Properties

Label 567.2.f.n.190.1
Level $567$
Weight $2$
Character 567.190
Analytic conductor $4.528$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(190,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.190");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 190.1
Root \(-1.09445 - 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 567.190
Dual form 567.2.f.n.379.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.09445 - 1.89564i) q^{2} +(-1.39564 + 2.41733i) q^{4} +(-0.456850 + 0.791288i) q^{5} +(0.500000 + 0.866025i) q^{7} +1.73205 q^{8} +2.00000 q^{10} +(-1.32288 - 2.29129i) q^{11} +(-2.00000 + 3.46410i) q^{13} +(1.09445 - 1.89564i) q^{14} +(0.895644 + 1.55130i) q^{16} +3.46410 q^{17} +5.58258 q^{19} +(-1.27520 - 2.20871i) q^{20} +(-2.89564 + 5.01540i) q^{22} +(1.73205 - 3.00000i) q^{23} +(2.08258 + 3.60713i) q^{25} +8.75560 q^{26} -2.79129 q^{28} +(4.37780 + 7.58258i) q^{29} +(4.58258 - 7.93725i) q^{31} +(3.69253 - 6.39564i) q^{32} +(-3.79129 - 6.56670i) q^{34} -0.913701 q^{35} +3.00000 q^{37} +(-6.10985 - 10.5826i) q^{38} +(-0.791288 + 1.37055i) q^{40} +(0.456850 - 0.791288i) q^{41} +(-0.291288 - 0.504525i) q^{43} +7.38505 q^{44} -7.58258 q^{46} +(6.56670 + 11.3739i) q^{47} +(-0.500000 + 0.866025i) q^{49} +(4.55855 - 7.89564i) q^{50} +(-5.58258 - 9.66930i) q^{52} -8.66025 q^{53} +2.41742 q^{55} +(0.866025 + 1.50000i) q^{56} +(9.58258 - 16.5975i) q^{58} +(-1.73205 + 3.00000i) q^{59} +(-5.79129 - 10.0308i) q^{61} -20.0616 q^{62} -12.5826 q^{64} +(-1.82740 - 3.16515i) q^{65} +(-4.29129 + 7.43273i) q^{67} +(-4.83465 + 8.37386i) q^{68} +(1.00000 + 1.73205i) q^{70} -4.47315 q^{71} +15.1652 q^{73} +(-3.28335 - 5.68693i) q^{74} +(-7.79129 + 13.4949i) q^{76} +(1.32288 - 2.29129i) q^{77} +(-0.291288 - 0.504525i) q^{79} -1.63670 q^{80} -2.00000 q^{82} +(4.83465 + 8.37386i) q^{83} +(-1.58258 + 2.74110i) q^{85} +(-0.637600 + 1.10436i) q^{86} +(-2.29129 - 3.96863i) q^{88} -1.82740 q^{89} -4.00000 q^{91} +(4.83465 + 8.37386i) q^{92} +(14.3739 - 24.8963i) q^{94} +(-2.55040 + 4.41742i) q^{95} +(0.791288 + 1.37055i) q^{97} +2.18890 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} + 4 q^{7} + 16 q^{10} - 16 q^{13} - 2 q^{16} + 8 q^{19} - 14 q^{22} - 20 q^{25} - 4 q^{28} - 12 q^{34} + 24 q^{37} + 12 q^{40} + 16 q^{43} - 24 q^{46} - 4 q^{49} - 8 q^{52} + 56 q^{55} + 40 q^{58}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.09445 1.89564i −0.773893 1.34042i −0.935414 0.353553i \(-0.884973\pi\)
0.161521 0.986869i \(-0.448360\pi\)
\(3\) 0 0
\(4\) −1.39564 + 2.41733i −0.697822 + 1.20866i
\(5\) −0.456850 + 0.791288i −0.204310 + 0.353875i −0.949913 0.312516i \(-0.898828\pi\)
0.745603 + 0.666390i \(0.232162\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) −1.32288 2.29129i −0.398862 0.690849i 0.594724 0.803930i \(-0.297261\pi\)
−0.993586 + 0.113081i \(0.963928\pi\)
\(12\) 0 0
\(13\) −2.00000 + 3.46410i −0.554700 + 0.960769i 0.443227 + 0.896410i \(0.353834\pi\)
−0.997927 + 0.0643593i \(0.979500\pi\)
\(14\) 1.09445 1.89564i 0.292504 0.506632i
\(15\) 0 0
\(16\) 0.895644 + 1.55130i 0.223911 + 0.387825i
\(17\) 3.46410 0.840168 0.420084 0.907485i \(-0.362001\pi\)
0.420084 + 0.907485i \(0.362001\pi\)
\(18\) 0 0
\(19\) 5.58258 1.28073 0.640365 0.768070i \(-0.278783\pi\)
0.640365 + 0.768070i \(0.278783\pi\)
\(20\) −1.27520 2.20871i −0.285144 0.493883i
\(21\) 0 0
\(22\) −2.89564 + 5.01540i −0.617353 + 1.06929i
\(23\) 1.73205 3.00000i 0.361158 0.625543i −0.626994 0.779024i \(-0.715715\pi\)
0.988152 + 0.153481i \(0.0490483\pi\)
\(24\) 0 0
\(25\) 2.08258 + 3.60713i 0.416515 + 0.721425i
\(26\) 8.75560 1.71712
\(27\) 0 0
\(28\) −2.79129 −0.527504
\(29\) 4.37780 + 7.58258i 0.812937 + 1.40805i 0.910799 + 0.412849i \(0.135466\pi\)
−0.0978621 + 0.995200i \(0.531200\pi\)
\(30\) 0 0
\(31\) 4.58258 7.93725i 0.823055 1.42557i −0.0803419 0.996767i \(-0.525601\pi\)
0.903397 0.428806i \(-0.141065\pi\)
\(32\) 3.69253 6.39564i 0.652753 1.13060i
\(33\) 0 0
\(34\) −3.79129 6.56670i −0.650201 1.12618i
\(35\) −0.913701 −0.154444
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) −6.10985 10.5826i −0.991149 1.71672i
\(39\) 0 0
\(40\) −0.791288 + 1.37055i −0.125114 + 0.216703i
\(41\) 0.456850 0.791288i 0.0713480 0.123578i −0.828144 0.560515i \(-0.810603\pi\)
0.899492 + 0.436937i \(0.143937\pi\)
\(42\) 0 0
\(43\) −0.291288 0.504525i −0.0444210 0.0769394i 0.842960 0.537976i \(-0.180811\pi\)
−0.887381 + 0.461037i \(0.847478\pi\)
\(44\) 7.38505 1.11334
\(45\) 0 0
\(46\) −7.58258 −1.11799
\(47\) 6.56670 + 11.3739i 0.957852 + 1.65905i 0.727702 + 0.685893i \(0.240588\pi\)
0.230150 + 0.973155i \(0.426078\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 4.55855 7.89564i 0.644677 1.11661i
\(51\) 0 0
\(52\) −5.58258 9.66930i −0.774164 1.34089i
\(53\) −8.66025 −1.18958 −0.594789 0.803882i \(-0.702764\pi\)
−0.594789 + 0.803882i \(0.702764\pi\)
\(54\) 0 0
\(55\) 2.41742 0.325965
\(56\) 0.866025 + 1.50000i 0.115728 + 0.200446i
\(57\) 0 0
\(58\) 9.58258 16.5975i 1.25825 2.17936i
\(59\) −1.73205 + 3.00000i −0.225494 + 0.390567i −0.956467 0.291839i \(-0.905733\pi\)
0.730974 + 0.682406i \(0.239066\pi\)
\(60\) 0 0
\(61\) −5.79129 10.0308i −0.741498 1.28431i −0.951813 0.306679i \(-0.900782\pi\)
0.210315 0.977634i \(-0.432551\pi\)
\(62\) −20.0616 −2.54783
\(63\) 0 0
\(64\) −12.5826 −1.57282
\(65\) −1.82740 3.16515i −0.226661 0.392589i
\(66\) 0 0
\(67\) −4.29129 + 7.43273i −0.524264 + 0.908052i 0.475337 + 0.879804i \(0.342326\pi\)
−0.999601 + 0.0282483i \(0.991007\pi\)
\(68\) −4.83465 + 8.37386i −0.586288 + 1.01548i
\(69\) 0 0
\(70\) 1.00000 + 1.73205i 0.119523 + 0.207020i
\(71\) −4.47315 −0.530866 −0.265433 0.964129i \(-0.585515\pi\)
−0.265433 + 0.964129i \(0.585515\pi\)
\(72\) 0 0
\(73\) 15.1652 1.77495 0.887473 0.460859i \(-0.152459\pi\)
0.887473 + 0.460859i \(0.152459\pi\)
\(74\) −3.28335 5.68693i −0.381682 0.661092i
\(75\) 0 0
\(76\) −7.79129 + 13.4949i −0.893722 + 1.54797i
\(77\) 1.32288 2.29129i 0.150756 0.261116i
\(78\) 0 0
\(79\) −0.291288 0.504525i −0.0327724 0.0567635i 0.849174 0.528113i \(-0.177100\pi\)
−0.881946 + 0.471350i \(0.843767\pi\)
\(80\) −1.63670 −0.182989
\(81\) 0 0
\(82\) −2.00000 −0.220863
\(83\) 4.83465 + 8.37386i 0.530672 + 0.919151i 0.999359 + 0.0357868i \(0.0113937\pi\)
−0.468687 + 0.883364i \(0.655273\pi\)
\(84\) 0 0
\(85\) −1.58258 + 2.74110i −0.171654 + 0.297314i
\(86\) −0.637600 + 1.10436i −0.0687542 + 0.119086i
\(87\) 0 0
\(88\) −2.29129 3.96863i −0.244252 0.423057i
\(89\) −1.82740 −0.193704 −0.0968521 0.995299i \(-0.530877\pi\)
−0.0968521 + 0.995299i \(0.530877\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 4.83465 + 8.37386i 0.504047 + 0.873036i
\(93\) 0 0
\(94\) 14.3739 24.8963i 1.48255 2.56785i
\(95\) −2.55040 + 4.41742i −0.261666 + 0.453218i
\(96\) 0 0
\(97\) 0.791288 + 1.37055i 0.0803431 + 0.139158i 0.903397 0.428804i \(-0.141065\pi\)
−0.823054 + 0.567963i \(0.807732\pi\)
\(98\) 2.18890 0.221112
\(99\) 0 0
\(100\) −11.6261 −1.16261
\(101\) −4.37780 7.58258i −0.435608 0.754494i 0.561737 0.827316i \(-0.310133\pi\)
−0.997345 + 0.0728211i \(0.976800\pi\)
\(102\) 0 0
\(103\) 2.79129 4.83465i 0.275034 0.476372i −0.695110 0.718904i \(-0.744644\pi\)
0.970144 + 0.242531i \(0.0779776\pi\)
\(104\) −3.46410 + 6.00000i −0.339683 + 0.588348i
\(105\) 0 0
\(106\) 9.47822 + 16.4168i 0.920606 + 1.59454i
\(107\) 16.5022 1.59532 0.797662 0.603105i \(-0.206070\pi\)
0.797662 + 0.603105i \(0.206070\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) −2.64575 4.58258i −0.252262 0.436931i
\(111\) 0 0
\(112\) −0.895644 + 1.55130i −0.0846304 + 0.146584i
\(113\) −1.68438 + 2.91742i −0.158453 + 0.274448i −0.934311 0.356459i \(-0.883984\pi\)
0.775858 + 0.630907i \(0.217317\pi\)
\(114\) 0 0
\(115\) 1.58258 + 2.74110i 0.147576 + 0.255609i
\(116\) −24.4394 −2.26914
\(117\) 0 0
\(118\) 7.58258 0.698033
\(119\) 1.73205 + 3.00000i 0.158777 + 0.275010i
\(120\) 0 0
\(121\) 2.00000 3.46410i 0.181818 0.314918i
\(122\) −12.6766 + 21.9564i −1.14768 + 1.98784i
\(123\) 0 0
\(124\) 12.7913 + 22.1552i 1.14869 + 1.98959i
\(125\) −8.37420 −0.749012
\(126\) 0 0
\(127\) −16.5826 −1.47147 −0.735733 0.677272i \(-0.763162\pi\)
−0.735733 + 0.677272i \(0.763162\pi\)
\(128\) 6.38595 + 11.0608i 0.564444 + 0.977645i
\(129\) 0 0
\(130\) −4.00000 + 6.92820i −0.350823 + 0.607644i
\(131\) 4.01630 6.95644i 0.350906 0.607787i −0.635502 0.772099i \(-0.719207\pi\)
0.986408 + 0.164312i \(0.0525404\pi\)
\(132\) 0 0
\(133\) 2.79129 + 4.83465i 0.242035 + 0.419218i
\(134\) 18.7864 1.62290
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) 7.07123 + 12.2477i 0.604136 + 1.04639i 0.992187 + 0.124756i \(0.0398149\pi\)
−0.388052 + 0.921638i \(0.626852\pi\)
\(138\) 0 0
\(139\) −0.791288 + 1.37055i −0.0671162 + 0.116249i −0.897631 0.440748i \(-0.854713\pi\)
0.830515 + 0.556997i \(0.188046\pi\)
\(140\) 1.27520 2.20871i 0.107774 0.186670i
\(141\) 0 0
\(142\) 4.89564 + 8.47950i 0.410833 + 0.711584i
\(143\) 10.5830 0.884995
\(144\) 0 0
\(145\) −8.00000 −0.664364
\(146\) −16.5975 28.7477i −1.37362 2.37918i
\(147\) 0 0
\(148\) −4.18693 + 7.25198i −0.344164 + 0.596109i
\(149\) −10.5353 + 18.2477i −0.863088 + 1.49491i 0.00584547 + 0.999983i \(0.498139\pi\)
−0.868933 + 0.494929i \(0.835194\pi\)
\(150\) 0 0
\(151\) 5.70871 + 9.88778i 0.464568 + 0.804656i 0.999182 0.0404406i \(-0.0128761\pi\)
−0.534614 + 0.845097i \(0.679543\pi\)
\(152\) 9.66930 0.784284
\(153\) 0 0
\(154\) −5.79129 −0.466675
\(155\) 4.18710 + 7.25227i 0.336316 + 0.582517i
\(156\) 0 0
\(157\) −9.58258 + 16.5975i −0.764773 + 1.32463i 0.175594 + 0.984463i \(0.443815\pi\)
−0.940367 + 0.340163i \(0.889518\pi\)
\(158\) −0.637600 + 1.10436i −0.0507248 + 0.0878579i
\(159\) 0 0
\(160\) 3.37386 + 5.84370i 0.266727 + 0.461985i
\(161\) 3.46410 0.273009
\(162\) 0 0
\(163\) 5.41742 0.424325 0.212163 0.977234i \(-0.431949\pi\)
0.212163 + 0.977234i \(0.431949\pi\)
\(164\) 1.27520 + 2.20871i 0.0995764 + 0.172471i
\(165\) 0 0
\(166\) 10.5826 18.3296i 0.821367 1.42265i
\(167\) −3.92095 + 6.79129i −0.303412 + 0.525526i −0.976907 0.213667i \(-0.931459\pi\)
0.673494 + 0.739192i \(0.264793\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 6.92820 0.531369
\(171\) 0 0
\(172\) 1.62614 0.123992
\(173\) −7.48040 12.9564i −0.568725 0.985060i −0.996692 0.0812659i \(-0.974104\pi\)
0.427968 0.903794i \(-0.359230\pi\)
\(174\) 0 0
\(175\) −2.08258 + 3.60713i −0.157428 + 0.272673i
\(176\) 2.36965 4.10436i 0.178619 0.309377i
\(177\) 0 0
\(178\) 2.00000 + 3.46410i 0.149906 + 0.259645i
\(179\) 12.2197 0.913344 0.456672 0.889635i \(-0.349041\pi\)
0.456672 + 0.889635i \(0.349041\pi\)
\(180\) 0 0
\(181\) −5.16515 −0.383923 −0.191961 0.981402i \(-0.561485\pi\)
−0.191961 + 0.981402i \(0.561485\pi\)
\(182\) 4.37780 + 7.58258i 0.324504 + 0.562058i
\(183\) 0 0
\(184\) 3.00000 5.19615i 0.221163 0.383065i
\(185\) −1.37055 + 2.37386i −0.100765 + 0.174530i
\(186\) 0 0
\(187\) −4.58258 7.93725i −0.335111 0.580429i
\(188\) −36.6591 −2.67364
\(189\) 0 0
\(190\) 11.1652 0.810005
\(191\) 0.409175 + 0.708712i 0.0296069 + 0.0512806i 0.880449 0.474141i \(-0.157241\pi\)
−0.850842 + 0.525421i \(0.823908\pi\)
\(192\) 0 0
\(193\) −7.00000 + 12.1244i −0.503871 + 0.872730i 0.496119 + 0.868255i \(0.334758\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) 1.73205 3.00000i 0.124354 0.215387i
\(195\) 0 0
\(196\) −1.39564 2.41733i −0.0996889 0.172666i
\(197\) −10.4877 −0.747214 −0.373607 0.927587i \(-0.621879\pi\)
−0.373607 + 0.927587i \(0.621879\pi\)
\(198\) 0 0
\(199\) 10.7477 0.761886 0.380943 0.924598i \(-0.375599\pi\)
0.380943 + 0.924598i \(0.375599\pi\)
\(200\) 3.60713 + 6.24773i 0.255062 + 0.441781i
\(201\) 0 0
\(202\) −9.58258 + 16.5975i −0.674228 + 1.16780i
\(203\) −4.37780 + 7.58258i −0.307261 + 0.532192i
\(204\) 0 0
\(205\) 0.417424 + 0.723000i 0.0291542 + 0.0504965i
\(206\) −12.2197 −0.851387
\(207\) 0 0
\(208\) −7.16515 −0.496814
\(209\) −7.38505 12.7913i −0.510835 0.884792i
\(210\) 0 0
\(211\) 7.87386 13.6379i 0.542059 0.938874i −0.456727 0.889607i \(-0.650978\pi\)
0.998786 0.0492668i \(-0.0156885\pi\)
\(212\) 12.0866 20.9347i 0.830113 1.43780i
\(213\) 0 0
\(214\) −18.0608 31.2822i −1.23461 2.13841i
\(215\) 0.532300 0.0363025
\(216\) 0 0
\(217\) 9.16515 0.622171
\(218\) −6.56670 11.3739i −0.444753 0.770335i
\(219\) 0 0
\(220\) −3.37386 + 5.84370i −0.227466 + 0.393982i
\(221\) −6.92820 + 12.0000i −0.466041 + 0.807207i
\(222\) 0 0
\(223\) −11.0000 19.0526i −0.736614 1.27585i −0.954011 0.299770i \(-0.903090\pi\)
0.217397 0.976083i \(-0.430243\pi\)
\(224\) 7.38505 0.493435
\(225\) 0 0
\(226\) 7.37386 0.490502
\(227\) 1.37055 + 2.37386i 0.0909666 + 0.157559i 0.907918 0.419148i \(-0.137671\pi\)
−0.816951 + 0.576706i \(0.804338\pi\)
\(228\) 0 0
\(229\) 11.9564 20.7092i 0.790104 1.36850i −0.135798 0.990736i \(-0.543360\pi\)
0.925902 0.377763i \(-0.123307\pi\)
\(230\) 3.46410 6.00000i 0.228416 0.395628i
\(231\) 0 0
\(232\) 7.58258 + 13.1334i 0.497820 + 0.862250i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) −4.83465 8.37386i −0.314709 0.545092i
\(237\) 0 0
\(238\) 3.79129 6.56670i 0.245753 0.425656i
\(239\) 4.69163 8.12614i 0.303476 0.525636i −0.673445 0.739238i \(-0.735186\pi\)
0.976921 + 0.213601i \(0.0685194\pi\)
\(240\) 0 0
\(241\) −13.7913 23.8872i −0.888375 1.53871i −0.841796 0.539796i \(-0.818501\pi\)
−0.0465790 0.998915i \(-0.514832\pi\)
\(242\) −8.75560 −0.562832
\(243\) 0 0
\(244\) 32.3303 2.06974
\(245\) −0.456850 0.791288i −0.0291871 0.0505535i
\(246\) 0 0
\(247\) −11.1652 + 19.3386i −0.710422 + 1.23049i
\(248\) 7.93725 13.7477i 0.504016 0.872982i
\(249\) 0 0
\(250\) 9.16515 + 15.8745i 0.579655 + 1.00399i
\(251\) −2.55040 −0.160980 −0.0804899 0.996755i \(-0.525648\pi\)
−0.0804899 + 0.996755i \(0.525648\pi\)
\(252\) 0 0
\(253\) −9.16515 −0.576208
\(254\) 18.1488 + 31.4347i 1.13876 + 1.97239i
\(255\) 0 0
\(256\) 1.39564 2.41733i 0.0872277 0.151083i
\(257\) 15.6838 27.1652i 0.978329 1.69452i 0.309849 0.950786i \(-0.399722\pi\)
0.668481 0.743730i \(-0.266945\pi\)
\(258\) 0 0
\(259\) 1.50000 + 2.59808i 0.0932055 + 0.161437i
\(260\) 10.2016 0.632677
\(261\) 0 0
\(262\) −17.5826 −1.08626
\(263\) −4.78698 8.29129i −0.295178 0.511263i 0.679849 0.733353i \(-0.262046\pi\)
−0.975026 + 0.222090i \(0.928712\pi\)
\(264\) 0 0
\(265\) 3.95644 6.85275i 0.243042 0.420961i
\(266\) 6.10985 10.5826i 0.374619 0.648859i
\(267\) 0 0
\(268\) −11.9782 20.7469i −0.731686 1.26732i
\(269\) 6.92820 0.422420 0.211210 0.977441i \(-0.432260\pi\)
0.211210 + 0.977441i \(0.432260\pi\)
\(270\) 0 0
\(271\) −18.7477 −1.13884 −0.569422 0.822046i \(-0.692833\pi\)
−0.569422 + 0.822046i \(0.692833\pi\)
\(272\) 3.10260 + 5.37386i 0.188123 + 0.325838i
\(273\) 0 0
\(274\) 15.4782 26.8091i 0.935073 1.61959i
\(275\) 5.50998 9.54356i 0.332264 0.575498i
\(276\) 0 0
\(277\) −3.50000 6.06218i −0.210295 0.364241i 0.741512 0.670940i \(-0.234109\pi\)
−0.951807 + 0.306699i \(0.900776\pi\)
\(278\) 3.46410 0.207763
\(279\) 0 0
\(280\) −1.58258 −0.0945770
\(281\) −4.23478 7.33485i −0.252626 0.437560i 0.711622 0.702562i \(-0.247961\pi\)
−0.964248 + 0.265002i \(0.914627\pi\)
\(282\) 0 0
\(283\) −4.20871 + 7.28970i −0.250182 + 0.433328i −0.963576 0.267435i \(-0.913824\pi\)
0.713394 + 0.700763i \(0.247157\pi\)
\(284\) 6.24293 10.8131i 0.370450 0.641638i
\(285\) 0 0
\(286\) −11.5826 20.0616i −0.684892 1.18627i
\(287\) 0.913701 0.0539340
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) 8.75560 + 15.1652i 0.514147 + 0.890528i
\(291\) 0 0
\(292\) −21.1652 + 36.6591i −1.23860 + 2.14531i
\(293\) −8.20340 + 14.2087i −0.479248 + 0.830082i −0.999717 0.0237989i \(-0.992424\pi\)
0.520469 + 0.853881i \(0.325757\pi\)
\(294\) 0 0
\(295\) −1.58258 2.74110i −0.0921411 0.159593i
\(296\) 5.19615 0.302020
\(297\) 0 0
\(298\) 46.1216 2.67175
\(299\) 6.92820 + 12.0000i 0.400668 + 0.693978i
\(300\) 0 0
\(301\) 0.291288 0.504525i 0.0167896 0.0290804i
\(302\) 12.4958 21.6434i 0.719053 1.24544i
\(303\) 0 0
\(304\) 5.00000 + 8.66025i 0.286770 + 0.496700i
\(305\) 10.5830 0.605981
\(306\) 0 0
\(307\) −20.3303 −1.16031 −0.580156 0.814505i \(-0.697008\pi\)
−0.580156 + 0.814505i \(0.697008\pi\)
\(308\) 3.69253 + 6.39564i 0.210401 + 0.364426i
\(309\) 0 0
\(310\) 9.16515 15.8745i 0.520546 0.901611i
\(311\) 16.9590 29.3739i 0.961657 1.66564i 0.243317 0.969947i \(-0.421764\pi\)
0.718340 0.695692i \(-0.244902\pi\)
\(312\) 0 0
\(313\) −8.58258 14.8655i −0.485116 0.840245i 0.514738 0.857348i \(-0.327889\pi\)
−0.999854 + 0.0171023i \(0.994556\pi\)
\(314\) 41.9506 2.36741
\(315\) 0 0
\(316\) 1.62614 0.0914773
\(317\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) 0 0
\(319\) 11.5826 20.0616i 0.648500 1.12323i
\(320\) 5.74835 9.95644i 0.321343 0.556582i
\(321\) 0 0
\(322\) −3.79129 6.56670i −0.211280 0.365948i
\(323\) 19.3386 1.07603
\(324\) 0 0
\(325\) −16.6606 −0.924164
\(326\) −5.92910 10.2695i −0.328383 0.568775i
\(327\) 0 0
\(328\) 0.791288 1.37055i 0.0436916 0.0756760i
\(329\) −6.56670 + 11.3739i −0.362034 + 0.627061i
\(330\) 0 0
\(331\) 11.1652 + 19.3386i 0.613692 + 1.06295i 0.990612 + 0.136700i \(0.0436498\pi\)
−0.376920 + 0.926246i \(0.623017\pi\)
\(332\) −26.9898 −1.48126
\(333\) 0 0
\(334\) 17.1652 0.939235
\(335\) −3.92095 6.79129i −0.214224 0.371048i
\(336\) 0 0
\(337\) 0.917424 1.58903i 0.0499753 0.0865597i −0.839956 0.542655i \(-0.817419\pi\)
0.889931 + 0.456095i \(0.150752\pi\)
\(338\) −3.28335 + 5.68693i −0.178591 + 0.309328i
\(339\) 0 0
\(340\) −4.41742 7.65120i −0.239568 0.414945i
\(341\) −24.2487 −1.31314
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −0.504525 0.873864i −0.0272022 0.0471156i
\(345\) 0 0
\(346\) −16.3739 + 28.3604i −0.880264 + 1.52466i
\(347\) −11.0875 + 19.2042i −0.595210 + 1.03093i 0.398307 + 0.917252i \(0.369598\pi\)
−0.993517 + 0.113682i \(0.963736\pi\)
\(348\) 0 0
\(349\) −1.37386 2.37960i −0.0735412 0.127377i 0.826910 0.562335i \(-0.190097\pi\)
−0.900451 + 0.434958i \(0.856763\pi\)
\(350\) 9.11710 0.487330
\(351\) 0 0
\(352\) −19.5390 −1.04143
\(353\) −4.64395 8.04356i −0.247173 0.428116i 0.715568 0.698544i \(-0.246168\pi\)
−0.962740 + 0.270428i \(0.912835\pi\)
\(354\) 0 0
\(355\) 2.04356 3.53955i 0.108461 0.187860i
\(356\) 2.55040 4.41742i 0.135171 0.234123i
\(357\) 0 0
\(358\) −13.3739 23.1642i −0.706831 1.22427i
\(359\) 25.0671 1.32299 0.661494 0.749950i \(-0.269923\pi\)
0.661494 + 0.749950i \(0.269923\pi\)
\(360\) 0 0
\(361\) 12.1652 0.640271
\(362\) 5.65300 + 9.79129i 0.297115 + 0.514619i
\(363\) 0 0
\(364\) 5.58258 9.66930i 0.292606 0.506809i
\(365\) −6.92820 + 12.0000i −0.362639 + 0.628109i
\(366\) 0 0
\(367\) 13.5826 + 23.5257i 0.709005 + 1.22803i 0.965227 + 0.261414i \(0.0841888\pi\)
−0.256222 + 0.966618i \(0.582478\pi\)
\(368\) 6.20520 0.323469
\(369\) 0 0
\(370\) 6.00000 0.311925
\(371\) −4.33013 7.50000i −0.224809 0.389381i
\(372\) 0 0
\(373\) −14.6652 + 25.4008i −0.759333 + 1.31520i 0.183859 + 0.982953i \(0.441141\pi\)
−0.943191 + 0.332250i \(0.892192\pi\)
\(374\) −10.0308 + 17.3739i −0.518681 + 0.898381i
\(375\) 0 0
\(376\) 11.3739 + 19.7001i 0.586562 + 1.01596i
\(377\) −35.0224 −1.80375
\(378\) 0 0
\(379\) 16.9129 0.868756 0.434378 0.900731i \(-0.356968\pi\)
0.434378 + 0.900731i \(0.356968\pi\)
\(380\) −7.11890 12.3303i −0.365192 0.632531i
\(381\) 0 0
\(382\) 0.895644 1.55130i 0.0458251 0.0793715i
\(383\) −6.20520 + 10.7477i −0.317071 + 0.549183i −0.979876 0.199609i \(-0.936033\pi\)
0.662805 + 0.748792i \(0.269366\pi\)
\(384\) 0 0
\(385\) 1.20871 + 2.09355i 0.0616017 + 0.106697i
\(386\) 30.6446 1.55977
\(387\) 0 0
\(388\) −4.41742 −0.224261
\(389\) −15.8745 27.4955i −0.804869 1.39407i −0.916379 0.400312i \(-0.868902\pi\)
0.111510 0.993763i \(-0.464431\pi\)
\(390\) 0 0
\(391\) 6.00000 10.3923i 0.303433 0.525561i
\(392\) −0.866025 + 1.50000i −0.0437409 + 0.0757614i
\(393\) 0 0
\(394\) 11.4782 + 19.8809i 0.578264 + 1.00158i
\(395\) 0.532300 0.0267829
\(396\) 0 0
\(397\) 7.58258 0.380559 0.190279 0.981730i \(-0.439061\pi\)
0.190279 + 0.981730i \(0.439061\pi\)
\(398\) −11.7629 20.3739i −0.589619 1.02125i
\(399\) 0 0
\(400\) −3.73049 + 6.46140i −0.186525 + 0.323070i
\(401\) 8.80328 15.2477i 0.439615 0.761435i −0.558045 0.829811i \(-0.688448\pi\)
0.997660 + 0.0683756i \(0.0217816\pi\)
\(402\) 0 0
\(403\) 18.3303 + 31.7490i 0.913097 + 1.58153i
\(404\) 24.4394 1.21591
\(405\) 0 0
\(406\) 19.1652 0.951150
\(407\) −3.96863 6.87386i −0.196718 0.340725i
\(408\) 0 0
\(409\) −18.3739 + 31.8245i −0.908529 + 1.57362i −0.0924204 + 0.995720i \(0.529460\pi\)
−0.816109 + 0.577898i \(0.803873\pi\)
\(410\) 0.913701 1.58258i 0.0451245 0.0781578i
\(411\) 0 0
\(412\) 7.79129 + 13.4949i 0.383849 + 0.664846i
\(413\) −3.46410 −0.170457
\(414\) 0 0
\(415\) −8.83485 −0.433686
\(416\) 14.7701 + 25.5826i 0.724164 + 1.25429i
\(417\) 0 0
\(418\) −16.1652 + 27.9989i −0.790663 + 1.36947i
\(419\) 14.5040 25.1216i 0.708565 1.22727i −0.256825 0.966458i \(-0.582676\pi\)
0.965390 0.260812i \(-0.0839903\pi\)
\(420\) 0 0
\(421\) −1.08258 1.87508i −0.0527615 0.0913856i 0.838438 0.544996i \(-0.183469\pi\)
−0.891200 + 0.453611i \(0.850136\pi\)
\(422\) −34.4702 −1.67798
\(423\) 0 0
\(424\) −15.0000 −0.728464
\(425\) 7.21425 + 12.4955i 0.349943 + 0.606119i
\(426\) 0 0
\(427\) 5.79129 10.0308i 0.280260 0.485425i
\(428\) −23.0311 + 39.8911i −1.11325 + 1.92821i
\(429\) 0 0
\(430\) −0.582576 1.00905i −0.0280943 0.0486607i
\(431\) −4.91010 −0.236511 −0.118256 0.992983i \(-0.537730\pi\)
−0.118256 + 0.992983i \(0.537730\pi\)
\(432\) 0 0
\(433\) 23.9129 1.14918 0.574590 0.818442i \(-0.305162\pi\)
0.574590 + 0.818442i \(0.305162\pi\)
\(434\) −10.0308 17.3739i −0.481494 0.833972i
\(435\) 0 0
\(436\) −8.37386 + 14.5040i −0.401035 + 0.694614i
\(437\) 9.66930 16.7477i 0.462546 0.801152i
\(438\) 0 0
\(439\) −8.20871 14.2179i −0.391780 0.678584i 0.600904 0.799321i \(-0.294807\pi\)
−0.992684 + 0.120738i \(0.961474\pi\)
\(440\) 4.18710 0.199612
\(441\) 0 0
\(442\) 30.3303 1.44267
\(443\) −8.66025 15.0000i −0.411461 0.712672i 0.583589 0.812049i \(-0.301648\pi\)
−0.995050 + 0.0993779i \(0.968315\pi\)
\(444\) 0 0
\(445\) 0.834849 1.44600i 0.0395756 0.0685470i
\(446\) −24.0779 + 41.7042i −1.14012 + 1.97475i
\(447\) 0 0
\(448\) −6.29129 10.8968i −0.297235 0.514827i
\(449\) −36.9452 −1.74355 −0.871775 0.489906i \(-0.837031\pi\)
−0.871775 + 0.489906i \(0.837031\pi\)
\(450\) 0 0
\(451\) −2.41742 −0.113832
\(452\) −4.70158 8.14337i −0.221144 0.383032i
\(453\) 0 0
\(454\) 3.00000 5.19615i 0.140797 0.243868i
\(455\) 1.82740 3.16515i 0.0856699 0.148385i
\(456\) 0 0
\(457\) 2.66515 + 4.61618i 0.124671 + 0.215936i 0.921604 0.388131i \(-0.126879\pi\)
−0.796934 + 0.604067i \(0.793546\pi\)
\(458\) −52.3429 −2.44582
\(459\) 0 0
\(460\) −8.83485 −0.411927
\(461\) 11.8582 + 20.5390i 0.552292 + 0.956597i 0.998109 + 0.0614732i \(0.0195799\pi\)
−0.445817 + 0.895124i \(0.647087\pi\)
\(462\) 0 0
\(463\) 12.4564 21.5752i 0.578900 1.00268i −0.416706 0.909041i \(-0.636816\pi\)
0.995606 0.0936426i \(-0.0298511\pi\)
\(464\) −7.84190 + 13.5826i −0.364051 + 0.630555i
\(465\) 0 0
\(466\) 0 0
\(467\) 9.66930 0.447442 0.223721 0.974653i \(-0.428180\pi\)
0.223721 + 0.974653i \(0.428180\pi\)
\(468\) 0 0
\(469\) −8.58258 −0.396307
\(470\) 13.1334 + 22.7477i 0.605799 + 1.04927i
\(471\) 0 0
\(472\) −3.00000 + 5.19615i −0.138086 + 0.239172i
\(473\) −0.770675 + 1.33485i −0.0354357 + 0.0613764i
\(474\) 0 0
\(475\) 11.6261 + 20.1371i 0.533444 + 0.923952i
\(476\) −9.66930 −0.443192
\(477\) 0 0
\(478\) −20.5390 −0.939433
\(479\) −8.85095 15.3303i −0.404410 0.700459i 0.589842 0.807519i \(-0.299190\pi\)
−0.994253 + 0.107059i \(0.965857\pi\)
\(480\) 0 0
\(481\) −6.00000 + 10.3923i −0.273576 + 0.473848i
\(482\) −30.1878 + 52.2867i −1.37501 + 2.38160i
\(483\) 0 0
\(484\) 5.58258 + 9.66930i 0.253753 + 0.439514i
\(485\) −1.44600 −0.0656595
\(486\) 0 0
\(487\) 2.58258 0.117028 0.0585138 0.998287i \(-0.481364\pi\)
0.0585138 + 0.998287i \(0.481364\pi\)
\(488\) −10.0308 17.3739i −0.454073 0.786478i
\(489\) 0 0
\(490\) −1.00000 + 1.73205i −0.0451754 + 0.0782461i
\(491\) −16.5022 + 28.5826i −0.744732 + 1.28991i 0.205588 + 0.978639i \(0.434089\pi\)
−0.950320 + 0.311275i \(0.899244\pi\)
\(492\) 0 0
\(493\) 15.1652 + 26.2668i 0.683004 + 1.18300i
\(494\) 48.8788 2.19916
\(495\) 0 0
\(496\) 16.4174 0.737164
\(497\) −2.23658 3.87386i −0.100324 0.173767i
\(498\) 0 0
\(499\) 10.0000 17.3205i 0.447661 0.775372i −0.550572 0.834788i \(-0.685590\pi\)
0.998233 + 0.0594153i \(0.0189236\pi\)
\(500\) 11.6874 20.2432i 0.522677 0.905303i
\(501\) 0 0
\(502\) 2.79129 + 4.83465i 0.124581 + 0.215781i
\(503\) 26.2668 1.17118 0.585590 0.810608i \(-0.300863\pi\)
0.585590 + 0.810608i \(0.300863\pi\)
\(504\) 0 0
\(505\) 8.00000 0.355995
\(506\) 10.0308 + 17.3739i 0.445924 + 0.772362i
\(507\) 0 0
\(508\) 23.1434 40.0855i 1.02682 1.77851i
\(509\) 4.28245 7.41742i 0.189816 0.328772i −0.755373 0.655296i \(-0.772544\pi\)
0.945189 + 0.326524i \(0.105877\pi\)
\(510\) 0 0
\(511\) 7.58258 + 13.1334i 0.335433 + 0.580988i
\(512\) 19.4340 0.858868
\(513\) 0 0
\(514\) −68.6606 −3.02849
\(515\) 2.55040 + 4.41742i 0.112384 + 0.194655i
\(516\) 0 0
\(517\) 17.3739 30.0924i 0.764102 1.32346i
\(518\) 3.28335 5.68693i 0.144262 0.249869i
\(519\) 0 0
\(520\) −3.16515 5.48220i −0.138801 0.240411i
\(521\) 3.46410 0.151765 0.0758825 0.997117i \(-0.475823\pi\)
0.0758825 + 0.997117i \(0.475823\pi\)
\(522\) 0 0
\(523\) −15.5826 −0.681378 −0.340689 0.940176i \(-0.610660\pi\)
−0.340689 + 0.940176i \(0.610660\pi\)
\(524\) 11.2107 + 19.4174i 0.489740 + 0.848254i
\(525\) 0 0
\(526\) −10.4782 + 18.1488i −0.456872 + 0.791326i
\(527\) 15.8745 27.4955i 0.691504 1.19772i
\(528\) 0 0
\(529\) 5.50000 + 9.52628i 0.239130 + 0.414186i
\(530\) −17.3205 −0.752355
\(531\) 0 0
\(532\) −15.5826 −0.675590
\(533\) 1.82740 + 3.16515i 0.0791535 + 0.137098i
\(534\) 0 0
\(535\) −7.53901 + 13.0580i −0.325940 + 0.564545i
\(536\) −7.43273 + 12.8739i −0.321045 + 0.556066i
\(537\) 0 0
\(538\) −7.58258 13.1334i −0.326908 0.566221i
\(539\) 2.64575 0.113961
\(540\) 0 0
\(541\) 11.0000 0.472927 0.236463 0.971640i \(-0.424012\pi\)
0.236463 + 0.971640i \(0.424012\pi\)
\(542\) 20.5185 + 35.5390i 0.881343 + 1.52653i
\(543\) 0 0
\(544\) 12.7913 22.1552i 0.548422 0.949895i
\(545\) −2.74110 + 4.74773i −0.117416 + 0.203370i
\(546\) 0 0
\(547\) −16.4564 28.5034i −0.703627 1.21872i −0.967185 0.254073i \(-0.918229\pi\)
0.263558 0.964643i \(-0.415104\pi\)
\(548\) −39.4757 −1.68632
\(549\) 0 0
\(550\) −24.1216 −1.02855
\(551\) 24.4394 + 42.3303i 1.04115 + 1.80333i
\(552\) 0 0
\(553\) 0.291288 0.504525i 0.0123868 0.0214546i
\(554\) −7.66115 + 13.2695i −0.325491 + 0.563767i
\(555\) 0 0
\(556\) −2.20871 3.82560i −0.0936703 0.162242i
\(557\) −29.8263 −1.26378 −0.631890 0.775058i \(-0.717720\pi\)
−0.631890 + 0.775058i \(0.717720\pi\)
\(558\) 0 0
\(559\) 2.33030 0.0985613
\(560\) −0.818350 1.41742i −0.0345816 0.0598971i
\(561\) 0 0
\(562\) −9.26951 + 16.0553i −0.391011 + 0.677250i
\(563\) 10.2970 17.8348i 0.433965 0.751649i −0.563246 0.826290i \(-0.690448\pi\)
0.997211 + 0.0746403i \(0.0237808\pi\)
\(564\) 0 0
\(565\) −1.53901 2.66565i −0.0647468 0.112145i
\(566\) 18.4249 0.774457
\(567\) 0 0
\(568\) −7.74773 −0.325087
\(569\) −16.5498 28.6652i −0.693805 1.20171i −0.970582 0.240771i \(-0.922600\pi\)
0.276777 0.960934i \(-0.410734\pi\)
\(570\) 0 0
\(571\) 9.58258 16.5975i 0.401018 0.694584i −0.592831 0.805327i \(-0.701990\pi\)
0.993849 + 0.110743i \(0.0353230\pi\)
\(572\) −14.7701 + 25.5826i −0.617569 + 1.06966i
\(573\) 0 0
\(574\) −1.00000 1.73205i −0.0417392 0.0722944i
\(575\) 14.4285 0.601710
\(576\) 0 0
\(577\) 5.25227 0.218655 0.109327 0.994006i \(-0.465130\pi\)
0.109327 + 0.994006i \(0.465130\pi\)
\(578\) 5.47225 + 9.47822i 0.227616 + 0.394242i
\(579\) 0 0
\(580\) 11.1652 19.3386i 0.463608 0.802992i
\(581\) −4.83465 + 8.37386i −0.200575 + 0.347406i
\(582\) 0 0
\(583\) 11.4564 + 19.8431i 0.474477 + 0.821819i
\(584\) 26.2668 1.08693
\(585\) 0 0
\(586\) 35.9129 1.48355
\(587\) 9.57395 + 16.5826i 0.395159 + 0.684436i 0.993122 0.117088i \(-0.0373560\pi\)
−0.597962 + 0.801524i \(0.704023\pi\)
\(588\) 0 0
\(589\) 25.5826 44.3103i 1.05411 1.82577i
\(590\) −3.46410 + 6.00000i −0.142615 + 0.247016i
\(591\) 0 0
\(592\) 2.68693 + 4.65390i 0.110432 + 0.191274i
\(593\) −11.8383 −0.486141 −0.243070 0.970009i \(-0.578155\pi\)
−0.243070 + 0.970009i \(0.578155\pi\)
\(594\) 0 0
\(595\) −3.16515 −0.129759
\(596\) −29.4071 50.9347i −1.20456 2.08636i
\(597\) 0 0
\(598\) 15.1652 26.2668i 0.620149 1.07413i
\(599\) 5.70068 9.87386i 0.232923 0.403435i −0.725744 0.687965i \(-0.758504\pi\)
0.958667 + 0.284530i \(0.0918375\pi\)
\(600\) 0 0
\(601\) −6.79129 11.7629i −0.277022 0.479817i 0.693621 0.720340i \(-0.256014\pi\)
−0.970643 + 0.240523i \(0.922681\pi\)
\(602\) −1.27520 −0.0519733
\(603\) 0 0
\(604\) −31.8693 −1.29674
\(605\) 1.82740 + 3.16515i 0.0742944 + 0.128682i
\(606\) 0 0
\(607\) −6.20871 + 10.7538i −0.252004 + 0.436483i −0.964077 0.265621i \(-0.914423\pi\)
0.712074 + 0.702105i \(0.247756\pi\)
\(608\) 20.6138 35.7042i 0.836000 1.44800i
\(609\) 0 0
\(610\) −11.5826 20.0616i −0.468965 0.812271i
\(611\) −52.5336 −2.12528
\(612\) 0 0
\(613\) 1.00000 0.0403896 0.0201948 0.999796i \(-0.493571\pi\)
0.0201948 + 0.999796i \(0.493571\pi\)
\(614\) 22.2505 + 38.5390i 0.897958 + 1.55531i
\(615\) 0 0
\(616\) 2.29129 3.96863i 0.0923186 0.159901i
\(617\) 19.3386 33.4955i 0.778543 1.34848i −0.154238 0.988034i \(-0.549292\pi\)
0.932781 0.360443i \(-0.117374\pi\)
\(618\) 0 0
\(619\) −8.95644 15.5130i −0.359990 0.623520i 0.627969 0.778238i \(-0.283886\pi\)
−0.987959 + 0.154718i \(0.950553\pi\)
\(620\) −23.3748 −0.938755
\(621\) 0 0
\(622\) −74.2432 −2.97688
\(623\) −0.913701 1.58258i −0.0366066 0.0634046i
\(624\) 0 0
\(625\) −6.58712 + 11.4092i −0.263485 + 0.456369i
\(626\) −18.7864 + 32.5390i −0.750856 + 1.30052i
\(627\) 0 0
\(628\) −26.7477 46.3284i −1.06735 1.84871i
\(629\) 10.3923 0.414368
\(630\) 0 0
\(631\) −12.8348 −0.510947 −0.255474 0.966816i \(-0.582231\pi\)
−0.255474 + 0.966816i \(0.582231\pi\)
\(632\) −0.504525 0.873864i −0.0200689 0.0347604i
\(633\) 0 0
\(634\) 0 0
\(635\) 7.57575 13.1216i 0.300635 0.520714i
\(636\) 0 0
\(637\) −2.00000 3.46410i −0.0792429 0.137253i
\(638\) −50.7062 −2.00748
\(639\) 0 0
\(640\) −11.6697 −0.461285
\(641\) −6.06218 10.5000i −0.239442 0.414725i 0.721113 0.692818i \(-0.243631\pi\)
−0.960554 + 0.278093i \(0.910298\pi\)
\(642\) 0 0
\(643\) −1.16515 + 2.01810i −0.0459491 + 0.0795862i −0.888085 0.459679i \(-0.847965\pi\)
0.842136 + 0.539265i \(0.181298\pi\)
\(644\) −4.83465 + 8.37386i −0.190512 + 0.329976i
\(645\) 0 0
\(646\) −21.1652 36.6591i −0.832732 1.44233i
\(647\) 6.01450 0.236455 0.118227 0.992987i \(-0.462279\pi\)
0.118227 + 0.992987i \(0.462279\pi\)
\(648\) 0 0
\(649\) 9.16515 0.359764
\(650\) 18.2342 + 31.5826i 0.715205 + 1.23877i
\(651\) 0 0
\(652\) −7.56080 + 13.0957i −0.296104 + 0.512866i
\(653\) −6.06218 + 10.5000i −0.237231 + 0.410897i −0.959919 0.280278i \(-0.909573\pi\)
0.722687 + 0.691175i \(0.242907\pi\)
\(654\) 0 0
\(655\) 3.66970 + 6.35610i 0.143387 + 0.248353i
\(656\) 1.63670 0.0639024
\(657\) 0 0
\(658\) 28.7477 1.12070
\(659\) 20.5661 + 35.6216i 0.801143 + 1.38762i 0.918864 + 0.394574i \(0.129108\pi\)
−0.117722 + 0.993047i \(0.537559\pi\)
\(660\) 0 0
\(661\) 4.00000 6.92820i 0.155582 0.269476i −0.777689 0.628649i \(-0.783608\pi\)
0.933271 + 0.359174i \(0.116941\pi\)
\(662\) 24.4394 42.3303i 0.949865 1.64521i
\(663\) 0 0
\(664\) 8.37386 + 14.5040i 0.324969 + 0.562863i
\(665\) −5.10080 −0.197801
\(666\) 0 0
\(667\) 30.3303 1.17439
\(668\) −10.9445 18.9564i −0.423456 0.733447i
\(669\) 0 0
\(670\) −8.58258 + 14.8655i −0.331574 + 0.574303i
\(671\) −15.3223 + 26.5390i −0.591511 + 1.02453i
\(672\) 0 0
\(673\) 13.2477 + 22.9457i 0.510662 + 0.884493i 0.999924 + 0.0123559i \(0.00393310\pi\)
−0.489261 + 0.872137i \(0.662734\pi\)
\(674\) −4.01630 −0.154702
\(675\) 0 0
\(676\) 8.37386 0.322072
\(677\) −21.7937 37.7477i −0.837598 1.45076i −0.891897 0.452238i \(-0.850626\pi\)
0.0542988 0.998525i \(-0.482708\pi\)
\(678\) 0 0
\(679\) −0.791288 + 1.37055i −0.0303668 + 0.0525969i
\(680\) −2.74110 + 4.74773i −0.105116 + 0.182067i
\(681\) 0 0
\(682\) 26.5390 + 45.9669i 1.01623 + 1.76016i
\(683\) −11.4014 −0.436261 −0.218130 0.975920i \(-0.569996\pi\)
−0.218130 + 0.975920i \(0.569996\pi\)
\(684\) 0 0
\(685\) −12.9220 −0.493723
\(686\) 1.09445 + 1.89564i 0.0417863 + 0.0723760i
\(687\) 0 0
\(688\) 0.521780 0.903750i 0.0198927 0.0344552i
\(689\) 17.3205 30.0000i 0.659859 1.14291i
\(690\) 0 0
\(691\) −14.5826 25.2578i −0.554747 0.960851i −0.997923 0.0644158i \(-0.979482\pi\)
0.443176 0.896435i \(-0.353852\pi\)
\(692\) 41.7599 1.58747
\(693\) 0 0
\(694\) 48.5390 1.84252
\(695\) −0.723000 1.25227i −0.0274250 0.0475014i
\(696\) 0 0
\(697\) 1.58258 2.74110i 0.0599443 0.103827i
\(698\) −3.00725 + 5.20871i −0.113826 + 0.197153i
\(699\) 0 0
\(700\) −5.81307 10.0685i −0.219713 0.380555i
\(701\) −29.4449 −1.11212 −0.556059 0.831143i \(-0.687687\pi\)
−0.556059 + 0.831143i \(0.687687\pi\)
\(702\) 0 0
\(703\) 16.7477 0.631652
\(704\) 16.6452 + 28.8303i 0.627339 + 1.08658i
\(705\) 0 0
\(706\) −10.1652 + 17.6066i −0.382571 + 0.662632i
\(707\) 4.37780 7.58258i 0.164644 0.285172i
\(708\) 0 0
\(709\) −7.50000 12.9904i −0.281668 0.487864i 0.690127 0.723688i \(-0.257554\pi\)
−0.971796 + 0.235824i \(0.924221\pi\)
\(710\) −8.94630 −0.335749
\(711\) 0 0
\(712\) −3.16515 −0.118619
\(713\) −15.8745 27.4955i −0.594505 1.02971i
\(714\) 0 0
\(715\) −4.83485 + 8.37420i −0.180813 + 0.313177i
\(716\) −17.0544 + 29.5390i −0.637351 + 1.10392i
\(717\) 0 0
\(718\) −27.4347 47.5182i −1.02385 1.77336i
\(719\) −14.4285 −0.538093 −0.269046 0.963127i \(-0.586708\pi\)
−0.269046 + 0.963127i \(0.586708\pi\)
\(720\) 0 0
\(721\) 5.58258 0.207906
\(722\) −13.3142 23.0608i −0.495502 0.858234i
\(723\) 0 0
\(724\) 7.20871 12.4859i 0.267910 0.464033i
\(725\) −18.2342 + 31.5826i −0.677202 + 1.17295i
\(726\) 0 0
\(727\) 18.1216 + 31.3875i 0.672093 + 1.16410i 0.977310 + 0.211816i \(0.0679377\pi\)
−0.305217 + 0.952283i \(0.598729\pi\)
\(728\) −6.92820 −0.256776
\(729\) 0 0
\(730\) 30.3303 1.12257
\(731\) −1.00905 1.74773i −0.0373211 0.0646420i
\(732\) 0 0
\(733\) 8.37386 14.5040i 0.309296 0.535716i −0.668913 0.743341i \(-0.733240\pi\)
0.978208 + 0.207625i \(0.0665734\pi\)
\(734\) 29.7309 51.4955i 1.09739 1.90073i
\(735\) 0 0
\(736\) −12.7913 22.1552i −0.471493 0.816650i
\(737\) 22.7074 0.836436
\(738\) 0 0
\(739\) −28.5826 −1.05143 −0.525714 0.850662i \(-0.676202\pi\)
−0.525714 + 0.850662i \(0.676202\pi\)
\(740\) −3.82560 6.62614i −0.140632 0.243582i
\(741\) 0 0
\(742\) −9.47822 + 16.4168i −0.347956 + 0.602678i
\(743\) −17.1020 + 29.6216i −0.627413 + 1.08671i 0.360656 + 0.932699i \(0.382553\pi\)
−0.988069 + 0.154012i \(0.950781\pi\)
\(744\) 0 0
\(745\) −9.62614 16.6730i −0.352674 0.610850i
\(746\) 64.2011 2.35057
\(747\) 0 0
\(748\) 25.5826 0.935392
\(749\) 8.25108 + 14.2913i 0.301488 + 0.522192i
\(750\) 0 0
\(751\) 9.29129 16.0930i 0.339044 0.587241i −0.645209 0.764006i \(-0.723230\pi\)
0.984253 + 0.176765i \(0.0565631\pi\)
\(752\) −11.7629 + 20.3739i −0.428947 + 0.742958i
\(753\) 0 0
\(754\) 38.3303 + 66.3900i 1.39591 + 2.41778i
\(755\) −10.4321 −0.379663
\(756\) 0 0
\(757\) −25.1652 −0.914643 −0.457321 0.889301i \(-0.651191\pi\)
−0.457321 + 0.889301i \(0.651191\pi\)
\(758\) −18.5103 32.0608i −0.672325 1.16450i
\(759\) 0 0
\(760\) −4.41742 + 7.65120i −0.160237 + 0.277538i
\(761\) 7.28970 12.6261i 0.264252 0.457697i −0.703116 0.711075i \(-0.748208\pi\)
0.967367 + 0.253378i \(0.0815418\pi\)
\(762\) 0 0
\(763\) 3.00000 + 5.19615i 0.108607 + 0.188113i
\(764\) −2.28425 −0.0826413
\(765\) 0 0
\(766\) 27.1652 0.981517
\(767\) −6.92820 12.0000i −0.250163 0.433295i
\(768\) 0 0
\(769\) −9.53901 + 16.5221i −0.343986 + 0.595801i −0.985169 0.171587i \(-0.945110\pi\)
0.641183 + 0.767388i \(0.278444\pi\)
\(770\) 2.64575 4.58258i 0.0953463 0.165145i
\(771\) 0 0
\(772\) −19.5390 33.8426i −0.703225 1.21802i
\(773\) 10.7737 0.387503 0.193752 0.981051i \(-0.437934\pi\)
0.193752 + 0.981051i \(0.437934\pi\)
\(774\) 0 0
\(775\) 38.1742 1.37126
\(776\) 1.37055 + 2.37386i 0.0491999 + 0.0852167i
\(777\) 0 0
\(778\) −34.7477 + 60.1848i −1.24577 + 2.15773i
\(779\) 2.55040 4.41742i 0.0913776 0.158271i
\(780\) 0 0
\(781\) 5.91742 + 10.2493i 0.211742 + 0.366748i
\(782\) −26.2668 −0.939299
\(783\) 0 0
\(784\) −1.79129 −0.0639746
\(785\) −8.75560 15.1652i −0.312501 0.541267i
\(786\) 0 0
\(787\) −4.04356 + 7.00365i −0.144137 + 0.249653i −0.929051 0.369952i \(-0.879374\pi\)
0.784913 + 0.619605i \(0.212707\pi\)
\(788\) 14.6370 25.3521i 0.521423 0.903131i
\(789\) 0 0
\(790\) −0.582576 1.00905i −0.0207271 0.0359004i
\(791\) −3.36875 −0.119779
\(792\) 0 0
\(793\) 46.3303 1.64524
\(794\) −8.29875 14.3739i −0.294512 0.510109i
\(795\) 0 0
\(796\) −15.0000 + 25.9808i −0.531661 + 0.920864i
\(797\) −1.10440 + 1.91288i −0.0391199 + 0.0677576i −0.884922 0.465738i \(-0.845789\pi\)
0.845803 + 0.533496i \(0.179122\pi\)
\(798\) 0 0
\(799\) 22.7477 + 39.4002i 0.804757 + 1.39388i
\(800\) 30.7599 1.08753
\(801\) 0 0
\(802\) −38.5390 −1.36086
\(803\) −20.0616 34.7477i −0.707959 1.22622i
\(804\) 0 0
\(805\) −1.58258 + 2.74110i −0.0557785 + 0.0966111i
\(806\) 40.1232 69.4955i 1.41328 2.44787i
\(807\) 0 0
\(808\) −7.58258 13.1334i −0.266754 0.462032i
\(809\) 41.8553 1.47155 0.735776 0.677224i \(-0.236817\pi\)
0.735776 + 0.677224i \(0.236817\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) −12.2197 21.1652i −0.428828 0.742751i
\(813\) 0 0
\(814\) −8.68693 + 15.0462i −0.304477 + 0.527369i
\(815\) −2.47495 + 4.28674i −0.0866938 + 0.150158i
\(816\) 0 0
\(817\) −1.62614 2.81655i −0.0568913 0.0985386i
\(818\) 80.4371 2.81242
\(819\) 0 0
\(820\) −2.33030 −0.0813777
\(821\) 25.4961 + 44.1606i 0.889821 + 1.54122i 0.840086 + 0.542453i \(0.182504\pi\)
0.0497354 + 0.998762i \(0.484162\pi\)
\(822\) 0 0
\(823\) −6.00000 + 10.3923i −0.209147 + 0.362253i −0.951446 0.307816i \(-0.900402\pi\)
0.742299 + 0.670069i \(0.233735\pi\)
\(824\) 4.83465 8.37386i 0.168423 0.291717i
\(825\) 0 0
\(826\) 3.79129 + 6.56670i 0.131916 + 0.228485i
\(827\) −9.38325 −0.326288 −0.163144 0.986602i \(-0.552163\pi\)
−0.163144 + 0.986602i \(0.552163\pi\)
\(828\) 0 0
\(829\) 26.3303 0.914489 0.457245 0.889341i \(-0.348836\pi\)
0.457245 + 0.889341i \(0.348836\pi\)
\(830\) 9.66930 + 16.7477i 0.335626 + 0.581322i
\(831\) 0 0
\(832\) 25.1652 43.5873i 0.872445 1.51112i
\(833\) −1.73205 + 3.00000i −0.0600120 + 0.103944i
\(834\) 0 0
\(835\) −3.58258 6.20520i −0.123980 0.214740i
\(836\) 41.2276 1.42589
\(837\) 0 0
\(838\) −63.4955 −2.19341
\(839\) 16.8637 + 29.2087i 0.582198 + 1.00840i 0.995218 + 0.0976749i \(0.0311405\pi\)
−0.413020 + 0.910722i \(0.635526\pi\)
\(840\) 0 0
\(841\) −23.8303 + 41.2753i −0.821735 + 1.42329i
\(842\) −2.36965 + 4.10436i −0.0816636 + 0.141445i
\(843\) 0 0
\(844\) 21.9782 + 38.0674i 0.756522 + 1.31033i
\(845\) 2.74110 0.0942968
\(846\) 0 0
\(847\) 4.00000 0.137442
\(848\) −7.75650 13.4347i −0.266359 0.461348i
\(849\) 0 0
\(850\) 15.7913 27.3513i 0.541637 0.938142i
\(851\) 5.19615 9.00000i 0.178122 0.308516i
\(852\) 0 0
\(853\) 7.37386 + 12.7719i 0.252476 + 0.437302i 0.964207 0.265151i \(-0.0854217\pi\)
−0.711731 + 0.702452i \(0.752088\pi\)
\(854\) −25.3531 −0.867566
\(855\) 0 0
\(856\) 28.5826 0.976932
\(857\) −6.30055 10.9129i −0.215223 0.372777i 0.738119 0.674671i \(-0.235714\pi\)
−0.953341 + 0.301894i \(0.902381\pi\)
\(858\) 0 0
\(859\) 5.16515 8.94630i 0.176233 0.305244i −0.764354 0.644796i \(-0.776942\pi\)
0.940587 + 0.339552i \(0.110276\pi\)
\(860\) −0.742901 + 1.28674i −0.0253327 + 0.0438775i
\(861\) 0 0
\(862\) 5.37386 + 9.30780i 0.183035 + 0.317025i
\(863\) 18.3296 0.623945 0.311973 0.950091i \(-0.399010\pi\)
0.311973 + 0.950091i \(0.399010\pi\)
\(864\) 0 0
\(865\) 13.6697 0.464784
\(866\) −26.1715 45.3303i −0.889342 1.54039i
\(867\) 0 0
\(868\) −12.7913 + 22.1552i −0.434165 + 0.751995i
\(869\) −0.770675 + 1.33485i −0.0261434 + 0.0452816i
\(870\) 0 0
\(871\) −17.1652 29.7309i −0.581619 1.00739i
\(872\) 10.3923 0.351928
\(873\) 0 0
\(874\) −42.3303 −1.43184
\(875\) −4.18710 7.25227i −0.141550 0.245172i
\(876\) 0 0
\(877\) −6.50000 + 11.2583i −0.219489 + 0.380167i −0.954652 0.297724i \(-0.903772\pi\)
0.735163 + 0.677891i \(0.237106\pi\)
\(878\) −17.9681 + 31.1216i −0.606393 + 1.05030i
\(879\) 0 0
\(880\) 2.16515 + 3.75015i 0.0729872 + 0.126418i
\(881\) 37.3821 1.25944 0.629718 0.776824i \(-0.283171\pi\)
0.629718 + 0.776824i \(0.283171\pi\)
\(882\) 0 0
\(883\) 3.08712 0.103890 0.0519450 0.998650i \(-0.483458\pi\)
0.0519450 + 0.998650i \(0.483458\pi\)
\(884\) −19.3386 33.4955i −0.650428 1.12657i
\(885\) 0 0
\(886\) −18.9564 + 32.8335i −0.636854 + 1.10306i
\(887\) 14.9608 25.9129i 0.502335 0.870069i −0.497662 0.867371i \(-0.665808\pi\)
0.999996 0.00269804i \(-0.000858813\pi\)
\(888\) 0 0
\(889\) −8.29129 14.3609i −0.278081 0.481650i
\(890\) −3.65480 −0.122509
\(891\) 0 0
\(892\) 61.4083 2.05610
\(893\) 36.6591 + 63.4955i 1.22675 + 2.12479i
\(894\) 0 0
\(895\) −5.58258 + 9.66930i −0.186605 + 0.323209i
\(896\) −6.38595 + 11.0608i −0.213340 + 0.369515i
\(897\) 0 0
\(898\) 40.4347 + 70.0349i 1.34932 + 2.33709i
\(899\) 80.2464 2.67637
\(900\) 0 0
\(901\) −30.0000 −0.999445
\(902\) 2.64575 + 4.58258i 0.0880939 + 0.152583i
\(903\) 0 0
\(904\) −2.91742 + 5.05313i −0.0970321 + 0.168065i
\(905\) 2.35970 4.08712i 0.0784391 0.135861i
\(906\) 0 0
\(907\) −4.70871 8.15573i −0.156350 0.270807i 0.777200 0.629254i \(-0.216640\pi\)
−0.933550 + 0.358448i \(0.883306\pi\)
\(908\) −7.65120 −0.253914
\(909\) 0 0
\(910\) −8.00000 −0.265197
\(911\) 11.4014 + 19.7477i 0.377744 + 0.654271i 0.990734 0.135819i \(-0.0433667\pi\)
−0.612990 + 0.790091i \(0.710033\pi\)
\(912\) 0 0
\(913\) 12.7913 22.1552i 0.423330 0.733229i
\(914\) 5.83375 10.1044i 0.192963 0.334222i
\(915\) 0 0
\(916\) 33.3739 + 57.8052i 1.10270 + 1.90994i
\(917\) 8.03260 0.265260
\(918\) 0 0
\(919\) −48.0780 −1.58595 −0.792974 0.609256i \(-0.791468\pi\)
−0.792974 + 0.609256i \(0.791468\pi\)
\(920\) 2.74110 + 4.74773i 0.0903714 + 0.156528i
\(921\) 0 0
\(922\) 25.9564 44.9579i 0.854830 1.48061i
\(923\) 8.94630 15.4955i 0.294471 0.510039i
\(924\) 0 0
\(925\) 6.24773 + 10.8214i 0.205424 + 0.355805i
\(926\) −54.5318 −1.79203
\(927\) 0 0
\(928\) 64.6606 2.12259
\(929\) −14.4086 24.9564i −0.472731 0.818794i 0.526782 0.850000i \(-0.323398\pi\)
−0.999513 + 0.0312063i \(0.990065\pi\)
\(930\) 0 0
\(931\) −2.79129 + 4.83465i −0.0914808 + 0.158449i
\(932\) 0 0
\(933\) 0 0
\(934\) −10.5826 18.3296i −0.346272 0.599761i
\(935\) 8.37420 0.273866
\(936\) 0 0
\(937\) −21.4955 −0.702226 −0.351113 0.936333i \(-0.614197\pi\)
−0.351113 + 0.936333i \(0.614197\pi\)
\(938\) 9.39320 + 16.2695i 0.306699 + 0.531218i
\(939\) 0 0
\(940\) 16.7477 29.0079i 0.546251 0.946134i
\(941\) −21.6983 + 37.5826i −0.707345 + 1.22516i 0.258494 + 0.966013i \(0.416774\pi\)
−0.965839 + 0.259144i \(0.916560\pi\)
\(942\) 0 0
\(943\) −1.58258 2.74110i −0.0515358 0.0892625i
\(944\) −6.20520 −0.201962
\(945\) 0 0
\(946\) 3.37386 0.109694
\(947\) −10.2970 17.8348i −0.334606 0.579555i 0.648803 0.760956i \(-0.275270\pi\)
−0.983409 + 0.181402i \(0.941937\pi\)
\(948\) 0 0
\(949\) −30.3303 + 52.5336i −0.984563 + 1.70531i
\(950\) 25.4485 44.0780i 0.825657 1.43008i
\(951\) 0 0
\(952\) 3.00000 + 5.19615i 0.0972306 + 0.168408i
\(953\) −17.5112 −0.567244 −0.283622 0.958936i \(-0.591536\pi\)
−0.283622 + 0.958936i \(0.591536\pi\)
\(954\) 0 0
\(955\) −0.747727 −0.0241959
\(956\) 13.0957 + 22.6824i 0.423545 + 0.733601i
\(957\) 0 0
\(958\) −19.3739 + 33.5565i −0.625941 + 1.08416i
\(959\) −7.07123 + 12.2477i −0.228342 + 0.395500i
\(960\) 0 0
\(961\) −26.5000 45.8993i −0.854839 1.48062i
\(962\) 26.2668 0.846876
\(963\) 0 0
\(964\) 76.9909 2.47971
\(965\) −6.39590 11.0780i −0.205891 0.356614i
\(966\) 0 0
\(967\) −2.00000 + 3.46410i −0.0643157 + 0.111398i −0.896390 0.443266i \(-0.853820\pi\)
0.832075 + 0.554664i \(0.187153\pi\)
\(968\) 3.46410 6.00000i 0.111340 0.192847i
\(969\) 0 0
\(970\) 1.58258 + 2.74110i 0.0508134 + 0.0880115i
\(971\) 28.2849 0.907706 0.453853 0.891077i \(-0.350049\pi\)
0.453853 + 0.891077i \(0.350049\pi\)
\(972\) 0 0
\(973\) −1.58258 −0.0507350
\(974\) −2.82650 4.89564i −0.0905669 0.156867i
\(975\) 0 0
\(976\) 10.3739 17.9681i 0.332059 0.575144i
\(977\) −19.3386 + 33.4955i −0.618697 + 1.07161i 0.371027 + 0.928622i \(0.379006\pi\)
−0.989724 + 0.142992i \(0.954328\pi\)
\(978\) 0 0
\(979\) 2.41742 + 4.18710i 0.0772612 + 0.133820i
\(980\) 2.55040 0.0814696
\(981\) 0 0
\(982\) 72.2432 2.30537
\(983\) −14.2179 24.6261i −0.453481 0.785452i 0.545119 0.838359i \(-0.316485\pi\)
−0.998599 + 0.0529071i \(0.983151\pi\)
\(984\) 0 0
\(985\) 4.79129 8.29875i 0.152663 0.264420i
\(986\) 33.1950 57.4955i 1.05714 1.83103i
\(987\) 0 0
\(988\) −31.1652 53.9796i −0.991496 1.71732i
\(989\) −2.01810 −0.0641719
\(990\) 0 0
\(991\) −8.25227 −0.262142 −0.131071 0.991373i \(-0.541842\pi\)
−0.131071 + 0.991373i \(0.541842\pi\)
\(992\) −33.8426 58.6170i −1.07450 1.86109i
\(993\) 0 0
\(994\) −4.89564 + 8.47950i −0.155280 + 0.268954i
\(995\) −4.91010 + 8.50455i −0.155661 + 0.269612i
\(996\) 0 0
\(997\) −12.5826 21.7937i −0.398494 0.690212i 0.595046 0.803692i \(-0.297134\pi\)
−0.993540 + 0.113479i \(0.963800\pi\)
\(998\) −43.7780 −1.38577
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.f.n.190.1 8
3.2 odd 2 inner 567.2.f.n.190.4 8
9.2 odd 6 inner 567.2.f.n.379.4 8
9.4 even 3 567.2.a.i.1.4 yes 4
9.5 odd 6 567.2.a.i.1.1 4
9.7 even 3 inner 567.2.f.n.379.1 8
36.23 even 6 9072.2.a.ci.1.2 4
36.31 odd 6 9072.2.a.ci.1.3 4
63.13 odd 6 3969.2.a.u.1.4 4
63.41 even 6 3969.2.a.u.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.a.i.1.1 4 9.5 odd 6
567.2.a.i.1.4 yes 4 9.4 even 3
567.2.f.n.190.1 8 1.1 even 1 trivial
567.2.f.n.190.4 8 3.2 odd 2 inner
567.2.f.n.379.1 8 9.7 even 3 inner
567.2.f.n.379.4 8 9.2 odd 6 inner
3969.2.a.u.1.1 4 63.41 even 6
3969.2.a.u.1.4 4 63.13 odd 6
9072.2.a.ci.1.2 4 36.23 even 6
9072.2.a.ci.1.3 4 36.31 odd 6