Properties

Label 567.2.f.a.190.1
Level $567$
Weight $2$
Character 567.190
Analytic conductor $4.528$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(190,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.190");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 190.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 567.190
Dual form 567.2.f.a.379.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(0.500000 + 0.866025i) q^{7} +2.00000 q^{10} +(-2.00000 - 3.46410i) q^{11} +(1.00000 - 1.73205i) q^{13} +(1.00000 - 1.73205i) q^{14} +(2.00000 + 3.46410i) q^{16} -3.00000 q^{17} -8.00000 q^{19} +(-1.00000 - 1.73205i) q^{20} +(-4.00000 + 6.92820i) q^{22} +(-3.00000 + 5.19615i) q^{23} +(2.00000 + 3.46410i) q^{25} -4.00000 q^{26} -2.00000 q^{28} +(-2.00000 - 3.46410i) q^{29} +(-3.00000 + 5.19615i) q^{31} +(4.00000 - 6.92820i) q^{32} +(3.00000 + 5.19615i) q^{34} -1.00000 q^{35} -3.00000 q^{37} +(8.00000 + 13.8564i) q^{38} +(0.500000 - 0.866025i) q^{41} +(-5.50000 - 9.52628i) q^{43} +8.00000 q^{44} +12.0000 q^{46} +(4.50000 + 7.79423i) q^{47} +(-0.500000 + 0.866025i) q^{49} +(4.00000 - 6.92820i) q^{50} +(2.00000 + 3.46410i) q^{52} -6.00000 q^{53} +4.00000 q^{55} +(-4.00000 + 6.92820i) q^{58} +(-7.50000 + 12.9904i) q^{59} +(-2.00000 - 3.46410i) q^{61} +12.0000 q^{62} -8.00000 q^{64} +(1.00000 + 1.73205i) q^{65} +(4.00000 - 6.92820i) q^{67} +(3.00000 - 5.19615i) q^{68} +(1.00000 + 1.73205i) q^{70} +12.0000 q^{71} +6.00000 q^{73} +(3.00000 + 5.19615i) q^{74} +(8.00000 - 13.8564i) q^{76} +(2.00000 - 3.46410i) q^{77} +(0.500000 + 0.866025i) q^{79} -4.00000 q^{80} -2.00000 q^{82} +(-4.50000 - 7.79423i) q^{83} +(1.50000 - 2.59808i) q^{85} +(-11.0000 + 19.0526i) q^{86} -2.00000 q^{89} +2.00000 q^{91} +(-6.00000 - 10.3923i) q^{92} +(9.00000 - 15.5885i) q^{94} +(4.00000 - 6.92820i) q^{95} +(-6.00000 - 10.3923i) q^{97} +2.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{4} - q^{5} + q^{7} + 4 q^{10} - 4 q^{11} + 2 q^{13} + 2 q^{14} + 4 q^{16} - 6 q^{17} - 16 q^{19} - 2 q^{20} - 8 q^{22} - 6 q^{23} + 4 q^{25} - 8 q^{26} - 4 q^{28} - 4 q^{29} - 6 q^{31}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(3\) 0 0
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) −2.00000 3.46410i −0.603023 1.04447i −0.992361 0.123371i \(-0.960630\pi\)
0.389338 0.921095i \(-0.372704\pi\)
\(12\) 0 0
\(13\) 1.00000 1.73205i 0.277350 0.480384i −0.693375 0.720577i \(-0.743877\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) 1.00000 1.73205i 0.267261 0.462910i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) −8.00000 −1.83533 −0.917663 0.397360i \(-0.869927\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) −1.00000 1.73205i −0.223607 0.387298i
\(21\) 0 0
\(22\) −4.00000 + 6.92820i −0.852803 + 1.47710i
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) −4.00000 −0.784465
\(27\) 0 0
\(28\) −2.00000 −0.377964
\(29\) −2.00000 3.46410i −0.371391 0.643268i 0.618389 0.785872i \(-0.287786\pi\)
−0.989780 + 0.142605i \(0.954452\pi\)
\(30\) 0 0
\(31\) −3.00000 + 5.19615i −0.538816 + 0.933257i 0.460152 + 0.887840i \(0.347795\pi\)
−0.998968 + 0.0454165i \(0.985539\pi\)
\(32\) 4.00000 6.92820i 0.707107 1.22474i
\(33\) 0 0
\(34\) 3.00000 + 5.19615i 0.514496 + 0.891133i
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) 8.00000 + 13.8564i 1.29777 + 2.24781i
\(39\) 0 0
\(40\) 0 0
\(41\) 0.500000 0.866025i 0.0780869 0.135250i −0.824338 0.566099i \(-0.808452\pi\)
0.902424 + 0.430848i \(0.141786\pi\)
\(42\) 0 0
\(43\) −5.50000 9.52628i −0.838742 1.45274i −0.890947 0.454108i \(-0.849958\pi\)
0.0522047 0.998636i \(-0.483375\pi\)
\(44\) 8.00000 1.20605
\(45\) 0 0
\(46\) 12.0000 1.76930
\(47\) 4.50000 + 7.79423i 0.656392 + 1.13691i 0.981543 + 0.191243i \(0.0612518\pi\)
−0.325150 + 0.945662i \(0.605415\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 4.00000 6.92820i 0.565685 0.979796i
\(51\) 0 0
\(52\) 2.00000 + 3.46410i 0.277350 + 0.480384i
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) −4.00000 + 6.92820i −0.525226 + 0.909718i
\(59\) −7.50000 + 12.9904i −0.976417 + 1.69120i −0.301239 + 0.953549i \(0.597400\pi\)
−0.675178 + 0.737655i \(0.735933\pi\)
\(60\) 0 0
\(61\) −2.00000 3.46410i −0.256074 0.443533i 0.709113 0.705095i \(-0.249096\pi\)
−0.965187 + 0.261562i \(0.915762\pi\)
\(62\) 12.0000 1.52400
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 1.00000 + 1.73205i 0.124035 + 0.214834i
\(66\) 0 0
\(67\) 4.00000 6.92820i 0.488678 0.846415i −0.511237 0.859440i \(-0.670813\pi\)
0.999915 + 0.0130248i \(0.00414604\pi\)
\(68\) 3.00000 5.19615i 0.363803 0.630126i
\(69\) 0 0
\(70\) 1.00000 + 1.73205i 0.119523 + 0.207020i
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 3.00000 + 5.19615i 0.348743 + 0.604040i
\(75\) 0 0
\(76\) 8.00000 13.8564i 0.917663 1.58944i
\(77\) 2.00000 3.46410i 0.227921 0.394771i
\(78\) 0 0
\(79\) 0.500000 + 0.866025i 0.0562544 + 0.0974355i 0.892781 0.450490i \(-0.148751\pi\)
−0.836527 + 0.547926i \(0.815418\pi\)
\(80\) −4.00000 −0.447214
\(81\) 0 0
\(82\) −2.00000 −0.220863
\(83\) −4.50000 7.79423i −0.493939 0.855528i 0.506036 0.862512i \(-0.331110\pi\)
−0.999976 + 0.00698436i \(0.997777\pi\)
\(84\) 0 0
\(85\) 1.50000 2.59808i 0.162698 0.281801i
\(86\) −11.0000 + 19.0526i −1.18616 + 2.05449i
\(87\) 0 0
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) −6.00000 10.3923i −0.625543 1.08347i
\(93\) 0 0
\(94\) 9.00000 15.5885i 0.928279 1.60783i
\(95\) 4.00000 6.92820i 0.410391 0.710819i
\(96\) 0 0
\(97\) −6.00000 10.3923i −0.609208 1.05518i −0.991371 0.131084i \(-0.958154\pi\)
0.382164 0.924095i \(-0.375179\pi\)
\(98\) 2.00000 0.202031
\(99\) 0 0
\(100\) −8.00000 −0.800000
\(101\) 5.00000 + 8.66025i 0.497519 + 0.861727i 0.999996 0.00286291i \(-0.000911295\pi\)
−0.502477 + 0.864590i \(0.667578\pi\)
\(102\) 0 0
\(103\) −1.00000 + 1.73205i −0.0985329 + 0.170664i −0.911078 0.412235i \(-0.864748\pi\)
0.812545 + 0.582899i \(0.198082\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 6.00000 + 10.3923i 0.582772 + 1.00939i
\(107\) −2.00000 −0.193347 −0.0966736 0.995316i \(-0.530820\pi\)
−0.0966736 + 0.995316i \(0.530820\pi\)
\(108\) 0 0
\(109\) −9.00000 −0.862044 −0.431022 0.902342i \(-0.641847\pi\)
−0.431022 + 0.902342i \(0.641847\pi\)
\(110\) −4.00000 6.92820i −0.381385 0.660578i
\(111\) 0 0
\(112\) −2.00000 + 3.46410i −0.188982 + 0.327327i
\(113\) 1.00000 1.73205i 0.0940721 0.162938i −0.815149 0.579252i \(-0.803345\pi\)
0.909221 + 0.416314i \(0.136678\pi\)
\(114\) 0 0
\(115\) −3.00000 5.19615i −0.279751 0.484544i
\(116\) 8.00000 0.742781
\(117\) 0 0
\(118\) 30.0000 2.76172
\(119\) −1.50000 2.59808i −0.137505 0.238165i
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) −4.00000 + 6.92820i −0.362143 + 0.627250i
\(123\) 0 0
\(124\) −6.00000 10.3923i −0.538816 0.933257i
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −15.0000 −1.33103 −0.665517 0.746382i \(-0.731789\pi\)
−0.665517 + 0.746382i \(0.731789\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 2.00000 3.46410i 0.175412 0.303822i
\(131\) −2.00000 + 3.46410i −0.174741 + 0.302660i −0.940072 0.340977i \(-0.889242\pi\)
0.765331 + 0.643637i \(0.222575\pi\)
\(132\) 0 0
\(133\) −4.00000 6.92820i −0.346844 0.600751i
\(134\) −16.0000 −1.38219
\(135\) 0 0
\(136\) 0 0
\(137\) −9.00000 15.5885i −0.768922 1.33181i −0.938148 0.346235i \(-0.887460\pi\)
0.169226 0.985577i \(-0.445873\pi\)
\(138\) 0 0
\(139\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(140\) 1.00000 1.73205i 0.0845154 0.146385i
\(141\) 0 0
\(142\) −12.0000 20.7846i −1.00702 1.74421i
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) −6.00000 10.3923i −0.496564 0.860073i
\(147\) 0 0
\(148\) 3.00000 5.19615i 0.246598 0.427121i
\(149\) 6.00000 10.3923i 0.491539 0.851371i −0.508413 0.861113i \(-0.669768\pi\)
0.999953 + 0.00974235i \(0.00310113\pi\)
\(150\) 0 0
\(151\) −2.50000 4.33013i −0.203447 0.352381i 0.746190 0.665733i \(-0.231881\pi\)
−0.949637 + 0.313353i \(0.898548\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −8.00000 −0.644658
\(155\) −3.00000 5.19615i −0.240966 0.417365i
\(156\) 0 0
\(157\) 4.00000 6.92820i 0.319235 0.552931i −0.661094 0.750303i \(-0.729907\pi\)
0.980329 + 0.197372i \(0.0632408\pi\)
\(158\) 1.00000 1.73205i 0.0795557 0.137795i
\(159\) 0 0
\(160\) 4.00000 + 6.92820i 0.316228 + 0.547723i
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) −11.0000 −0.861586 −0.430793 0.902451i \(-0.641766\pi\)
−0.430793 + 0.902451i \(0.641766\pi\)
\(164\) 1.00000 + 1.73205i 0.0780869 + 0.135250i
\(165\) 0 0
\(166\) −9.00000 + 15.5885i −0.698535 + 1.20990i
\(167\) 8.50000 14.7224i 0.657750 1.13926i −0.323447 0.946246i \(-0.604842\pi\)
0.981197 0.193010i \(-0.0618249\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) −6.00000 −0.460179
\(171\) 0 0
\(172\) 22.0000 1.67748
\(173\) 11.0000 + 19.0526i 0.836315 + 1.44854i 0.892956 + 0.450145i \(0.148628\pi\)
−0.0566411 + 0.998395i \(0.518039\pi\)
\(174\) 0 0
\(175\) −2.00000 + 3.46410i −0.151186 + 0.261861i
\(176\) 8.00000 13.8564i 0.603023 1.04447i
\(177\) 0 0
\(178\) 2.00000 + 3.46410i 0.149906 + 0.259645i
\(179\) 2.00000 0.149487 0.0747435 0.997203i \(-0.476186\pi\)
0.0747435 + 0.997203i \(0.476186\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) −2.00000 3.46410i −0.148250 0.256776i
\(183\) 0 0
\(184\) 0 0
\(185\) 1.50000 2.59808i 0.110282 0.191014i
\(186\) 0 0
\(187\) 6.00000 + 10.3923i 0.438763 + 0.759961i
\(188\) −18.0000 −1.31278
\(189\) 0 0
\(190\) −16.0000 −1.16076
\(191\) 1.00000 + 1.73205i 0.0723575 + 0.125327i 0.899934 0.436026i \(-0.143614\pi\)
−0.827577 + 0.561353i \(0.810281\pi\)
\(192\) 0 0
\(193\) 12.5000 21.6506i 0.899770 1.55845i 0.0719816 0.997406i \(-0.477068\pi\)
0.827788 0.561041i \(-0.189599\pi\)
\(194\) −12.0000 + 20.7846i −0.861550 + 1.49225i
\(195\) 0 0
\(196\) −1.00000 1.73205i −0.0714286 0.123718i
\(197\) 4.00000 0.284988 0.142494 0.989796i \(-0.454488\pi\)
0.142494 + 0.989796i \(0.454488\pi\)
\(198\) 0 0
\(199\) −12.0000 −0.850657 −0.425329 0.905039i \(-0.639842\pi\)
−0.425329 + 0.905039i \(0.639842\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 10.0000 17.3205i 0.703598 1.21867i
\(203\) 2.00000 3.46410i 0.140372 0.243132i
\(204\) 0 0
\(205\) 0.500000 + 0.866025i 0.0349215 + 0.0604858i
\(206\) 4.00000 0.278693
\(207\) 0 0
\(208\) 8.00000 0.554700
\(209\) 16.0000 + 27.7128i 1.10674 + 1.91694i
\(210\) 0 0
\(211\) −2.00000 + 3.46410i −0.137686 + 0.238479i −0.926620 0.375999i \(-0.877300\pi\)
0.788935 + 0.614477i \(0.210633\pi\)
\(212\) 6.00000 10.3923i 0.412082 0.713746i
\(213\) 0 0
\(214\) 2.00000 + 3.46410i 0.136717 + 0.236801i
\(215\) 11.0000 0.750194
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) 9.00000 + 15.5885i 0.609557 + 1.05578i
\(219\) 0 0
\(220\) −4.00000 + 6.92820i −0.269680 + 0.467099i
\(221\) −3.00000 + 5.19615i −0.201802 + 0.349531i
\(222\) 0 0
\(223\) 1.00000 + 1.73205i 0.0669650 + 0.115987i 0.897564 0.440884i \(-0.145335\pi\)
−0.830599 + 0.556871i \(0.812002\pi\)
\(224\) 8.00000 0.534522
\(225\) 0 0
\(226\) −4.00000 −0.266076
\(227\) −12.0000 20.7846i −0.796468 1.37952i −0.921903 0.387421i \(-0.873366\pi\)
0.125435 0.992102i \(-0.459967\pi\)
\(228\) 0 0
\(229\) 2.00000 3.46410i 0.132164 0.228914i −0.792347 0.610071i \(-0.791141\pi\)
0.924510 + 0.381157i \(0.124474\pi\)
\(230\) −6.00000 + 10.3923i −0.395628 + 0.685248i
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −9.00000 −0.587095
\(236\) −15.0000 25.9808i −0.976417 1.69120i
\(237\) 0 0
\(238\) −3.00000 + 5.19615i −0.194461 + 0.336817i
\(239\) −9.00000 + 15.5885i −0.582162 + 1.00833i 0.413061 + 0.910703i \(0.364460\pi\)
−0.995223 + 0.0976302i \(0.968874\pi\)
\(240\) 0 0
\(241\) 5.00000 + 8.66025i 0.322078 + 0.557856i 0.980917 0.194429i \(-0.0622852\pi\)
−0.658838 + 0.752285i \(0.728952\pi\)
\(242\) 10.0000 0.642824
\(243\) 0 0
\(244\) 8.00000 0.512148
\(245\) −0.500000 0.866025i −0.0319438 0.0553283i
\(246\) 0 0
\(247\) −8.00000 + 13.8564i −0.509028 + 0.881662i
\(248\) 0 0
\(249\) 0 0
\(250\) 9.00000 + 15.5885i 0.569210 + 0.985901i
\(251\) 25.0000 1.57799 0.788993 0.614402i \(-0.210603\pi\)
0.788993 + 0.614402i \(0.210603\pi\)
\(252\) 0 0
\(253\) 24.0000 1.50887
\(254\) 15.0000 + 25.9808i 0.941184 + 1.63018i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 5.00000 8.66025i 0.311891 0.540212i −0.666880 0.745165i \(-0.732371\pi\)
0.978772 + 0.204953i \(0.0657041\pi\)
\(258\) 0 0
\(259\) −1.50000 2.59808i −0.0932055 0.161437i
\(260\) −4.00000 −0.248069
\(261\) 0 0
\(262\) 8.00000 0.494242
\(263\) 7.00000 + 12.1244i 0.431638 + 0.747620i 0.997015 0.0772134i \(-0.0246023\pi\)
−0.565376 + 0.824833i \(0.691269\pi\)
\(264\) 0 0
\(265\) 3.00000 5.19615i 0.184289 0.319197i
\(266\) −8.00000 + 13.8564i −0.490511 + 0.849591i
\(267\) 0 0
\(268\) 8.00000 + 13.8564i 0.488678 + 0.846415i
\(269\) 21.0000 1.28039 0.640196 0.768211i \(-0.278853\pi\)
0.640196 + 0.768211i \(0.278853\pi\)
\(270\) 0 0
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) −6.00000 10.3923i −0.363803 0.630126i
\(273\) 0 0
\(274\) −18.0000 + 31.1769i −1.08742 + 1.88347i
\(275\) 8.00000 13.8564i 0.482418 0.835573i
\(276\) 0 0
\(277\) −6.50000 11.2583i −0.390547 0.676448i 0.601975 0.798515i \(-0.294381\pi\)
−0.992522 + 0.122068i \(0.961047\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.00000 + 8.66025i 0.298275 + 0.516627i 0.975741 0.218926i \(-0.0702554\pi\)
−0.677466 + 0.735554i \(0.736922\pi\)
\(282\) 0 0
\(283\) −14.0000 + 24.2487i −0.832214 + 1.44144i 0.0640654 + 0.997946i \(0.479593\pi\)
−0.896279 + 0.443491i \(0.853740\pi\)
\(284\) −12.0000 + 20.7846i −0.712069 + 1.23334i
\(285\) 0 0
\(286\) 8.00000 + 13.8564i 0.473050 + 0.819346i
\(287\) 1.00000 0.0590281
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) −4.00000 6.92820i −0.234888 0.406838i
\(291\) 0 0
\(292\) −6.00000 + 10.3923i −0.351123 + 0.608164i
\(293\) 0.500000 0.866025i 0.0292103 0.0505937i −0.851051 0.525084i \(-0.824034\pi\)
0.880261 + 0.474490i \(0.157367\pi\)
\(294\) 0 0
\(295\) −7.50000 12.9904i −0.436667 0.756329i
\(296\) 0 0
\(297\) 0 0
\(298\) −24.0000 −1.39028
\(299\) 6.00000 + 10.3923i 0.346989 + 0.601003i
\(300\) 0 0
\(301\) 5.50000 9.52628i 0.317015 0.549086i
\(302\) −5.00000 + 8.66025i −0.287718 + 0.498342i
\(303\) 0 0
\(304\) −16.0000 27.7128i −0.917663 1.58944i
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) −2.00000 −0.114146 −0.0570730 0.998370i \(-0.518177\pi\)
−0.0570730 + 0.998370i \(0.518177\pi\)
\(308\) 4.00000 + 6.92820i 0.227921 + 0.394771i
\(309\) 0 0
\(310\) −6.00000 + 10.3923i −0.340777 + 0.590243i
\(311\) −1.50000 + 2.59808i −0.0850572 + 0.147323i −0.905416 0.424526i \(-0.860441\pi\)
0.820358 + 0.571850i \(0.193774\pi\)
\(312\) 0 0
\(313\) 8.00000 + 13.8564i 0.452187 + 0.783210i 0.998522 0.0543564i \(-0.0173107\pi\)
−0.546335 + 0.837567i \(0.683977\pi\)
\(314\) −16.0000 −0.902932
\(315\) 0 0
\(316\) −2.00000 −0.112509
\(317\) −9.00000 15.5885i −0.505490 0.875535i −0.999980 0.00635137i \(-0.997978\pi\)
0.494489 0.869184i \(-0.335355\pi\)
\(318\) 0 0
\(319\) −8.00000 + 13.8564i −0.447914 + 0.775810i
\(320\) 4.00000 6.92820i 0.223607 0.387298i
\(321\) 0 0
\(322\) 6.00000 + 10.3923i 0.334367 + 0.579141i
\(323\) 24.0000 1.33540
\(324\) 0 0
\(325\) 8.00000 0.443760
\(326\) 11.0000 + 19.0526i 0.609234 + 1.05522i
\(327\) 0 0
\(328\) 0 0
\(329\) −4.50000 + 7.79423i −0.248093 + 0.429710i
\(330\) 0 0
\(331\) 0.500000 + 0.866025i 0.0274825 + 0.0476011i 0.879440 0.476011i \(-0.157918\pi\)
−0.851957 + 0.523612i \(0.824584\pi\)
\(332\) 18.0000 0.987878
\(333\) 0 0
\(334\) −34.0000 −1.86040
\(335\) 4.00000 + 6.92820i 0.218543 + 0.378528i
\(336\) 0 0
\(337\) −3.50000 + 6.06218i −0.190657 + 0.330228i −0.945468 0.325714i \(-0.894395\pi\)
0.754811 + 0.655942i \(0.227729\pi\)
\(338\) 9.00000 15.5885i 0.489535 0.847900i
\(339\) 0 0
\(340\) 3.00000 + 5.19615i 0.162698 + 0.281801i
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 22.0000 38.1051i 1.18273 2.04854i
\(347\) −1.00000 + 1.73205i −0.0536828 + 0.0929814i −0.891618 0.452788i \(-0.850429\pi\)
0.837935 + 0.545770i \(0.183763\pi\)
\(348\) 0 0
\(349\) 10.0000 + 17.3205i 0.535288 + 0.927146i 0.999149 + 0.0412379i \(0.0131301\pi\)
−0.463862 + 0.885908i \(0.653537\pi\)
\(350\) 8.00000 0.427618
\(351\) 0 0
\(352\) −32.0000 −1.70561
\(353\) −12.5000 21.6506i −0.665308 1.15235i −0.979202 0.202889i \(-0.934967\pi\)
0.313894 0.949458i \(-0.398366\pi\)
\(354\) 0 0
\(355\) −6.00000 + 10.3923i −0.318447 + 0.551566i
\(356\) 2.00000 3.46410i 0.106000 0.183597i
\(357\) 0 0
\(358\) −2.00000 3.46410i −0.105703 0.183083i
\(359\) −34.0000 −1.79445 −0.897226 0.441572i \(-0.854421\pi\)
−0.897226 + 0.441572i \(0.854421\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) −16.0000 27.7128i −0.840941 1.45655i
\(363\) 0 0
\(364\) −2.00000 + 3.46410i −0.104828 + 0.181568i
\(365\) −3.00000 + 5.19615i −0.157027 + 0.271979i
\(366\) 0 0
\(367\) 15.0000 + 25.9808i 0.782994 + 1.35618i 0.930190 + 0.367078i \(0.119642\pi\)
−0.147197 + 0.989107i \(0.547025\pi\)
\(368\) −24.0000 −1.25109
\(369\) 0 0
\(370\) −6.00000 −0.311925
\(371\) −3.00000 5.19615i −0.155752 0.269771i
\(372\) 0 0
\(373\) 6.50000 11.2583i 0.336557 0.582934i −0.647225 0.762299i \(-0.724071\pi\)
0.983783 + 0.179364i \(0.0574041\pi\)
\(374\) 12.0000 20.7846i 0.620505 1.07475i
\(375\) 0 0
\(376\) 0 0
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) −3.00000 −0.154100 −0.0770498 0.997027i \(-0.524550\pi\)
−0.0770498 + 0.997027i \(0.524550\pi\)
\(380\) 8.00000 + 13.8564i 0.410391 + 0.710819i
\(381\) 0 0
\(382\) 2.00000 3.46410i 0.102329 0.177239i
\(383\) 10.5000 18.1865i 0.536525 0.929288i −0.462563 0.886586i \(-0.653070\pi\)
0.999088 0.0427020i \(-0.0135966\pi\)
\(384\) 0 0
\(385\) 2.00000 + 3.46410i 0.101929 + 0.176547i
\(386\) −50.0000 −2.54493
\(387\) 0 0
\(388\) 24.0000 1.21842
\(389\) −12.0000 20.7846i −0.608424 1.05382i −0.991500 0.130105i \(-0.958469\pi\)
0.383076 0.923717i \(-0.374865\pi\)
\(390\) 0 0
\(391\) 9.00000 15.5885i 0.455150 0.788342i
\(392\) 0 0
\(393\) 0 0
\(394\) −4.00000 6.92820i −0.201517 0.349038i
\(395\) −1.00000 −0.0503155
\(396\) 0 0
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) 12.0000 + 20.7846i 0.601506 + 1.04184i
\(399\) 0 0
\(400\) −8.00000 + 13.8564i −0.400000 + 0.692820i
\(401\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(402\) 0 0
\(403\) 6.00000 + 10.3923i 0.298881 + 0.517678i
\(404\) −20.0000 −0.995037
\(405\) 0 0
\(406\) −8.00000 −0.397033
\(407\) 6.00000 + 10.3923i 0.297409 + 0.515127i
\(408\) 0 0
\(409\) −16.0000 + 27.7128i −0.791149 + 1.37031i 0.134107 + 0.990967i \(0.457183\pi\)
−0.925256 + 0.379344i \(0.876150\pi\)
\(410\) 1.00000 1.73205i 0.0493865 0.0855399i
\(411\) 0 0
\(412\) −2.00000 3.46410i −0.0985329 0.170664i
\(413\) −15.0000 −0.738102
\(414\) 0 0
\(415\) 9.00000 0.441793
\(416\) −8.00000 13.8564i −0.392232 0.679366i
\(417\) 0 0
\(418\) 32.0000 55.4256i 1.56517 2.71096i
\(419\) −16.5000 + 28.5788i −0.806078 + 1.39617i 0.109483 + 0.993989i \(0.465080\pi\)
−0.915561 + 0.402179i \(0.868253\pi\)
\(420\) 0 0
\(421\) −7.00000 12.1244i −0.341159 0.590905i 0.643489 0.765455i \(-0.277486\pi\)
−0.984648 + 0.174550i \(0.944153\pi\)
\(422\) 8.00000 0.389434
\(423\) 0 0
\(424\) 0 0
\(425\) −6.00000 10.3923i −0.291043 0.504101i
\(426\) 0 0
\(427\) 2.00000 3.46410i 0.0967868 0.167640i
\(428\) 2.00000 3.46410i 0.0966736 0.167444i
\(429\) 0 0
\(430\) −11.0000 19.0526i −0.530467 0.918796i
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 6.00000 + 10.3923i 0.288009 + 0.498847i
\(435\) 0 0
\(436\) 9.00000 15.5885i 0.431022 0.746552i
\(437\) 24.0000 41.5692i 1.14808 1.98853i
\(438\) 0 0
\(439\) −12.0000 20.7846i −0.572729 0.991995i −0.996284 0.0861252i \(-0.972552\pi\)
0.423556 0.905870i \(-0.360782\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 12.0000 0.570782
\(443\) −12.0000 20.7846i −0.570137 0.987507i −0.996551 0.0829786i \(-0.973557\pi\)
0.426414 0.904528i \(-0.359777\pi\)
\(444\) 0 0
\(445\) 1.00000 1.73205i 0.0474045 0.0821071i
\(446\) 2.00000 3.46410i 0.0947027 0.164030i
\(447\) 0 0
\(448\) −4.00000 6.92820i −0.188982 0.327327i
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) 2.00000 + 3.46410i 0.0940721 + 0.162938i
\(453\) 0 0
\(454\) −24.0000 + 41.5692i −1.12638 + 1.95094i
\(455\) −1.00000 + 1.73205i −0.0468807 + 0.0811998i
\(456\) 0 0
\(457\) 7.00000 + 12.1244i 0.327446 + 0.567153i 0.982004 0.188858i \(-0.0604787\pi\)
−0.654558 + 0.756012i \(0.727145\pi\)
\(458\) −8.00000 −0.373815
\(459\) 0 0
\(460\) 12.0000 0.559503
\(461\) 0.500000 + 0.866025i 0.0232873 + 0.0403348i 0.877434 0.479697i \(-0.159253\pi\)
−0.854147 + 0.520032i \(0.825920\pi\)
\(462\) 0 0
\(463\) 11.5000 19.9186i 0.534450 0.925695i −0.464739 0.885448i \(-0.653852\pi\)
0.999190 0.0402476i \(-0.0128147\pi\)
\(464\) 8.00000 13.8564i 0.371391 0.643268i
\(465\) 0 0
\(466\) 6.00000 + 10.3923i 0.277945 + 0.481414i
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 9.00000 + 15.5885i 0.415139 + 0.719042i
\(471\) 0 0
\(472\) 0 0
\(473\) −22.0000 + 38.1051i −1.01156 + 1.75208i
\(474\) 0 0
\(475\) −16.0000 27.7128i −0.734130 1.27155i
\(476\) 6.00000 0.275010
\(477\) 0 0
\(478\) 36.0000 1.64660
\(479\) −8.50000 14.7224i −0.388375 0.672685i 0.603856 0.797093i \(-0.293630\pi\)
−0.992231 + 0.124408i \(0.960297\pi\)
\(480\) 0 0
\(481\) −3.00000 + 5.19615i −0.136788 + 0.236924i
\(482\) 10.0000 17.3205i 0.455488 0.788928i
\(483\) 0 0
\(484\) −5.00000 8.66025i −0.227273 0.393648i
\(485\) 12.0000 0.544892
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −1.00000 + 1.73205i −0.0451754 + 0.0782461i
\(491\) −13.0000 + 22.5167i −0.586682 + 1.01616i 0.407982 + 0.912990i \(0.366233\pi\)
−0.994663 + 0.103173i \(0.967101\pi\)
\(492\) 0 0
\(493\) 6.00000 + 10.3923i 0.270226 + 0.468046i
\(494\) 32.0000 1.43975
\(495\) 0 0
\(496\) −24.0000 −1.07763
\(497\) 6.00000 + 10.3923i 0.269137 + 0.466159i
\(498\) 0 0
\(499\) −6.50000 + 11.2583i −0.290980 + 0.503992i −0.974042 0.226369i \(-0.927315\pi\)
0.683062 + 0.730361i \(0.260648\pi\)
\(500\) 9.00000 15.5885i 0.402492 0.697137i
\(501\) 0 0
\(502\) −25.0000 43.3013i −1.11580 1.93263i
\(503\) −21.0000 −0.936344 −0.468172 0.883637i \(-0.655087\pi\)
−0.468172 + 0.883637i \(0.655087\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) −24.0000 41.5692i −1.06693 1.84798i
\(507\) 0 0
\(508\) 15.0000 25.9808i 0.665517 1.15271i
\(509\) −20.5000 + 35.5070i −0.908647 + 1.57382i −0.0927004 + 0.995694i \(0.529550\pi\)
−0.815946 + 0.578128i \(0.803783\pi\)
\(510\) 0 0
\(511\) 3.00000 + 5.19615i 0.132712 + 0.229864i
\(512\) 32.0000 1.41421
\(513\) 0 0
\(514\) −20.0000 −0.882162
\(515\) −1.00000 1.73205i −0.0440653 0.0763233i
\(516\) 0 0
\(517\) 18.0000 31.1769i 0.791639 1.37116i
\(518\) −3.00000 + 5.19615i −0.131812 + 0.228306i
\(519\) 0 0
\(520\) 0 0
\(521\) −15.0000 −0.657162 −0.328581 0.944476i \(-0.606570\pi\)
−0.328581 + 0.944476i \(0.606570\pi\)
\(522\) 0 0
\(523\) −26.0000 −1.13690 −0.568450 0.822718i \(-0.692457\pi\)
−0.568450 + 0.822718i \(0.692457\pi\)
\(524\) −4.00000 6.92820i −0.174741 0.302660i
\(525\) 0 0
\(526\) 14.0000 24.2487i 0.610429 1.05729i
\(527\) 9.00000 15.5885i 0.392046 0.679044i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) −12.0000 −0.521247
\(531\) 0 0
\(532\) 16.0000 0.693688
\(533\) −1.00000 1.73205i −0.0433148 0.0750234i
\(534\) 0 0
\(535\) 1.00000 1.73205i 0.0432338 0.0748831i
\(536\) 0 0
\(537\) 0 0
\(538\) −21.0000 36.3731i −0.905374 1.56815i
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) 29.0000 1.24681 0.623404 0.781900i \(-0.285749\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 2.00000 + 3.46410i 0.0859074 + 0.148796i
\(543\) 0 0
\(544\) −12.0000 + 20.7846i −0.514496 + 0.891133i
\(545\) 4.50000 7.79423i 0.192759 0.333868i
\(546\) 0 0
\(547\) 14.5000 + 25.1147i 0.619975 + 1.07383i 0.989490 + 0.144604i \(0.0461907\pi\)
−0.369514 + 0.929225i \(0.620476\pi\)
\(548\) 36.0000 1.53784
\(549\) 0 0
\(550\) −32.0000 −1.36448
\(551\) 16.0000 + 27.7128i 0.681623 + 1.18061i
\(552\) 0 0
\(553\) −0.500000 + 0.866025i −0.0212622 + 0.0368271i
\(554\) −13.0000 + 22.5167i −0.552317 + 0.956641i
\(555\) 0 0
\(556\) 0 0
\(557\) 4.00000 0.169485 0.0847427 0.996403i \(-0.472993\pi\)
0.0847427 + 0.996403i \(0.472993\pi\)
\(558\) 0 0
\(559\) −22.0000 −0.930501
\(560\) −2.00000 3.46410i −0.0845154 0.146385i
\(561\) 0 0
\(562\) 10.0000 17.3205i 0.421825 0.730622i
\(563\) −2.00000 + 3.46410i −0.0842900 + 0.145994i −0.905088 0.425223i \(-0.860196\pi\)
0.820798 + 0.571218i \(0.193529\pi\)
\(564\) 0 0
\(565\) 1.00000 + 1.73205i 0.0420703 + 0.0728679i
\(566\) 56.0000 2.35386
\(567\) 0 0
\(568\) 0 0
\(569\) 1.00000 + 1.73205i 0.0419222 + 0.0726113i 0.886225 0.463255i \(-0.153319\pi\)
−0.844303 + 0.535866i \(0.819985\pi\)
\(570\) 0 0
\(571\) −5.50000 + 9.52628i −0.230168 + 0.398662i −0.957857 0.287244i \(-0.907261\pi\)
0.727690 + 0.685907i \(0.240594\pi\)
\(572\) 8.00000 13.8564i 0.334497 0.579365i
\(573\) 0 0
\(574\) −1.00000 1.73205i −0.0417392 0.0722944i
\(575\) −24.0000 −1.00087
\(576\) 0 0
\(577\) −20.0000 −0.832611 −0.416305 0.909225i \(-0.636675\pi\)
−0.416305 + 0.909225i \(0.636675\pi\)
\(578\) 8.00000 + 13.8564i 0.332756 + 0.576351i
\(579\) 0 0
\(580\) −4.00000 + 6.92820i −0.166091 + 0.287678i
\(581\) 4.50000 7.79423i 0.186691 0.323359i
\(582\) 0 0
\(583\) 12.0000 + 20.7846i 0.496989 + 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) −2.00000 −0.0826192
\(587\) 10.0000 + 17.3205i 0.412744 + 0.714894i 0.995189 0.0979766i \(-0.0312370\pi\)
−0.582445 + 0.812870i \(0.697904\pi\)
\(588\) 0 0
\(589\) 24.0000 41.5692i 0.988903 1.71283i
\(590\) −15.0000 + 25.9808i −0.617540 + 1.06961i
\(591\) 0 0
\(592\) −6.00000 10.3923i −0.246598 0.427121i
\(593\) 33.0000 1.35515 0.677574 0.735455i \(-0.263031\pi\)
0.677574 + 0.735455i \(0.263031\pi\)
\(594\) 0 0
\(595\) 3.00000 0.122988
\(596\) 12.0000 + 20.7846i 0.491539 + 0.851371i
\(597\) 0 0
\(598\) 12.0000 20.7846i 0.490716 0.849946i
\(599\) 18.0000 31.1769i 0.735460 1.27385i −0.219061 0.975711i \(-0.570299\pi\)
0.954521 0.298143i \(-0.0963673\pi\)
\(600\) 0 0
\(601\) 9.00000 + 15.5885i 0.367118 + 0.635866i 0.989114 0.147154i \(-0.0470113\pi\)
−0.621996 + 0.783020i \(0.713678\pi\)
\(602\) −22.0000 −0.896653
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) −2.50000 4.33013i −0.101639 0.176045i
\(606\) 0 0
\(607\) −7.00000 + 12.1244i −0.284121 + 0.492112i −0.972396 0.233338i \(-0.925035\pi\)
0.688274 + 0.725450i \(0.258368\pi\)
\(608\) −32.0000 + 55.4256i −1.29777 + 2.24781i
\(609\) 0 0
\(610\) −4.00000 6.92820i −0.161955 0.280515i
\(611\) 18.0000 0.728202
\(612\) 0 0
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) 2.00000 + 3.46410i 0.0807134 + 0.139800i
\(615\) 0 0
\(616\) 0 0
\(617\) −3.00000 + 5.19615i −0.120775 + 0.209189i −0.920074 0.391745i \(-0.871871\pi\)
0.799298 + 0.600935i \(0.205205\pi\)
\(618\) 0 0
\(619\) 22.0000 + 38.1051i 0.884255 + 1.53157i 0.846566 + 0.532284i \(0.178666\pi\)
0.0376891 + 0.999290i \(0.488000\pi\)
\(620\) 12.0000 0.481932
\(621\) 0 0
\(622\) 6.00000 0.240578
\(623\) −1.00000 1.73205i −0.0400642 0.0693932i
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 16.0000 27.7128i 0.639489 1.10763i
\(627\) 0 0
\(628\) 8.00000 + 13.8564i 0.319235 + 0.552931i
\(629\) 9.00000 0.358854
\(630\) 0 0
\(631\) −19.0000 −0.756378 −0.378189 0.925728i \(-0.623453\pi\)
−0.378189 + 0.925728i \(0.623453\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −18.0000 + 31.1769i −0.714871 + 1.23819i
\(635\) 7.50000 12.9904i 0.297628 0.515508i
\(636\) 0 0
\(637\) 1.00000 + 1.73205i 0.0396214 + 0.0686264i
\(638\) 32.0000 1.26689
\(639\) 0 0
\(640\) 0 0
\(641\) 6.00000 + 10.3923i 0.236986 + 0.410471i 0.959848 0.280521i \(-0.0905072\pi\)
−0.722862 + 0.690992i \(0.757174\pi\)
\(642\) 0 0
\(643\) −13.0000 + 22.5167i −0.512670 + 0.887970i 0.487222 + 0.873278i \(0.338010\pi\)
−0.999892 + 0.0146923i \(0.995323\pi\)
\(644\) 6.00000 10.3923i 0.236433 0.409514i
\(645\) 0 0
\(646\) −24.0000 41.5692i −0.944267 1.63552i
\(647\) 8.00000 0.314512 0.157256 0.987558i \(-0.449735\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(648\) 0 0
\(649\) 60.0000 2.35521
\(650\) −8.00000 13.8564i −0.313786 0.543493i
\(651\) 0 0
\(652\) 11.0000 19.0526i 0.430793 0.746156i
\(653\) −21.0000 + 36.3731i −0.821794 + 1.42339i 0.0825519 + 0.996587i \(0.473693\pi\)
−0.904345 + 0.426801i \(0.859640\pi\)
\(654\) 0 0
\(655\) −2.00000 3.46410i −0.0781465 0.135354i
\(656\) 4.00000 0.156174
\(657\) 0 0
\(658\) 18.0000 0.701713
\(659\) 6.00000 + 10.3923i 0.233727 + 0.404827i 0.958902 0.283738i \(-0.0915745\pi\)
−0.725175 + 0.688565i \(0.758241\pi\)
\(660\) 0 0
\(661\) 7.00000 12.1244i 0.272268 0.471583i −0.697174 0.716902i \(-0.745559\pi\)
0.969442 + 0.245319i \(0.0788928\pi\)
\(662\) 1.00000 1.73205i 0.0388661 0.0673181i
\(663\) 0 0
\(664\) 0 0
\(665\) 8.00000 0.310227
\(666\) 0 0
\(667\) 24.0000 0.929284
\(668\) 17.0000 + 29.4449i 0.657750 + 1.13926i
\(669\) 0 0
\(670\) 8.00000 13.8564i 0.309067 0.535320i
\(671\) −8.00000 + 13.8564i −0.308837 + 0.534921i
\(672\) 0 0
\(673\) 1.00000 + 1.73205i 0.0385472 + 0.0667657i 0.884655 0.466246i \(-0.154394\pi\)
−0.846108 + 0.533011i \(0.821060\pi\)
\(674\) 14.0000 0.539260
\(675\) 0 0
\(676\) −18.0000 −0.692308
\(677\) 15.0000 + 25.9808i 0.576497 + 0.998522i 0.995877 + 0.0907112i \(0.0289140\pi\)
−0.419380 + 0.907811i \(0.637753\pi\)
\(678\) 0 0
\(679\) 6.00000 10.3923i 0.230259 0.398820i
\(680\) 0 0
\(681\) 0 0
\(682\) −24.0000 41.5692i −0.919007 1.59177i
\(683\) −42.0000 −1.60709 −0.803543 0.595247i \(-0.797054\pi\)
−0.803543 + 0.595247i \(0.797054\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 1.00000 + 1.73205i 0.0381802 + 0.0661300i
\(687\) 0 0
\(688\) 22.0000 38.1051i 0.838742 1.45274i
\(689\) −6.00000 + 10.3923i −0.228582 + 0.395915i
\(690\) 0 0
\(691\) −25.0000 43.3013i −0.951045 1.64726i −0.743170 0.669102i \(-0.766679\pi\)
−0.207875 0.978155i \(-0.566655\pi\)
\(692\) −44.0000 −1.67263
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 0 0
\(696\) 0 0
\(697\) −1.50000 + 2.59808i −0.0568166 + 0.0984092i
\(698\) 20.0000 34.6410i 0.757011 1.31118i
\(699\) 0 0
\(700\) −4.00000 6.92820i −0.151186 0.261861i
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 24.0000 0.905177
\(704\) 16.0000 + 27.7128i 0.603023 + 1.04447i
\(705\) 0 0
\(706\) −25.0000 + 43.3013i −0.940887 + 1.62966i
\(707\) −5.00000 + 8.66025i −0.188044 + 0.325702i
\(708\) 0 0
\(709\) −7.50000 12.9904i −0.281668 0.487864i 0.690127 0.723688i \(-0.257554\pi\)
−0.971796 + 0.235824i \(0.924221\pi\)
\(710\) 24.0000 0.900704
\(711\) 0 0
\(712\) 0 0
\(713\) −18.0000 31.1769i −0.674105 1.16758i
\(714\) 0 0
\(715\) 4.00000 6.92820i 0.149592 0.259100i
\(716\) −2.00000 + 3.46410i −0.0747435 + 0.129460i
\(717\) 0 0
\(718\) 34.0000 + 58.8897i 1.26887 + 2.19775i
\(719\) −33.0000 −1.23069 −0.615346 0.788257i \(-0.710984\pi\)
−0.615346 + 0.788257i \(0.710984\pi\)
\(720\) 0 0
\(721\) −2.00000 −0.0744839
\(722\) −45.0000 77.9423i −1.67473 2.90071i
\(723\) 0 0
\(724\) −16.0000 + 27.7128i −0.594635 + 1.02994i
\(725\) 8.00000 13.8564i 0.297113 0.514614i
\(726\) 0 0
\(727\) 2.00000 + 3.46410i 0.0741759 + 0.128476i 0.900728 0.434384i \(-0.143034\pi\)
−0.826552 + 0.562861i \(0.809701\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 12.0000 0.444140
\(731\) 16.5000 + 28.5788i 0.610275 + 1.05703i
\(732\) 0 0
\(733\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(734\) 30.0000 51.9615i 1.10732 1.91793i
\(735\) 0 0
\(736\) 24.0000 + 41.5692i 0.884652 + 1.53226i
\(737\) −32.0000 −1.17874
\(738\) 0 0
\(739\) 12.0000 0.441427 0.220714 0.975339i \(-0.429161\pi\)
0.220714 + 0.975339i \(0.429161\pi\)
\(740\) 3.00000 + 5.19615i 0.110282 + 0.191014i
\(741\) 0 0
\(742\) −6.00000 + 10.3923i −0.220267 + 0.381514i
\(743\) 18.0000 31.1769i 0.660356 1.14377i −0.320166 0.947361i \(-0.603739\pi\)
0.980522 0.196409i \(-0.0629279\pi\)
\(744\) 0 0
\(745\) 6.00000 + 10.3923i 0.219823 + 0.380745i
\(746\) −26.0000 −0.951928
\(747\) 0 0
\(748\) −24.0000 −0.877527
\(749\) −1.00000 1.73205i −0.0365392 0.0632878i
\(750\) 0 0
\(751\) −8.00000 + 13.8564i −0.291924 + 0.505627i −0.974265 0.225407i \(-0.927629\pi\)
0.682341 + 0.731034i \(0.260962\pi\)
\(752\) −18.0000 + 31.1769i −0.656392 + 1.13691i
\(753\) 0 0
\(754\) 8.00000 + 13.8564i 0.291343 + 0.504621i
\(755\) 5.00000 0.181969
\(756\) 0 0
\(757\) 23.0000 0.835949 0.417975 0.908459i \(-0.362740\pi\)
0.417975 + 0.908459i \(0.362740\pi\)
\(758\) 3.00000 + 5.19615i 0.108965 + 0.188733i
\(759\) 0 0
\(760\) 0 0
\(761\) −1.50000 + 2.59808i −0.0543750 + 0.0941802i −0.891932 0.452170i \(-0.850650\pi\)
0.837557 + 0.546350i \(0.183983\pi\)
\(762\) 0 0
\(763\) −4.50000 7.79423i −0.162911 0.282170i
\(764\) −4.00000 −0.144715
\(765\) 0 0
\(766\) −42.0000 −1.51752
\(767\) 15.0000 + 25.9808i 0.541619 + 0.938111i
\(768\) 0 0
\(769\) −22.0000 + 38.1051i −0.793340 + 1.37411i 0.130547 + 0.991442i \(0.458327\pi\)
−0.923888 + 0.382664i \(0.875007\pi\)
\(770\) 4.00000 6.92820i 0.144150 0.249675i
\(771\) 0 0
\(772\) 25.0000 + 43.3013i 0.899770 + 1.55845i
\(773\) −49.0000 −1.76241 −0.881204 0.472737i \(-0.843266\pi\)
−0.881204 + 0.472737i \(0.843266\pi\)
\(774\) 0 0
\(775\) −24.0000 −0.862105
\(776\) 0 0
\(777\) 0 0
\(778\) −24.0000 + 41.5692i −0.860442 + 1.49033i
\(779\) −4.00000 + 6.92820i −0.143315 + 0.248229i
\(780\) 0 0
\(781\) −24.0000 41.5692i −0.858788 1.48746i
\(782\) −36.0000 −1.28736
\(783\) 0 0
\(784\) −4.00000 −0.142857
\(785\) 4.00000 + 6.92820i 0.142766 + 0.247278i
\(786\) 0 0
\(787\) 1.00000 1.73205i 0.0356462 0.0617409i −0.847652 0.530553i \(-0.821984\pi\)
0.883298 + 0.468812i \(0.155318\pi\)
\(788\) −4.00000 + 6.92820i −0.142494 + 0.246807i
\(789\) 0 0
\(790\) 1.00000 + 1.73205i 0.0355784 + 0.0616236i
\(791\) 2.00000 0.0711118
\(792\) 0 0
\(793\) −8.00000 −0.284088
\(794\) −6.00000 10.3923i −0.212932 0.368809i
\(795\) 0 0
\(796\) 12.0000 20.7846i 0.425329 0.736691i
\(797\) 1.00000 1.73205i 0.0354218 0.0613524i −0.847771 0.530362i \(-0.822056\pi\)
0.883193 + 0.469010i \(0.155389\pi\)
\(798\) 0 0
\(799\) −13.5000 23.3827i −0.477596 0.827220i
\(800\) 32.0000 1.13137
\(801\) 0 0
\(802\) 0 0
\(803\) −12.0000 20.7846i −0.423471 0.733473i
\(804\) 0 0
\(805\) 3.00000 5.19615i 0.105736 0.183140i
\(806\) 12.0000 20.7846i 0.422682 0.732107i
\(807\) 0 0
\(808\) 0 0
\(809\) 42.0000 1.47664 0.738321 0.674450i \(-0.235619\pi\)
0.738321 + 0.674450i \(0.235619\pi\)
\(810\) 0 0
\(811\) −46.0000 −1.61528 −0.807639 0.589677i \(-0.799255\pi\)
−0.807639 + 0.589677i \(0.799255\pi\)
\(812\) 4.00000 + 6.92820i 0.140372 + 0.243132i
\(813\) 0 0
\(814\) 12.0000 20.7846i 0.420600 0.728500i
\(815\) 5.50000 9.52628i 0.192657 0.333691i
\(816\) 0 0
\(817\) 44.0000 + 76.2102i 1.53937 + 2.66626i
\(818\) 64.0000 2.23771
\(819\) 0 0
\(820\) −2.00000 −0.0698430
\(821\) −4.00000 6.92820i −0.139601 0.241796i 0.787745 0.616002i \(-0.211249\pi\)
−0.927346 + 0.374206i \(0.877915\pi\)
\(822\) 0 0
\(823\) 1.50000 2.59808i 0.0522867 0.0905632i −0.838697 0.544598i \(-0.816682\pi\)
0.890984 + 0.454034i \(0.150016\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 15.0000 + 25.9808i 0.521917 + 0.903986i
\(827\) 18.0000 0.625921 0.312961 0.949766i \(-0.398679\pi\)
0.312961 + 0.949766i \(0.398679\pi\)
\(828\) 0 0
\(829\) −16.0000 −0.555703 −0.277851 0.960624i \(-0.589622\pi\)
−0.277851 + 0.960624i \(0.589622\pi\)
\(830\) −9.00000 15.5885i −0.312395 0.541083i
\(831\) 0 0
\(832\) −8.00000 + 13.8564i −0.277350 + 0.480384i
\(833\) 1.50000 2.59808i 0.0519719 0.0900180i
\(834\) 0 0
\(835\) 8.50000 + 14.7224i 0.294155 + 0.509491i
\(836\) −64.0000 −2.21349
\(837\) 0 0
\(838\) 66.0000 2.27993
\(839\) −27.5000 47.6314i −0.949405 1.64442i −0.746681 0.665183i \(-0.768354\pi\)
−0.202725 0.979236i \(-0.564980\pi\)
\(840\) 0 0
\(841\) 6.50000 11.2583i 0.224138 0.388218i
\(842\) −14.0000 + 24.2487i −0.482472 + 0.835666i
\(843\) 0 0
\(844\) −4.00000 6.92820i −0.137686 0.238479i
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) −5.00000 −0.171802
\(848\) −12.0000 20.7846i −0.412082 0.713746i
\(849\) 0 0
\(850\) −12.0000 + 20.7846i −0.411597 + 0.712906i
\(851\) 9.00000 15.5885i 0.308516 0.534365i
\(852\) 0 0
\(853\) −4.00000 6.92820i −0.136957 0.237217i 0.789386 0.613897i \(-0.210399\pi\)
−0.926343 + 0.376680i \(0.877066\pi\)
\(854\) −8.00000 −0.273754
\(855\) 0 0
\(856\) 0 0
\(857\) 8.50000 + 14.7224i 0.290354 + 0.502909i 0.973894 0.227005i \(-0.0728935\pi\)
−0.683539 + 0.729914i \(0.739560\pi\)
\(858\) 0 0
\(859\) −1.00000 + 1.73205i −0.0341196 + 0.0590968i −0.882581 0.470160i \(-0.844196\pi\)
0.848461 + 0.529257i \(0.177529\pi\)
\(860\) −11.0000 + 19.0526i −0.375097 + 0.649687i
\(861\) 0 0
\(862\) 24.0000 + 41.5692i 0.817443 + 1.41585i
\(863\) −6.00000 −0.204242 −0.102121 0.994772i \(-0.532563\pi\)
−0.102121 + 0.994772i \(0.532563\pi\)
\(864\) 0 0
\(865\) −22.0000 −0.748022
\(866\) 2.00000 + 3.46410i 0.0679628 + 0.117715i
\(867\) 0 0
\(868\) 6.00000 10.3923i 0.203653 0.352738i
\(869\) 2.00000 3.46410i 0.0678454 0.117512i
\(870\) 0 0
\(871\) −8.00000 13.8564i −0.271070 0.469506i
\(872\) 0 0
\(873\) 0 0
\(874\) −96.0000 −3.24725
\(875\) −4.50000 7.79423i −0.152128 0.263493i
\(876\) 0 0
\(877\) −18.5000 + 32.0429i −0.624701 + 1.08201i 0.363898 + 0.931439i \(0.381446\pi\)
−0.988599 + 0.150574i \(0.951888\pi\)
\(878\) −24.0000 + 41.5692i −0.809961 + 1.40289i
\(879\) 0 0
\(880\) 8.00000 + 13.8564i 0.269680 + 0.467099i
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 41.0000 1.37976 0.689880 0.723924i \(-0.257663\pi\)
0.689880 + 0.723924i \(0.257663\pi\)
\(884\) −6.00000 10.3923i −0.201802 0.349531i
\(885\) 0 0
\(886\) −24.0000 + 41.5692i −0.806296 + 1.39655i
\(887\) 6.50000 11.2583i 0.218249 0.378018i −0.736024 0.676955i \(-0.763299\pi\)
0.954273 + 0.298938i \(0.0966323\pi\)
\(888\) 0 0
\(889\) −7.50000 12.9904i −0.251542 0.435683i
\(890\) −4.00000 −0.134080
\(891\) 0 0
\(892\) −4.00000 −0.133930
\(893\) −36.0000 62.3538i −1.20469 2.08659i
\(894\) 0 0
\(895\) −1.00000 + 1.73205i −0.0334263 + 0.0578961i
\(896\) 0 0
\(897\) 0 0
\(898\) −6.00000 10.3923i −0.200223 0.346796i
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) 18.0000 0.599667
\(902\) 4.00000 + 6.92820i 0.133185 + 0.230684i
\(903\) 0 0
\(904\) 0 0
\(905\) −8.00000 + 13.8564i −0.265929 + 0.460603i
\(906\) 0 0
\(907\) −8.50000 14.7224i −0.282238 0.488850i 0.689698 0.724097i \(-0.257743\pi\)
−0.971936 + 0.235247i \(0.924410\pi\)
\(908\) 48.0000 1.59294
\(909\) 0 0
\(910\) 4.00000 0.132599
\(911\) 6.00000 + 10.3923i 0.198789 + 0.344312i 0.948136 0.317865i \(-0.102966\pi\)
−0.749347 + 0.662177i \(0.769633\pi\)
\(912\) 0 0
\(913\) −18.0000 + 31.1769i −0.595713 + 1.03181i
\(914\) 14.0000 24.2487i 0.463079 0.802076i
\(915\) 0 0
\(916\) 4.00000 + 6.92820i 0.132164 + 0.228914i
\(917\) −4.00000 −0.132092
\(918\) 0 0
\(919\) −43.0000 −1.41844 −0.709220 0.704988i \(-0.750953\pi\)
−0.709220 + 0.704988i \(0.750953\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.00000 1.73205i 0.0329332 0.0570421i
\(923\) 12.0000 20.7846i 0.394985 0.684134i
\(924\) 0 0
\(925\) −6.00000 10.3923i −0.197279 0.341697i
\(926\) −46.0000 −1.51165
\(927\) 0 0
\(928\) −32.0000 −1.05045
\(929\) −17.5000 30.3109i −0.574156 0.994468i −0.996133 0.0878612i \(-0.971997\pi\)
0.421976 0.906607i \(-0.361337\pi\)
\(930\) 0 0
\(931\) 4.00000 6.92820i 0.131095 0.227063i
\(932\) 6.00000 10.3923i 0.196537 0.340411i
\(933\) 0 0
\(934\) 12.0000 + 20.7846i 0.392652 + 0.680093i
\(935\) −12.0000 −0.392442
\(936\) 0 0
\(937\) −12.0000 −0.392023 −0.196011 0.980602i \(-0.562799\pi\)
−0.196011 + 0.980602i \(0.562799\pi\)
\(938\) −8.00000 13.8564i −0.261209 0.452428i
\(939\) 0 0
\(940\) 9.00000 15.5885i 0.293548 0.508439i
\(941\) −8.50000 + 14.7224i −0.277092 + 0.479938i −0.970661 0.240453i \(-0.922704\pi\)
0.693569 + 0.720390i \(0.256037\pi\)
\(942\) 0 0
\(943\) 3.00000 + 5.19615i 0.0976934 + 0.169210i
\(944\) −60.0000 −1.95283
\(945\) 0 0
\(946\) 88.0000 2.86113
\(947\) 14.0000 + 24.2487i 0.454939 + 0.787977i 0.998685 0.0512727i \(-0.0163278\pi\)
−0.543746 + 0.839250i \(0.682994\pi\)
\(948\) 0 0
\(949\) 6.00000 10.3923i 0.194768 0.337348i
\(950\) −32.0000 + 55.4256i −1.03822 + 1.79824i
\(951\) 0 0
\(952\) 0 0
\(953\) 2.00000 0.0647864 0.0323932 0.999475i \(-0.489687\pi\)
0.0323932 + 0.999475i \(0.489687\pi\)
\(954\) 0 0
\(955\) −2.00000 −0.0647185
\(956\) −18.0000 31.1769i −0.582162 1.00833i
\(957\) 0 0
\(958\) −17.0000 + 29.4449i −0.549245 + 0.951320i
\(959\) 9.00000 15.5885i 0.290625 0.503378i
\(960\) 0 0
\(961\) −2.50000 4.33013i −0.0806452 0.139682i
\(962\) 12.0000 0.386896
\(963\) 0 0
\(964\) −20.0000 −0.644157
\(965\) 12.5000 + 21.6506i 0.402389 + 0.696959i
\(966\) 0 0
\(967\) −20.0000 + 34.6410i −0.643157 + 1.11398i 0.341567 + 0.939857i \(0.389042\pi\)
−0.984724 + 0.174123i \(0.944291\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −12.0000 20.7846i −0.385297 0.667354i
\(971\) 45.0000 1.44412 0.722059 0.691831i \(-0.243196\pi\)
0.722059 + 0.691831i \(0.243196\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −16.0000 27.7128i −0.512673 0.887976i
\(975\) 0 0
\(976\) 8.00000 13.8564i 0.256074 0.443533i
\(977\) −6.00000 + 10.3923i −0.191957 + 0.332479i −0.945899 0.324462i \(-0.894817\pi\)
0.753942 + 0.656941i \(0.228150\pi\)
\(978\) 0 0
\(979\) 4.00000 + 6.92820i 0.127841 + 0.221426i
\(980\) 2.00000 0.0638877
\(981\) 0 0
\(982\) 52.0000 1.65939
\(983\) 10.5000 + 18.1865i 0.334898 + 0.580060i 0.983465 0.181097i \(-0.0579648\pi\)
−0.648567 + 0.761157i \(0.724631\pi\)
\(984\) 0 0
\(985\) −2.00000 + 3.46410i −0.0637253 + 0.110375i
\(986\) 12.0000 20.7846i 0.382158 0.661917i
\(987\) 0 0
\(988\) −16.0000 27.7128i −0.509028 0.881662i
\(989\) 66.0000 2.09868
\(990\) 0 0
\(991\) 11.0000 0.349427 0.174713 0.984619i \(-0.444100\pi\)
0.174713 + 0.984619i \(0.444100\pi\)
\(992\) 24.0000 + 41.5692i 0.762001 + 1.31982i
\(993\) 0 0
\(994\) 12.0000 20.7846i 0.380617 0.659248i
\(995\) 6.00000 10.3923i 0.190213 0.329458i
\(996\) 0 0
\(997\) −20.0000 34.6410i −0.633406 1.09709i −0.986850 0.161636i \(-0.948323\pi\)
0.353444 0.935456i \(-0.385010\pi\)
\(998\) 26.0000 0.823016
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.f.a.190.1 2
3.2 odd 2 567.2.f.h.190.1 2
9.2 odd 6 567.2.f.h.379.1 2
9.4 even 3 189.2.a.d.1.1 yes 1
9.5 odd 6 189.2.a.a.1.1 1
9.7 even 3 inner 567.2.f.a.379.1 2
36.23 even 6 3024.2.a.l.1.1 1
36.31 odd 6 3024.2.a.u.1.1 1
45.4 even 6 4725.2.a.c.1.1 1
45.14 odd 6 4725.2.a.s.1.1 1
63.13 odd 6 1323.2.a.r.1.1 1
63.41 even 6 1323.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.a.a.1.1 1 9.5 odd 6
189.2.a.d.1.1 yes 1 9.4 even 3
567.2.f.a.190.1 2 1.1 even 1 trivial
567.2.f.a.379.1 2 9.7 even 3 inner
567.2.f.h.190.1 2 3.2 odd 2
567.2.f.h.379.1 2 9.2 odd 6
1323.2.a.b.1.1 1 63.41 even 6
1323.2.a.r.1.1 1 63.13 odd 6
3024.2.a.l.1.1 1 36.23 even 6
3024.2.a.u.1.1 1 36.31 odd 6
4725.2.a.c.1.1 1 45.4 even 6
4725.2.a.s.1.1 1 45.14 odd 6