Properties

Label 567.2.f.i.190.1
Level $567$
Weight $2$
Character 567.190
Analytic conductor $4.528$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(190,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.190");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 190.1
Root \(-1.32288 - 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 567.190
Dual form 567.2.f.i.379.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32288 - 2.29129i) q^{2} +(-2.50000 + 4.33013i) q^{4} +(1.32288 - 2.29129i) q^{5} +(0.500000 + 0.866025i) q^{7} +7.93725 q^{8} -7.00000 q^{10} +(1.32288 + 2.29129i) q^{11} +(1.00000 - 1.73205i) q^{13} +(1.32288 - 2.29129i) q^{14} +(-5.50000 - 9.52628i) q^{16} +7.00000 q^{19} +(6.61438 + 11.4564i) q^{20} +(3.50000 - 6.06218i) q^{22} +(3.96863 - 6.87386i) q^{23} +(-1.00000 - 1.73205i) q^{25} -5.29150 q^{26} -5.00000 q^{28} +(-2.64575 - 4.58258i) q^{29} +(-1.50000 + 2.59808i) q^{31} +(-6.61438 + 11.4564i) q^{32} +2.64575 q^{35} -3.00000 q^{37} +(-9.26013 - 16.0390i) q^{38} +(10.5000 - 18.1865i) q^{40} +(-1.32288 + 2.29129i) q^{41} +(-4.00000 - 6.92820i) q^{43} -13.2288 q^{44} -21.0000 q^{46} +(-0.500000 + 0.866025i) q^{49} +(-2.64575 + 4.58258i) q^{50} +(5.00000 + 8.66025i) q^{52} +7.00000 q^{55} +(3.96863 + 6.87386i) q^{56} +(-7.00000 + 12.1244i) q^{58} +(4.00000 + 6.92820i) q^{61} +7.93725 q^{62} +13.0000 q^{64} +(-2.64575 - 4.58258i) q^{65} +(1.00000 - 1.73205i) q^{67} +(-3.50000 - 6.06218i) q^{70} +7.93725 q^{71} +(3.96863 + 6.87386i) q^{74} +(-17.5000 + 30.3109i) q^{76} +(-1.32288 + 2.29129i) q^{77} +(2.00000 + 3.46410i) q^{79} -29.1033 q^{80} +7.00000 q^{82} +(-7.93725 - 13.7477i) q^{83} +(-10.5830 + 18.3303i) q^{86} +(10.5000 + 18.1865i) q^{88} -18.5203 q^{89} +2.00000 q^{91} +(19.8431 + 34.3693i) q^{92} +(9.26013 - 16.0390i) q^{95} +(6.00000 + 10.3923i) q^{97} +2.64575 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{4} + 2 q^{7} - 28 q^{10} + 4 q^{13} - 22 q^{16} + 28 q^{19} + 14 q^{22} - 4 q^{25} - 20 q^{28} - 6 q^{31} - 12 q^{37} + 42 q^{40} - 16 q^{43} - 84 q^{46} - 2 q^{49} + 20 q^{52} + 28 q^{55} - 28 q^{58}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32288 2.29129i −0.935414 1.62019i −0.773893 0.633316i \(-0.781693\pi\)
−0.161521 0.986869i \(-0.551640\pi\)
\(3\) 0 0
\(4\) −2.50000 + 4.33013i −1.25000 + 2.16506i
\(5\) 1.32288 2.29129i 0.591608 1.02470i −0.402408 0.915460i \(-0.631827\pi\)
0.994016 0.109235i \(-0.0348400\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) 7.93725 2.80624
\(9\) 0 0
\(10\) −7.00000 −2.21359
\(11\) 1.32288 + 2.29129i 0.398862 + 0.690849i 0.993586 0.113081i \(-0.0360719\pi\)
−0.594724 + 0.803930i \(0.702739\pi\)
\(12\) 0 0
\(13\) 1.00000 1.73205i 0.277350 0.480384i −0.693375 0.720577i \(-0.743877\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) 1.32288 2.29129i 0.353553 0.612372i
\(15\) 0 0
\(16\) −5.50000 9.52628i −1.37500 2.38157i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 6.61438 + 11.4564i 1.47902 + 2.56174i
\(21\) 0 0
\(22\) 3.50000 6.06218i 0.746203 1.29246i
\(23\) 3.96863 6.87386i 0.827516 1.43330i −0.0724653 0.997371i \(-0.523087\pi\)
0.899981 0.435929i \(-0.143580\pi\)
\(24\) 0 0
\(25\) −1.00000 1.73205i −0.200000 0.346410i
\(26\) −5.29150 −1.03775
\(27\) 0 0
\(28\) −5.00000 −0.944911
\(29\) −2.64575 4.58258i −0.491304 0.850963i 0.508646 0.860976i \(-0.330146\pi\)
−0.999950 + 0.0100127i \(0.996813\pi\)
\(30\) 0 0
\(31\) −1.50000 + 2.59808i −0.269408 + 0.466628i −0.968709 0.248199i \(-0.920161\pi\)
0.699301 + 0.714827i \(0.253495\pi\)
\(32\) −6.61438 + 11.4564i −1.16927 + 2.02523i
\(33\) 0 0
\(34\) 0 0
\(35\) 2.64575 0.447214
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) −9.26013 16.0390i −1.50219 2.60187i
\(39\) 0 0
\(40\) 10.5000 18.1865i 1.66020 2.87554i
\(41\) −1.32288 + 2.29129i −0.206598 + 0.357839i −0.950641 0.310293i \(-0.899573\pi\)
0.744042 + 0.668132i \(0.232906\pi\)
\(42\) 0 0
\(43\) −4.00000 6.92820i −0.609994 1.05654i −0.991241 0.132068i \(-0.957838\pi\)
0.381246 0.924473i \(-0.375495\pi\)
\(44\) −13.2288 −1.99431
\(45\) 0 0
\(46\) −21.0000 −3.09628
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) −2.64575 + 4.58258i −0.374166 + 0.648074i
\(51\) 0 0
\(52\) 5.00000 + 8.66025i 0.693375 + 1.20096i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 7.00000 0.943880
\(56\) 3.96863 + 6.87386i 0.530330 + 0.918559i
\(57\) 0 0
\(58\) −7.00000 + 12.1244i −0.919145 + 1.59201i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) 4.00000 + 6.92820i 0.512148 + 0.887066i 0.999901 + 0.0140840i \(0.00448323\pi\)
−0.487753 + 0.872982i \(0.662183\pi\)
\(62\) 7.93725 1.00803
\(63\) 0 0
\(64\) 13.0000 1.62500
\(65\) −2.64575 4.58258i −0.328165 0.568399i
\(66\) 0 0
\(67\) 1.00000 1.73205i 0.122169 0.211604i −0.798454 0.602056i \(-0.794348\pi\)
0.920623 + 0.390453i \(0.127682\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −3.50000 6.06218i −0.418330 0.724569i
\(71\) 7.93725 0.941979 0.470989 0.882139i \(-0.343897\pi\)
0.470989 + 0.882139i \(0.343897\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 3.96863 + 6.87386i 0.461344 + 0.799070i
\(75\) 0 0
\(76\) −17.5000 + 30.3109i −2.00739 + 3.47690i
\(77\) −1.32288 + 2.29129i −0.150756 + 0.261116i
\(78\) 0 0
\(79\) 2.00000 + 3.46410i 0.225018 + 0.389742i 0.956325 0.292306i \(-0.0944227\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) −29.1033 −3.25384
\(81\) 0 0
\(82\) 7.00000 0.773021
\(83\) −7.93725 13.7477i −0.871227 1.50901i −0.860729 0.509064i \(-0.829992\pi\)
−0.0104983 0.999945i \(-0.503342\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −10.5830 + 18.3303i −1.14119 + 1.97661i
\(87\) 0 0
\(88\) 10.5000 + 18.1865i 1.11930 + 1.93869i
\(89\) −18.5203 −1.96314 −0.981572 0.191094i \(-0.938797\pi\)
−0.981572 + 0.191094i \(0.938797\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 19.8431 + 34.3693i 2.06879 + 3.58325i
\(93\) 0 0
\(94\) 0 0
\(95\) 9.26013 16.0390i 0.950069 1.64557i
\(96\) 0 0
\(97\) 6.00000 + 10.3923i 0.609208 + 1.05518i 0.991371 + 0.131084i \(0.0418458\pi\)
−0.382164 + 0.924095i \(0.624821\pi\)
\(98\) 2.64575 0.267261
\(99\) 0 0
\(100\) 10.0000 1.00000
\(101\) −5.29150 9.16515i −0.526524 0.911967i −0.999522 0.0309033i \(-0.990162\pi\)
0.472998 0.881063i \(-0.343172\pi\)
\(102\) 0 0
\(103\) 6.50000 11.2583i 0.640464 1.10932i −0.344865 0.938652i \(-0.612075\pi\)
0.985329 0.170664i \(-0.0545913\pi\)
\(104\) 7.93725 13.7477i 0.778312 1.34808i
\(105\) 0 0
\(106\) 0 0
\(107\) 5.29150 0.511549 0.255774 0.966736i \(-0.417670\pi\)
0.255774 + 0.966736i \(0.417670\pi\)
\(108\) 0 0
\(109\) 9.00000 0.862044 0.431022 0.902342i \(-0.358153\pi\)
0.431022 + 0.902342i \(0.358153\pi\)
\(110\) −9.26013 16.0390i −0.882919 1.52926i
\(111\) 0 0
\(112\) 5.50000 9.52628i 0.519701 0.900149i
\(113\) −2.64575 + 4.58258i −0.248891 + 0.431092i −0.963218 0.268719i \(-0.913400\pi\)
0.714327 + 0.699812i \(0.246733\pi\)
\(114\) 0 0
\(115\) −10.5000 18.1865i −0.979130 1.69590i
\(116\) 26.4575 2.45652
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.00000 3.46410i 0.181818 0.314918i
\(122\) 10.5830 18.3303i 0.958140 1.65955i
\(123\) 0 0
\(124\) −7.50000 12.9904i −0.673520 1.16657i
\(125\) 7.93725 0.709930
\(126\) 0 0
\(127\) 6.00000 0.532414 0.266207 0.963916i \(-0.414230\pi\)
0.266207 + 0.963916i \(0.414230\pi\)
\(128\) −3.96863 6.87386i −0.350780 0.607569i
\(129\) 0 0
\(130\) −7.00000 + 12.1244i −0.613941 + 1.06338i
\(131\) −10.5830 + 18.3303i −0.924641 + 1.60153i −0.132505 + 0.991182i \(0.542302\pi\)
−0.792137 + 0.610344i \(0.791031\pi\)
\(132\) 0 0
\(133\) 3.50000 + 6.06218i 0.303488 + 0.525657i
\(134\) −5.29150 −0.457116
\(135\) 0 0
\(136\) 0 0
\(137\) 7.93725 + 13.7477i 0.678125 + 1.17455i 0.975545 + 0.219801i \(0.0705407\pi\)
−0.297419 + 0.954747i \(0.596126\pi\)
\(138\) 0 0
\(139\) 6.00000 10.3923i 0.508913 0.881464i −0.491033 0.871141i \(-0.663381\pi\)
0.999947 0.0103230i \(-0.00328598\pi\)
\(140\) −6.61438 + 11.4564i −0.559017 + 0.968246i
\(141\) 0 0
\(142\) −10.5000 18.1865i −0.881140 1.52618i
\(143\) 5.29150 0.442498
\(144\) 0 0
\(145\) −14.0000 −1.16264
\(146\) 0 0
\(147\) 0 0
\(148\) 7.50000 12.9904i 0.616496 1.06780i
\(149\) 7.93725 13.7477i 0.650245 1.12626i −0.332818 0.942991i \(-0.608000\pi\)
0.983063 0.183267i \(-0.0586672\pi\)
\(150\) 0 0
\(151\) −1.00000 1.73205i −0.0813788 0.140952i 0.822464 0.568818i \(-0.192599\pi\)
−0.903842 + 0.427865i \(0.859266\pi\)
\(152\) 55.5608 4.50657
\(153\) 0 0
\(154\) 7.00000 0.564076
\(155\) 3.96863 + 6.87386i 0.318768 + 0.552122i
\(156\) 0 0
\(157\) 7.00000 12.1244i 0.558661 0.967629i −0.438948 0.898513i \(-0.644649\pi\)
0.997609 0.0691164i \(-0.0220180\pi\)
\(158\) 5.29150 9.16515i 0.420969 0.729140i
\(159\) 0 0
\(160\) 17.5000 + 30.3109i 1.38350 + 2.39629i
\(161\) 7.93725 0.625543
\(162\) 0 0
\(163\) 10.0000 0.783260 0.391630 0.920123i \(-0.371911\pi\)
0.391630 + 0.920123i \(0.371911\pi\)
\(164\) −6.61438 11.4564i −0.516496 0.894598i
\(165\) 0 0
\(166\) −21.0000 + 36.3731i −1.62992 + 2.82310i
\(167\) −2.64575 + 4.58258i −0.204734 + 0.354610i −0.950048 0.312104i \(-0.898966\pi\)
0.745314 + 0.666714i \(0.232300\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) 40.0000 3.04997
\(173\) 6.61438 + 11.4564i 0.502882 + 0.871017i 0.999994 + 0.00333090i \(0.00106026\pi\)
−0.497113 + 0.867686i \(0.665606\pi\)
\(174\) 0 0
\(175\) 1.00000 1.73205i 0.0755929 0.130931i
\(176\) 14.5516 25.2042i 1.09687 1.89984i
\(177\) 0 0
\(178\) 24.5000 + 42.4352i 1.83635 + 3.18066i
\(179\) −5.29150 −0.395505 −0.197753 0.980252i \(-0.563364\pi\)
−0.197753 + 0.980252i \(0.563364\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) −2.64575 4.58258i −0.196116 0.339683i
\(183\) 0 0
\(184\) 31.5000 54.5596i 2.32221 4.02219i
\(185\) −3.96863 + 6.87386i −0.291779 + 0.505376i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) −49.0000 −3.55483
\(191\) 1.32288 + 2.29129i 0.0957199 + 0.165792i 0.909909 0.414808i \(-0.136151\pi\)
−0.814189 + 0.580600i \(0.802818\pi\)
\(192\) 0 0
\(193\) −1.00000 + 1.73205i −0.0719816 + 0.124676i −0.899770 0.436365i \(-0.856266\pi\)
0.827788 + 0.561041i \(0.189599\pi\)
\(194\) 15.8745 27.4955i 1.13972 1.97406i
\(195\) 0 0
\(196\) −2.50000 4.33013i −0.178571 0.309295i
\(197\) −26.4575 −1.88502 −0.942510 0.334178i \(-0.891541\pi\)
−0.942510 + 0.334178i \(0.891541\pi\)
\(198\) 0 0
\(199\) −3.00000 −0.212664 −0.106332 0.994331i \(-0.533911\pi\)
−0.106332 + 0.994331i \(0.533911\pi\)
\(200\) −7.93725 13.7477i −0.561249 0.972111i
\(201\) 0 0
\(202\) −14.0000 + 24.2487i −0.985037 + 1.70613i
\(203\) 2.64575 4.58258i 0.185695 0.321634i
\(204\) 0 0
\(205\) 3.50000 + 6.06218i 0.244451 + 0.423401i
\(206\) −34.3948 −2.39640
\(207\) 0 0
\(208\) −22.0000 −1.52543
\(209\) 9.26013 + 16.0390i 0.640537 + 1.10944i
\(210\) 0 0
\(211\) −11.0000 + 19.0526i −0.757271 + 1.31163i 0.186966 + 0.982366i \(0.440135\pi\)
−0.944237 + 0.329266i \(0.893199\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −7.00000 12.1244i −0.478510 0.828804i
\(215\) −21.1660 −1.44351
\(216\) 0 0
\(217\) −3.00000 −0.203653
\(218\) −11.9059 20.6216i −0.806368 1.39667i
\(219\) 0 0
\(220\) −17.5000 + 30.3109i −1.17985 + 2.04356i
\(221\) 0 0
\(222\) 0 0
\(223\) −3.50000 6.06218i −0.234377 0.405953i 0.724714 0.689050i \(-0.241972\pi\)
−0.959092 + 0.283096i \(0.908638\pi\)
\(224\) −13.2288 −0.883883
\(225\) 0 0
\(226\) 14.0000 0.931266
\(227\) 7.93725 + 13.7477i 0.526814 + 0.912469i 0.999512 + 0.0312441i \(0.00994691\pi\)
−0.472698 + 0.881225i \(0.656720\pi\)
\(228\) 0 0
\(229\) −10.0000 + 17.3205i −0.660819 + 1.14457i 0.319582 + 0.947559i \(0.396457\pi\)
−0.980401 + 0.197013i \(0.936876\pi\)
\(230\) −27.7804 + 48.1170i −1.83178 + 3.17274i
\(231\) 0 0
\(232\) −21.0000 36.3731i −1.37872 2.38801i
\(233\) 15.8745 1.03997 0.519987 0.854174i \(-0.325937\pi\)
0.519987 + 0.854174i \(0.325937\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.93725 + 13.7477i −0.513418 + 0.889267i 0.486461 + 0.873703i \(0.338288\pi\)
−0.999879 + 0.0155640i \(0.995046\pi\)
\(240\) 0 0
\(241\) 2.00000 + 3.46410i 0.128831 + 0.223142i 0.923224 0.384262i \(-0.125544\pi\)
−0.794393 + 0.607404i \(0.792211\pi\)
\(242\) −10.5830 −0.680301
\(243\) 0 0
\(244\) −40.0000 −2.56074
\(245\) 1.32288 + 2.29129i 0.0845154 + 0.146385i
\(246\) 0 0
\(247\) 7.00000 12.1244i 0.445399 0.771454i
\(248\) −11.9059 + 20.6216i −0.756024 + 1.30947i
\(249\) 0 0
\(250\) −10.5000 18.1865i −0.664078 1.15022i
\(251\) −10.5830 −0.667993 −0.333997 0.942574i \(-0.608397\pi\)
−0.333997 + 0.942574i \(0.608397\pi\)
\(252\) 0 0
\(253\) 21.0000 1.32026
\(254\) −7.93725 13.7477i −0.498028 0.862609i
\(255\) 0 0
\(256\) 2.50000 4.33013i 0.156250 0.270633i
\(257\) −9.26013 + 16.0390i −0.577631 + 1.00049i 0.418119 + 0.908392i \(0.362689\pi\)
−0.995750 + 0.0920941i \(0.970644\pi\)
\(258\) 0 0
\(259\) −1.50000 2.59808i −0.0932055 0.161437i
\(260\) 26.4575 1.64083
\(261\) 0 0
\(262\) 56.0000 3.45969
\(263\) 9.26013 + 16.0390i 0.571004 + 0.989008i 0.996463 + 0.0840304i \(0.0267793\pi\)
−0.425459 + 0.904978i \(0.639887\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 9.26013 16.0390i 0.567775 0.983415i
\(267\) 0 0
\(268\) 5.00000 + 8.66025i 0.305424 + 0.529009i
\(269\) 23.8118 1.45183 0.725914 0.687785i \(-0.241417\pi\)
0.725914 + 0.687785i \(0.241417\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 21.0000 36.3731i 1.26866 2.19738i
\(275\) 2.64575 4.58258i 0.159545 0.276340i
\(276\) 0 0
\(277\) 11.5000 + 19.9186i 0.690968 + 1.19679i 0.971521 + 0.236953i \(0.0761488\pi\)
−0.280553 + 0.959839i \(0.590518\pi\)
\(278\) −31.7490 −1.90418
\(279\) 0 0
\(280\) 21.0000 1.25499
\(281\) −5.29150 9.16515i −0.315665 0.546747i 0.663914 0.747809i \(-0.268894\pi\)
−0.979579 + 0.201062i \(0.935561\pi\)
\(282\) 0 0
\(283\) −2.00000 + 3.46410i −0.118888 + 0.205919i −0.919327 0.393494i \(-0.871266\pi\)
0.800439 + 0.599414i \(0.204600\pi\)
\(284\) −19.8431 + 34.3693i −1.17747 + 2.03944i
\(285\) 0 0
\(286\) −7.00000 12.1244i −0.413919 0.716928i
\(287\) −2.64575 −0.156174
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 18.5203 + 32.0780i 1.08755 + 1.88369i
\(291\) 0 0
\(292\) 0 0
\(293\) −5.29150 + 9.16515i −0.309133 + 0.535434i −0.978173 0.207792i \(-0.933372\pi\)
0.669040 + 0.743226i \(0.266705\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −23.8118 −1.38403
\(297\) 0 0
\(298\) −42.0000 −2.43299
\(299\) −7.93725 13.7477i −0.459023 0.795052i
\(300\) 0 0
\(301\) 4.00000 6.92820i 0.230556 0.399335i
\(302\) −2.64575 + 4.58258i −0.152246 + 0.263698i
\(303\) 0 0
\(304\) −38.5000 66.6840i −2.20813 3.82459i
\(305\) 21.1660 1.21196
\(306\) 0 0
\(307\) 19.0000 1.08439 0.542194 0.840254i \(-0.317594\pi\)
0.542194 + 0.840254i \(0.317594\pi\)
\(308\) −6.61438 11.4564i −0.376889 0.652791i
\(309\) 0 0
\(310\) 10.5000 18.1865i 0.596360 1.03293i
\(311\) −7.93725 + 13.7477i −0.450080 + 0.779562i −0.998391 0.0567130i \(-0.981938\pi\)
0.548310 + 0.836275i \(0.315271\pi\)
\(312\) 0 0
\(313\) −7.00000 12.1244i −0.395663 0.685309i 0.597522 0.801852i \(-0.296152\pi\)
−0.993186 + 0.116543i \(0.962819\pi\)
\(314\) −37.0405 −2.09032
\(315\) 0 0
\(316\) −20.0000 −1.12509
\(317\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) 0 0
\(319\) 7.00000 12.1244i 0.391925 0.678834i
\(320\) 17.1974 29.7867i 0.961363 1.66513i
\(321\) 0 0
\(322\) −10.5000 18.1865i −0.585142 1.01350i
\(323\) 0 0
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) −13.2288 22.9129i −0.732673 1.26903i
\(327\) 0 0
\(328\) −10.5000 + 18.1865i −0.579766 + 1.00418i
\(329\) 0 0
\(330\) 0 0
\(331\) −10.0000 17.3205i −0.549650 0.952021i −0.998298 0.0583130i \(-0.981428\pi\)
0.448649 0.893708i \(-0.351905\pi\)
\(332\) 79.3725 4.35613
\(333\) 0 0
\(334\) 14.0000 0.766046
\(335\) −2.64575 4.58258i −0.144553 0.250373i
\(336\) 0 0
\(337\) −9.50000 + 16.4545i −0.517498 + 0.896333i 0.482295 + 0.876009i \(0.339803\pi\)
−0.999793 + 0.0203242i \(0.993530\pi\)
\(338\) 11.9059 20.6216i 0.647595 1.12167i
\(339\) 0 0
\(340\) 0 0
\(341\) −7.93725 −0.429826
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −31.7490 54.9909i −1.71179 2.96491i
\(345\) 0 0
\(346\) 17.5000 30.3109i 0.940806 1.62952i
\(347\) −1.32288 + 2.29129i −0.0710157 + 0.123003i −0.899347 0.437236i \(-0.855957\pi\)
0.828331 + 0.560239i \(0.189291\pi\)
\(348\) 0 0
\(349\) 1.00000 + 1.73205i 0.0535288 + 0.0927146i 0.891548 0.452926i \(-0.149620\pi\)
−0.838019 + 0.545640i \(0.816286\pi\)
\(350\) −5.29150 −0.282843
\(351\) 0 0
\(352\) −35.0000 −1.86551
\(353\) 1.32288 + 2.29129i 0.0704096 + 0.121953i 0.899081 0.437783i \(-0.144236\pi\)
−0.828671 + 0.559736i \(0.810903\pi\)
\(354\) 0 0
\(355\) 10.5000 18.1865i 0.557282 0.965241i
\(356\) 46.3006 80.1951i 2.45393 4.25033i
\(357\) 0 0
\(358\) 7.00000 + 12.1244i 0.369961 + 0.640792i
\(359\) −5.29150 −0.279275 −0.139637 0.990203i \(-0.544594\pi\)
−0.139637 + 0.990203i \(0.544594\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 18.5203 + 32.0780i 0.973403 + 1.68598i
\(363\) 0 0
\(364\) −5.00000 + 8.66025i −0.262071 + 0.453921i
\(365\) 0 0
\(366\) 0 0
\(367\) −10.5000 18.1865i −0.548096 0.949329i −0.998405 0.0564568i \(-0.982020\pi\)
0.450310 0.892873i \(-0.351314\pi\)
\(368\) −87.3098 −4.55134
\(369\) 0 0
\(370\) 21.0000 1.09174
\(371\) 0 0
\(372\) 0 0
\(373\) −14.5000 + 25.1147i −0.750782 + 1.30039i 0.196663 + 0.980471i \(0.436990\pi\)
−0.947444 + 0.319921i \(0.896344\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.5830 −0.545053
\(378\) 0 0
\(379\) 36.0000 1.84920 0.924598 0.380945i \(-0.124401\pi\)
0.924598 + 0.380945i \(0.124401\pi\)
\(380\) 46.3006 + 80.1951i 2.37517 + 4.11392i
\(381\) 0 0
\(382\) 3.50000 6.06218i 0.179076 0.310168i
\(383\) −7.93725 + 13.7477i −0.405575 + 0.702476i −0.994388 0.105793i \(-0.966262\pi\)
0.588813 + 0.808269i \(0.299595\pi\)
\(384\) 0 0
\(385\) 3.50000 + 6.06218i 0.178377 + 0.308957i
\(386\) 5.29150 0.269330
\(387\) 0 0
\(388\) −60.0000 −3.04604
\(389\) −15.8745 27.4955i −0.804869 1.39407i −0.916379 0.400312i \(-0.868902\pi\)
0.111510 0.993763i \(-0.464431\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −3.96863 + 6.87386i −0.200446 + 0.347183i
\(393\) 0 0
\(394\) 35.0000 + 60.6218i 1.76327 + 3.05408i
\(395\) 10.5830 0.532489
\(396\) 0 0
\(397\) −6.00000 −0.301131 −0.150566 0.988600i \(-0.548110\pi\)
−0.150566 + 0.988600i \(0.548110\pi\)
\(398\) 3.96863 + 6.87386i 0.198929 + 0.344556i
\(399\) 0 0
\(400\) −11.0000 + 19.0526i −0.550000 + 0.952628i
\(401\) −7.93725 + 13.7477i −0.396368 + 0.686529i −0.993275 0.115782i \(-0.963063\pi\)
0.596907 + 0.802310i \(0.296396\pi\)
\(402\) 0 0
\(403\) 3.00000 + 5.19615i 0.149441 + 0.258839i
\(404\) 52.9150 2.63262
\(405\) 0 0
\(406\) −14.0000 −0.694808
\(407\) −3.96863 6.87386i −0.196718 0.340725i
\(408\) 0 0
\(409\) −16.0000 + 27.7128i −0.791149 + 1.37031i 0.134107 + 0.990967i \(0.457183\pi\)
−0.925256 + 0.379344i \(0.876150\pi\)
\(410\) 9.26013 16.0390i 0.457325 0.792110i
\(411\) 0 0
\(412\) 32.5000 + 56.2917i 1.60116 + 2.77329i
\(413\) 0 0
\(414\) 0 0
\(415\) −42.0000 −2.06170
\(416\) 13.2288 + 22.9129i 0.648593 + 1.12340i
\(417\) 0 0
\(418\) 24.5000 42.4352i 1.19833 2.07558i
\(419\) 7.93725 13.7477i 0.387760 0.671620i −0.604388 0.796690i \(-0.706582\pi\)
0.992148 + 0.125070i \(0.0399155\pi\)
\(420\) 0 0
\(421\) 9.50000 + 16.4545i 0.463002 + 0.801942i 0.999109 0.0422075i \(-0.0134391\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 58.2065 2.83345
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −4.00000 + 6.92820i −0.193574 + 0.335279i
\(428\) −13.2288 + 22.9129i −0.639436 + 1.10754i
\(429\) 0 0
\(430\) 28.0000 + 48.4974i 1.35028 + 2.33875i
\(431\) 39.6863 1.91162 0.955810 0.293985i \(-0.0949814\pi\)
0.955810 + 0.293985i \(0.0949814\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 3.96863 + 6.87386i 0.190500 + 0.329956i
\(435\) 0 0
\(436\) −22.5000 + 38.9711i −1.07755 + 1.86638i
\(437\) 27.7804 48.1170i 1.32892 2.30175i
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 55.5608 2.64876
\(441\) 0 0
\(442\) 0 0
\(443\) 3.96863 + 6.87386i 0.188555 + 0.326587i 0.944769 0.327738i \(-0.106286\pi\)
−0.756214 + 0.654325i \(0.772953\pi\)
\(444\) 0 0
\(445\) −24.5000 + 42.4352i −1.16141 + 2.01162i
\(446\) −9.26013 + 16.0390i −0.438480 + 0.759469i
\(447\) 0 0
\(448\) 6.50000 + 11.2583i 0.307096 + 0.531906i
\(449\) −15.8745 −0.749164 −0.374582 0.927194i \(-0.622214\pi\)
−0.374582 + 0.927194i \(0.622214\pi\)
\(450\) 0 0
\(451\) −7.00000 −0.329617
\(452\) −13.2288 22.9129i −0.622228 1.07773i
\(453\) 0 0
\(454\) 21.0000 36.3731i 0.985579 1.70707i
\(455\) 2.64575 4.58258i 0.124035 0.214834i
\(456\) 0 0
\(457\) −12.5000 21.6506i −0.584725 1.01277i −0.994910 0.100771i \(-0.967869\pi\)
0.410184 0.912003i \(-0.365464\pi\)
\(458\) 52.9150 2.47256
\(459\) 0 0
\(460\) 105.000 4.89565
\(461\) −9.26013 16.0390i −0.431287 0.747011i 0.565697 0.824613i \(-0.308607\pi\)
−0.996984 + 0.0776016i \(0.975274\pi\)
\(462\) 0 0
\(463\) 13.0000 22.5167i 0.604161 1.04644i −0.388022 0.921650i \(-0.626842\pi\)
0.992183 0.124788i \(-0.0398251\pi\)
\(464\) −29.1033 + 50.4083i −1.35109 + 2.34015i
\(465\) 0 0
\(466\) −21.0000 36.3731i −0.972806 1.68495i
\(467\) −31.7490 −1.46917 −0.734585 0.678517i \(-0.762623\pi\)
−0.734585 + 0.678517i \(0.762623\pi\)
\(468\) 0 0
\(469\) 2.00000 0.0923514
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10.5830 18.3303i 0.486607 0.842828i
\(474\) 0 0
\(475\) −7.00000 12.1244i −0.321182 0.556304i
\(476\) 0 0
\(477\) 0 0
\(478\) 42.0000 1.92104
\(479\) 10.5830 + 18.3303i 0.483550 + 0.837533i 0.999822 0.0188920i \(-0.00601385\pi\)
−0.516272 + 0.856425i \(0.672681\pi\)
\(480\) 0 0
\(481\) −3.00000 + 5.19615i −0.136788 + 0.236924i
\(482\) 5.29150 9.16515i 0.241021 0.417461i
\(483\) 0 0
\(484\) 10.0000 + 17.3205i 0.454545 + 0.787296i
\(485\) 31.7490 1.44165
\(486\) 0 0
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) 31.7490 + 54.9909i 1.43721 + 2.48932i
\(489\) 0 0
\(490\) 3.50000 6.06218i 0.158114 0.273861i
\(491\) −1.32288 + 2.29129i −0.0597005 + 0.103404i −0.894331 0.447406i \(-0.852348\pi\)
0.834630 + 0.550810i \(0.185681\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −37.0405 −1.66653
\(495\) 0 0
\(496\) 33.0000 1.48174
\(497\) 3.96863 + 6.87386i 0.178017 + 0.308335i
\(498\) 0 0
\(499\) −2.00000 + 3.46410i −0.0895323 + 0.155074i −0.907314 0.420455i \(-0.861871\pi\)
0.817781 + 0.575529i \(0.195204\pi\)
\(500\) −19.8431 + 34.3693i −0.887412 + 1.53704i
\(501\) 0 0
\(502\) 14.0000 + 24.2487i 0.624851 + 1.08227i
\(503\) −15.8745 −0.707809 −0.353905 0.935282i \(-0.615146\pi\)
−0.353905 + 0.935282i \(0.615146\pi\)
\(504\) 0 0
\(505\) −28.0000 −1.24598
\(506\) −27.7804 48.1170i −1.23499 2.13906i
\(507\) 0 0
\(508\) −15.0000 + 25.9808i −0.665517 + 1.15271i
\(509\) −5.29150 + 9.16515i −0.234542 + 0.406238i −0.959139 0.282934i \(-0.908692\pi\)
0.724598 + 0.689172i \(0.242026\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −29.1033 −1.28619
\(513\) 0 0
\(514\) 49.0000 2.16130
\(515\) −17.1974 29.7867i −0.757807 1.31256i
\(516\) 0 0
\(517\) 0 0
\(518\) −3.96863 + 6.87386i −0.174371 + 0.302020i
\(519\) 0 0
\(520\) −21.0000 36.3731i −0.920911 1.59506i
\(521\) −39.6863 −1.73869 −0.869344 0.494208i \(-0.835458\pi\)
−0.869344 + 0.494208i \(0.835458\pi\)
\(522\) 0 0
\(523\) 13.0000 0.568450 0.284225 0.958758i \(-0.408264\pi\)
0.284225 + 0.958758i \(0.408264\pi\)
\(524\) −52.9150 91.6515i −2.31160 4.00381i
\(525\) 0 0
\(526\) 24.5000 42.4352i 1.06825 1.85026i
\(527\) 0 0
\(528\) 0 0
\(529\) −20.0000 34.6410i −0.869565 1.50613i
\(530\) 0 0
\(531\) 0 0
\(532\) −35.0000 −1.51744
\(533\) 2.64575 + 4.58258i 0.114600 + 0.198493i
\(534\) 0 0
\(535\) 7.00000 12.1244i 0.302636 0.524182i
\(536\) 7.93725 13.7477i 0.342837 0.593811i
\(537\) 0 0
\(538\) −31.5000 54.5596i −1.35806 2.35223i
\(539\) −2.64575 −0.113961
\(540\) 0 0
\(541\) 29.0000 1.24681 0.623404 0.781900i \(-0.285749\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 26.4575 + 45.8258i 1.13645 + 1.96838i
\(543\) 0 0
\(544\) 0 0
\(545\) 11.9059 20.6216i 0.509992 0.883332i
\(546\) 0 0
\(547\) 4.00000 + 6.92820i 0.171028 + 0.296229i 0.938779 0.344519i \(-0.111958\pi\)
−0.767752 + 0.640747i \(0.778625\pi\)
\(548\) −79.3725 −3.39063
\(549\) 0 0
\(550\) −14.0000 −0.596962
\(551\) −18.5203 32.0780i −0.788990 1.36657i
\(552\) 0 0
\(553\) −2.00000 + 3.46410i −0.0850487 + 0.147309i
\(554\) 30.4261 52.6996i 1.29268 2.23899i
\(555\) 0 0
\(556\) 30.0000 + 51.9615i 1.27228 + 2.20366i
\(557\) 5.29150 0.224208 0.112104 0.993696i \(-0.464241\pi\)
0.112104 + 0.993696i \(0.464241\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) −14.5516 25.2042i −0.614919 1.06507i
\(561\) 0 0
\(562\) −14.0000 + 24.2487i −0.590554 + 1.02287i
\(563\) 13.2288 22.9129i 0.557526 0.965663i −0.440177 0.897911i \(-0.645084\pi\)
0.997702 0.0677515i \(-0.0215825\pi\)
\(564\) 0 0
\(565\) 7.00000 + 12.1244i 0.294492 + 0.510075i
\(566\) 10.5830 0.444837
\(567\) 0 0
\(568\) 63.0000 2.64342
\(569\) 13.2288 + 22.9129i 0.554578 + 0.960558i 0.997936 + 0.0642132i \(0.0204538\pi\)
−0.443358 + 0.896345i \(0.646213\pi\)
\(570\) 0 0
\(571\) 5.00000 8.66025i 0.209243 0.362420i −0.742233 0.670142i \(-0.766233\pi\)
0.951476 + 0.307722i \(0.0995665\pi\)
\(572\) −13.2288 + 22.9129i −0.553122 + 0.958036i
\(573\) 0 0
\(574\) 3.50000 + 6.06218i 0.146087 + 0.253030i
\(575\) −15.8745 −0.662013
\(576\) 0 0
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 22.4889 + 38.9519i 0.935414 + 1.62019i
\(579\) 0 0
\(580\) 35.0000 60.6218i 1.45330 2.51718i
\(581\) 7.93725 13.7477i 0.329293 0.570352i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 28.0000 1.15667
\(587\) 13.2288 + 22.9129i 0.546009 + 0.945716i 0.998543 + 0.0539683i \(0.0171870\pi\)
−0.452533 + 0.891747i \(0.649480\pi\)
\(588\) 0 0
\(589\) −10.5000 + 18.1865i −0.432645 + 0.749363i
\(590\) 0 0
\(591\) 0 0
\(592\) 16.5000 + 28.5788i 0.678146 + 1.17458i
\(593\) 23.8118 0.977832 0.488916 0.872331i \(-0.337392\pi\)
0.488916 + 0.872331i \(0.337392\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 39.6863 + 68.7386i 1.62561 + 2.81564i
\(597\) 0 0
\(598\) −21.0000 + 36.3731i −0.858754 + 1.48741i
\(599\) −3.96863 + 6.87386i −0.162154 + 0.280858i −0.935641 0.352954i \(-0.885177\pi\)
0.773487 + 0.633812i \(0.218511\pi\)
\(600\) 0 0
\(601\) 15.0000 + 25.9808i 0.611863 + 1.05978i 0.990926 + 0.134407i \(0.0429129\pi\)
−0.379063 + 0.925371i \(0.623754\pi\)
\(602\) −21.1660 −0.862662
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) −5.29150 9.16515i −0.215130 0.372616i
\(606\) 0 0
\(607\) 14.0000 24.2487i 0.568242 0.984225i −0.428497 0.903543i \(-0.640957\pi\)
0.996740 0.0806818i \(-0.0257098\pi\)
\(608\) −46.3006 + 80.1951i −1.87774 + 3.25234i
\(609\) 0 0
\(610\) −28.0000 48.4974i −1.13369 1.96360i
\(611\) 0 0
\(612\) 0 0
\(613\) 19.0000 0.767403 0.383701 0.923457i \(-0.374649\pi\)
0.383701 + 0.923457i \(0.374649\pi\)
\(614\) −25.1346 43.5345i −1.01435 1.75691i
\(615\) 0 0
\(616\) −10.5000 + 18.1865i −0.423057 + 0.732756i
\(617\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(618\) 0 0
\(619\) −15.5000 26.8468i −0.622998 1.07906i −0.988924 0.148420i \(-0.952581\pi\)
0.365927 0.930644i \(-0.380752\pi\)
\(620\) −39.6863 −1.59384
\(621\) 0 0
\(622\) 42.0000 1.68405
\(623\) −9.26013 16.0390i −0.370999 0.642590i
\(624\) 0 0
\(625\) 15.5000 26.8468i 0.620000 1.07387i
\(626\) −18.5203 + 32.0780i −0.740218 + 1.28210i
\(627\) 0 0
\(628\) 35.0000 + 60.6218i 1.39665 + 2.41907i
\(629\) 0 0
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) 15.8745 + 27.4955i 0.631454 + 1.09371i
\(633\) 0 0
\(634\) 0 0
\(635\) 7.93725 13.7477i 0.314980 0.545562i
\(636\) 0 0
\(637\) 1.00000 + 1.73205i 0.0396214 + 0.0686264i
\(638\) −37.0405 −1.46645
\(639\) 0 0
\(640\) −21.0000 −0.830098
\(641\) −7.93725 13.7477i −0.313503 0.543003i 0.665615 0.746295i \(-0.268169\pi\)
−0.979118 + 0.203292i \(0.934836\pi\)
\(642\) 0 0
\(643\) −11.5000 + 19.9186i −0.453516 + 0.785512i −0.998602 0.0528680i \(-0.983164\pi\)
0.545086 + 0.838380i \(0.316497\pi\)
\(644\) −19.8431 + 34.3693i −0.781929 + 1.35434i
\(645\) 0 0
\(646\) 0 0
\(647\) 10.5830 0.416061 0.208030 0.978122i \(-0.433295\pi\)
0.208030 + 0.978122i \(0.433295\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 5.29150 + 9.16515i 0.207550 + 0.359487i
\(651\) 0 0
\(652\) −25.0000 + 43.3013i −0.979076 + 1.69581i
\(653\) 15.8745 27.4955i 0.621217 1.07598i −0.368042 0.929809i \(-0.619972\pi\)
0.989259 0.146171i \(-0.0466950\pi\)
\(654\) 0 0
\(655\) 28.0000 + 48.4974i 1.09405 + 1.89495i
\(656\) 29.1033 1.13629
\(657\) 0 0
\(658\) 0 0
\(659\) 11.9059 + 20.6216i 0.463787 + 0.803303i 0.999146 0.0413217i \(-0.0131569\pi\)
−0.535359 + 0.844625i \(0.679824\pi\)
\(660\) 0 0
\(661\) 7.00000 12.1244i 0.272268 0.471583i −0.697174 0.716902i \(-0.745559\pi\)
0.969442 + 0.245319i \(0.0788928\pi\)
\(662\) −26.4575 + 45.8258i −1.02830 + 1.78107i
\(663\) 0 0
\(664\) −63.0000 109.119i −2.44487 4.23465i
\(665\) 18.5203 0.718185
\(666\) 0 0
\(667\) −42.0000 −1.62625
\(668\) −13.2288 22.9129i −0.511836 0.886526i
\(669\) 0 0
\(670\) −7.00000 + 12.1244i −0.270434 + 0.468405i
\(671\) −10.5830 + 18.3303i −0.408552 + 0.707633i
\(672\) 0 0
\(673\) 1.00000 + 1.73205i 0.0385472 + 0.0667657i 0.884655 0.466246i \(-0.154394\pi\)
−0.846108 + 0.533011i \(0.821060\pi\)
\(674\) 50.2693 1.93630
\(675\) 0 0
\(676\) −45.0000 −1.73077
\(677\) 3.96863 + 6.87386i 0.152527 + 0.264184i 0.932156 0.362058i \(-0.117926\pi\)
−0.779629 + 0.626242i \(0.784592\pi\)
\(678\) 0 0
\(679\) −6.00000 + 10.3923i −0.230259 + 0.398820i
\(680\) 0 0
\(681\) 0 0
\(682\) 10.5000 + 18.1865i 0.402066 + 0.696398i
\(683\) 23.8118 0.911132 0.455566 0.890202i \(-0.349437\pi\)
0.455566 + 0.890202i \(0.349437\pi\)
\(684\) 0 0
\(685\) 42.0000 1.60474
\(686\) 1.32288 + 2.29129i 0.0505076 + 0.0874818i
\(687\) 0 0
\(688\) −44.0000 + 76.2102i −1.67748 + 2.90549i
\(689\) 0 0
\(690\) 0 0
\(691\) −4.00000 6.92820i −0.152167 0.263561i 0.779857 0.625958i \(-0.215292\pi\)
−0.932024 + 0.362397i \(0.881959\pi\)
\(692\) −66.1438 −2.51441
\(693\) 0 0
\(694\) 7.00000 0.265716
\(695\) −15.8745 27.4955i −0.602154 1.04296i
\(696\) 0 0
\(697\) 0 0
\(698\) 2.64575 4.58258i 0.100143 0.173453i
\(699\) 0 0
\(700\) 5.00000 + 8.66025i 0.188982 + 0.327327i
\(701\) −15.8745 −0.599572 −0.299786 0.954006i \(-0.596915\pi\)
−0.299786 + 0.954006i \(0.596915\pi\)
\(702\) 0 0
\(703\) −21.0000 −0.792030
\(704\) 17.1974 + 29.7867i 0.648151 + 1.12263i
\(705\) 0 0
\(706\) 3.50000 6.06218i 0.131724 0.228153i
\(707\) 5.29150 9.16515i 0.199007 0.344691i
\(708\) 0 0
\(709\) 1.50000 + 2.59808i 0.0563337 + 0.0975728i 0.892817 0.450420i \(-0.148726\pi\)
−0.836483 + 0.547992i \(0.815392\pi\)
\(710\) −55.5608 −2.08516
\(711\) 0 0
\(712\) −147.000 −5.50906
\(713\) 11.9059 + 20.6216i 0.445879 + 0.772285i
\(714\) 0 0
\(715\) 7.00000 12.1244i 0.261785 0.453425i
\(716\) 13.2288 22.9129i 0.494382 0.856294i
\(717\) 0 0
\(718\) 7.00000 + 12.1244i 0.261238 + 0.452477i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 13.0000 0.484145
\(722\) −39.6863 68.7386i −1.47697 2.55819i
\(723\) 0 0
\(724\) 35.0000 60.6218i 1.30076 2.25299i
\(725\) −5.29150 + 9.16515i −0.196521 + 0.340385i
\(726\) 0 0
\(727\) 20.0000 + 34.6410i 0.741759 + 1.28476i 0.951694 + 0.307049i \(0.0993415\pi\)
−0.209935 + 0.977715i \(0.567325\pi\)
\(728\) 15.8745 0.588348
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −18.0000 + 31.1769i −0.664845 + 1.15155i 0.314482 + 0.949263i \(0.398169\pi\)
−0.979327 + 0.202282i \(0.935164\pi\)
\(734\) −27.7804 + 48.1170i −1.02539 + 1.77603i
\(735\) 0 0
\(736\) 52.5000 + 90.9327i 1.93518 + 3.35182i
\(737\) 5.29150 0.194915
\(738\) 0 0
\(739\) −30.0000 −1.10357 −0.551784 0.833987i \(-0.686053\pi\)
−0.551784 + 0.833987i \(0.686053\pi\)
\(740\) −19.8431 34.3693i −0.729448 1.26344i
\(741\) 0 0
\(742\) 0 0
\(743\) 11.9059 20.6216i 0.436784 0.756533i −0.560655 0.828050i \(-0.689451\pi\)
0.997439 + 0.0715167i \(0.0227839\pi\)
\(744\) 0 0
\(745\) −21.0000 36.3731i −0.769380 1.33261i
\(746\) 76.7268 2.80917
\(747\) 0 0
\(748\) 0 0
\(749\) 2.64575 + 4.58258i 0.0966736 + 0.167444i
\(750\) 0 0
\(751\) 4.00000 6.92820i 0.145962 0.252814i −0.783769 0.621052i \(-0.786706\pi\)
0.929731 + 0.368238i \(0.120039\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 14.0000 + 24.2487i 0.509850 + 0.883086i
\(755\) −5.29150 −0.192577
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) −47.6235 82.4864i −1.72976 2.99604i
\(759\) 0 0
\(760\) 73.5000 127.306i 2.66613 4.61786i
\(761\) −15.8745 + 27.4955i −0.575450 + 0.996709i 0.420542 + 0.907273i \(0.361840\pi\)
−0.995993 + 0.0894364i \(0.971493\pi\)
\(762\) 0 0
\(763\) 4.50000 + 7.79423i 0.162911 + 0.282170i
\(764\) −13.2288 −0.478600
\(765\) 0 0
\(766\) 42.0000 1.51752
\(767\) 0 0
\(768\) 0 0
\(769\) −7.00000 + 12.1244i −0.252426 + 0.437215i −0.964193 0.265200i \(-0.914562\pi\)
0.711767 + 0.702416i \(0.247895\pi\)
\(770\) 9.26013 16.0390i 0.333712 0.578006i
\(771\) 0 0
\(772\) −5.00000 8.66025i −0.179954 0.311689i
\(773\) 2.64575 0.0951611 0.0475805 0.998867i \(-0.484849\pi\)
0.0475805 + 0.998867i \(0.484849\pi\)
\(774\) 0 0
\(775\) 6.00000 0.215526
\(776\) 47.6235 + 82.4864i 1.70958 + 2.96109i
\(777\) 0 0
\(778\) −42.0000 + 72.7461i −1.50577 + 2.60808i
\(779\) −9.26013 + 16.0390i −0.331779 + 0.574657i
\(780\) 0 0
\(781\) 10.5000 + 18.1865i 0.375720 + 0.650765i
\(782\) 0 0
\(783\) 0 0
\(784\) 11.0000 0.392857
\(785\) −18.5203 32.0780i −0.661016 1.14491i
\(786\) 0 0
\(787\) −2.00000 + 3.46410i −0.0712923 + 0.123482i −0.899468 0.436987i \(-0.856046\pi\)
0.828176 + 0.560469i \(0.189379\pi\)
\(788\) 66.1438 114.564i 2.35627 4.08119i
\(789\) 0 0
\(790\) −14.0000 24.2487i −0.498098 0.862730i
\(791\) −5.29150 −0.188144
\(792\) 0 0
\(793\) 16.0000 0.568177
\(794\) 7.93725 + 13.7477i 0.281683 + 0.487889i
\(795\) 0 0
\(796\) 7.50000 12.9904i 0.265830 0.460432i
\(797\) −22.4889 + 38.9519i −0.796597 + 1.37975i 0.125223 + 0.992129i \(0.460035\pi\)
−0.921820 + 0.387618i \(0.873298\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 26.4575 0.935414
\(801\) 0 0
\(802\) 42.0000 1.48307
\(803\) 0 0
\(804\) 0 0
\(805\) 10.5000 18.1865i 0.370076 0.640991i
\(806\) 7.93725 13.7477i 0.279578 0.484243i
\(807\) 0 0
\(808\) −42.0000 72.7461i −1.47755 2.55920i
\(809\) −15.8745 −0.558118 −0.279059 0.960274i \(-0.590023\pi\)
−0.279059 + 0.960274i \(0.590023\pi\)
\(810\) 0 0
\(811\) 35.0000 1.22902 0.614508 0.788911i \(-0.289355\pi\)
0.614508 + 0.788911i \(0.289355\pi\)
\(812\) 13.2288 + 22.9129i 0.464238 + 0.804084i
\(813\) 0 0
\(814\) −10.5000 + 18.1865i −0.368025 + 0.637438i
\(815\) 13.2288 22.9129i 0.463383 0.802603i
\(816\) 0 0
\(817\) −28.0000 48.4974i −0.979596 1.69671i
\(818\) 84.6640 2.96021
\(819\) 0 0
\(820\) −35.0000 −1.22225
\(821\) 10.5830 + 18.3303i 0.369349 + 0.639732i 0.989464 0.144779i \(-0.0462472\pi\)
−0.620115 + 0.784511i \(0.712914\pi\)
\(822\) 0 0
\(823\) 15.0000 25.9808i 0.522867 0.905632i −0.476779 0.879023i \(-0.658196\pi\)
0.999646 0.0266091i \(-0.00847095\pi\)
\(824\) 51.5922 89.3602i 1.79730 3.11301i
\(825\) 0 0
\(826\) 0 0
\(827\) 39.6863 1.38003 0.690013 0.723797i \(-0.257605\pi\)
0.690013 + 0.723797i \(0.257605\pi\)
\(828\) 0 0
\(829\) −28.0000 −0.972480 −0.486240 0.873825i \(-0.661632\pi\)
−0.486240 + 0.873825i \(0.661632\pi\)
\(830\) 55.5608 + 96.2341i 1.92854 + 3.34033i
\(831\) 0 0
\(832\) 13.0000 22.5167i 0.450694 0.780625i
\(833\) 0 0
\(834\) 0 0
\(835\) 7.00000 + 12.1244i 0.242245 + 0.419581i
\(836\) −92.6013 −3.20268
\(837\) 0 0
\(838\) −42.0000 −1.45087
\(839\) −2.64575 4.58258i −0.0913415 0.158208i 0.816734 0.577014i \(-0.195782\pi\)
−0.908076 + 0.418806i \(0.862449\pi\)
\(840\) 0 0
\(841\) 0.500000 0.866025i 0.0172414 0.0298629i
\(842\) 25.1346 43.5345i 0.866197 1.50030i
\(843\) 0 0
\(844\) −55.0000 95.2628i −1.89318 3.27908i
\(845\) 23.8118 0.819150
\(846\) 0 0
\(847\) 4.00000 0.137442
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −11.9059 + 20.6216i −0.408128 + 0.706899i
\(852\) 0 0
\(853\) 14.0000 + 24.2487i 0.479351 + 0.830260i 0.999720 0.0236816i \(-0.00753881\pi\)
−0.520369 + 0.853942i \(0.674205\pi\)
\(854\) 21.1660 0.724286
\(855\) 0 0
\(856\) 42.0000 1.43553
\(857\) −6.61438 11.4564i −0.225943 0.391345i 0.730659 0.682743i \(-0.239213\pi\)
−0.956602 + 0.291398i \(0.905880\pi\)
\(858\) 0 0
\(859\) 6.50000 11.2583i 0.221777 0.384129i −0.733571 0.679613i \(-0.762148\pi\)
0.955348 + 0.295484i \(0.0954809\pi\)
\(860\) 52.9150 91.6515i 1.80439 3.12529i
\(861\) 0 0
\(862\) −52.5000 90.9327i −1.78816 3.09718i
\(863\) 15.8745 0.540375 0.270187 0.962808i \(-0.412914\pi\)
0.270187 + 0.962808i \(0.412914\pi\)
\(864\) 0 0
\(865\) 35.0000 1.19004
\(866\) 34.3948 + 59.5735i 1.16878 + 2.02439i
\(867\) 0 0
\(868\) 7.50000 12.9904i 0.254567 0.440922i
\(869\) −5.29150 + 9.16515i −0.179502 + 0.310906i
\(870\) 0 0
\(871\) −2.00000 3.46410i −0.0677674 0.117377i
\(872\) 71.4353 2.41910
\(873\) 0 0
\(874\) −147.000 −4.97235
\(875\) 3.96863 + 6.87386i 0.134164 + 0.232379i
\(876\) 0 0
\(877\) −5.00000 + 8.66025i −0.168838 + 0.292436i −0.938012 0.346604i \(-0.887335\pi\)
0.769174 + 0.639040i \(0.220668\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −38.5000 66.6840i −1.29783 2.24792i
\(881\) −23.8118 −0.802239 −0.401119 0.916026i \(-0.631379\pi\)
−0.401119 + 0.916026i \(0.631379\pi\)
\(882\) 0 0
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 10.5000 18.1865i 0.352754 0.610989i
\(887\) 18.5203 32.0780i 0.621849 1.07707i −0.367292 0.930106i \(-0.619715\pi\)
0.989141 0.146969i \(-0.0469518\pi\)
\(888\) 0 0
\(889\) 3.00000 + 5.19615i 0.100617 + 0.174273i
\(890\) 129.642 4.34560
\(891\) 0 0
\(892\) 35.0000 1.17189
\(893\) 0 0
\(894\) 0 0
\(895\) −7.00000 + 12.1244i −0.233984 + 0.405273i
\(896\) 3.96863 6.87386i 0.132583 0.229640i
\(897\) 0 0
\(898\) 21.0000 + 36.3731i 0.700779 + 1.21378i
\(899\) 15.8745 0.529444
\(900\) 0 0
\(901\) 0 0
\(902\) 9.26013 + 16.0390i 0.308329 + 0.534041i
\(903\) 0 0
\(904\) −21.0000 + 36.3731i −0.698450 + 1.20975i
\(905\) −18.5203 + 32.0780i −0.615634 + 1.06631i
\(906\) 0 0
\(907\) −1.00000 1.73205i −0.0332045 0.0575118i 0.848946 0.528480i \(-0.177238\pi\)
−0.882150 + 0.470968i \(0.843905\pi\)
\(908\) −79.3725 −2.63407
\(909\) 0 0
\(910\) −14.0000 −0.464095
\(911\) 23.8118 + 41.2432i 0.788919 + 1.36645i 0.926630 + 0.375975i \(0.122692\pi\)
−0.137711 + 0.990472i \(0.543974\pi\)
\(912\) 0 0
\(913\) 21.0000 36.3731i 0.694999 1.20377i
\(914\) −33.0719 + 57.2822i −1.09392 + 1.89473i
\(915\) 0 0
\(916\) −50.0000 86.6025i −1.65205 2.86143i
\(917\) −21.1660 −0.698963
\(918\) 0 0
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) −83.3412 144.351i −2.74768 4.75912i
\(921\) 0 0
\(922\) −24.5000 + 42.4352i −0.806865 + 1.39753i
\(923\) 7.93725 13.7477i 0.261258 0.452512i
\(924\) 0 0
\(925\) 3.00000 + 5.19615i 0.0986394 + 0.170848i
\(926\) −68.7895 −2.26056
\(927\) 0 0
\(928\) 70.0000 2.29786
\(929\) −21.1660 36.6606i −0.694434 1.20280i −0.970371 0.241620i \(-0.922321\pi\)
0.275937 0.961176i \(-0.411012\pi\)
\(930\) 0 0
\(931\) −3.50000 + 6.06218i −0.114708 + 0.198680i
\(932\) −39.6863 + 68.7386i −1.29997 + 2.25161i
\(933\) 0 0
\(934\) 42.0000 + 72.7461i 1.37428 + 2.38033i
\(935\) 0 0
\(936\) 0 0
\(937\) −12.0000 −0.392023 −0.196011 0.980602i \(-0.562799\pi\)
−0.196011 + 0.980602i \(0.562799\pi\)
\(938\) −2.64575 4.58258i −0.0863868 0.149626i
\(939\) 0 0
\(940\) 0 0
\(941\) −25.1346 + 43.5345i −0.819366 + 1.41918i 0.0867844 + 0.996227i \(0.472341\pi\)
−0.906150 + 0.422956i \(0.860992\pi\)
\(942\) 0 0
\(943\) 10.5000 + 18.1865i 0.341927 + 0.592235i
\(944\) 0 0
\(945\) 0 0
\(946\) −56.0000 −1.82072
\(947\) −9.26013 16.0390i −0.300914 0.521198i 0.675429 0.737425i \(-0.263958\pi\)
−0.976343 + 0.216227i \(0.930625\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −18.5203 + 32.0780i −0.600877 + 1.04075i
\(951\) 0 0
\(952\) 0 0
\(953\) 26.4575 0.857043 0.428521 0.903532i \(-0.359035\pi\)
0.428521 + 0.903532i \(0.359035\pi\)
\(954\) 0 0
\(955\) 7.00000 0.226515
\(956\) −39.6863 68.7386i −1.28355 2.22317i
\(957\) 0 0
\(958\) 28.0000 48.4974i 0.904639 1.56688i
\(959\) −7.93725 + 13.7477i −0.256307 + 0.443937i
\(960\) 0 0
\(961\) 11.0000 + 19.0526i 0.354839 + 0.614599i
\(962\) 15.8745 0.511815
\(963\) 0 0
\(964\) −20.0000 −0.644157
\(965\) 2.64575 + 4.58258i 0.0851697 + 0.147518i
\(966\) 0 0
\(967\) 25.0000 43.3013i 0.803946 1.39247i −0.113055 0.993589i \(-0.536064\pi\)
0.917000 0.398886i \(-0.130603\pi\)
\(968\) 15.8745 27.4955i 0.510226 0.883737i
\(969\) 0 0
\(970\) −42.0000 72.7461i −1.34854 2.33574i
\(971\) −15.8745 −0.509437 −0.254719 0.967015i \(-0.581983\pi\)
−0.254719 + 0.967015i \(0.581983\pi\)
\(972\) 0 0
\(973\) 12.0000 0.384702
\(974\) 42.3320 + 73.3212i 1.35641 + 2.34936i
\(975\) 0 0
\(976\) 44.0000 76.2102i 1.40841 2.43943i
\(977\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(978\) 0 0
\(979\) −24.5000 42.4352i −0.783023 1.35624i
\(980\) −13.2288 −0.422577
\(981\) 0 0
\(982\) 7.00000 0.223379
\(983\) −15.8745 27.4955i −0.506318 0.876969i −0.999973 0.00731102i \(-0.997673\pi\)
0.493655 0.869658i \(-0.335661\pi\)
\(984\) 0 0
\(985\) −35.0000 + 60.6218i −1.11519 + 1.93157i
\(986\) 0 0
\(987\) 0 0
\(988\) 35.0000 + 60.6218i 1.11350 + 1.92864i
\(989\) −63.4980 −2.01912
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) −19.8431 34.3693i −0.630020 1.09123i
\(993\) 0 0
\(994\) 10.5000 18.1865i 0.333040 0.576842i
\(995\) −3.96863 + 6.87386i −0.125814 + 0.217916i
\(996\) 0 0
\(997\) 19.0000 + 32.9090i 0.601736 + 1.04224i 0.992558 + 0.121771i \(0.0388574\pi\)
−0.390822 + 0.920466i \(0.627809\pi\)
\(998\) 10.5830 0.334999
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.f.i.190.1 4
3.2 odd 2 inner 567.2.f.i.190.2 4
9.2 odd 6 inner 567.2.f.i.379.2 4
9.4 even 3 189.2.a.f.1.2 yes 2
9.5 odd 6 189.2.a.f.1.1 2
9.7 even 3 inner 567.2.f.i.379.1 4
36.23 even 6 3024.2.a.bi.1.2 2
36.31 odd 6 3024.2.a.bi.1.1 2
45.4 even 6 4725.2.a.bb.1.1 2
45.14 odd 6 4725.2.a.bb.1.2 2
63.13 odd 6 1323.2.a.w.1.2 2
63.41 even 6 1323.2.a.w.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.a.f.1.1 2 9.5 odd 6
189.2.a.f.1.2 yes 2 9.4 even 3
567.2.f.i.190.1 4 1.1 even 1 trivial
567.2.f.i.190.2 4 3.2 odd 2 inner
567.2.f.i.379.1 4 9.7 even 3 inner
567.2.f.i.379.2 4 9.2 odd 6 inner
1323.2.a.w.1.1 2 63.41 even 6
1323.2.a.w.1.2 2 63.13 odd 6
3024.2.a.bi.1.1 2 36.31 odd 6
3024.2.a.bi.1.2 2 36.23 even 6
4725.2.a.bb.1.1 2 45.4 even 6
4725.2.a.bb.1.2 2 45.14 odd 6