Properties

Label 567.2.f.f.379.1
Level $567$
Weight $2$
Character 567.379
Analytic conductor $4.528$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(190,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.190");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 379.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 567.379
Dual form 567.2.f.f.190.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(0.500000 - 0.866025i) q^{7} +3.00000 q^{8} -1.00000 q^{10} +(1.00000 - 1.73205i) q^{11} +(2.50000 + 4.33013i) q^{13} +(-0.500000 - 0.866025i) q^{14} +(0.500000 - 0.866025i) q^{16} +3.00000 q^{17} -2.00000 q^{19} +(0.500000 - 0.866025i) q^{20} +(-1.00000 - 1.73205i) q^{22} +(-3.00000 - 5.19615i) q^{23} +(2.00000 - 3.46410i) q^{25} +5.00000 q^{26} +1.00000 q^{28} +(2.50000 - 4.33013i) q^{29} +(3.00000 + 5.19615i) q^{31} +(2.50000 + 4.33013i) q^{32} +(1.50000 - 2.59808i) q^{34} -1.00000 q^{35} -3.00000 q^{37} +(-1.00000 + 1.73205i) q^{38} +(-1.50000 - 2.59808i) q^{40} +(5.00000 + 8.66025i) q^{41} +(2.00000 - 3.46410i) q^{43} +2.00000 q^{44} -6.00000 q^{46} +(3.00000 - 5.19615i) q^{47} +(-0.500000 - 0.866025i) q^{49} +(-2.00000 - 3.46410i) q^{50} +(-2.50000 + 4.33013i) q^{52} -6.00000 q^{53} -2.00000 q^{55} +(1.50000 - 2.59808i) q^{56} +(-2.50000 - 4.33013i) q^{58} +(-3.00000 - 5.19615i) q^{59} +(-3.50000 + 6.06218i) q^{61} +6.00000 q^{62} +7.00000 q^{64} +(2.50000 - 4.33013i) q^{65} +(1.00000 + 1.73205i) q^{67} +(1.50000 + 2.59808i) q^{68} +(-0.500000 + 0.866025i) q^{70} -12.0000 q^{71} -15.0000 q^{73} +(-1.50000 + 2.59808i) q^{74} +(-1.00000 - 1.73205i) q^{76} +(-1.00000 - 1.73205i) q^{77} +(-7.00000 + 12.1244i) q^{79} -1.00000 q^{80} +10.0000 q^{82} +(-9.00000 + 15.5885i) q^{83} +(-1.50000 - 2.59808i) q^{85} +(-2.00000 - 3.46410i) q^{86} +(3.00000 - 5.19615i) q^{88} -5.00000 q^{89} +5.00000 q^{91} +(3.00000 - 5.19615i) q^{92} +(-3.00000 - 5.19615i) q^{94} +(1.00000 + 1.73205i) q^{95} +(9.00000 - 15.5885i) q^{97} -1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + q^{4} - q^{5} + q^{7} + 6 q^{8} - 2 q^{10} + 2 q^{11} + 5 q^{13} - q^{14} + q^{16} + 6 q^{17} - 4 q^{19} + q^{20} - 2 q^{22} - 6 q^{23} + 4 q^{25} + 10 q^{26} + 2 q^{28} + 5 q^{29}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i −0.633316 0.773893i \(-0.718307\pi\)
0.986869 + 0.161521i \(0.0516399\pi\)
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −0.500000 0.866025i −0.223607 0.387298i 0.732294 0.680989i \(-0.238450\pi\)
−0.955901 + 0.293691i \(0.905116\pi\)
\(6\) 0 0
\(7\) 0.500000 0.866025i 0.188982 0.327327i
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) 0 0
\(13\) 2.50000 + 4.33013i 0.693375 + 1.20096i 0.970725 + 0.240192i \(0.0772105\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −0.500000 0.866025i −0.133631 0.231455i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0.500000 0.866025i 0.111803 0.193649i
\(21\) 0 0
\(22\) −1.00000 1.73205i −0.213201 0.369274i
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 5.00000 0.980581
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) 2.50000 4.33013i 0.464238 0.804084i −0.534928 0.844897i \(-0.679661\pi\)
0.999167 + 0.0408130i \(0.0129948\pi\)
\(30\) 0 0
\(31\) 3.00000 + 5.19615i 0.538816 + 0.933257i 0.998968 + 0.0454165i \(0.0144615\pi\)
−0.460152 + 0.887840i \(0.652205\pi\)
\(32\) 2.50000 + 4.33013i 0.441942 + 0.765466i
\(33\) 0 0
\(34\) 1.50000 2.59808i 0.257248 0.445566i
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) −1.00000 + 1.73205i −0.162221 + 0.280976i
\(39\) 0 0
\(40\) −1.50000 2.59808i −0.237171 0.410792i
\(41\) 5.00000 + 8.66025i 0.780869 + 1.35250i 0.931436 + 0.363905i \(0.118557\pi\)
−0.150567 + 0.988600i \(0.548110\pi\)
\(42\) 0 0
\(43\) 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i \(-0.734678\pi\)
0.977261 + 0.212041i \(0.0680112\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 3.00000 5.19615i 0.437595 0.757937i −0.559908 0.828554i \(-0.689164\pi\)
0.997503 + 0.0706177i \(0.0224970\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) −2.00000 3.46410i −0.282843 0.489898i
\(51\) 0 0
\(52\) −2.50000 + 4.33013i −0.346688 + 0.600481i
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 1.50000 2.59808i 0.200446 0.347183i
\(57\) 0 0
\(58\) −2.50000 4.33013i −0.328266 0.568574i
\(59\) −3.00000 5.19615i −0.390567 0.676481i 0.601958 0.798528i \(-0.294388\pi\)
−0.992524 + 0.122047i \(0.961054\pi\)
\(60\) 0 0
\(61\) −3.50000 + 6.06218i −0.448129 + 0.776182i −0.998264 0.0588933i \(-0.981243\pi\)
0.550135 + 0.835076i \(0.314576\pi\)
\(62\) 6.00000 0.762001
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 2.50000 4.33013i 0.310087 0.537086i
\(66\) 0 0
\(67\) 1.00000 + 1.73205i 0.122169 + 0.211604i 0.920623 0.390453i \(-0.127682\pi\)
−0.798454 + 0.602056i \(0.794348\pi\)
\(68\) 1.50000 + 2.59808i 0.181902 + 0.315063i
\(69\) 0 0
\(70\) −0.500000 + 0.866025i −0.0597614 + 0.103510i
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −15.0000 −1.75562 −0.877809 0.479012i \(-0.840995\pi\)
−0.877809 + 0.479012i \(0.840995\pi\)
\(74\) −1.50000 + 2.59808i −0.174371 + 0.302020i
\(75\) 0 0
\(76\) −1.00000 1.73205i −0.114708 0.198680i
\(77\) −1.00000 1.73205i −0.113961 0.197386i
\(78\) 0 0
\(79\) −7.00000 + 12.1244i −0.787562 + 1.36410i 0.139895 + 0.990166i \(0.455323\pi\)
−0.927457 + 0.373930i \(0.878010\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) 10.0000 1.10432
\(83\) −9.00000 + 15.5885i −0.987878 + 1.71106i −0.359506 + 0.933143i \(0.617055\pi\)
−0.628372 + 0.777913i \(0.716279\pi\)
\(84\) 0 0
\(85\) −1.50000 2.59808i −0.162698 0.281801i
\(86\) −2.00000 3.46410i −0.215666 0.373544i
\(87\) 0 0
\(88\) 3.00000 5.19615i 0.319801 0.553912i
\(89\) −5.00000 −0.529999 −0.264999 0.964249i \(-0.585372\pi\)
−0.264999 + 0.964249i \(0.585372\pi\)
\(90\) 0 0
\(91\) 5.00000 0.524142
\(92\) 3.00000 5.19615i 0.312772 0.541736i
\(93\) 0 0
\(94\) −3.00000 5.19615i −0.309426 0.535942i
\(95\) 1.00000 + 1.73205i 0.102598 + 0.177705i
\(96\) 0 0
\(97\) 9.00000 15.5885i 0.913812 1.58277i 0.105180 0.994453i \(-0.466458\pi\)
0.808632 0.588315i \(-0.200208\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) −7.00000 + 12.1244i −0.696526 + 1.20642i 0.273138 + 0.961975i \(0.411939\pi\)
−0.969664 + 0.244443i \(0.921395\pi\)
\(102\) 0 0
\(103\) −4.00000 6.92820i −0.394132 0.682656i 0.598858 0.800855i \(-0.295621\pi\)
−0.992990 + 0.118199i \(0.962288\pi\)
\(104\) 7.50000 + 12.9904i 0.735436 + 1.27381i
\(105\) 0 0
\(106\) −3.00000 + 5.19615i −0.291386 + 0.504695i
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) 9.00000 0.862044 0.431022 0.902342i \(-0.358153\pi\)
0.431022 + 0.902342i \(0.358153\pi\)
\(110\) −1.00000 + 1.73205i −0.0953463 + 0.165145i
\(111\) 0 0
\(112\) −0.500000 0.866025i −0.0472456 0.0818317i
\(113\) −0.500000 0.866025i −0.0470360 0.0814688i 0.841549 0.540181i \(-0.181644\pi\)
−0.888585 + 0.458712i \(0.848311\pi\)
\(114\) 0 0
\(115\) −3.00000 + 5.19615i −0.279751 + 0.484544i
\(116\) 5.00000 0.464238
\(117\) 0 0
\(118\) −6.00000 −0.552345
\(119\) 1.50000 2.59808i 0.137505 0.238165i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 3.50000 + 6.06218i 0.316875 + 0.548844i
\(123\) 0 0
\(124\) −3.00000 + 5.19615i −0.269408 + 0.466628i
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) −1.50000 + 2.59808i −0.132583 + 0.229640i
\(129\) 0 0
\(130\) −2.50000 4.33013i −0.219265 0.379777i
\(131\) −8.00000 13.8564i −0.698963 1.21064i −0.968826 0.247741i \(-0.920312\pi\)
0.269863 0.962899i \(-0.413022\pi\)
\(132\) 0 0
\(133\) −1.00000 + 1.73205i −0.0867110 + 0.150188i
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) 9.00000 0.771744
\(137\) −10.5000 + 18.1865i −0.897076 + 1.55378i −0.0658609 + 0.997829i \(0.520979\pi\)
−0.831215 + 0.555952i \(0.812354\pi\)
\(138\) 0 0
\(139\) 3.00000 + 5.19615i 0.254457 + 0.440732i 0.964748 0.263176i \(-0.0847700\pi\)
−0.710291 + 0.703908i \(0.751437\pi\)
\(140\) −0.500000 0.866025i −0.0422577 0.0731925i
\(141\) 0 0
\(142\) −6.00000 + 10.3923i −0.503509 + 0.872103i
\(143\) 10.0000 0.836242
\(144\) 0 0
\(145\) −5.00000 −0.415227
\(146\) −7.50000 + 12.9904i −0.620704 + 1.07509i
\(147\) 0 0
\(148\) −1.50000 2.59808i −0.123299 0.213561i
\(149\) −7.50000 12.9904i −0.614424 1.06421i −0.990485 0.137619i \(-0.956055\pi\)
0.376061 0.926595i \(-0.377278\pi\)
\(150\) 0 0
\(151\) 5.00000 8.66025i 0.406894 0.704761i −0.587646 0.809118i \(-0.699945\pi\)
0.994540 + 0.104357i \(0.0332784\pi\)
\(152\) −6.00000 −0.486664
\(153\) 0 0
\(154\) −2.00000 −0.161165
\(155\) 3.00000 5.19615i 0.240966 0.417365i
\(156\) 0 0
\(157\) 2.50000 + 4.33013i 0.199522 + 0.345582i 0.948373 0.317156i \(-0.102728\pi\)
−0.748852 + 0.662738i \(0.769394\pi\)
\(158\) 7.00000 + 12.1244i 0.556890 + 0.964562i
\(159\) 0 0
\(160\) 2.50000 4.33013i 0.197642 0.342327i
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) 16.0000 1.25322 0.626608 0.779334i \(-0.284443\pi\)
0.626608 + 0.779334i \(0.284443\pi\)
\(164\) −5.00000 + 8.66025i −0.390434 + 0.676252i
\(165\) 0 0
\(166\) 9.00000 + 15.5885i 0.698535 + 1.20990i
\(167\) 7.00000 + 12.1244i 0.541676 + 0.938211i 0.998808 + 0.0488118i \(0.0155435\pi\)
−0.457132 + 0.889399i \(0.651123\pi\)
\(168\) 0 0
\(169\) −6.00000 + 10.3923i −0.461538 + 0.799408i
\(170\) −3.00000 −0.230089
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) −2.50000 + 4.33013i −0.190071 + 0.329213i −0.945274 0.326278i \(-0.894205\pi\)
0.755202 + 0.655492i \(0.227539\pi\)
\(174\) 0 0
\(175\) −2.00000 3.46410i −0.151186 0.261861i
\(176\) −1.00000 1.73205i −0.0753778 0.130558i
\(177\) 0 0
\(178\) −2.50000 + 4.33013i −0.187383 + 0.324557i
\(179\) 2.00000 0.149487 0.0747435 0.997203i \(-0.476186\pi\)
0.0747435 + 0.997203i \(0.476186\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 2.50000 4.33013i 0.185312 0.320970i
\(183\) 0 0
\(184\) −9.00000 15.5885i −0.663489 1.14920i
\(185\) 1.50000 + 2.59808i 0.110282 + 0.191014i
\(186\) 0 0
\(187\) 3.00000 5.19615i 0.219382 0.379980i
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) 2.00000 0.145095
\(191\) 7.00000 12.1244i 0.506502 0.877288i −0.493469 0.869763i \(-0.664272\pi\)
0.999972 0.00752447i \(-0.00239513\pi\)
\(192\) 0 0
\(193\) 6.50000 + 11.2583i 0.467880 + 0.810392i 0.999326 0.0366998i \(-0.0116845\pi\)
−0.531446 + 0.847092i \(0.678351\pi\)
\(194\) −9.00000 15.5885i −0.646162 1.11919i
\(195\) 0 0
\(196\) 0.500000 0.866025i 0.0357143 0.0618590i
\(197\) −5.00000 −0.356235 −0.178118 0.984009i \(-0.557001\pi\)
−0.178118 + 0.984009i \(0.557001\pi\)
\(198\) 0 0
\(199\) −6.00000 −0.425329 −0.212664 0.977125i \(-0.568214\pi\)
−0.212664 + 0.977125i \(0.568214\pi\)
\(200\) 6.00000 10.3923i 0.424264 0.734847i
\(201\) 0 0
\(202\) 7.00000 + 12.1244i 0.492518 + 0.853067i
\(203\) −2.50000 4.33013i −0.175466 0.303915i
\(204\) 0 0
\(205\) 5.00000 8.66025i 0.349215 0.604858i
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) 5.00000 0.346688
\(209\) −2.00000 + 3.46410i −0.138343 + 0.239617i
\(210\) 0 0
\(211\) −11.0000 19.0526i −0.757271 1.31163i −0.944237 0.329266i \(-0.893199\pi\)
0.186966 0.982366i \(-0.440135\pi\)
\(212\) −3.00000 5.19615i −0.206041 0.356873i
\(213\) 0 0
\(214\) −4.00000 + 6.92820i −0.273434 + 0.473602i
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) 6.00000 0.407307
\(218\) 4.50000 7.79423i 0.304778 0.527892i
\(219\) 0 0
\(220\) −1.00000 1.73205i −0.0674200 0.116775i
\(221\) 7.50000 + 12.9904i 0.504505 + 0.873828i
\(222\) 0 0
\(223\) −2.00000 + 3.46410i −0.133930 + 0.231973i −0.925188 0.379509i \(-0.876093\pi\)
0.791258 + 0.611482i \(0.209426\pi\)
\(224\) 5.00000 0.334077
\(225\) 0 0
\(226\) −1.00000 −0.0665190
\(227\) 12.0000 20.7846i 0.796468 1.37952i −0.125435 0.992102i \(-0.540033\pi\)
0.921903 0.387421i \(-0.126634\pi\)
\(228\) 0 0
\(229\) −5.50000 9.52628i −0.363450 0.629514i 0.625076 0.780564i \(-0.285068\pi\)
−0.988526 + 0.151050i \(0.951735\pi\)
\(230\) 3.00000 + 5.19615i 0.197814 + 0.342624i
\(231\) 0 0
\(232\) 7.50000 12.9904i 0.492399 0.852860i
\(233\) 21.0000 1.37576 0.687878 0.725826i \(-0.258542\pi\)
0.687878 + 0.725826i \(0.258542\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) 3.00000 5.19615i 0.195283 0.338241i
\(237\) 0 0
\(238\) −1.50000 2.59808i −0.0972306 0.168408i
\(239\) −15.0000 25.9808i −0.970269 1.68056i −0.694737 0.719264i \(-0.744479\pi\)
−0.275533 0.961292i \(-0.588854\pi\)
\(240\) 0 0
\(241\) 9.50000 16.4545i 0.611949 1.05993i −0.378963 0.925412i \(-0.623719\pi\)
0.990912 0.134515i \(-0.0429475\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) −7.00000 −0.448129
\(245\) −0.500000 + 0.866025i −0.0319438 + 0.0553283i
\(246\) 0 0
\(247\) −5.00000 8.66025i −0.318142 0.551039i
\(248\) 9.00000 + 15.5885i 0.571501 + 0.989868i
\(249\) 0 0
\(250\) −4.50000 + 7.79423i −0.284605 + 0.492950i
\(251\) −2.00000 −0.126239 −0.0631194 0.998006i \(-0.520105\pi\)
−0.0631194 + 0.998006i \(0.520105\pi\)
\(252\) 0 0
\(253\) −12.0000 −0.754434
\(254\) 6.00000 10.3923i 0.376473 0.652071i
\(255\) 0 0
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) 6.50000 + 11.2583i 0.405459 + 0.702275i 0.994375 0.105919i \(-0.0337784\pi\)
−0.588916 + 0.808194i \(0.700445\pi\)
\(258\) 0 0
\(259\) −1.50000 + 2.59808i −0.0932055 + 0.161437i
\(260\) 5.00000 0.310087
\(261\) 0 0
\(262\) −16.0000 −0.988483
\(263\) −5.00000 + 8.66025i −0.308313 + 0.534014i −0.977993 0.208635i \(-0.933098\pi\)
0.669680 + 0.742650i \(0.266431\pi\)
\(264\) 0 0
\(265\) 3.00000 + 5.19615i 0.184289 + 0.319197i
\(266\) 1.00000 + 1.73205i 0.0613139 + 0.106199i
\(267\) 0 0
\(268\) −1.00000 + 1.73205i −0.0610847 + 0.105802i
\(269\) 9.00000 0.548740 0.274370 0.961624i \(-0.411531\pi\)
0.274370 + 0.961624i \(0.411531\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) 1.50000 2.59808i 0.0909509 0.157532i
\(273\) 0 0
\(274\) 10.5000 + 18.1865i 0.634328 + 1.09869i
\(275\) −4.00000 6.92820i −0.241209 0.417786i
\(276\) 0 0
\(277\) 1.00000 1.73205i 0.0600842 0.104069i −0.834419 0.551131i \(-0.814196\pi\)
0.894503 + 0.447062i \(0.147530\pi\)
\(278\) 6.00000 0.359856
\(279\) 0 0
\(280\) −3.00000 −0.179284
\(281\) −2.50000 + 4.33013i −0.149137 + 0.258314i −0.930909 0.365251i \(-0.880983\pi\)
0.781771 + 0.623565i \(0.214316\pi\)
\(282\) 0 0
\(283\) 4.00000 + 6.92820i 0.237775 + 0.411839i 0.960076 0.279741i \(-0.0902485\pi\)
−0.722300 + 0.691580i \(0.756915\pi\)
\(284\) −6.00000 10.3923i −0.356034 0.616670i
\(285\) 0 0
\(286\) 5.00000 8.66025i 0.295656 0.512092i
\(287\) 10.0000 0.590281
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) −2.50000 + 4.33013i −0.146805 + 0.254274i
\(291\) 0 0
\(292\) −7.50000 12.9904i −0.438904 0.760205i
\(293\) 15.5000 + 26.8468i 0.905520 + 1.56841i 0.820218 + 0.572051i \(0.193852\pi\)
0.0853015 + 0.996355i \(0.472815\pi\)
\(294\) 0 0
\(295\) −3.00000 + 5.19615i −0.174667 + 0.302532i
\(296\) −9.00000 −0.523114
\(297\) 0 0
\(298\) −15.0000 −0.868927
\(299\) 15.0000 25.9808i 0.867472 1.50251i
\(300\) 0 0
\(301\) −2.00000 3.46410i −0.115278 0.199667i
\(302\) −5.00000 8.66025i −0.287718 0.498342i
\(303\) 0 0
\(304\) −1.00000 + 1.73205i −0.0573539 + 0.0993399i
\(305\) 7.00000 0.400819
\(306\) 0 0
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 1.00000 1.73205i 0.0569803 0.0986928i
\(309\) 0 0
\(310\) −3.00000 5.19615i −0.170389 0.295122i
\(311\) −3.00000 5.19615i −0.170114 0.294647i 0.768345 0.640036i \(-0.221080\pi\)
−0.938460 + 0.345389i \(0.887747\pi\)
\(312\) 0 0
\(313\) 9.50000 16.4545i 0.536972 0.930062i −0.462093 0.886831i \(-0.652902\pi\)
0.999065 0.0432311i \(-0.0137652\pi\)
\(314\) 5.00000 0.282166
\(315\) 0 0
\(316\) −14.0000 −0.787562
\(317\) 4.50000 7.79423i 0.252745 0.437767i −0.711535 0.702650i \(-0.752000\pi\)
0.964281 + 0.264883i \(0.0853332\pi\)
\(318\) 0 0
\(319\) −5.00000 8.66025i −0.279946 0.484881i
\(320\) −3.50000 6.06218i −0.195656 0.338886i
\(321\) 0 0
\(322\) −3.00000 + 5.19615i −0.167183 + 0.289570i
\(323\) −6.00000 −0.333849
\(324\) 0 0
\(325\) 20.0000 1.10940
\(326\) 8.00000 13.8564i 0.443079 0.767435i
\(327\) 0 0
\(328\) 15.0000 + 25.9808i 0.828236 + 1.43455i
\(329\) −3.00000 5.19615i −0.165395 0.286473i
\(330\) 0 0
\(331\) 2.00000 3.46410i 0.109930 0.190404i −0.805812 0.592172i \(-0.798271\pi\)
0.915742 + 0.401768i \(0.131604\pi\)
\(332\) −18.0000 −0.987878
\(333\) 0 0
\(334\) 14.0000 0.766046
\(335\) 1.00000 1.73205i 0.0546358 0.0946320i
\(336\) 0 0
\(337\) 1.00000 + 1.73205i 0.0544735 + 0.0943508i 0.891976 0.452082i \(-0.149319\pi\)
−0.837503 + 0.546433i \(0.815985\pi\)
\(338\) 6.00000 + 10.3923i 0.326357 + 0.565267i
\(339\) 0 0
\(340\) 1.50000 2.59808i 0.0813489 0.140900i
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 6.00000 10.3923i 0.323498 0.560316i
\(345\) 0 0
\(346\) 2.50000 + 4.33013i 0.134401 + 0.232789i
\(347\) 2.00000 + 3.46410i 0.107366 + 0.185963i 0.914702 0.404128i \(-0.132425\pi\)
−0.807337 + 0.590091i \(0.799092\pi\)
\(348\) 0 0
\(349\) −5.00000 + 8.66025i −0.267644 + 0.463573i −0.968253 0.249973i \(-0.919578\pi\)
0.700609 + 0.713545i \(0.252912\pi\)
\(350\) −4.00000 −0.213809
\(351\) 0 0
\(352\) 10.0000 0.533002
\(353\) 7.00000 12.1244i 0.372572 0.645314i −0.617388 0.786659i \(-0.711809\pi\)
0.989960 + 0.141344i \(0.0451425\pi\)
\(354\) 0 0
\(355\) 6.00000 + 10.3923i 0.318447 + 0.551566i
\(356\) −2.50000 4.33013i −0.132500 0.229496i
\(357\) 0 0
\(358\) 1.00000 1.73205i 0.0528516 0.0915417i
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) −7.00000 + 12.1244i −0.367912 + 0.637242i
\(363\) 0 0
\(364\) 2.50000 + 4.33013i 0.131036 + 0.226960i
\(365\) 7.50000 + 12.9904i 0.392568 + 0.679948i
\(366\) 0 0
\(367\) 15.0000 25.9808i 0.782994 1.35618i −0.147197 0.989107i \(-0.547025\pi\)
0.930190 0.367078i \(-0.119642\pi\)
\(368\) −6.00000 −0.312772
\(369\) 0 0
\(370\) 3.00000 0.155963
\(371\) −3.00000 + 5.19615i −0.155752 + 0.269771i
\(372\) 0 0
\(373\) 11.0000 + 19.0526i 0.569558 + 0.986504i 0.996610 + 0.0822766i \(0.0262191\pi\)
−0.427051 + 0.904227i \(0.640448\pi\)
\(374\) −3.00000 5.19615i −0.155126 0.268687i
\(375\) 0 0
\(376\) 9.00000 15.5885i 0.464140 0.803913i
\(377\) 25.0000 1.28757
\(378\) 0 0
\(379\) 6.00000 0.308199 0.154100 0.988055i \(-0.450752\pi\)
0.154100 + 0.988055i \(0.450752\pi\)
\(380\) −1.00000 + 1.73205i −0.0512989 + 0.0888523i
\(381\) 0 0
\(382\) −7.00000 12.1244i −0.358151 0.620336i
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) −1.00000 + 1.73205i −0.0509647 + 0.0882735i
\(386\) 13.0000 0.661683
\(387\) 0 0
\(388\) 18.0000 0.913812
\(389\) −9.00000 + 15.5885i −0.456318 + 0.790366i −0.998763 0.0497253i \(-0.984165\pi\)
0.542445 + 0.840091i \(0.317499\pi\)
\(390\) 0 0
\(391\) −9.00000 15.5885i −0.455150 0.788342i
\(392\) −1.50000 2.59808i −0.0757614 0.131223i
\(393\) 0 0
\(394\) −2.50000 + 4.33013i −0.125948 + 0.218149i
\(395\) 14.0000 0.704416
\(396\) 0 0
\(397\) 15.0000 0.752828 0.376414 0.926451i \(-0.377157\pi\)
0.376414 + 0.926451i \(0.377157\pi\)
\(398\) −3.00000 + 5.19615i −0.150376 + 0.260460i
\(399\) 0 0
\(400\) −2.00000 3.46410i −0.100000 0.173205i
\(401\) 1.50000 + 2.59808i 0.0749064 + 0.129742i 0.901046 0.433724i \(-0.142801\pi\)
−0.826139 + 0.563466i \(0.809468\pi\)
\(402\) 0 0
\(403\) −15.0000 + 25.9808i −0.747203 + 1.29419i
\(404\) −14.0000 −0.696526
\(405\) 0 0
\(406\) −5.00000 −0.248146
\(407\) −3.00000 + 5.19615i −0.148704 + 0.257564i
\(408\) 0 0
\(409\) −2.50000 4.33013i −0.123617 0.214111i 0.797574 0.603220i \(-0.206116\pi\)
−0.921192 + 0.389109i \(0.872783\pi\)
\(410\) −5.00000 8.66025i −0.246932 0.427699i
\(411\) 0 0
\(412\) 4.00000 6.92820i 0.197066 0.341328i
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) 18.0000 0.883585
\(416\) −12.5000 + 21.6506i −0.612863 + 1.06151i
\(417\) 0 0
\(418\) 2.00000 + 3.46410i 0.0978232 + 0.169435i
\(419\) −18.0000 31.1769i −0.879358 1.52309i −0.852047 0.523465i \(-0.824639\pi\)
−0.0273103 0.999627i \(-0.508694\pi\)
\(420\) 0 0
\(421\) −14.5000 + 25.1147i −0.706687 + 1.22402i 0.259393 + 0.965772i \(0.416478\pi\)
−0.966079 + 0.258245i \(0.916856\pi\)
\(422\) −22.0000 −1.07094
\(423\) 0 0
\(424\) −18.0000 −0.874157
\(425\) 6.00000 10.3923i 0.291043 0.504101i
\(426\) 0 0
\(427\) 3.50000 + 6.06218i 0.169377 + 0.293369i
\(428\) −4.00000 6.92820i −0.193347 0.334887i
\(429\) 0 0
\(430\) −2.00000 + 3.46410i −0.0964486 + 0.167054i
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) 1.00000 0.0480569 0.0240285 0.999711i \(-0.492351\pi\)
0.0240285 + 0.999711i \(0.492351\pi\)
\(434\) 3.00000 5.19615i 0.144005 0.249423i
\(435\) 0 0
\(436\) 4.50000 + 7.79423i 0.215511 + 0.373276i
\(437\) 6.00000 + 10.3923i 0.287019 + 0.497131i
\(438\) 0 0
\(439\) −18.0000 + 31.1769i −0.859093 + 1.48799i 0.0137020 + 0.999906i \(0.495638\pi\)
−0.872795 + 0.488087i \(0.837695\pi\)
\(440\) −6.00000 −0.286039
\(441\) 0 0
\(442\) 15.0000 0.713477
\(443\) −3.00000 + 5.19615i −0.142534 + 0.246877i −0.928450 0.371457i \(-0.878858\pi\)
0.785916 + 0.618333i \(0.212192\pi\)
\(444\) 0 0
\(445\) 2.50000 + 4.33013i 0.118511 + 0.205268i
\(446\) 2.00000 + 3.46410i 0.0947027 + 0.164030i
\(447\) 0 0
\(448\) 3.50000 6.06218i 0.165359 0.286411i
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 20.0000 0.941763
\(452\) 0.500000 0.866025i 0.0235180 0.0407344i
\(453\) 0 0
\(454\) −12.0000 20.7846i −0.563188 0.975470i
\(455\) −2.50000 4.33013i −0.117202 0.202999i
\(456\) 0 0
\(457\) 8.50000 14.7224i 0.397613 0.688686i −0.595818 0.803120i \(-0.703172\pi\)
0.993431 + 0.114433i \(0.0365053\pi\)
\(458\) −11.0000 −0.513996
\(459\) 0 0
\(460\) −6.00000 −0.279751
\(461\) −19.0000 + 32.9090i −0.884918 + 1.53272i −0.0391109 + 0.999235i \(0.512453\pi\)
−0.845807 + 0.533488i \(0.820881\pi\)
\(462\) 0 0
\(463\) 1.00000 + 1.73205i 0.0464739 + 0.0804952i 0.888327 0.459212i \(-0.151868\pi\)
−0.841853 + 0.539707i \(0.818535\pi\)
\(464\) −2.50000 4.33013i −0.116060 0.201021i
\(465\) 0 0
\(466\) 10.5000 18.1865i 0.486403 0.842475i
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 0 0
\(469\) 2.00000 0.0923514
\(470\) −3.00000 + 5.19615i −0.138380 + 0.239681i
\(471\) 0 0
\(472\) −9.00000 15.5885i −0.414259 0.717517i
\(473\) −4.00000 6.92820i −0.183920 0.318559i
\(474\) 0 0
\(475\) −4.00000 + 6.92820i −0.183533 + 0.317888i
\(476\) 3.00000 0.137505
\(477\) 0 0
\(478\) −30.0000 −1.37217
\(479\) 17.0000 29.4449i 0.776750 1.34537i −0.157056 0.987590i \(-0.550200\pi\)
0.933806 0.357780i \(-0.116466\pi\)
\(480\) 0 0
\(481\) −7.50000 12.9904i −0.341971 0.592310i
\(482\) −9.50000 16.4545i −0.432713 0.749481i
\(483\) 0 0
\(484\) −3.50000 + 6.06218i −0.159091 + 0.275554i
\(485\) −18.0000 −0.817338
\(486\) 0 0
\(487\) 34.0000 1.54069 0.770344 0.637629i \(-0.220085\pi\)
0.770344 + 0.637629i \(0.220085\pi\)
\(488\) −10.5000 + 18.1865i −0.475313 + 0.823266i
\(489\) 0 0
\(490\) 0.500000 + 0.866025i 0.0225877 + 0.0391230i
\(491\) 14.0000 + 24.2487i 0.631811 + 1.09433i 0.987181 + 0.159603i \(0.0510215\pi\)
−0.355370 + 0.934726i \(0.615645\pi\)
\(492\) 0 0
\(493\) 7.50000 12.9904i 0.337783 0.585057i
\(494\) −10.0000 −0.449921
\(495\) 0 0
\(496\) 6.00000 0.269408
\(497\) −6.00000 + 10.3923i −0.269137 + 0.466159i
\(498\) 0 0
\(499\) −5.00000 8.66025i −0.223831 0.387686i 0.732137 0.681157i \(-0.238523\pi\)
−0.955968 + 0.293471i \(0.905190\pi\)
\(500\) −4.50000 7.79423i −0.201246 0.348569i
\(501\) 0 0
\(502\) −1.00000 + 1.73205i −0.0446322 + 0.0773052i
\(503\) −18.0000 −0.802580 −0.401290 0.915951i \(-0.631438\pi\)
−0.401290 + 0.915951i \(0.631438\pi\)
\(504\) 0 0
\(505\) 14.0000 0.622992
\(506\) −6.00000 + 10.3923i −0.266733 + 0.461994i
\(507\) 0 0
\(508\) 6.00000 + 10.3923i 0.266207 + 0.461084i
\(509\) 17.0000 + 29.4449i 0.753512 + 1.30512i 0.946111 + 0.323843i \(0.104975\pi\)
−0.192599 + 0.981278i \(0.561692\pi\)
\(510\) 0 0
\(511\) −7.50000 + 12.9904i −0.331780 + 0.574661i
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) 13.0000 0.573405
\(515\) −4.00000 + 6.92820i −0.176261 + 0.305293i
\(516\) 0 0
\(517\) −6.00000 10.3923i −0.263880 0.457053i
\(518\) 1.50000 + 2.59808i 0.0659062 + 0.114153i
\(519\) 0 0
\(520\) 7.50000 12.9904i 0.328897 0.569666i
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 8.00000 13.8564i 0.349482 0.605320i
\(525\) 0 0
\(526\) 5.00000 + 8.66025i 0.218010 + 0.377605i
\(527\) 9.00000 + 15.5885i 0.392046 + 0.679044i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 6.00000 0.260623
\(531\) 0 0
\(532\) −2.00000 −0.0867110
\(533\) −25.0000 + 43.3013i −1.08287 + 1.87559i
\(534\) 0 0
\(535\) 4.00000 + 6.92820i 0.172935 + 0.299532i
\(536\) 3.00000 + 5.19615i 0.129580 + 0.224440i
\(537\) 0 0
\(538\) 4.50000 7.79423i 0.194009 0.336033i
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) −7.00000 + 12.1244i −0.300676 + 0.520786i
\(543\) 0 0
\(544\) 7.50000 + 12.9904i 0.321560 + 0.556958i
\(545\) −4.50000 7.79423i −0.192759 0.333868i
\(546\) 0 0
\(547\) −11.0000 + 19.0526i −0.470326 + 0.814629i −0.999424 0.0339321i \(-0.989197\pi\)
0.529098 + 0.848561i \(0.322530\pi\)
\(548\) −21.0000 −0.897076
\(549\) 0 0
\(550\) −8.00000 −0.341121
\(551\) −5.00000 + 8.66025i −0.213007 + 0.368939i
\(552\) 0 0
\(553\) 7.00000 + 12.1244i 0.297670 + 0.515580i
\(554\) −1.00000 1.73205i −0.0424859 0.0735878i
\(555\) 0 0
\(556\) −3.00000 + 5.19615i −0.127228 + 0.220366i
\(557\) −29.0000 −1.22877 −0.614385 0.789007i \(-0.710596\pi\)
−0.614385 + 0.789007i \(0.710596\pi\)
\(558\) 0 0
\(559\) 20.0000 0.845910
\(560\) −0.500000 + 0.866025i −0.0211289 + 0.0365963i
\(561\) 0 0
\(562\) 2.50000 + 4.33013i 0.105456 + 0.182655i
\(563\) 16.0000 + 27.7128i 0.674320 + 1.16796i 0.976667 + 0.214758i \(0.0688963\pi\)
−0.302348 + 0.953198i \(0.597770\pi\)
\(564\) 0 0
\(565\) −0.500000 + 0.866025i −0.0210352 + 0.0364340i
\(566\) 8.00000 0.336265
\(567\) 0 0
\(568\) −36.0000 −1.51053
\(569\) 5.50000 9.52628i 0.230572 0.399362i −0.727405 0.686209i \(-0.759274\pi\)
0.957977 + 0.286846i \(0.0926069\pi\)
\(570\) 0 0
\(571\) −19.0000 32.9090i −0.795125 1.37720i −0.922760 0.385376i \(-0.874072\pi\)
0.127634 0.991821i \(-0.459262\pi\)
\(572\) 5.00000 + 8.66025i 0.209061 + 0.362103i
\(573\) 0 0
\(574\) 5.00000 8.66025i 0.208696 0.361472i
\(575\) −24.0000 −1.00087
\(576\) 0 0
\(577\) −23.0000 −0.957503 −0.478751 0.877951i \(-0.658910\pi\)
−0.478751 + 0.877951i \(0.658910\pi\)
\(578\) −4.00000 + 6.92820i −0.166378 + 0.288175i
\(579\) 0 0
\(580\) −2.50000 4.33013i −0.103807 0.179799i
\(581\) 9.00000 + 15.5885i 0.373383 + 0.646718i
\(582\) 0 0
\(583\) −6.00000 + 10.3923i −0.248495 + 0.430405i
\(584\) −45.0000 −1.86211
\(585\) 0 0
\(586\) 31.0000 1.28060
\(587\) 13.0000 22.5167i 0.536567 0.929362i −0.462518 0.886610i \(-0.653054\pi\)
0.999086 0.0427523i \(-0.0136126\pi\)
\(588\) 0 0
\(589\) −6.00000 10.3923i −0.247226 0.428207i
\(590\) 3.00000 + 5.19615i 0.123508 + 0.213922i
\(591\) 0 0
\(592\) −1.50000 + 2.59808i −0.0616496 + 0.106780i
\(593\) 27.0000 1.10876 0.554379 0.832265i \(-0.312956\pi\)
0.554379 + 0.832265i \(0.312956\pi\)
\(594\) 0 0
\(595\) −3.00000 −0.122988
\(596\) 7.50000 12.9904i 0.307212 0.532107i
\(597\) 0 0
\(598\) −15.0000 25.9808i −0.613396 1.06243i
\(599\) −15.0000 25.9808i −0.612883 1.06155i −0.990752 0.135686i \(-0.956676\pi\)
0.377869 0.925859i \(-0.376657\pi\)
\(600\) 0 0
\(601\) −16.5000 + 28.5788i −0.673049 + 1.16576i 0.303986 + 0.952676i \(0.401682\pi\)
−0.977035 + 0.213079i \(0.931651\pi\)
\(602\) −4.00000 −0.163028
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) 3.50000 6.06218i 0.142295 0.246463i
\(606\) 0 0
\(607\) −7.00000 12.1244i −0.284121 0.492112i 0.688274 0.725450i \(-0.258368\pi\)
−0.972396 + 0.233338i \(0.925035\pi\)
\(608\) −5.00000 8.66025i −0.202777 0.351220i
\(609\) 0 0
\(610\) 3.50000 6.06218i 0.141711 0.245450i
\(611\) 30.0000 1.21367
\(612\) 0 0
\(613\) −2.00000 −0.0807792 −0.0403896 0.999184i \(-0.512860\pi\)
−0.0403896 + 0.999184i \(0.512860\pi\)
\(614\) −4.00000 + 6.92820i −0.161427 + 0.279600i
\(615\) 0 0
\(616\) −3.00000 5.19615i −0.120873 0.209359i
\(617\) 7.50000 + 12.9904i 0.301939 + 0.522973i 0.976575 0.215177i \(-0.0690329\pi\)
−0.674636 + 0.738150i \(0.735700\pi\)
\(618\) 0 0
\(619\) −2.00000 + 3.46410i −0.0803868 + 0.139234i −0.903416 0.428765i \(-0.858949\pi\)
0.823029 + 0.567999i \(0.192282\pi\)
\(620\) 6.00000 0.240966
\(621\) 0 0
\(622\) −6.00000 −0.240578
\(623\) −2.50000 + 4.33013i −0.100160 + 0.173483i
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) −9.50000 16.4545i −0.379696 0.657653i
\(627\) 0 0
\(628\) −2.50000 + 4.33013i −0.0997609 + 0.172791i
\(629\) −9.00000 −0.358854
\(630\) 0 0
\(631\) −22.0000 −0.875806 −0.437903 0.899022i \(-0.644279\pi\)
−0.437903 + 0.899022i \(0.644279\pi\)
\(632\) −21.0000 + 36.3731i −0.835335 + 1.44684i
\(633\) 0 0
\(634\) −4.50000 7.79423i −0.178718 0.309548i
\(635\) −6.00000 10.3923i −0.238103 0.412406i
\(636\) 0 0
\(637\) 2.50000 4.33013i 0.0990536 0.171566i
\(638\) −10.0000 −0.395904
\(639\) 0 0
\(640\) 3.00000 0.118585
\(641\) 7.50000 12.9904i 0.296232 0.513089i −0.679039 0.734103i \(-0.737603\pi\)
0.975271 + 0.221013i \(0.0709364\pi\)
\(642\) 0 0
\(643\) −7.00000 12.1244i −0.276053 0.478138i 0.694347 0.719640i \(-0.255693\pi\)
−0.970400 + 0.241502i \(0.922360\pi\)
\(644\) −3.00000 5.19615i −0.118217 0.204757i
\(645\) 0 0
\(646\) −3.00000 + 5.19615i −0.118033 + 0.204440i
\(647\) 8.00000 0.314512 0.157256 0.987558i \(-0.449735\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 10.0000 17.3205i 0.392232 0.679366i
\(651\) 0 0
\(652\) 8.00000 + 13.8564i 0.313304 + 0.542659i
\(653\) 15.0000 + 25.9808i 0.586995 + 1.01671i 0.994623 + 0.103558i \(0.0330227\pi\)
−0.407628 + 0.913148i \(0.633644\pi\)
\(654\) 0 0
\(655\) −8.00000 + 13.8564i −0.312586 + 0.541415i
\(656\) 10.0000 0.390434
\(657\) 0 0
\(658\) −6.00000 −0.233904
\(659\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 0 0
\(661\) 20.5000 + 35.5070i 0.797358 + 1.38106i 0.921331 + 0.388778i \(0.127103\pi\)
−0.123974 + 0.992286i \(0.539564\pi\)
\(662\) −2.00000 3.46410i −0.0777322 0.134636i
\(663\) 0 0
\(664\) −27.0000 + 46.7654i −1.04780 + 1.81485i
\(665\) 2.00000 0.0775567
\(666\) 0 0
\(667\) −30.0000 −1.16160
\(668\) −7.00000 + 12.1244i −0.270838 + 0.469105i
\(669\) 0 0
\(670\) −1.00000 1.73205i −0.0386334 0.0669150i
\(671\) 7.00000 + 12.1244i 0.270232 + 0.468056i
\(672\) 0 0
\(673\) 20.5000 35.5070i 0.790217 1.36870i −0.135615 0.990762i \(-0.543301\pi\)
0.925832 0.377934i \(-0.123365\pi\)
\(674\) 2.00000 0.0770371
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) 3.00000 5.19615i 0.115299 0.199704i −0.802600 0.596518i \(-0.796551\pi\)
0.917899 + 0.396813i \(0.129884\pi\)
\(678\) 0 0
\(679\) −9.00000 15.5885i −0.345388 0.598230i
\(680\) −4.50000 7.79423i −0.172567 0.298895i
\(681\) 0 0
\(682\) 6.00000 10.3923i 0.229752 0.397942i
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 21.0000 0.802369
\(686\) −0.500000 + 0.866025i −0.0190901 + 0.0330650i
\(687\) 0 0
\(688\) −2.00000 3.46410i −0.0762493 0.132068i
\(689\) −15.0000 25.9808i −0.571454 0.989788i
\(690\) 0 0
\(691\) 14.0000 24.2487i 0.532585 0.922464i −0.466691 0.884420i \(-0.654554\pi\)
0.999276 0.0380440i \(-0.0121127\pi\)
\(692\) −5.00000 −0.190071
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 3.00000 5.19615i 0.113796 0.197101i
\(696\) 0 0
\(697\) 15.0000 + 25.9808i 0.568166 + 0.984092i
\(698\) 5.00000 + 8.66025i 0.189253 + 0.327795i
\(699\) 0 0
\(700\) 2.00000 3.46410i 0.0755929 0.130931i
\(701\) −9.00000 −0.339925 −0.169963 0.985451i \(-0.554365\pi\)
−0.169963 + 0.985451i \(0.554365\pi\)
\(702\) 0 0
\(703\) 6.00000 0.226294
\(704\) 7.00000 12.1244i 0.263822 0.456954i
\(705\) 0 0
\(706\) −7.00000 12.1244i −0.263448 0.456306i
\(707\) 7.00000 + 12.1244i 0.263262 + 0.455983i
\(708\) 0 0
\(709\) 19.5000 33.7750i 0.732338 1.26845i −0.223544 0.974694i \(-0.571763\pi\)
0.955882 0.293752i \(-0.0949041\pi\)
\(710\) 12.0000 0.450352
\(711\) 0 0
\(712\) −15.0000 −0.562149
\(713\) 18.0000 31.1769i 0.674105 1.16758i
\(714\) 0 0
\(715\) −5.00000 8.66025i −0.186989 0.323875i
\(716\) 1.00000 + 1.73205i 0.0373718 + 0.0647298i
\(717\) 0 0
\(718\) 4.00000 6.92820i 0.149279 0.258558i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) −7.50000 + 12.9904i −0.279121 + 0.483452i
\(723\) 0 0
\(724\) −7.00000 12.1244i −0.260153 0.450598i
\(725\) −10.0000 17.3205i −0.371391 0.643268i
\(726\) 0 0
\(727\) −4.00000 + 6.92820i −0.148352 + 0.256953i −0.930618 0.365991i \(-0.880730\pi\)
0.782267 + 0.622944i \(0.214063\pi\)
\(728\) 15.0000 0.555937
\(729\) 0 0
\(730\) 15.0000 0.555175
\(731\) 6.00000 10.3923i 0.221918 0.384373i
\(732\) 0 0
\(733\) 3.00000 + 5.19615i 0.110808 + 0.191924i 0.916096 0.400959i \(-0.131323\pi\)
−0.805289 + 0.592883i \(0.797990\pi\)
\(734\) −15.0000 25.9808i −0.553660 0.958967i
\(735\) 0 0
\(736\) 15.0000 25.9808i 0.552907 0.957664i
\(737\) 4.00000 0.147342
\(738\) 0 0
\(739\) 54.0000 1.98642 0.993211 0.116326i \(-0.0371118\pi\)
0.993211 + 0.116326i \(0.0371118\pi\)
\(740\) −1.50000 + 2.59808i −0.0551411 + 0.0955072i
\(741\) 0 0
\(742\) 3.00000 + 5.19615i 0.110133 + 0.190757i
\(743\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0 0
\(745\) −7.50000 + 12.9904i −0.274779 + 0.475931i
\(746\) 22.0000 0.805477
\(747\) 0 0
\(748\) 6.00000 0.219382
\(749\) −4.00000 + 6.92820i −0.146157 + 0.253151i
\(750\) 0 0
\(751\) 22.0000 + 38.1051i 0.802791 + 1.39048i 0.917772 + 0.397108i \(0.129986\pi\)
−0.114981 + 0.993368i \(0.536681\pi\)
\(752\) −3.00000 5.19615i −0.109399 0.189484i
\(753\) 0 0
\(754\) 12.5000 21.6506i 0.455223 0.788470i
\(755\) −10.0000 −0.363937
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 3.00000 5.19615i 0.108965 0.188733i
\(759\) 0 0
\(760\) 3.00000 + 5.19615i 0.108821 + 0.188484i
\(761\) 16.5000 + 28.5788i 0.598125 + 1.03598i 0.993098 + 0.117289i \(0.0374205\pi\)
−0.394973 + 0.918693i \(0.629246\pi\)
\(762\) 0 0
\(763\) 4.50000 7.79423i 0.162911 0.282170i
\(764\) 14.0000 0.506502
\(765\) 0 0
\(766\) 0 0
\(767\) 15.0000 25.9808i 0.541619 0.938111i
\(768\) 0 0
\(769\) −2.50000 4.33013i −0.0901523 0.156148i 0.817423 0.576038i \(-0.195402\pi\)
−0.907575 + 0.419890i \(0.862069\pi\)
\(770\) 1.00000 + 1.73205i 0.0360375 + 0.0624188i
\(771\) 0 0
\(772\) −6.50000 + 11.2583i −0.233940 + 0.405196i
\(773\) 29.0000 1.04306 0.521529 0.853234i \(-0.325362\pi\)
0.521529 + 0.853234i \(0.325362\pi\)
\(774\) 0 0
\(775\) 24.0000 0.862105
\(776\) 27.0000 46.7654i 0.969244 1.67878i
\(777\) 0 0
\(778\) 9.00000 + 15.5885i 0.322666 + 0.558873i
\(779\) −10.0000 17.3205i −0.358287 0.620572i
\(780\) 0 0
\(781\) −12.0000 + 20.7846i −0.429394 + 0.743732i
\(782\) −18.0000 −0.643679
\(783\) 0 0
\(784\) −1.00000 −0.0357143
\(785\) 2.50000 4.33013i 0.0892288 0.154549i
\(786\) 0 0
\(787\) −8.00000 13.8564i −0.285169 0.493928i 0.687481 0.726202i \(-0.258716\pi\)
−0.972650 + 0.232275i \(0.925383\pi\)
\(788\) −2.50000 4.33013i −0.0890588 0.154254i
\(789\) 0 0
\(790\) 7.00000 12.1244i 0.249049 0.431365i
\(791\) −1.00000 −0.0355559
\(792\) 0 0
\(793\) −35.0000 −1.24289
\(794\) 7.50000 12.9904i 0.266165 0.461011i
\(795\) 0 0
\(796\) −3.00000 5.19615i −0.106332 0.184173i
\(797\) −18.5000 32.0429i −0.655304 1.13502i −0.981818 0.189827i \(-0.939207\pi\)
0.326514 0.945192i \(-0.394126\pi\)
\(798\) 0 0
\(799\) 9.00000 15.5885i 0.318397 0.551480i
\(800\) 20.0000 0.707107
\(801\) 0 0
\(802\) 3.00000 0.105934
\(803\) −15.0000 + 25.9808i −0.529339 + 0.916841i
\(804\) 0 0
\(805\) 3.00000 + 5.19615i 0.105736 + 0.183140i
\(806\) 15.0000 + 25.9808i 0.528352 + 0.915133i
\(807\) 0 0
\(808\) −21.0000 + 36.3731i −0.738777 + 1.27960i
\(809\) 9.00000 0.316423 0.158212 0.987405i \(-0.449427\pi\)
0.158212 + 0.987405i \(0.449427\pi\)
\(810\) 0 0
\(811\) 14.0000 0.491606 0.245803 0.969320i \(-0.420948\pi\)
0.245803 + 0.969320i \(0.420948\pi\)
\(812\) 2.50000 4.33013i 0.0877328 0.151958i
\(813\) 0 0
\(814\) 3.00000 + 5.19615i 0.105150 + 0.182125i
\(815\) −8.00000 13.8564i −0.280228 0.485369i
\(816\) 0 0
\(817\) −4.00000 + 6.92820i −0.139942 + 0.242387i
\(818\) −5.00000 −0.174821
\(819\) 0 0
\(820\) 10.0000 0.349215
\(821\) −23.5000 + 40.7032i −0.820156 + 1.42055i 0.0854103 + 0.996346i \(0.472780\pi\)
−0.905566 + 0.424205i \(0.860553\pi\)
\(822\) 0 0
\(823\) 12.0000 + 20.7846i 0.418294 + 0.724506i 0.995768 0.0919029i \(-0.0292950\pi\)
−0.577474 + 0.816409i \(0.695962\pi\)
\(824\) −12.0000 20.7846i −0.418040 0.724066i
\(825\) 0 0
\(826\) −3.00000 + 5.19615i −0.104383 + 0.180797i
\(827\) 24.0000 0.834562 0.417281 0.908778i \(-0.362983\pi\)
0.417281 + 0.908778i \(0.362983\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 9.00000 15.5885i 0.312395 0.541083i
\(831\) 0 0
\(832\) 17.5000 + 30.3109i 0.606703 + 1.05084i
\(833\) −1.50000 2.59808i −0.0519719 0.0900180i
\(834\) 0 0
\(835\) 7.00000 12.1244i 0.242245 0.419581i
\(836\) −4.00000 −0.138343
\(837\) 0 0
\(838\) −36.0000 −1.24360
\(839\) 4.00000 6.92820i 0.138095 0.239188i −0.788680 0.614804i \(-0.789235\pi\)
0.926776 + 0.375615i \(0.122569\pi\)
\(840\) 0 0
\(841\) 2.00000 + 3.46410i 0.0689655 + 0.119452i
\(842\) 14.5000 + 25.1147i 0.499703 + 0.865511i
\(843\) 0 0
\(844\) 11.0000 19.0526i 0.378636 0.655816i
\(845\) 12.0000 0.412813
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) −3.00000 + 5.19615i −0.103020 + 0.178437i
\(849\) 0 0
\(850\) −6.00000 10.3923i −0.205798 0.356453i
\(851\) 9.00000 + 15.5885i 0.308516 + 0.534365i
\(852\) 0 0
\(853\) 5.00000 8.66025i 0.171197 0.296521i −0.767642 0.640879i \(-0.778570\pi\)
0.938839 + 0.344358i \(0.111903\pi\)
\(854\) 7.00000 0.239535
\(855\) 0 0
\(856\) −24.0000 −0.820303
\(857\) 20.5000 35.5070i 0.700267 1.21290i −0.268106 0.963389i \(-0.586398\pi\)
0.968373 0.249508i \(-0.0802689\pi\)
\(858\) 0 0
\(859\) 26.0000 + 45.0333i 0.887109 + 1.53652i 0.843278 + 0.537478i \(0.180623\pi\)
0.0438309 + 0.999039i \(0.486044\pi\)
\(860\) −2.00000 3.46410i −0.0681994 0.118125i
\(861\) 0 0
\(862\) 6.00000 10.3923i 0.204361 0.353963i
\(863\) 54.0000 1.83818 0.919091 0.394046i \(-0.128925\pi\)
0.919091 + 0.394046i \(0.128925\pi\)
\(864\) 0 0
\(865\) 5.00000 0.170005
\(866\) 0.500000 0.866025i 0.0169907 0.0294287i
\(867\) 0 0
\(868\) 3.00000 + 5.19615i 0.101827 + 0.176369i
\(869\) 14.0000 + 24.2487i 0.474917 + 0.822581i
\(870\) 0 0
\(871\) −5.00000 + 8.66025i −0.169419 + 0.293442i
\(872\) 27.0000 0.914335
\(873\) 0 0
\(874\) 12.0000 0.405906
\(875\) −4.50000 + 7.79423i −0.152128 + 0.263493i
\(876\) 0 0
\(877\) 5.50000 + 9.52628i 0.185722 + 0.321680i 0.943820 0.330461i \(-0.107204\pi\)
−0.758098 + 0.652141i \(0.773871\pi\)
\(878\) 18.0000 + 31.1769i 0.607471 + 1.05217i
\(879\) 0 0
\(880\) −1.00000 + 1.73205i −0.0337100 + 0.0583874i
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) 26.0000 0.874970 0.437485 0.899226i \(-0.355869\pi\)
0.437485 + 0.899226i \(0.355869\pi\)
\(884\) −7.50000 + 12.9904i −0.252252 + 0.436914i
\(885\) 0 0
\(886\) 3.00000 + 5.19615i 0.100787 + 0.174568i
\(887\) −19.0000 32.9090i −0.637958 1.10497i −0.985880 0.167452i \(-0.946446\pi\)
0.347923 0.937523i \(-0.386887\pi\)
\(888\) 0 0
\(889\) 6.00000 10.3923i 0.201234 0.348547i
\(890\) 5.00000 0.167600
\(891\) 0 0
\(892\) −4.00000 −0.133930
\(893\) −6.00000 + 10.3923i −0.200782 + 0.347765i
\(894\) 0 0
\(895\) −1.00000 1.73205i −0.0334263 0.0578961i
\(896\) 1.50000 + 2.59808i 0.0501115 + 0.0867956i
\(897\) 0 0
\(898\) 9.00000 15.5885i 0.300334 0.520194i
\(899\) 30.0000 1.00056
\(900\) 0 0
\(901\) −18.0000 −0.599667
\(902\) 10.0000 17.3205i 0.332964 0.576710i
\(903\) 0 0
\(904\) −1.50000 2.59808i −0.0498893 0.0864107i
\(905\) 7.00000 + 12.1244i 0.232688 + 0.403027i
\(906\) 0 0
\(907\) 2.00000 3.46410i 0.0664089 0.115024i −0.830909 0.556408i \(-0.812179\pi\)
0.897318 + 0.441384i \(0.145512\pi\)
\(908\) 24.0000 0.796468
\(909\) 0 0
\(910\) −5.00000 −0.165748
\(911\) −6.00000 + 10.3923i −0.198789 + 0.344312i −0.948136 0.317865i \(-0.897034\pi\)
0.749347 + 0.662177i \(0.230367\pi\)
\(912\) 0 0
\(913\) 18.0000 + 31.1769i 0.595713 + 1.03181i
\(914\) −8.50000 14.7224i −0.281155 0.486975i
\(915\) 0 0
\(916\) 5.50000 9.52628i 0.181725 0.314757i
\(917\) −16.0000 −0.528367
\(918\) 0 0
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) −9.00000 + 15.5885i −0.296721 + 0.513936i
\(921\) 0 0
\(922\) 19.0000 + 32.9090i 0.625732 + 1.08380i
\(923\) −30.0000 51.9615i −0.987462 1.71033i
\(924\) 0 0
\(925\) −6.00000 + 10.3923i −0.197279 + 0.341697i
\(926\) 2.00000 0.0657241
\(927\) 0 0
\(928\) 25.0000 0.820665
\(929\) 18.5000 32.0429i 0.606965 1.05129i −0.384772 0.923012i \(-0.625720\pi\)
0.991738 0.128283i \(-0.0409467\pi\)
\(930\) 0 0
\(931\) 1.00000 + 1.73205i 0.0327737 + 0.0567657i
\(932\) 10.5000 + 18.1865i 0.343939 + 0.595720i
\(933\) 0 0
\(934\) −9.00000 + 15.5885i −0.294489 + 0.510070i
\(935\) −6.00000 −0.196221
\(936\) 0 0
\(937\) 33.0000 1.07806 0.539032 0.842286i \(-0.318790\pi\)
0.539032 + 0.842286i \(0.318790\pi\)
\(938\) 1.00000 1.73205i 0.0326512 0.0565535i
\(939\) 0 0
\(940\) −3.00000 5.19615i −0.0978492 0.169480i
\(941\) −20.5000 35.5070i −0.668281 1.15750i −0.978385 0.206794i \(-0.933697\pi\)
0.310104 0.950703i \(-0.399636\pi\)
\(942\) 0 0
\(943\) 30.0000 51.9615i 0.976934 1.69210i
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) −8.00000 −0.260102
\(947\) 2.00000 3.46410i 0.0649913 0.112568i −0.831699 0.555227i \(-0.812631\pi\)
0.896690 + 0.442659i \(0.145965\pi\)
\(948\) 0 0
\(949\) −37.5000 64.9519i −1.21730 2.10843i
\(950\) 4.00000 + 6.92820i 0.129777 + 0.224781i
\(951\) 0 0
\(952\) 4.50000 7.79423i 0.145846 0.252612i
\(953\) 5.00000 0.161966 0.0809829 0.996715i \(-0.474194\pi\)
0.0809829 + 0.996715i \(0.474194\pi\)
\(954\) 0 0
\(955\) −14.0000 −0.453029
\(956\) 15.0000 25.9808i 0.485135 0.840278i
\(957\) 0 0
\(958\) −17.0000 29.4449i −0.549245 0.951320i
\(959\) 10.5000 + 18.1865i 0.339063 + 0.587274i
\(960\) 0 0
\(961\) −2.50000 + 4.33013i −0.0806452 + 0.139682i
\(962\) −15.0000 −0.483619
\(963\) 0 0
\(964\) 19.0000 0.611949
\(965\) 6.50000 11.2583i 0.209242 0.362418i
\(966\) 0 0
\(967\) 13.0000 + 22.5167i 0.418052 + 0.724087i 0.995743 0.0921681i \(-0.0293797\pi\)
−0.577692 + 0.816255i \(0.696046\pi\)
\(968\) 10.5000 + 18.1865i 0.337483 + 0.584537i
\(969\) 0 0
\(970\) −9.00000 + 15.5885i −0.288973 + 0.500515i
\(971\) −54.0000 −1.73294 −0.866471 0.499227i \(-0.833617\pi\)
−0.866471 + 0.499227i \(0.833617\pi\)
\(972\) 0 0
\(973\) 6.00000 0.192351
\(974\) 17.0000 29.4449i 0.544715 0.943474i
\(975\) 0 0
\(976\) 3.50000 + 6.06218i 0.112032 + 0.194046i
\(977\) −9.00000 15.5885i −0.287936 0.498719i 0.685381 0.728184i \(-0.259636\pi\)
−0.973317 + 0.229465i \(0.926302\pi\)
\(978\) 0 0
\(979\) −5.00000 + 8.66025i −0.159801 + 0.276783i
\(980\) −1.00000 −0.0319438
\(981\) 0 0
\(982\) 28.0000 0.893516
\(983\) −6.00000 + 10.3923i −0.191370 + 0.331463i −0.945705 0.325027i \(-0.894626\pi\)
0.754334 + 0.656490i \(0.227960\pi\)
\(984\) 0 0
\(985\) 2.50000 + 4.33013i 0.0796566 + 0.137969i
\(986\) −7.50000 12.9904i −0.238849 0.413698i
\(987\) 0 0
\(988\) 5.00000 8.66025i 0.159071 0.275519i
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) −15.0000 + 25.9808i −0.476250 + 0.824890i
\(993\) 0 0
\(994\) 6.00000 + 10.3923i 0.190308 + 0.329624i
\(995\) 3.00000 + 5.19615i 0.0951064 + 0.164729i
\(996\) 0 0
\(997\) −3.50000 + 6.06218i −0.110846 + 0.191991i −0.916112 0.400923i \(-0.868689\pi\)
0.805266 + 0.592914i \(0.202023\pi\)
\(998\) −10.0000 −0.316544
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.f.f.379.1 2
3.2 odd 2 567.2.f.c.379.1 2
9.2 odd 6 567.2.a.b.1.1 yes 1
9.4 even 3 inner 567.2.f.f.190.1 2
9.5 odd 6 567.2.f.c.190.1 2
9.7 even 3 567.2.a.a.1.1 1
36.7 odd 6 9072.2.a.q.1.1 1
36.11 even 6 9072.2.a.j.1.1 1
63.20 even 6 3969.2.a.e.1.1 1
63.34 odd 6 3969.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.a.a.1.1 1 9.7 even 3
567.2.a.b.1.1 yes 1 9.2 odd 6
567.2.f.c.190.1 2 9.5 odd 6
567.2.f.c.379.1 2 3.2 odd 2
567.2.f.f.190.1 2 9.4 even 3 inner
567.2.f.f.379.1 2 1.1 even 1 trivial
3969.2.a.b.1.1 1 63.34 odd 6
3969.2.a.e.1.1 1 63.20 even 6
9072.2.a.j.1.1 1 36.11 even 6
9072.2.a.q.1.1 1 36.7 odd 6