Properties

Label 567.2.f.n.190.3
Level $567$
Weight $2$
Character 567.190
Analytic conductor $4.528$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(190,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.190");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 190.3
Root \(0.228425 + 1.39564i\) of defining polynomial
Character \(\chi\) \(=\) 567.190
Dual form 567.2.f.n.379.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.228425 + 0.395644i) q^{2} +(0.895644 - 1.55130i) q^{4} +(2.18890 - 3.79129i) q^{5} +(0.500000 + 0.866025i) q^{7} +1.73205 q^{8} +2.00000 q^{10} +(1.32288 + 2.29129i) q^{11} +(-2.00000 + 3.46410i) q^{13} +(-0.228425 + 0.395644i) q^{14} +(-1.39564 - 2.41733i) q^{16} +3.46410 q^{17} -3.58258 q^{19} +(-3.92095 - 6.79129i) q^{20} +(-0.604356 + 1.04678i) q^{22} +(1.73205 - 3.00000i) q^{23} +(-7.08258 - 12.2674i) q^{25} -1.82740 q^{26} +1.79129 q^{28} +(-0.913701 - 1.58258i) q^{29} +(-4.58258 + 7.93725i) q^{31} +(2.36965 - 4.10436i) q^{32} +(0.791288 + 1.37055i) q^{34} +4.37780 q^{35} +3.00000 q^{37} +(-0.818350 - 1.41742i) q^{38} +(3.79129 - 6.56670i) q^{40} +(-2.18890 + 3.79129i) q^{41} +(4.29129 + 7.43273i) q^{43} +4.73930 q^{44} +1.58258 q^{46} +(-1.37055 - 2.37386i) q^{47} +(-0.500000 + 0.866025i) q^{49} +(3.23568 - 5.60436i) q^{50} +(3.58258 + 6.20520i) q^{52} -8.66025 q^{53} +11.5826 q^{55} +(0.866025 + 1.50000i) q^{56} +(0.417424 - 0.723000i) q^{58} +(-1.73205 + 3.00000i) q^{59} +(-1.20871 - 2.09355i) q^{61} -4.18710 q^{62} -3.41742 q^{64} +(8.75560 + 15.1652i) q^{65} +(0.291288 - 0.504525i) q^{67} +(3.10260 - 5.37386i) q^{68} +(1.00000 + 1.73205i) q^{70} +11.4014 q^{71} -3.16515 q^{73} +(0.685275 + 1.18693i) q^{74} +(-3.20871 + 5.55765i) q^{76} +(-1.32288 + 2.29129i) q^{77} +(4.29129 + 7.43273i) q^{79} -12.2197 q^{80} -2.00000 q^{82} +(-3.10260 - 5.37386i) q^{83} +(7.58258 - 13.1334i) q^{85} +(-1.96048 + 3.39564i) q^{86} +(2.29129 + 3.96863i) q^{88} +8.75560 q^{89} -4.00000 q^{91} +(-3.10260 - 5.37386i) q^{92} +(0.626136 - 1.08450i) q^{94} +(-7.84190 + 13.5826i) q^{95} +(-3.79129 - 6.56670i) q^{97} -0.456850 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} + 4 q^{7} + 16 q^{10} - 16 q^{13} - 2 q^{16} + 8 q^{19} - 14 q^{22} - 20 q^{25} - 4 q^{28} - 12 q^{34} + 24 q^{37} + 12 q^{40} + 16 q^{43} - 24 q^{46} - 4 q^{49} - 8 q^{52} + 56 q^{55} + 40 q^{58}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.228425 + 0.395644i 0.161521 + 0.279763i 0.935414 0.353553i \(-0.115027\pi\)
−0.773893 + 0.633316i \(0.781693\pi\)
\(3\) 0 0
\(4\) 0.895644 1.55130i 0.447822 0.775650i
\(5\) 2.18890 3.79129i 0.978906 1.69552i 0.312516 0.949913i \(-0.398828\pi\)
0.666390 0.745603i \(-0.267838\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) 1.32288 + 2.29129i 0.398862 + 0.690849i 0.993586 0.113081i \(-0.0360719\pi\)
−0.594724 + 0.803930i \(0.702739\pi\)
\(12\) 0 0
\(13\) −2.00000 + 3.46410i −0.554700 + 0.960769i 0.443227 + 0.896410i \(0.353834\pi\)
−0.997927 + 0.0643593i \(0.979500\pi\)
\(14\) −0.228425 + 0.395644i −0.0610492 + 0.105740i
\(15\) 0 0
\(16\) −1.39564 2.41733i −0.348911 0.604332i
\(17\) 3.46410 0.840168 0.420084 0.907485i \(-0.362001\pi\)
0.420084 + 0.907485i \(0.362001\pi\)
\(18\) 0 0
\(19\) −3.58258 −0.821899 −0.410950 0.911658i \(-0.634803\pi\)
−0.410950 + 0.911658i \(0.634803\pi\)
\(20\) −3.92095 6.79129i −0.876751 1.51858i
\(21\) 0 0
\(22\) −0.604356 + 1.04678i −0.128849 + 0.223173i
\(23\) 1.73205 3.00000i 0.361158 0.625543i −0.626994 0.779024i \(-0.715715\pi\)
0.988152 + 0.153481i \(0.0490483\pi\)
\(24\) 0 0
\(25\) −7.08258 12.2674i −1.41652 2.45348i
\(26\) −1.82740 −0.358383
\(27\) 0 0
\(28\) 1.79129 0.338522
\(29\) −0.913701 1.58258i −0.169670 0.293877i 0.768634 0.639689i \(-0.220937\pi\)
−0.938304 + 0.345812i \(0.887603\pi\)
\(30\) 0 0
\(31\) −4.58258 + 7.93725i −0.823055 + 1.42557i 0.0803419 + 0.996767i \(0.474399\pi\)
−0.903397 + 0.428806i \(0.858935\pi\)
\(32\) 2.36965 4.10436i 0.418899 0.725555i
\(33\) 0 0
\(34\) 0.791288 + 1.37055i 0.135705 + 0.235048i
\(35\) 4.37780 0.739984
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) −0.818350 1.41742i −0.132754 0.229937i
\(39\) 0 0
\(40\) 3.79129 6.56670i 0.599455 1.03829i
\(41\) −2.18890 + 3.79129i −0.341849 + 0.592100i −0.984776 0.173828i \(-0.944386\pi\)
0.642927 + 0.765927i \(0.277720\pi\)
\(42\) 0 0
\(43\) 4.29129 + 7.43273i 0.654415 + 1.13348i 0.982040 + 0.188673i \(0.0604185\pi\)
−0.327625 + 0.944808i \(0.606248\pi\)
\(44\) 4.73930 0.714477
\(45\) 0 0
\(46\) 1.58258 0.233338
\(47\) −1.37055 2.37386i −0.199915 0.346264i 0.748585 0.663038i \(-0.230733\pi\)
−0.948501 + 0.316775i \(0.897400\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 3.23568 5.60436i 0.457594 0.792576i
\(51\) 0 0
\(52\) 3.58258 + 6.20520i 0.496814 + 0.860507i
\(53\) −8.66025 −1.18958 −0.594789 0.803882i \(-0.702764\pi\)
−0.594789 + 0.803882i \(0.702764\pi\)
\(54\) 0 0
\(55\) 11.5826 1.56179
\(56\) 0.866025 + 1.50000i 0.115728 + 0.200446i
\(57\) 0 0
\(58\) 0.417424 0.723000i 0.0548105 0.0949346i
\(59\) −1.73205 + 3.00000i −0.225494 + 0.390567i −0.956467 0.291839i \(-0.905733\pi\)
0.730974 + 0.682406i \(0.239066\pi\)
\(60\) 0 0
\(61\) −1.20871 2.09355i −0.154760 0.268052i 0.778212 0.628002i \(-0.216127\pi\)
−0.932972 + 0.359950i \(0.882794\pi\)
\(62\) −4.18710 −0.531762
\(63\) 0 0
\(64\) −3.41742 −0.427178
\(65\) 8.75560 + 15.1652i 1.08600 + 1.88101i
\(66\) 0 0
\(67\) 0.291288 0.504525i 0.0355865 0.0616376i −0.847684 0.530502i \(-0.822003\pi\)
0.883270 + 0.468865i \(0.155337\pi\)
\(68\) 3.10260 5.37386i 0.376246 0.651677i
\(69\) 0 0
\(70\) 1.00000 + 1.73205i 0.119523 + 0.207020i
\(71\) 11.4014 1.35309 0.676546 0.736400i \(-0.263476\pi\)
0.676546 + 0.736400i \(0.263476\pi\)
\(72\) 0 0
\(73\) −3.16515 −0.370453 −0.185226 0.982696i \(-0.559302\pi\)
−0.185226 + 0.982696i \(0.559302\pi\)
\(74\) 0.685275 + 1.18693i 0.0796616 + 0.137978i
\(75\) 0 0
\(76\) −3.20871 + 5.55765i −0.368065 + 0.637506i
\(77\) −1.32288 + 2.29129i −0.150756 + 0.261116i
\(78\) 0 0
\(79\) 4.29129 + 7.43273i 0.482808 + 0.836247i 0.999805 0.0197396i \(-0.00628371\pi\)
−0.516998 + 0.855987i \(0.672950\pi\)
\(80\) −12.2197 −1.36620
\(81\) 0 0
\(82\) −2.00000 −0.220863
\(83\) −3.10260 5.37386i −0.340555 0.589858i 0.643981 0.765041i \(-0.277282\pi\)
−0.984536 + 0.175183i \(0.943948\pi\)
\(84\) 0 0
\(85\) 7.58258 13.1334i 0.822446 1.42452i
\(86\) −1.96048 + 3.39564i −0.211404 + 0.366162i
\(87\) 0 0
\(88\) 2.29129 + 3.96863i 0.244252 + 0.423057i
\(89\) 8.75560 0.928092 0.464046 0.885811i \(-0.346397\pi\)
0.464046 + 0.885811i \(0.346397\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) −3.10260 5.37386i −0.323469 0.560264i
\(93\) 0 0
\(94\) 0.626136 1.08450i 0.0645810 0.111858i
\(95\) −7.84190 + 13.5826i −0.804562 + 1.39354i
\(96\) 0 0
\(97\) −3.79129 6.56670i −0.384947 0.666748i 0.606815 0.794843i \(-0.292447\pi\)
−0.991762 + 0.128096i \(0.959114\pi\)
\(98\) −0.456850 −0.0461488
\(99\) 0 0
\(100\) −25.3739 −2.53739
\(101\) 0.913701 + 1.58258i 0.0909166 + 0.157472i 0.907897 0.419193i \(-0.137687\pi\)
−0.816980 + 0.576665i \(0.804354\pi\)
\(102\) 0 0
\(103\) −1.79129 + 3.10260i −0.176501 + 0.305708i −0.940680 0.339296i \(-0.889811\pi\)
0.764179 + 0.645004i \(0.223144\pi\)
\(104\) −3.46410 + 6.00000i −0.339683 + 0.588348i
\(105\) 0 0
\(106\) −1.97822 3.42638i −0.192142 0.332799i
\(107\) 11.2107 1.08377 0.541887 0.840451i \(-0.317710\pi\)
0.541887 + 0.840451i \(0.317710\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 2.64575 + 4.58258i 0.252262 + 0.436931i
\(111\) 0 0
\(112\) 1.39564 2.41733i 0.131876 0.228416i
\(113\) −6.97588 + 12.0826i −0.656235 + 1.13663i 0.325347 + 0.945595i \(0.394519\pi\)
−0.981583 + 0.191038i \(0.938814\pi\)
\(114\) 0 0
\(115\) −7.58258 13.1334i −0.707079 1.22470i
\(116\) −3.27340 −0.303928
\(117\) 0 0
\(118\) −1.58258 −0.145688
\(119\) 1.73205 + 3.00000i 0.158777 + 0.275010i
\(120\) 0 0
\(121\) 2.00000 3.46410i 0.181818 0.314918i
\(122\) 0.552200 0.956439i 0.0499939 0.0865919i
\(123\) 0 0
\(124\) 8.20871 + 14.2179i 0.737164 + 1.27681i
\(125\) −40.1232 −3.58873
\(126\) 0 0
\(127\) −7.41742 −0.658190 −0.329095 0.944297i \(-0.606744\pi\)
−0.329095 + 0.944297i \(0.606744\pi\)
\(128\) −5.51993 9.56080i −0.487897 0.845063i
\(129\) 0 0
\(130\) −4.00000 + 6.92820i −0.350823 + 0.607644i
\(131\) −9.21245 + 15.9564i −0.804896 + 1.39412i 0.111465 + 0.993768i \(0.464446\pi\)
−0.916361 + 0.400352i \(0.868888\pi\)
\(132\) 0 0
\(133\) −1.79129 3.10260i −0.155324 0.269030i
\(134\) 0.266150 0.0229918
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) −8.80328 15.2477i −0.752115 1.30270i −0.946796 0.321835i \(-0.895700\pi\)
0.194681 0.980867i \(-0.437633\pi\)
\(138\) 0 0
\(139\) 3.79129 6.56670i 0.321573 0.556980i −0.659240 0.751933i \(-0.729122\pi\)
0.980813 + 0.194952i \(0.0624552\pi\)
\(140\) 3.92095 6.79129i 0.331381 0.573969i
\(141\) 0 0
\(142\) 2.60436 + 4.51088i 0.218553 + 0.378544i
\(143\) −10.5830 −0.884995
\(144\) 0 0
\(145\) −8.00000 −0.664364
\(146\) −0.723000 1.25227i −0.0598359 0.103639i
\(147\) 0 0
\(148\) 2.68693 4.65390i 0.220864 0.382548i
\(149\) 5.33918 9.24773i 0.437402 0.757603i −0.560086 0.828435i \(-0.689232\pi\)
0.997488 + 0.0708313i \(0.0225652\pi\)
\(150\) 0 0
\(151\) 10.2913 + 17.8250i 0.837493 + 1.45058i 0.891984 + 0.452066i \(0.149313\pi\)
−0.0544912 + 0.998514i \(0.517354\pi\)
\(152\) −6.20520 −0.503308
\(153\) 0 0
\(154\) −1.20871 −0.0974008
\(155\) 20.0616 + 34.7477i 1.61139 + 2.79100i
\(156\) 0 0
\(157\) −0.417424 + 0.723000i −0.0333141 + 0.0577017i −0.882202 0.470872i \(-0.843939\pi\)
0.848888 + 0.528573i \(0.177273\pi\)
\(158\) −1.96048 + 3.39564i −0.155967 + 0.270143i
\(159\) 0 0
\(160\) −10.3739 17.9681i −0.820126 1.42050i
\(161\) 3.46410 0.273009
\(162\) 0 0
\(163\) 14.5826 1.14220 0.571098 0.820882i \(-0.306518\pi\)
0.571098 + 0.820882i \(0.306518\pi\)
\(164\) 3.92095 + 6.79129i 0.306175 + 0.530310i
\(165\) 0 0
\(166\) 1.41742 2.45505i 0.110013 0.190549i
\(167\) −1.27520 + 2.20871i −0.0986780 + 0.170915i −0.911138 0.412102i \(-0.864795\pi\)
0.812460 + 0.583017i \(0.198128\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 6.92820 0.531369
\(171\) 0 0
\(172\) 15.3739 1.17225
\(173\) 5.74835 + 9.95644i 0.437039 + 0.756974i 0.997460 0.0712342i \(-0.0226938\pi\)
−0.560420 + 0.828208i \(0.689360\pi\)
\(174\) 0 0
\(175\) 7.08258 12.2674i 0.535392 0.927327i
\(176\) 3.69253 6.39564i 0.278335 0.482090i
\(177\) 0 0
\(178\) 2.00000 + 3.46410i 0.149906 + 0.259645i
\(179\) 1.63670 0.122333 0.0611664 0.998128i \(-0.480518\pi\)
0.0611664 + 0.998128i \(0.480518\pi\)
\(180\) 0 0
\(181\) 13.1652 0.978558 0.489279 0.872127i \(-0.337260\pi\)
0.489279 + 0.872127i \(0.337260\pi\)
\(182\) −0.913701 1.58258i −0.0677280 0.117308i
\(183\) 0 0
\(184\) 3.00000 5.19615i 0.221163 0.383065i
\(185\) 6.56670 11.3739i 0.482794 0.836223i
\(186\) 0 0
\(187\) 4.58258 + 7.93725i 0.335111 + 0.580429i
\(188\) −4.91010 −0.358106
\(189\) 0 0
\(190\) −7.16515 −0.519815
\(191\) 3.05493 + 5.29129i 0.221047 + 0.382864i 0.955126 0.296200i \(-0.0957193\pi\)
−0.734079 + 0.679064i \(0.762386\pi\)
\(192\) 0 0
\(193\) −7.00000 + 12.1244i −0.503871 + 0.872730i 0.496119 + 0.868255i \(0.334758\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) 1.73205 3.00000i 0.124354 0.215387i
\(195\) 0 0
\(196\) 0.895644 + 1.55130i 0.0639746 + 0.110807i
\(197\) 0.0953502 0.00679342 0.00339671 0.999994i \(-0.498919\pi\)
0.00339671 + 0.999994i \(0.498919\pi\)
\(198\) 0 0
\(199\) −16.7477 −1.18721 −0.593607 0.804755i \(-0.702297\pi\)
−0.593607 + 0.804755i \(0.702297\pi\)
\(200\) −12.2674 21.2477i −0.867435 1.50244i
\(201\) 0 0
\(202\) −0.417424 + 0.723000i −0.0293699 + 0.0508701i
\(203\) 0.913701 1.58258i 0.0641292 0.111075i
\(204\) 0 0
\(205\) 9.58258 + 16.5975i 0.669276 + 1.15922i
\(206\) −1.63670 −0.114034
\(207\) 0 0
\(208\) 11.1652 0.774164
\(209\) −4.73930 8.20871i −0.327824 0.567808i
\(210\) 0 0
\(211\) −5.87386 + 10.1738i −0.404373 + 0.700395i −0.994248 0.107099i \(-0.965844\pi\)
0.589875 + 0.807495i \(0.299177\pi\)
\(212\) −7.75650 + 13.4347i −0.532719 + 0.922696i
\(213\) 0 0
\(214\) 2.56080 + 4.43543i 0.175052 + 0.303200i
\(215\) 37.5728 2.56244
\(216\) 0 0
\(217\) −9.16515 −0.622171
\(218\) 1.37055 + 2.37386i 0.0928254 + 0.160778i
\(219\) 0 0
\(220\) 10.3739 17.9681i 0.699406 1.21141i
\(221\) −6.92820 + 12.0000i −0.466041 + 0.807207i
\(222\) 0 0
\(223\) −11.0000 19.0526i −0.736614 1.27585i −0.954011 0.299770i \(-0.903090\pi\)
0.217397 0.976083i \(-0.430243\pi\)
\(224\) 4.73930 0.316658
\(225\) 0 0
\(226\) −6.37386 −0.423983
\(227\) −6.56670 11.3739i −0.435847 0.754910i 0.561517 0.827465i \(-0.310218\pi\)
−0.997364 + 0.0725554i \(0.976885\pi\)
\(228\) 0 0
\(229\) −10.9564 + 18.9771i −0.724022 + 1.25404i 0.235353 + 0.971910i \(0.424375\pi\)
−0.959375 + 0.282133i \(0.908958\pi\)
\(230\) 3.46410 6.00000i 0.228416 0.395628i
\(231\) 0 0
\(232\) −1.58258 2.74110i −0.103901 0.179962i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) 3.10260 + 5.37386i 0.201962 + 0.349809i
\(237\) 0 0
\(238\) −0.791288 + 1.37055i −0.0512916 + 0.0888396i
\(239\) 12.6289 21.8739i 0.816894 1.41490i −0.0910652 0.995845i \(-0.529027\pi\)
0.907960 0.419058i \(-0.137639\pi\)
\(240\) 0 0
\(241\) −9.20871 15.9500i −0.593185 1.02743i −0.993800 0.111181i \(-0.964537\pi\)
0.400615 0.916247i \(-0.368797\pi\)
\(242\) 1.82740 0.117470
\(243\) 0 0
\(244\) −4.33030 −0.277219
\(245\) 2.18890 + 3.79129i 0.139844 + 0.242216i
\(246\) 0 0
\(247\) 7.16515 12.4104i 0.455908 0.789655i
\(248\) −7.93725 + 13.7477i −0.504016 + 0.872982i
\(249\) 0 0
\(250\) −9.16515 15.8745i −0.579655 1.00399i
\(251\) −7.84190 −0.494977 −0.247488 0.968891i \(-0.579605\pi\)
−0.247488 + 0.968891i \(0.579605\pi\)
\(252\) 0 0
\(253\) 9.16515 0.576208
\(254\) −1.69433 2.93466i −0.106311 0.184137i
\(255\) 0 0
\(256\) −0.895644 + 1.55130i −0.0559777 + 0.0969563i
\(257\) 5.10080 8.83485i 0.318179 0.551103i −0.661929 0.749567i \(-0.730262\pi\)
0.980108 + 0.198464i \(0.0635953\pi\)
\(258\) 0 0
\(259\) 1.50000 + 2.59808i 0.0932055 + 0.161437i
\(260\) 31.3676 1.94534
\(261\) 0 0
\(262\) −8.41742 −0.520030
\(263\) −2.14123 3.70871i −0.132034 0.228689i 0.792427 0.609967i \(-0.208817\pi\)
−0.924460 + 0.381278i \(0.875484\pi\)
\(264\) 0 0
\(265\) −18.9564 + 32.8335i −1.16448 + 2.01695i
\(266\) 0.818350 1.41742i 0.0501763 0.0869079i
\(267\) 0 0
\(268\) −0.521780 0.903750i −0.0318728 0.0552053i
\(269\) 6.92820 0.422420 0.211210 0.977441i \(-0.432260\pi\)
0.211210 + 0.977441i \(0.432260\pi\)
\(270\) 0 0
\(271\) 8.74773 0.531387 0.265693 0.964058i \(-0.414399\pi\)
0.265693 + 0.964058i \(0.414399\pi\)
\(272\) −4.83465 8.37386i −0.293144 0.507740i
\(273\) 0 0
\(274\) 4.02178 6.96593i 0.242965 0.420827i
\(275\) 18.7387 32.4564i 1.12999 1.95720i
\(276\) 0 0
\(277\) −3.50000 6.06218i −0.210295 0.364241i 0.741512 0.670940i \(-0.234109\pi\)
−0.951807 + 0.306699i \(0.900776\pi\)
\(278\) 3.46410 0.207763
\(279\) 0 0
\(280\) 7.58258 0.453146
\(281\) −14.8178 25.6652i −0.883955 1.53105i −0.846907 0.531741i \(-0.821538\pi\)
−0.0370478 0.999313i \(-0.511795\pi\)
\(282\) 0 0
\(283\) −8.79129 + 15.2270i −0.522588 + 0.905149i 0.477067 + 0.878867i \(0.341700\pi\)
−0.999655 + 0.0262816i \(0.991633\pi\)
\(284\) 10.2116 17.6869i 0.605944 1.04953i
\(285\) 0 0
\(286\) −2.41742 4.18710i −0.142945 0.247589i
\(287\) −4.37780 −0.258413
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) −1.82740 3.16515i −0.107309 0.185864i
\(291\) 0 0
\(292\) −2.83485 + 4.91010i −0.165897 + 0.287342i
\(293\) −10.8492 + 18.7913i −0.633814 + 1.09780i 0.352951 + 0.935642i \(0.385178\pi\)
−0.986765 + 0.162157i \(0.948155\pi\)
\(294\) 0 0
\(295\) 7.58258 + 13.1334i 0.441475 + 0.764656i
\(296\) 5.19615 0.302020
\(297\) 0 0
\(298\) 4.87841 0.282599
\(299\) 6.92820 + 12.0000i 0.400668 + 0.693978i
\(300\) 0 0
\(301\) −4.29129 + 7.43273i −0.247346 + 0.428415i
\(302\) −4.70158 + 8.14337i −0.270545 + 0.468598i
\(303\) 0 0
\(304\) 5.00000 + 8.66025i 0.286770 + 0.496700i
\(305\) −10.5830 −0.605981
\(306\) 0 0
\(307\) 16.3303 0.932020 0.466010 0.884780i \(-0.345691\pi\)
0.466010 + 0.884780i \(0.345691\pi\)
\(308\) 2.36965 + 4.10436i 0.135023 + 0.233867i
\(309\) 0 0
\(310\) −9.16515 + 15.8745i −0.520546 + 0.901611i
\(311\) 9.02175 15.6261i 0.511577 0.886077i −0.488333 0.872657i \(-0.662395\pi\)
0.999910 0.0134197i \(-0.00427174\pi\)
\(312\) 0 0
\(313\) 0.582576 + 1.00905i 0.0329291 + 0.0570349i 0.882020 0.471211i \(-0.156183\pi\)
−0.849091 + 0.528246i \(0.822850\pi\)
\(314\) −0.381401 −0.0215237
\(315\) 0 0
\(316\) 15.3739 0.864847
\(317\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) 0 0
\(319\) 2.41742 4.18710i 0.135350 0.234433i
\(320\) −7.48040 + 12.9564i −0.418167 + 0.724287i
\(321\) 0 0
\(322\) 0.791288 + 1.37055i 0.0440967 + 0.0763778i
\(323\) −12.4104 −0.690533
\(324\) 0 0
\(325\) 56.6606 3.14296
\(326\) 3.33103 + 5.76951i 0.184489 + 0.319543i
\(327\) 0 0
\(328\) −3.79129 + 6.56670i −0.209339 + 0.362586i
\(329\) 1.37055 2.37386i 0.0755609 0.130875i
\(330\) 0 0
\(331\) −7.16515 12.4104i −0.393832 0.682138i 0.599119 0.800660i \(-0.295518\pi\)
−0.992951 + 0.118522i \(0.962184\pi\)
\(332\) −11.1153 −0.610032
\(333\) 0 0
\(334\) −1.16515 −0.0637542
\(335\) −1.27520 2.20871i −0.0696716 0.120675i
\(336\) 0 0
\(337\) 10.0826 17.4635i 0.549233 0.951299i −0.449094 0.893484i \(-0.648253\pi\)
0.998327 0.0578150i \(-0.0184133\pi\)
\(338\) 0.685275 1.18693i 0.0372741 0.0645606i
\(339\) 0 0
\(340\) −13.5826 23.5257i −0.736619 1.27586i
\(341\) −24.2487 −1.31314
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 7.43273 + 12.8739i 0.400746 + 0.694112i
\(345\) 0 0
\(346\) −2.62614 + 4.54860i −0.141182 + 0.244534i
\(347\) 18.0157 31.2042i 0.967135 1.67513i 0.263370 0.964695i \(-0.415166\pi\)
0.703765 0.710432i \(-0.251501\pi\)
\(348\) 0 0
\(349\) 12.3739 + 21.4322i 0.662358 + 1.14724i 0.979994 + 0.199025i \(0.0637774\pi\)
−0.317637 + 0.948212i \(0.602889\pi\)
\(350\) 6.47135 0.345908
\(351\) 0 0
\(352\) 12.5390 0.668332
\(353\) −17.8727 30.9564i −0.951268 1.64765i −0.742686 0.669640i \(-0.766448\pi\)
−0.208583 0.978005i \(-0.566885\pi\)
\(354\) 0 0
\(355\) 24.9564 43.2258i 1.32455 2.29419i
\(356\) 7.84190 13.5826i 0.415620 0.719875i
\(357\) 0 0
\(358\) 0.373864 + 0.647551i 0.0197593 + 0.0342241i
\(359\) 30.3586 1.60226 0.801132 0.598488i \(-0.204232\pi\)
0.801132 + 0.598488i \(0.204232\pi\)
\(360\) 0 0
\(361\) −6.16515 −0.324482
\(362\) 3.00725 + 5.20871i 0.158058 + 0.273764i
\(363\) 0 0
\(364\) −3.58258 + 6.20520i −0.187778 + 0.325241i
\(365\) −6.92820 + 12.0000i −0.362639 + 0.628109i
\(366\) 0 0
\(367\) 4.41742 + 7.65120i 0.230588 + 0.399390i 0.957981 0.286831i \(-0.0926018\pi\)
−0.727394 + 0.686221i \(0.759268\pi\)
\(368\) −9.66930 −0.504047
\(369\) 0 0
\(370\) 6.00000 0.311925
\(371\) −4.33013 7.50000i −0.224809 0.389381i
\(372\) 0 0
\(373\) 3.66515 6.34823i 0.189774 0.328699i −0.755401 0.655263i \(-0.772558\pi\)
0.945175 + 0.326564i \(0.105891\pi\)
\(374\) −2.09355 + 3.62614i −0.108255 + 0.187503i
\(375\) 0 0
\(376\) −2.37386 4.11165i −0.122423 0.212042i
\(377\) 7.30960 0.376464
\(378\) 0 0
\(379\) −28.9129 −1.48515 −0.742577 0.669760i \(-0.766397\pi\)
−0.742577 + 0.669760i \(0.766397\pi\)
\(380\) 14.0471 + 24.3303i 0.720601 + 1.24812i
\(381\) 0 0
\(382\) −1.39564 + 2.41733i −0.0714074 + 0.123681i
\(383\) 9.66930 16.7477i 0.494078 0.855769i −0.505898 0.862593i \(-0.668839\pi\)
0.999977 + 0.00682424i \(0.00217224\pi\)
\(384\) 0 0
\(385\) 5.79129 + 10.0308i 0.295151 + 0.511217i
\(386\) −6.39590 −0.325543
\(387\) 0 0
\(388\) −13.5826 −0.689551
\(389\) 15.8745 + 27.4955i 0.804869 + 1.39407i 0.916379 + 0.400312i \(0.131098\pi\)
−0.111510 + 0.993763i \(0.535569\pi\)
\(390\) 0 0
\(391\) 6.00000 10.3923i 0.303433 0.525561i
\(392\) −0.866025 + 1.50000i −0.0437409 + 0.0757614i
\(393\) 0 0
\(394\) 0.0217804 + 0.0377247i 0.00109728 + 0.00190054i
\(395\) 37.5728 1.89049
\(396\) 0 0
\(397\) −1.58258 −0.0794272 −0.0397136 0.999211i \(-0.512645\pi\)
−0.0397136 + 0.999211i \(0.512645\pi\)
\(398\) −3.82560 6.62614i −0.191760 0.332138i
\(399\) 0 0
\(400\) −19.7695 + 34.2418i −0.988475 + 1.71209i
\(401\) −7.07123 + 12.2477i −0.353120 + 0.611622i −0.986794 0.161978i \(-0.948213\pi\)
0.633674 + 0.773600i \(0.281546\pi\)
\(402\) 0 0
\(403\) −18.3303 31.7490i −0.913097 1.58153i
\(404\) 3.27340 0.162858
\(405\) 0 0
\(406\) 0.834849 0.0414328
\(407\) 3.96863 + 6.87386i 0.196718 + 0.340725i
\(408\) 0 0
\(409\) −4.62614 + 8.01270i −0.228748 + 0.396203i −0.957437 0.288642i \(-0.906796\pi\)
0.728690 + 0.684844i \(0.240130\pi\)
\(410\) −4.37780 + 7.58258i −0.216204 + 0.374477i
\(411\) 0 0
\(412\) 3.20871 + 5.55765i 0.158082 + 0.273806i
\(413\) −3.46410 −0.170457
\(414\) 0 0
\(415\) −27.1652 −1.33348
\(416\) 9.47860 + 16.4174i 0.464727 + 0.804930i
\(417\) 0 0
\(418\) 2.16515 3.75015i 0.105901 0.183426i
\(419\) −9.30780 + 16.1216i −0.454716 + 0.787591i −0.998672 0.0515226i \(-0.983593\pi\)
0.543956 + 0.839114i \(0.316926\pi\)
\(420\) 0 0
\(421\) 8.08258 + 13.9994i 0.393921 + 0.682291i 0.992963 0.118427i \(-0.0377851\pi\)
−0.599042 + 0.800718i \(0.704452\pi\)
\(422\) −5.36695 −0.261259
\(423\) 0 0
\(424\) −15.0000 −0.728464
\(425\) −24.5348 42.4955i −1.19011 2.06133i
\(426\) 0 0
\(427\) 1.20871 2.09355i 0.0584937 0.101314i
\(428\) 10.0408 17.3911i 0.485338 0.840630i
\(429\) 0 0
\(430\) 8.58258 + 14.8655i 0.413889 + 0.716876i
\(431\) −36.6591 −1.76581 −0.882904 0.469554i \(-0.844415\pi\)
−0.882904 + 0.469554i \(0.844415\pi\)
\(432\) 0 0
\(433\) −21.9129 −1.05307 −0.526533 0.850155i \(-0.676508\pi\)
−0.526533 + 0.850155i \(0.676508\pi\)
\(434\) −2.09355 3.62614i −0.100494 0.174060i
\(435\) 0 0
\(436\) 5.37386 9.30780i 0.257361 0.445763i
\(437\) −6.20520 + 10.7477i −0.296835 + 0.514134i
\(438\) 0 0
\(439\) −12.7913 22.1552i −0.610495 1.05741i −0.991157 0.132694i \(-0.957637\pi\)
0.380662 0.924714i \(-0.375696\pi\)
\(440\) 20.0616 0.956400
\(441\) 0 0
\(442\) −6.33030 −0.301102
\(443\) −8.66025 15.0000i −0.411461 0.712672i 0.583589 0.812049i \(-0.301648\pi\)
−0.995050 + 0.0993779i \(0.968315\pi\)
\(444\) 0 0
\(445\) 19.1652 33.1950i 0.908515 1.57359i
\(446\) 5.02535 8.70417i 0.237957 0.412154i
\(447\) 0 0
\(448\) −1.70871 2.95958i −0.0807291 0.139827i
\(449\) 26.5529 1.25311 0.626554 0.779378i \(-0.284465\pi\)
0.626554 + 0.779378i \(0.284465\pi\)
\(450\) 0 0
\(451\) −11.5826 −0.545402
\(452\) 12.4958 + 21.6434i 0.587753 + 1.01802i
\(453\) 0 0
\(454\) 3.00000 5.19615i 0.140797 0.243868i
\(455\) −8.75560 + 15.1652i −0.410469 + 0.710953i
\(456\) 0 0
\(457\) −15.6652 27.1328i −0.732785 1.26922i −0.955688 0.294380i \(-0.904887\pi\)
0.222904 0.974841i \(-0.428447\pi\)
\(458\) −10.0109 −0.467779
\(459\) 0 0
\(460\) −27.1652 −1.26658
\(461\) −6.66205 11.5390i −0.310283 0.537426i 0.668141 0.744035i \(-0.267090\pi\)
−0.978424 + 0.206609i \(0.933757\pi\)
\(462\) 0 0
\(463\) −10.4564 + 18.1111i −0.485952 + 0.841693i −0.999870 0.0161460i \(-0.994860\pi\)
0.513918 + 0.857839i \(0.328194\pi\)
\(464\) −2.55040 + 4.41742i −0.118399 + 0.205074i
\(465\) 0 0
\(466\) 0 0
\(467\) −6.20520 −0.287143 −0.143571 0.989640i \(-0.545859\pi\)
−0.143571 + 0.989640i \(0.545859\pi\)
\(468\) 0 0
\(469\) 0.582576 0.0269008
\(470\) −2.74110 4.74773i −0.126438 0.218996i
\(471\) 0 0
\(472\) −3.00000 + 5.19615i −0.138086 + 0.239172i
\(473\) −11.3537 + 19.6652i −0.522043 + 0.904205i
\(474\) 0 0
\(475\) 25.3739 + 43.9488i 1.16423 + 2.01651i
\(476\) 6.20520 0.284415
\(477\) 0 0
\(478\) 11.5390 0.527782
\(479\) 12.3151 + 21.3303i 0.562689 + 0.974606i 0.997261 + 0.0739690i \(0.0235666\pi\)
−0.434571 + 0.900637i \(0.643100\pi\)
\(480\) 0 0
\(481\) −6.00000 + 10.3923i −0.273576 + 0.473848i
\(482\) 4.20700 7.28674i 0.191624 0.331902i
\(483\) 0 0
\(484\) −3.58258 6.20520i −0.162844 0.282055i
\(485\) −33.1950 −1.50731
\(486\) 0 0
\(487\) −6.58258 −0.298285 −0.149142 0.988816i \(-0.547651\pi\)
−0.149142 + 0.988816i \(0.547651\pi\)
\(488\) −2.09355 3.62614i −0.0947706 0.164147i
\(489\) 0 0
\(490\) −1.00000 + 1.73205i −0.0451754 + 0.0782461i
\(491\) −11.2107 + 19.4174i −0.505930 + 0.876296i 0.494047 + 0.869435i \(0.335517\pi\)
−0.999976 + 0.00686071i \(0.997816\pi\)
\(492\) 0 0
\(493\) −3.16515 5.48220i −0.142551 0.246906i
\(494\) 6.54680 0.294555
\(495\) 0 0
\(496\) 25.5826 1.14869
\(497\) 5.70068 + 9.87386i 0.255710 + 0.442903i
\(498\) 0 0
\(499\) 10.0000 17.3205i 0.447661 0.775372i −0.550572 0.834788i \(-0.685590\pi\)
0.998233 + 0.0594153i \(0.0189236\pi\)
\(500\) −35.9361 + 62.2432i −1.60711 + 2.78360i
\(501\) 0 0
\(502\) −1.79129 3.10260i −0.0799491 0.138476i
\(503\) −5.48220 −0.244439 −0.122220 0.992503i \(-0.539001\pi\)
−0.122220 + 0.992503i \(0.539001\pi\)
\(504\) 0 0
\(505\) 8.00000 0.355995
\(506\) 2.09355 + 3.62614i 0.0930697 + 0.161201i
\(507\) 0 0
\(508\) −6.64337 + 11.5067i −0.294752 + 0.510525i
\(509\) 9.57395 16.5826i 0.424358 0.735010i −0.572002 0.820252i \(-0.693833\pi\)
0.996360 + 0.0852424i \(0.0271665\pi\)
\(510\) 0 0
\(511\) −1.58258 2.74110i −0.0700090 0.121259i
\(512\) −22.8981 −1.01196
\(513\) 0 0
\(514\) 4.66061 0.205570
\(515\) 7.84190 + 13.5826i 0.345556 + 0.598520i
\(516\) 0 0
\(517\) 3.62614 6.28065i 0.159477 0.276223i
\(518\) −0.685275 + 1.18693i −0.0301093 + 0.0521508i
\(519\) 0 0
\(520\) 15.1652 + 26.2668i 0.665036 + 1.15188i
\(521\) 3.46410 0.151765 0.0758825 0.997117i \(-0.475823\pi\)
0.0758825 + 0.997117i \(0.475823\pi\)
\(522\) 0 0
\(523\) −6.41742 −0.280614 −0.140307 0.990108i \(-0.544809\pi\)
−0.140307 + 0.990108i \(0.544809\pi\)
\(524\) 16.5022 + 28.5826i 0.720900 + 1.24864i
\(525\) 0 0
\(526\) 0.978220 1.69433i 0.0426524 0.0738761i
\(527\) −15.8745 + 27.4955i −0.691504 + 1.19772i
\(528\) 0 0
\(529\) 5.50000 + 9.52628i 0.239130 + 0.414186i
\(530\) −17.3205 −0.752355
\(531\) 0 0
\(532\) −6.41742 −0.278231
\(533\) −8.75560 15.1652i −0.379247 0.656876i
\(534\) 0 0
\(535\) 24.5390 42.5028i 1.06091 1.83756i
\(536\) 0.504525 0.873864i 0.0217922 0.0377452i
\(537\) 0 0
\(538\) 1.58258 + 2.74110i 0.0682297 + 0.118177i
\(539\) −2.64575 −0.113961
\(540\) 0 0
\(541\) 11.0000 0.472927 0.236463 0.971640i \(-0.424012\pi\)
0.236463 + 0.971640i \(0.424012\pi\)
\(542\) 1.99820 + 3.46099i 0.0858301 + 0.148662i
\(543\) 0 0
\(544\) 8.20871 14.2179i 0.351946 0.609588i
\(545\) 13.1334 22.7477i 0.562573 0.974406i
\(546\) 0 0
\(547\) 6.45644 + 11.1829i 0.276057 + 0.478145i 0.970401 0.241498i \(-0.0776387\pi\)
−0.694344 + 0.719643i \(0.744305\pi\)
\(548\) −31.5384 −1.34725
\(549\) 0 0
\(550\) 17.1216 0.730067
\(551\) 3.27340 + 5.66970i 0.139452 + 0.241537i
\(552\) 0 0
\(553\) −4.29129 + 7.43273i −0.182484 + 0.316072i
\(554\) 1.59898 2.76951i 0.0679340 0.117665i
\(555\) 0 0
\(556\) −6.79129 11.7629i −0.288015 0.498856i
\(557\) 12.5058 0.529886 0.264943 0.964264i \(-0.414647\pi\)
0.264943 + 0.964264i \(0.414647\pi\)
\(558\) 0 0
\(559\) −34.3303 −1.45202
\(560\) −6.10985 10.5826i −0.258188 0.447195i
\(561\) 0 0
\(562\) 6.76951 11.7251i 0.285554 0.494595i
\(563\) 20.8800 36.1652i 0.879985 1.52418i 0.0286300 0.999590i \(-0.490886\pi\)
0.851355 0.524589i \(-0.175781\pi\)
\(564\) 0 0
\(565\) 30.5390 + 52.8951i 1.28479 + 2.22531i
\(566\) −8.03260 −0.337636
\(567\) 0 0
\(568\) 19.7477 0.828596
\(569\) −5.96683 10.3348i −0.250142 0.433259i 0.713422 0.700734i \(-0.247144\pi\)
−0.963565 + 0.267475i \(0.913811\pi\)
\(570\) 0 0
\(571\) 0.417424 0.723000i 0.0174687 0.0302566i −0.857159 0.515052i \(-0.827773\pi\)
0.874628 + 0.484795i \(0.161106\pi\)
\(572\) −9.47860 + 16.4174i −0.396320 + 0.686447i
\(573\) 0 0
\(574\) −1.00000 1.73205i −0.0417392 0.0722944i
\(575\) −49.0695 −2.04634
\(576\) 0 0
\(577\) 32.7477 1.36331 0.681653 0.731676i \(-0.261261\pi\)
0.681653 + 0.731676i \(0.261261\pi\)
\(578\) −1.14213 1.97822i −0.0475062 0.0822831i
\(579\) 0 0
\(580\) −7.16515 + 12.4104i −0.297517 + 0.515314i
\(581\) 3.10260 5.37386i 0.128718 0.222945i
\(582\) 0 0
\(583\) −11.4564 19.8431i −0.474477 0.821819i
\(584\) −5.48220 −0.226855
\(585\) 0 0
\(586\) −9.91288 −0.409497
\(587\) 4.28245 + 7.41742i 0.176756 + 0.306150i 0.940767 0.339052i \(-0.110106\pi\)
−0.764012 + 0.645202i \(0.776773\pi\)
\(588\) 0 0
\(589\) 16.4174 28.4358i 0.676468 1.17168i
\(590\) −3.46410 + 6.00000i −0.142615 + 0.247016i
\(591\) 0 0
\(592\) −4.18693 7.25198i −0.172082 0.298054i
\(593\) −43.5873 −1.78992 −0.894958 0.446150i \(-0.852795\pi\)
−0.894958 + 0.446150i \(0.852795\pi\)
\(594\) 0 0
\(595\) 15.1652 0.621711
\(596\) −9.56400 16.5653i −0.391757 0.678543i
\(597\) 0 0
\(598\) −3.16515 + 5.48220i −0.129433 + 0.224184i
\(599\) −2.23658 + 3.87386i −0.0913840 + 0.158282i −0.908094 0.418767i \(-0.862462\pi\)
0.816710 + 0.577049i \(0.195796\pi\)
\(600\) 0 0
\(601\) −2.20871 3.82560i −0.0900952 0.156050i 0.817456 0.575991i \(-0.195384\pi\)
−0.907551 + 0.419942i \(0.862050\pi\)
\(602\) −3.92095 −0.159806
\(603\) 0 0
\(604\) 36.8693 1.50019
\(605\) −8.75560 15.1652i −0.355966 0.616551i
\(606\) 0 0
\(607\) −10.7913 + 18.6911i −0.438005 + 0.758647i −0.997536 0.0701630i \(-0.977648\pi\)
0.559531 + 0.828810i \(0.310981\pi\)
\(608\) −8.48945 + 14.7042i −0.344293 + 0.596333i
\(609\) 0 0
\(610\) −2.41742 4.18710i −0.0978786 0.169531i
\(611\) 10.9644 0.443572
\(612\) 0 0
\(613\) 1.00000 0.0403896 0.0201948 0.999796i \(-0.493571\pi\)
0.0201948 + 0.999796i \(0.493571\pi\)
\(614\) 3.73025 + 6.46099i 0.150541 + 0.260744i
\(615\) 0 0
\(616\) −2.29129 + 3.96863i −0.0923186 + 0.159901i
\(617\) −12.4104 + 21.4955i −0.499624 + 0.865374i −1.00000 0.000433948i \(-0.999862\pi\)
0.500376 + 0.865808i \(0.333195\pi\)
\(618\) 0 0
\(619\) 13.9564 + 24.1733i 0.560957 + 0.971605i 0.997413 + 0.0718801i \(0.0228999\pi\)
−0.436457 + 0.899725i \(0.643767\pi\)
\(620\) 71.8722 2.88646
\(621\) 0 0
\(622\) 8.24318 0.330521
\(623\) 4.37780 + 7.58258i 0.175393 + 0.303789i
\(624\) 0 0
\(625\) −52.4129 + 90.7818i −2.09652 + 3.63127i
\(626\) −0.266150 + 0.460985i −0.0106375 + 0.0184247i
\(627\) 0 0
\(628\) 0.747727 + 1.29510i 0.0298376 + 0.0516802i
\(629\) 10.3923 0.414368
\(630\) 0 0
\(631\) −31.1652 −1.24067 −0.620333 0.784339i \(-0.713002\pi\)
−0.620333 + 0.784339i \(0.713002\pi\)
\(632\) 7.43273 + 12.8739i 0.295658 + 0.512095i
\(633\) 0 0
\(634\) 0 0
\(635\) −16.2360 + 28.1216i −0.644306 + 1.11597i
\(636\) 0 0
\(637\) −2.00000 3.46410i −0.0792429 0.137253i
\(638\) 2.20880 0.0874473
\(639\) 0 0
\(640\) −48.3303 −1.91042
\(641\) −6.06218 10.5000i −0.239442 0.414725i 0.721113 0.692818i \(-0.243631\pi\)
−0.960554 + 0.278093i \(0.910298\pi\)
\(642\) 0 0
\(643\) 17.1652 29.7309i 0.676927 1.17247i −0.298974 0.954261i \(-0.596644\pi\)
0.975901 0.218212i \(-0.0700223\pi\)
\(644\) 3.10260 5.37386i 0.122260 0.211760i
\(645\) 0 0
\(646\) −2.83485 4.91010i −0.111536 0.193185i
\(647\) 11.3060 0.444485 0.222242 0.974991i \(-0.428662\pi\)
0.222242 + 0.974991i \(0.428662\pi\)
\(648\) 0 0
\(649\) −9.16515 −0.359764
\(650\) 12.9427 + 22.4174i 0.507655 + 0.879284i
\(651\) 0 0
\(652\) 13.0608 22.6220i 0.511500 0.885944i
\(653\) −6.06218 + 10.5000i −0.237231 + 0.410897i −0.959919 0.280278i \(-0.909573\pi\)
0.722687 + 0.691175i \(0.242907\pi\)
\(654\) 0 0
\(655\) 40.3303 + 69.8541i 1.57584 + 2.72943i
\(656\) 12.2197 0.477099
\(657\) 0 0
\(658\) 1.25227 0.0488187
\(659\) −3.24563 5.62159i −0.126432 0.218986i 0.795860 0.605481i \(-0.207019\pi\)
−0.922292 + 0.386495i \(0.873686\pi\)
\(660\) 0 0
\(661\) 4.00000 6.92820i 0.155582 0.269476i −0.777689 0.628649i \(-0.783608\pi\)
0.933271 + 0.359174i \(0.116941\pi\)
\(662\) 3.27340 5.66970i 0.127224 0.220359i
\(663\) 0 0
\(664\) −5.37386 9.30780i −0.208546 0.361213i
\(665\) −15.6838 −0.608192
\(666\) 0 0
\(667\) −6.33030 −0.245110
\(668\) 2.28425 + 3.95644i 0.0883803 + 0.153079i
\(669\) 0 0
\(670\) 0.582576 1.00905i 0.0225069 0.0389830i
\(671\) 3.19795 5.53901i 0.123456 0.213831i
\(672\) 0 0
\(673\) −14.2477 24.6778i −0.549210 0.951259i −0.998329 0.0577870i \(-0.981596\pi\)
0.449119 0.893472i \(-0.351738\pi\)
\(674\) 9.21245 0.354850
\(675\) 0 0
\(676\) −5.37386 −0.206687
\(677\) −5.91915 10.2523i −0.227492 0.394027i 0.729573 0.683903i \(-0.239719\pi\)
−0.957064 + 0.289877i \(0.906386\pi\)
\(678\) 0 0
\(679\) 3.79129 6.56670i 0.145496 0.252007i
\(680\) 13.1334 22.7477i 0.503643 0.872336i
\(681\) 0 0
\(682\) −5.53901 9.59386i −0.212100 0.367368i
\(683\) 4.47315 0.171160 0.0855802 0.996331i \(-0.472726\pi\)
0.0855802 + 0.996331i \(0.472726\pi\)
\(684\) 0 0
\(685\) −77.0780 −2.94500
\(686\) −0.228425 0.395644i −0.00872131 0.0151058i
\(687\) 0 0
\(688\) 11.9782 20.7469i 0.456665 0.790968i
\(689\) 17.3205 30.0000i 0.659859 1.14291i
\(690\) 0 0
\(691\) −5.41742 9.38325i −0.206089 0.356956i 0.744390 0.667745i \(-0.232740\pi\)
−0.950479 + 0.310789i \(0.899407\pi\)
\(692\) 20.5939 0.782863
\(693\) 0 0
\(694\) 16.4610 0.624850
\(695\) −16.5975 28.7477i −0.629579 1.09046i
\(696\) 0 0
\(697\) −7.58258 + 13.1334i −0.287211 + 0.497463i
\(698\) −5.65300 + 9.79129i −0.213969 + 0.370606i
\(699\) 0 0
\(700\) −12.6869 21.9744i −0.479521 0.830555i
\(701\) −29.4449 −1.11212 −0.556059 0.831143i \(-0.687687\pi\)
−0.556059 + 0.831143i \(0.687687\pi\)
\(702\) 0 0
\(703\) −10.7477 −0.405358
\(704\) −4.52083 7.83030i −0.170385 0.295116i
\(705\) 0 0
\(706\) 8.16515 14.1425i 0.307300 0.532258i
\(707\) −0.913701 + 1.58258i −0.0343632 + 0.0595189i
\(708\) 0 0
\(709\) −7.50000 12.9904i −0.281668 0.487864i 0.690127 0.723688i \(-0.257554\pi\)
−0.971796 + 0.235824i \(0.924221\pi\)
\(710\) 22.8027 0.855770
\(711\) 0 0
\(712\) 15.1652 0.568338
\(713\) 15.8745 + 27.4955i 0.594505 + 1.02971i
\(714\) 0 0
\(715\) −23.1652 + 40.1232i −0.866328 + 1.50052i
\(716\) 1.46590 2.53901i 0.0547833 0.0948874i
\(717\) 0 0
\(718\) 6.93466 + 12.0112i 0.258799 + 0.448253i
\(719\) 49.0695 1.82998 0.914992 0.403471i \(-0.132197\pi\)
0.914992 + 0.403471i \(0.132197\pi\)
\(720\) 0 0
\(721\) −3.58258 −0.133422
\(722\) −1.40828 2.43920i −0.0524106 0.0907778i
\(723\) 0 0
\(724\) 11.7913 20.4231i 0.438220 0.759019i
\(725\) −12.9427 + 22.4174i −0.480680 + 0.832562i
\(726\) 0 0
\(727\) −23.1216 40.0478i −0.857532 1.48529i −0.874276 0.485430i \(-0.838663\pi\)
0.0167434 0.999860i \(-0.494670\pi\)
\(728\) −6.92820 −0.256776
\(729\) 0 0
\(730\) −6.33030 −0.234295
\(731\) 14.8655 + 25.7477i 0.549819 + 0.952314i
\(732\) 0 0
\(733\) −5.37386 + 9.30780i −0.198488 + 0.343792i −0.948038 0.318156i \(-0.896936\pi\)
0.749550 + 0.661947i \(0.230270\pi\)
\(734\) −2.01810 + 3.49545i −0.0744895 + 0.129020i
\(735\) 0 0
\(736\) −8.20871 14.2179i −0.302577 0.524079i
\(737\) 1.54135 0.0567764
\(738\) 0 0
\(739\) −19.4174 −0.714281 −0.357141 0.934051i \(-0.616248\pi\)
−0.357141 + 0.934051i \(0.616248\pi\)
\(740\) −11.7629 20.3739i −0.432411 0.748958i
\(741\) 0 0
\(742\) 1.97822 3.42638i 0.0726227 0.125786i
\(743\) 6.70973 11.6216i 0.246156 0.426355i −0.716300 0.697793i \(-0.754166\pi\)
0.962456 + 0.271438i \(0.0874991\pi\)
\(744\) 0 0
\(745\) −23.3739 40.4847i −0.856352 1.48325i
\(746\) 3.34885 0.122610
\(747\) 0 0
\(748\) 16.4174 0.600280
\(749\) 5.60533 + 9.70871i 0.204814 + 0.354749i
\(750\) 0 0
\(751\) 4.70871 8.15573i 0.171823 0.297607i −0.767234 0.641367i \(-0.778368\pi\)
0.939057 + 0.343761i \(0.111701\pi\)
\(752\) −3.82560 + 6.62614i −0.139505 + 0.241630i
\(753\) 0 0
\(754\) 1.66970 + 2.89200i 0.0608068 + 0.105320i
\(755\) 90.1064 3.27931
\(756\) 0 0
\(757\) −6.83485 −0.248417 −0.124208 0.992256i \(-0.539639\pi\)
−0.124208 + 0.992256i \(0.539639\pi\)
\(758\) −6.60443 11.4392i −0.239884 0.415491i
\(759\) 0 0
\(760\) −13.5826 + 23.5257i −0.492692 + 0.853367i
\(761\) 15.2270 26.3739i 0.551977 0.956052i −0.446155 0.894956i \(-0.647207\pi\)
0.998132 0.0610962i \(-0.0194596\pi\)
\(762\) 0 0
\(763\) 3.00000 + 5.19615i 0.108607 + 0.188113i
\(764\) 10.9445 0.395958
\(765\) 0 0
\(766\) 8.83485 0.319216
\(767\) −6.92820 12.0000i −0.250163 0.433295i
\(768\) 0 0
\(769\) 22.5390 39.0387i 0.812778 1.40777i −0.0981351 0.995173i \(-0.531288\pi\)
0.910913 0.412599i \(-0.135379\pi\)
\(770\) −2.64575 + 4.58258i −0.0953463 + 0.165145i
\(771\) 0 0
\(772\) 12.5390 + 21.7182i 0.451289 + 0.781656i
\(773\) −31.5583 −1.13507 −0.567537 0.823348i \(-0.692104\pi\)
−0.567537 + 0.823348i \(0.692104\pi\)
\(774\) 0 0
\(775\) 129.826 4.66348
\(776\) −6.56670 11.3739i −0.235731 0.408298i
\(777\) 0 0
\(778\) −7.25227 + 12.5613i −0.260007 + 0.450345i
\(779\) 7.84190 13.5826i 0.280965 0.486646i
\(780\) 0 0
\(781\) 15.0826 + 26.1238i 0.539697 + 0.934783i
\(782\) 5.48220 0.196043
\(783\) 0 0
\(784\) 2.79129 0.0996889
\(785\) 1.82740 + 3.16515i 0.0652227 + 0.112969i
\(786\) 0 0
\(787\) −26.9564 + 46.6899i −0.960893 + 1.66432i −0.240628 + 0.970617i \(0.577353\pi\)
−0.720265 + 0.693699i \(0.755980\pi\)
\(788\) 0.0853998 0.147917i 0.00304224 0.00526932i
\(789\) 0 0
\(790\) 8.58258 + 14.8655i 0.305354 + 0.528889i
\(791\) −13.9518 −0.496067
\(792\) 0 0
\(793\) 9.66970 0.343381
\(794\) −0.361500 0.626136i −0.0128292 0.0222208i
\(795\) 0 0
\(796\) −15.0000 + 25.9808i −0.531661 + 0.920864i
\(797\) 25.3531 43.9129i 0.898053 1.55547i 0.0680737 0.997680i \(-0.478315\pi\)
0.829980 0.557794i \(-0.188352\pi\)
\(798\) 0 0
\(799\) −4.74773 8.22330i −0.167963 0.290920i
\(800\) −67.1329 −2.37351
\(801\) 0 0
\(802\) −6.46099 −0.228145
\(803\) −4.18710 7.25227i −0.147760 0.255927i
\(804\) 0 0
\(805\) 7.58258 13.1334i 0.267251 0.462892i
\(806\) 8.37420 14.5045i 0.294969 0.510901i
\(807\) 0 0
\(808\) 1.58258 + 2.74110i 0.0556748 + 0.0964316i
\(809\) 10.1063 0.355317 0.177658 0.984092i \(-0.443148\pi\)
0.177658 + 0.984092i \(0.443148\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) −1.63670 2.83485i −0.0574369 0.0994837i
\(813\) 0 0
\(814\) −1.81307 + 3.14033i −0.0635480 + 0.110068i
\(815\) 31.9198 55.2867i 1.11810 1.93661i
\(816\) 0 0
\(817\) −15.3739 26.6283i −0.537863 0.931607i
\(818\) −4.22690 −0.147790
\(819\) 0 0
\(820\) 34.3303 1.19887
\(821\) −16.8359 29.1606i −0.587576 1.01771i −0.994549 0.104272i \(-0.966749\pi\)
0.406972 0.913440i \(-0.366584\pi\)
\(822\) 0 0
\(823\) −6.00000 + 10.3923i −0.209147 + 0.362253i −0.951446 0.307816i \(-0.900402\pi\)
0.742299 + 0.670069i \(0.233735\pi\)
\(824\) −3.10260 + 5.37386i −0.108084 + 0.187207i
\(825\) 0 0
\(826\) −0.791288 1.37055i −0.0275324 0.0476876i
\(827\) −25.2578 −0.878298 −0.439149 0.898414i \(-0.644720\pi\)
−0.439149 + 0.898414i \(0.644720\pi\)
\(828\) 0 0
\(829\) −10.3303 −0.358786 −0.179393 0.983777i \(-0.557413\pi\)
−0.179393 + 0.983777i \(0.557413\pi\)
\(830\) −6.20520 10.7477i −0.215386 0.373059i
\(831\) 0 0
\(832\) 6.83485 11.8383i 0.236956 0.410419i
\(833\) −1.73205 + 3.00000i −0.0600120 + 0.103944i
\(834\) 0 0
\(835\) 5.58258 + 9.66930i 0.193193 + 0.334620i
\(836\) −16.9789 −0.587228
\(837\) 0 0
\(838\) −8.50455 −0.293785
\(839\) 19.5094 + 33.7913i 0.673540 + 1.16660i 0.976893 + 0.213727i \(0.0685602\pi\)
−0.303354 + 0.952878i \(0.598106\pi\)
\(840\) 0 0
\(841\) 12.8303 22.2227i 0.442424 0.766301i
\(842\) −3.69253 + 6.39564i −0.127253 + 0.220408i
\(843\) 0 0
\(844\) 10.5218 + 18.2243i 0.362175 + 0.627305i
\(845\) −13.1334 −0.451803
\(846\) 0 0
\(847\) 4.00000 0.137442
\(848\) 12.0866 + 20.9347i 0.415057 + 0.718899i
\(849\) 0 0
\(850\) 11.2087 19.4141i 0.384456 0.665897i
\(851\) 5.19615 9.00000i 0.178122 0.308516i
\(852\) 0 0
\(853\) −6.37386 11.0399i −0.218237 0.377997i 0.736032 0.676947i \(-0.236697\pi\)
−0.954269 + 0.298949i \(0.903364\pi\)
\(854\) 1.10440 0.0377918
\(855\) 0 0
\(856\) 19.4174 0.663674
\(857\) 20.1570 + 34.9129i 0.688549 + 1.19260i 0.972307 + 0.233706i \(0.0750852\pi\)
−0.283759 + 0.958896i \(0.591582\pi\)
\(858\) 0 0
\(859\) −13.1652 + 22.8027i −0.449189 + 0.778018i −0.998333 0.0577091i \(-0.981620\pi\)
0.549144 + 0.835728i \(0.314954\pi\)
\(860\) 33.6519 58.2867i 1.14752 1.98756i
\(861\) 0 0
\(862\) −8.37386 14.5040i −0.285215 0.494007i
\(863\) 2.45505 0.0835709 0.0417855 0.999127i \(-0.486695\pi\)
0.0417855 + 0.999127i \(0.486695\pi\)
\(864\) 0 0
\(865\) 50.3303 1.71128
\(866\) −5.00545 8.66970i −0.170092 0.294608i
\(867\) 0 0
\(868\) −8.20871 + 14.2179i −0.278622 + 0.482587i
\(869\) −11.3537 + 19.6652i −0.385147 + 0.667095i
\(870\) 0 0
\(871\) 1.16515 + 2.01810i 0.0394796 + 0.0683808i
\(872\) 10.3923 0.351928
\(873\) 0 0
\(874\) −5.66970 −0.191780
\(875\) −20.0616 34.7477i −0.678206 1.17469i
\(876\) 0 0
\(877\) −6.50000 + 11.2583i −0.219489 + 0.380167i −0.954652 0.297724i \(-0.903772\pi\)
0.735163 + 0.677891i \(0.237106\pi\)
\(878\) 5.84370 10.1216i 0.197215 0.341587i
\(879\) 0 0
\(880\) −16.1652 27.9989i −0.544927 0.943841i
\(881\) 21.5076 0.724610 0.362305 0.932060i \(-0.381990\pi\)
0.362305 + 0.932060i \(0.381990\pi\)
\(882\) 0 0
\(883\) 48.9129 1.64605 0.823025 0.568006i \(-0.192285\pi\)
0.823025 + 0.568006i \(0.192285\pi\)
\(884\) 12.4104 + 21.4955i 0.417407 + 0.722970i
\(885\) 0 0
\(886\) 3.95644 6.85275i 0.132919 0.230223i
\(887\) −11.4967 + 19.9129i −0.386022 + 0.668609i −0.991910 0.126940i \(-0.959484\pi\)
0.605889 + 0.795549i \(0.292818\pi\)
\(888\) 0 0
\(889\) −3.70871 6.42368i −0.124386 0.215443i
\(890\) 17.5112 0.586977
\(891\) 0 0
\(892\) −39.4083 −1.31949
\(893\) 4.91010 + 8.50455i 0.164310 + 0.284594i
\(894\) 0 0
\(895\) 3.58258 6.20520i 0.119752 0.207417i
\(896\) 5.51993 9.56080i 0.184408 0.319404i
\(897\) 0 0
\(898\) 6.06534 + 10.5055i 0.202403 + 0.350572i
\(899\) 16.7484 0.558591
\(900\) 0 0
\(901\) −30.0000 −0.999445
\(902\) −2.64575 4.58258i −0.0880939 0.152583i
\(903\) 0 0
\(904\) −12.0826 + 20.9276i −0.401860 + 0.696043i
\(905\) 28.8172 49.9129i 0.957917 1.65916i
\(906\) 0 0
\(907\) −9.29129 16.0930i −0.308512 0.534359i 0.669525 0.742790i \(-0.266498\pi\)
−0.978037 + 0.208431i \(0.933164\pi\)
\(908\) −23.5257 −0.780728
\(909\) 0 0
\(910\) −8.00000 −0.265197
\(911\) −4.47315 7.74773i −0.148202 0.256694i 0.782361 0.622825i \(-0.214015\pi\)
−0.930563 + 0.366132i \(0.880682\pi\)
\(912\) 0 0
\(913\) 8.20871 14.2179i 0.271669 0.470544i
\(914\) 7.15663 12.3956i 0.236720 0.410011i
\(915\) 0 0
\(916\) 19.6261 + 33.9935i 0.648466 + 1.12318i
\(917\) −18.4249 −0.608444
\(918\) 0 0
\(919\) 16.0780 0.530365 0.265183 0.964198i \(-0.414568\pi\)
0.265183 + 0.964198i \(0.414568\pi\)
\(920\) −13.1334 22.7477i −0.432996 0.749970i
\(921\) 0 0
\(922\) 3.04356 5.27160i 0.100234 0.173611i
\(923\) −22.8027 + 39.4955i −0.750560 + 1.30001i
\(924\) 0 0
\(925\) −21.2477 36.8021i −0.698621 1.21005i
\(926\) −9.55405 −0.313966
\(927\) 0 0
\(928\) −8.66061 −0.284298
\(929\) −1.17985 2.04356i −0.0387096 0.0670471i 0.846022 0.533149i \(-0.178991\pi\)
−0.884731 + 0.466102i \(0.845658\pi\)
\(930\) 0 0
\(931\) 1.79129 3.10260i 0.0587071 0.101684i
\(932\) 0 0
\(933\) 0 0
\(934\) −1.41742 2.45505i −0.0463795 0.0803317i
\(935\) 40.1232 1.31217
\(936\) 0 0
\(937\) 33.4955 1.09425 0.547124 0.837051i \(-0.315722\pi\)
0.547124 + 0.837051i \(0.315722\pi\)
\(938\) 0.133075 + 0.230493i 0.00434505 + 0.00752585i
\(939\) 0 0
\(940\) −10.7477 + 18.6156i −0.350552 + 0.607174i
\(941\) −16.4068 + 28.4174i −0.534847 + 0.926382i 0.464324 + 0.885665i \(0.346297\pi\)
−0.999171 + 0.0407162i \(0.987036\pi\)
\(942\) 0 0
\(943\) 7.58258 + 13.1334i 0.246923 + 0.427683i
\(944\) 9.66930 0.314709
\(945\) 0 0
\(946\) −10.3739 −0.337283
\(947\) −20.8800 36.1652i −0.678508 1.17521i −0.975430 0.220308i \(-0.929294\pi\)
0.296923 0.954901i \(-0.404040\pi\)
\(948\) 0 0
\(949\) 6.33030 10.9644i 0.205490 0.355920i
\(950\) −11.5921 + 20.0780i −0.376096 + 0.651417i
\(951\) 0 0
\(952\) 3.00000 + 5.19615i 0.0972306 + 0.168408i
\(953\) 3.65480 0.118391 0.0591953 0.998246i \(-0.481147\pi\)
0.0591953 + 0.998246i \(0.481147\pi\)
\(954\) 0 0
\(955\) 26.7477 0.865536
\(956\) −22.6220 39.1824i −0.731647 1.26725i
\(957\) 0 0
\(958\) −5.62614 + 9.74475i −0.181772 + 0.314839i
\(959\) 8.80328 15.2477i 0.284273 0.492375i
\(960\) 0 0
\(961\) −26.5000 45.8993i −0.854839 1.48062i
\(962\) −5.48220 −0.176753
\(963\) 0 0
\(964\) −32.9909 −1.06257
\(965\) 30.6446 + 53.0780i 0.986485 + 1.70864i
\(966\) 0 0
\(967\) −2.00000 + 3.46410i −0.0643157 + 0.111398i −0.896390 0.443266i \(-0.853820\pi\)
0.832075 + 0.554664i \(0.187153\pi\)
\(968\) 3.46410 6.00000i 0.111340 0.192847i
\(969\) 0 0
\(970\) −7.58258 13.1334i −0.243462 0.421688i
\(971\) −35.2131 −1.13004 −0.565021 0.825076i \(-0.691132\pi\)
−0.565021 + 0.825076i \(0.691132\pi\)
\(972\) 0 0
\(973\) 7.58258 0.243086
\(974\) −1.50363 2.60436i −0.0481793 0.0834490i
\(975\) 0 0
\(976\) −3.37386 + 5.84370i −0.107995 + 0.187052i
\(977\) 12.4104 21.4955i 0.397044 0.687701i −0.596316 0.802750i \(-0.703369\pi\)
0.993360 + 0.115050i \(0.0367027\pi\)
\(978\) 0 0
\(979\) 11.5826 + 20.0616i 0.370181 + 0.641172i
\(980\) 7.84190 0.250500
\(981\) 0 0
\(982\) −10.2432 −0.326873
\(983\) −22.1552 38.3739i −0.706640 1.22394i −0.966096 0.258181i \(-0.916877\pi\)
0.259457 0.965755i \(-0.416457\pi\)
\(984\) 0 0
\(985\) 0.208712 0.361500i 0.00665012 0.0115183i
\(986\) 1.44600 2.50455i 0.0460500 0.0797610i
\(987\) 0 0
\(988\) −12.8348 22.2306i −0.408331 0.707250i
\(989\) 29.7309 0.945388
\(990\) 0 0
\(991\) −35.7477 −1.13556 −0.567782 0.823179i \(-0.692198\pi\)
−0.567782 + 0.823179i \(0.692198\pi\)
\(992\) 21.7182 + 37.6170i 0.689554 + 1.19434i
\(993\) 0 0
\(994\) −2.60436 + 4.51088i −0.0826052 + 0.143076i
\(995\) −36.6591 + 63.4955i −1.16217 + 2.01294i
\(996\) 0 0
\(997\) −3.41742 5.91915i −0.108231 0.187461i 0.806823 0.590794i \(-0.201185\pi\)
−0.915054 + 0.403332i \(0.867852\pi\)
\(998\) 9.13701 0.289227
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.f.n.190.3 8
3.2 odd 2 inner 567.2.f.n.190.2 8
9.2 odd 6 inner 567.2.f.n.379.2 8
9.4 even 3 567.2.a.i.1.2 4
9.5 odd 6 567.2.a.i.1.3 yes 4
9.7 even 3 inner 567.2.f.n.379.3 8
36.23 even 6 9072.2.a.ci.1.4 4
36.31 odd 6 9072.2.a.ci.1.1 4
63.13 odd 6 3969.2.a.u.1.2 4
63.41 even 6 3969.2.a.u.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.a.i.1.2 4 9.4 even 3
567.2.a.i.1.3 yes 4 9.5 odd 6
567.2.f.n.190.2 8 3.2 odd 2 inner
567.2.f.n.190.3 8 1.1 even 1 trivial
567.2.f.n.379.2 8 9.2 odd 6 inner
567.2.f.n.379.3 8 9.7 even 3 inner
3969.2.a.u.1.2 4 63.13 odd 6
3969.2.a.u.1.3 4 63.41 even 6
9072.2.a.ci.1.1 4 36.31 odd 6
9072.2.a.ci.1.4 4 36.23 even 6