 0 0
\(706\) 8.16515 + 14.1425i 0.307300 + 0.532258i
\(707\) −0.913701 1.58258i −0.0343632 0.0595189i
\(708\) 0 0
\(709\) −7.50000 + 12.9904i −0.281668 + 0.487864i −0.971796 0.235824i \(-0.924221\pi\)
0.690127 + 0.723688i \(0.257554\pi\)
\(710\) 22.8027 0.855770
\(711\) 0 0
\(712\) 15.1652 0.568338
\(713\) 15.8745 27.4955i 0.594505 1.02971i
\(714\) 0 0
\(715\) −23.1652 40.1232i −0.866328 1.50052i
\(716\) 1.46590 + 2.53901i 0.0547833 + 0.0948874i
\(717\) 0 0
\(718\) 6.93466 12.0112i 0.258799 0.448253i
\(719\) 49.0695 1.82998 0.914992 0.403471i \(-0.132197\pi\)
0.914992 + 0.403471i \(0.132197\pi\)
\(720\) 0 0
\(721\) −3.58258 −0.133422
\(722\) −1.40828 + 2.43920i −0.0524106 + 0.0907778i
\(723\) 0 0
\(724\) 11.7913 + 20.4231i 0.438220 + 0.759019i
\(725\) −12.9427 22.4174i −0.480680 0.832562i
\(726\) 0 0
\(727\) −23.1216 + 40.0478i −0.857532 + 1.48529i 0.0167434 + 0.999860i \(0.494670\pi\)
−0.874276 + 0.485430i \(0.838663\pi\)
\(728\) −6.92820 −0.256776
\(729\) 0 0
\(730\) −6.33030 −0.234295
\(731\) 14.8655 25.7477i 0.549819 0.952314i
\(732\) 0 0
\(733\) −5.37386 9.30780i −0.198488 0.343792i 0.749550 0.661947i \(-0.230270\pi\)
−0.948038 + 0.318156i \(0.896936\pi\)
\(734\) −2.01810 3.49545i −0.0744895 0.129020i
\(735\) 0 0
\(736\) −8.20871 + 14.2179i −0.302577 + 0.524079i
\(737\) 1.54135 0.0567764
\(738\) 0 0
\(739\) −19.4174 −0.714281 −0.357141 0.934051i \(-0.616248\pi\)
−0.357141 + 0.934051i \(0.616248\pi\)
\(740\) −11.7629 + 20.3739i −0.432411 + 0.748958i
\(741\) 0 0
\(742\) 1.97822 + 3.42638i 0.0726227 + 0.125786i
\(743\) 6.70973 + 11.6216i 0.246156 + 0.426355i 0.962456 0.271438i \(-0.0874991\pi\)
−0.716300 + 0.697793i \(0.754166\pi\)
\(744\) 0 0
\(745\) −23.3739 + 40.4847i −0.856352 + 1.48325i
\(746\) 3.34885 0.122610
\(747\) 0 0
\(748\) 16.4174 0.600280
\(749\) 5.60533 9.70871i 0.204814 0.354749i
\(750\) 0 0
\(751\) 4.70871 + 8.15573i 0.171823 + 0.297607i 0.939057 0.343761i \(-0.111701\pi\)
−0.767234 + 0.641367i \(0.778368\pi\)
\(752\) −3.82560 6.62614i −0.139505 0.241630i
\(753\) 0 0
\(754\) 1.66970 2.89200i 0.0608068 0.105320i
\(755\) 90.1064 3.27931
\(756\) 0 0
\(757\) −6.83485 −0.248417 −0.124208 0.992256i \(-0.539639\pi\)
−0.124208 + 0.992256i \(0.539639\pi\)
\(758\) −6.60443 + 11.4392i −0.239884 + 0.415491i
\(759\) 0 0
\(760\) −13.5826 23.5257i −0.492692 0.853367i
\(761\) 15.2270 + 26.3739i 0.551977 + 0.956052i 0.998132 + 0.0610962i \(0.0194596\pi\)
−0.446155 + 0.894956i \(0.647207\pi\)
\(762\) 0 0
\(763\) 3.00000 5.19615i 0.108607 0.188113i
\(764\) 10.9445 0.395958
\(765\) 0 0
\(766\) 8.83485 0.319216
\(767\) −6.92820 + 12.0000i −0.250163 + 0.433295i
\(768\) 0 0
\(769\) 22.5390 + 39.0387i 0.812778 + 1.40777i 0.910913 + 0.412599i \(0.135379\pi\)
−0.0981351 + 0.995173i \(0.531288\pi\)
\(770\) −2.64575 4.58258i −0.0953463 0.165145i
\(771\) 0 0
\(772\) 12.5390 21.7182i 0.451289 0.781656i
\(773\) −31.5583 −1.13507 −0.567537 0.823348i \(-0.692104\pi\)
−0.567537 + 0.823348i \(0.692104\pi\)
\(774\) 0 0
\(775\) 129.826 4.66348
\(776\) −6.56670 + 11.3739i −0.235731 + 0.408298i
\(777\) 0 0
\(778\) −7.25227 12.5613i −0.260007 0.450345i
\(779\) 7.84190 + 13.5826i 0.280965 + 0.486646i
\(780\) 0 0
\(781\) 15.0826 26.1238i 0.539697 0.934783i
\(782\) 5.48220 0.196043
\(783\) 0 0
\(784\) 2.79129 0.0996889
\(785\) 1.82740 3.16515i 0.0652227 0.112969i
\(786\) 0 0
\(787\) −26.9564 46.6899i −0.960893 1.66432i −0.720265 0.693699i \(-0.755980\pi\)
−0.240628 0.970617i \(-0.577353\pi\)
\(788\) 0.0853998 + 0.147917i 0.00304224 + 0.00526932i
\(789\) 0 0
\(790\) 8.58258 14.8655i 0.305354 0.528889i
\(791\) −13.9518 −0.496067
\(792\) 0 0
\(793\) 9.66970 0.343381
\(794\) −0.361500 + 0.626136i −0.0128292 + 0.0222208i
\(795\) 0 0
\(796\) −15.0000 25.9808i −0.531661 0.920864i
\(797\) 25.3531 + 43.9129i 0.898053 + 1.55547i 0.829980 + 0.557794i \(0.188352\pi\)
0.0680737 + 0.997680i \(0.478315\pi\)
\(798\) 0 0
\(799\) −4.74773 + 8.22330i −0.167963 + 0.290920i
\(800\) −67.1329 −2.37351
\(801\) 0 0
\(802\) −6.46099 −0.228145
\(803\) −4.18710 + 7.25227i −0.147760 + 0.255927i
\(804\) 0 0
\(805\) 7.58258 + 13.1334i 0.267251 + 0.462892i
\(806\) 8.37420 + 14.5045i 0.294969 + 0.510901i
\(807\) 0 0
\(808\) 1.58258 2.74110i 0.0556748 0.0964316i
\(809\) 10.1063 0.355317 0.177658 0.984092i \(-0.443148\pi\)
0.177658 + 0.984092i \(0.443148\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) −1.63670 + 2.83485i −0.0574369 + 0.0994837i
\(813\) 0 0
\(814\) −1.81307 3.14033i −0.0635480 0.110068i
\(815\) 31.9198 + 55.2867i 1.11810 + 1.93661i
\(816\) 0 0
\(817\) −15.3739 + 26.6283i −0.537863 + 0.931607i
\(818\) −4.22690 −0.147790
\(819\) 0 0
\(820\) 34.3303 1.19887
\(821\) −16.8359 + 29.1606i −0.587576 + 1.01771i 0.406972 + 0.913440i \(0.366584\pi\)
−0.994549 + 0.104272i \(0.966749\pi\)
\(822\) 0 0
\(823\) −6.00000 10.3923i −0.209147 0.362253i 0.742299 0.670069i \(-0.233735\pi\)
−0.951446 + 0.307816i \(0.900402\pi\)
\(824\) −3.10260 5.37386i −0.108084 0.187207i
\(825\) 0 0
\(826\) −0.791288 + 1.37055i −0.0275324 + 0.0476876i
\(827\) −25.2578 −0.878298 −0.439149 0.898414i \(-0.644720\pi\)
−0.439149 + 0.898414i \(0.644720\pi\)
\(828\) 0 0
\(829\) −10.3303 −0.358786 −0.179393 0.983777i \(-0.557413\pi\)
−0.179393 + 0.983777i \(0.557413\pi\)
\(830\) −6.20520 + 10.7477i −0.215386 + 0.373059i
\(831\) 0 0
\(832\) 6.83485 + 11.8383i 0.236956 + 0.410419i
\(833\) −1.73205 3.00000i −0.0600120 0.103944i
\(834\) 0 0
\(835\) 5.58258 9.66930i 0.193193 0.334620i
\(836\) −16.9789 −0.587228
\(837\) 0 0
\(838\) −8.50455 −0.293785
\(839\) 19.5094 33.7913i 0.673540 1.16660i −0.303354 0.952878i \(-0.598106\pi\)
0.976893 0.213727i \(-0.0685602\pi\)
\(840\) 0 0
\(841\) 12.8303 + 22.2227i 0.442424 + 0.766301i
\(842\) −3.69253 6.39564i −0.127253 0.220408i
\(843\) 0 0
\(844\) 10.5218 18.2243i 0.362175 0.627305i
\(845\) −13.1334 −0.451803
\(846\) 0 0
\(847\) 4.00000 0.137442
\(848\) 12.0866 20.9347i 0.415057 0.718899i
\(849\) 0 0
\(850\) 11.2087 + 19.4141i 0.384456 + 0.665897i
\(851\) 5.19615 + 9.00000i 0.178122 + 0.308516i
\(852\) 0 0
\(853\) −6.37386 + 11.0399i −0.218237 + 0.377997i −0.954269 0.298949i \(-0.903364\pi\)
0.736032 + 0.676947i \(0.236697\pi\)
\(854\) 1.10440 0.0377918
\(855\) 0 0
\(856\) 19.4174 0.663674
\(857\) 20.1570 34.9129i 0.688549 1.19260i −0.283759 0.958896i \(-0.591582\pi\)
0.972307 0.233706i \(-0.0750852\pi\)
\(858\) 0 0
\(859\) −13.1652 22.8027i −0.449189 0.778018i 0.549144 0.835728i \(-0.314954\pi\)
−0.998333 + 0.0577091i \(0.981620\pi\)
\(860\) 33.6519 + 58.2867i 1.14752 + 1.98756i
\(861\) 0 0
\(862\) −8.37386 + 14.5040i −0.285215 + 0.494007i
\(863\) 2.45505 0.0835709 0.0417855 0.999127i \(-0.486695\pi\)
0.0417855 + 0.999127i \(0.486695\pi\)
\(864\) 0 0
\(865\) 50.3303 1.71128
\(866\) −5.00545 + 8.66970i −0.170092 + 0.294608i
\(867\) 0 0
\(868\) −8.20871 14.2179i −0.278622 0.482587i
\(869\) −11.3537 19.6652i −0.385147 0.667095i
\(870\) 0 0
\(871\) 1.16515 2.01810i 0.0394796 0.0683808i
\(872\) 10.3923 0.351928
\(873\) 0 0
\(874\) −5.66970 −0.191780
\(875\) −20.0616 + 34.7477i −0.678206 + 1.17469i
\(876\) 0 0
\(877\) −6.50000 11.2583i −0.219489 0.380167i 0.735163 0.677891i \(-0.237106\pi\)
−0.954652 + 0.297724i \(0.903772\pi\)
\(878\) 5.84370 + 10.1216i 0.197215 + 0.341587i
\(879\) 0 0
\(880\) −16.1652 + 27.9989i −0.544927 + 0.943841i
\(881\) 21.5076 0.724610 0.362305 0.932060i \(-0.381990\pi\)
0.362305 + 0.932060i \(0.381990\pi\)
\(882\) 0 0
\(883\) 48.9129 1.64605 0.823025 0.568006i \(-0.192285\pi\)
0.823025 + 0.568006i \(0.192285\pi\)
\(884\) 12.4104 21.4955i 0.417407 0.722970i
\(885\) 0 0
\(886\) 3.95644 + 6.85275i 0.132919 + 0.230223i
\(887\) −11.4967 19.9129i −0.386022 0.668609i 0.605889 0.795549i \(-0.292818\pi\)
−0.991910 + 0.126940i \(0.959484\pi\)
\(888\) 0 0
\(889\) −3.70871 + 6.42368i −0.124386 + 0.215443i
\(890\) 17.5112 0.586977
\(891\) 0 0
\(892\) −39.4083 −1.31949
\(893\) 4.91010 8.50455i 0.164310 0.284594i
\(894\) 0 0
\(895\) 3.58258 + 6.20520i 0.119752 + 0.207417i
\(896\) 5.51993 + 9.56080i 0.184408 + 0.319404i
\(897\) 0 0
\(898\) 6.06534 10.5055i 0.202403 0.350572i
\(899\) 16.7484 0.558591
\(900\) 0 0
\(901\) −30.0000 −0.999445
\(902\) −2.64575 + 4.58258i −0.0880939 + 0.152583i
\(903\) 0 0
\(904\) −12.0826 20.9276i −0.401860 0.696043i
\(905\) 28.8172 + 49.9129i 0.957917 + 1.65916i
\(906\) 0 0
\(907\) −9.29129 + 16.0930i −0.308512 + 0.534359i −0.978037 0.208431i \(-0.933164\pi\)
0.669525 + 0.742790i \(0.266498\pi\)
\(908\) −23.5257 −0.780728
\(909\) 0 0
\(910\) −8.00000 −0.265197
\(911\) −4.47315 + 7.74773i −0.148202 + 0.256694i −0.930563 0.366132i \(-0.880682\pi\)
0.782361 + 0.622825i \(0.214015\pi\)
\(912\) 0 0
\(913\) 8.20871 + 14.2179i 0.271669 + 0.470544i
\(914\) 7.15663 + 12.3956i 0.236720 + 0.410011i
\(915\) 0 0
\(916\) 19.6261 33.9935i 0.648466 1.12318i
\(917\) −18.4249 −0.608444
\(918\) 0 0
\(919\) 16.0780 0.530365 0.265183 0.964198i \(-0.414568\pi\)
0.265183 + 0.964198i \(0.414568\pi\)
\(920\) −13.1334 + 22.7477i −0.432996 + 0.749970i
\(921\) 0 0
\(922\) 3.04356 + 5.27160i 0.100234 + 0.173611i
\(923\) −22.8027 39.4955i −0.750560 1.30001i
\(924\) 0 0
\(925\) −21.2477 + 36.8021i −0.698621 + 1.21005i
\(926\) −9.55405 −0.313966
\(927\) 0 0
\(928\) −8.66061 −0.284298
\(929\) −1.17985 + 2.04356i −0.0387096 + 0.0670471i −0.884731 0.466102i \(-0.845658\pi\)
0.846022 + 0.533149i \(0.178991\pi\)
\(930\) 0 0
\(931\) 1.79129 + 3.10260i 0.0587071 + 0.101684i
\(932\) 0 0
\(933\) 0 0
\(934\) −1.41742 + 2.45505i −0.0463795 + 0.0803317i
\(935\) 40.1232 1.31217
\(936\) 0 0
\(937\) 33.4955 1.09425 0.547124 0.837051i \(-0.315722\pi\)
0.547124 + 0.837051i \(0.315722\pi\)
\(938\) 0.133075 0.230493i 0.00434505 0.00752585i
\(939\) 0 0
\(940\) −10.7477 18.6156i −0.350552 0.607174i
\(941\) −16.4068 28.4174i −0.534847 0.926382i −0.999171 0.0407162i \(-0.987036\pi\)
0.464324 0.885665i \(-0.346297\pi\)
\(942\) 0 0
\(943\) 7.58258 13.1334i 0.246923 0.427683i
\(944\) 9.66930 0.314709
\(945\) 0 0
\(946\) −10.3739 −0.337283
\(947\) −20.8800 + 36.1652i −0.678508 + 1.17521i 0.296923 + 0.954901i \(0.404040\pi\)
−0.975430 + 0.220308i \(0.929294\pi\)
\(948\) 0 0
\(949\) 6.33030 + 10.9644i 0.205490 + 0.355920i
\(950\) −11.5921 20.0780i −0.376096 0.651417i
\(951\) 0 0
\(952\) 3.00000 5.19615i 0.0972306 0.168408i
\(953\) 3.65480 0.118391 0.0591953 0.998246i \(-0.481147\pi\)
0.0591953 + 0.998246i \(0.481147\pi\)
\(954\) 0 0
\(955\) 26.7477 0.865536
\(956\) −22.6220 + 39.1824i −0.731647 + 1.26725i
\(957\) 0 0
\(958\) −5.62614 9.74475i −0.181772 0.314839i
\(959\) 8.80328 + 15.2477i 0.284273 + 0.492375i
\(960\) 0 0
\(961\) −26.5000 + 45.8993i −0.854839 + 1.48062i
\(962\) −5.48220 −0.176753
\(963\) 0 0
\(964\) −32.9909 −1.06257
\(965\) 30.6446 53.0780i 0.986485 1.70864i
\(966\) 0 0
\(967\) −2.00000 3.46410i −0.0643157 0.111398i 0.832075 0.554664i \(-0.187153\pi\)
−0.896390 + 0.443266i \(0.853820\pi\)
\(968\) 3.46410 + 6.00000i 0.111340 + 0.192847i
\(969\) 0 0
\(970\) −7.58258 + 13.1334i −0.243462 + 0.421688i
\(971\) −35.2131 −1.13004 −0.565021 0.825076i \(-0.691132\pi\)
−0.565021 + 0.825076i \(0.691132\pi\)
\(972\) 0 0
\(973\) 7.58258 0.243086
\(974\) −1.50363 + 2.60436i −0.0481793 + 0.0834490i
\(975\) 0 0
\(976\) −3.37386 5.84370i −0.107995 0.187052i
\(977\) 12.4104 + 21.4955i 0.397044 + 0.687701i 0.993360 0.115050i \(-0.0367027\pi\)
−0.596316 + 0.802750i \(0.703369\pi\)
\(978\) 0 0
\(979\) 11.5826 20.0616i 0.370181 0.641172i
\(980\) 7.84190 0.250500
\(981\) 0 0
\(982\) −10.2432 −0.326873
\(983\) −22.1552 + 38.3739i −0.706640 + 1.22394i 0.259457 + 0.965755i \(0.416457\pi\)
−0.966096 + 0.258181i \(0.916877\pi\)
\(984\) 0 0
\(985\) 0.208712 + 0.361500i 0.00665012 + 0.0115183i
\(986\) 1.44600 + 2.50455i 0.0460500 + 0.0797610i
\(987\) 0 0
\(988\) −12.8348 + 22.2306i −0.408331 + 0.707250i
\(989\) 29.7309 0.945388
\(990\) 0 0
\(991\) −35.7477 −1.13556 −0.567782 0.823179i \(-0.692198\pi\)
−0.567782 + 0.823179i \(0.692198\pi\)
\(992\) 21.7182 37.6170i 0.689554 1.19434i
\(993\) 0 0
\(994\) −2.60436 4.51088i −0.0826052 0.143076i
\(995\) −36.6591 63.4955i −1.16217 2.01294i
\(996\) 0 0
\(997\) −3.41742 + 5.91915i −0.108231 + 0.187461i −0.915054 0.403332i \(-0.867852\pi\)
0.806823 + 0.590794i \(0.201185\pi\)
\(998\) 9.13701 0.289227
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.f.n.379.3 8
3.2 odd 2 inner 567.2.f.n.379.2 8
9.2 odd 6 567.2.a.i.1.3 yes 4
9.4 even 3 inner 567.2.f.n.190.3 8
9.5 odd 6 inner 567.2.f.n.190.2 8
9.7 even 3 567.2.a.i.1.2 4
36.7 odd 6 9072.2.a.ci.1.1 4
36.11 even 6 9072.2.a.ci.1.4 4
63.20 even 6 3969.2.a.u.1.3 4
63.34 odd 6 3969.2.a.u.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.a.i.1.2 4 9.7 even 3
567.2.a.i.1.3 yes 4 9.2 odd 6
567.2.f.n.190.2 8 9.5 odd 6 inner
567.2.f.n.190.3 8 9.4 even 3 inner
567.2.f.n.379.2 8 3.2 odd 2 inner
567.2.f.n.379.3 8 1.1 even 1 trivial
3969.2.a.u.1.2 4 63.34 odd 6
3969.2.a.u.1.3 4 63.20 even 6
9072.2.a.ci.1.1 4 36.7 odd 6
9072.2.a.ci.1.4 4 36.11 even 6