Properties

Label 567.2.e.g.487.6
Level $567$
Weight $2$
Character 567.487
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(163,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 487.6
Root \(-0.776749 + 1.18180i\) of defining polynomial
Character \(\chi\) \(=\) 567.487
Dual form 567.2.e.g.163.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.635098 + 1.10002i) q^{2} +(0.193301 - 0.334806i) q^{4} +(-0.776749 - 1.34537i) q^{5} +(-1.48662 + 2.18860i) q^{7} +3.03145 q^{8} +(0.986623 - 1.70888i) q^{10} +(1.60500 - 2.77995i) q^{11} +4.78669 q^{13} +(-3.35166 - 0.245346i) q^{14} +(1.53867 + 2.66505i) q^{16} +(1.05918 - 1.83456i) q^{17} +(2.43201 + 4.21237i) q^{19} -0.600584 q^{20} +4.07734 q^{22} +(-1.85379 - 3.21086i) q^{23} +(1.29332 - 2.24010i) q^{25} +(3.04002 + 5.26547i) q^{26} +(0.445391 + 0.920788i) q^{28} +7.37944 q^{29} +(-2.75209 + 4.76676i) q^{31} +(1.07704 - 1.86549i) q^{32} +2.69074 q^{34} +(4.09920 + 0.300067i) q^{35} +(0.0932782 + 0.161563i) q^{37} +(-3.08914 + 5.35054i) q^{38} +(-2.35468 - 4.07842i) q^{40} -10.7972 q^{41} +4.86916 q^{43} +(-0.620496 - 1.07473i) q^{44} +(2.35468 - 4.07842i) q^{46} +(-0.885937 - 1.53449i) q^{47} +(-2.57990 - 6.50724i) q^{49} +3.28555 q^{50} +(0.925270 - 1.60261i) q^{52} +(-0.834432 + 1.44528i) q^{53} -4.98674 q^{55} +(-4.50663 + 6.63462i) q^{56} +(4.68667 + 8.11755i) q^{58} +(-2.91297 + 5.04541i) q^{59} +(-3.43865 - 5.95591i) q^{61} -6.99139 q^{62} +8.89078 q^{64} +(-3.71806 - 6.43986i) q^{65} +(-6.11868 + 10.5979i) q^{67} +(-0.409481 - 0.709241i) q^{68} +(2.27331 + 4.69978i) q^{70} -13.8101 q^{71} +(-5.93201 + 10.2745i) q^{73} +(-0.118482 + 0.205216i) q^{74} +1.88044 q^{76} +(3.69814 + 7.64544i) q^{77} +(0.654632 + 1.13386i) q^{79} +(2.39032 - 4.14015i) q^{80} +(-6.85728 - 11.8772i) q^{82} -0.346488 q^{83} -3.29087 q^{85} +(3.09239 + 5.35618i) q^{86} +(4.86549 - 8.42727i) q^{88} +(8.70319 + 15.0744i) q^{89} +(-7.11601 + 10.4761i) q^{91} -1.43335 q^{92} +(1.12531 - 1.94910i) q^{94} +(3.77813 - 6.54391i) q^{95} -10.5683 q^{97} +(5.51961 - 6.97068i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} + 6 q^{7} - 14 q^{10} + 12 q^{13} - 6 q^{16} - 24 q^{19} + 4 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} - 36 q^{40} + 20 q^{43} + 36 q^{46} - 14 q^{49} - 34 q^{52} + 8 q^{55} + 22 q^{58} - 36 q^{61}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.635098 + 1.10002i 0.449082 + 0.777833i 0.998327 0.0578286i \(-0.0184177\pi\)
−0.549244 + 0.835662i \(0.685084\pi\)
\(3\) 0 0
\(4\) 0.193301 0.334806i 0.0966503 0.167403i
\(5\) −0.776749 1.34537i −0.347373 0.601667i 0.638409 0.769697i \(-0.279593\pi\)
−0.985782 + 0.168030i \(0.946259\pi\)
\(6\) 0 0
\(7\) −1.48662 + 2.18860i −0.561891 + 0.827211i
\(8\) 3.03145 1.07178
\(9\) 0 0
\(10\) 0.986623 1.70888i 0.311998 0.540396i
\(11\) 1.60500 2.77995i 0.483927 0.838185i −0.515903 0.856647i \(-0.672544\pi\)
0.999830 + 0.0184616i \(0.00587686\pi\)
\(12\) 0 0
\(13\) 4.78669 1.32759 0.663795 0.747915i \(-0.268945\pi\)
0.663795 + 0.747915i \(0.268945\pi\)
\(14\) −3.35166 0.245346i −0.895768 0.0655714i
\(15\) 0 0
\(16\) 1.53867 + 2.66505i 0.384667 + 0.666263i
\(17\) 1.05918 1.83456i 0.256889 0.444945i −0.708518 0.705693i \(-0.750636\pi\)
0.965407 + 0.260748i \(0.0839691\pi\)
\(18\) 0 0
\(19\) 2.43201 + 4.21237i 0.557942 + 0.966384i 0.997668 + 0.0682523i \(0.0217423\pi\)
−0.439726 + 0.898132i \(0.644924\pi\)
\(20\) −0.600584 −0.134295
\(21\) 0 0
\(22\) 4.07734 0.869291
\(23\) −1.85379 3.21086i −0.386542 0.669510i 0.605440 0.795891i \(-0.292997\pi\)
−0.991982 + 0.126381i \(0.959664\pi\)
\(24\) 0 0
\(25\) 1.29332 2.24010i 0.258665 0.448020i
\(26\) 3.04002 + 5.26547i 0.596197 + 1.03264i
\(27\) 0 0
\(28\) 0.445391 + 0.920788i 0.0841709 + 0.174013i
\(29\) 7.37944 1.37033 0.685164 0.728389i \(-0.259731\pi\)
0.685164 + 0.728389i \(0.259731\pi\)
\(30\) 0 0
\(31\) −2.75209 + 4.76676i −0.494290 + 0.856135i −0.999978 0.00658088i \(-0.997905\pi\)
0.505688 + 0.862716i \(0.331239\pi\)
\(32\) 1.07704 1.86549i 0.190396 0.329775i
\(33\) 0 0
\(34\) 2.69074 0.461457
\(35\) 4.09920 + 0.300067i 0.692891 + 0.0507206i
\(36\) 0 0
\(37\) 0.0932782 + 0.161563i 0.0153348 + 0.0265607i 0.873591 0.486661i \(-0.161785\pi\)
−0.858256 + 0.513222i \(0.828452\pi\)
\(38\) −3.08914 + 5.35054i −0.501124 + 0.867972i
\(39\) 0 0
\(40\) −2.35468 4.07842i −0.372307 0.644855i
\(41\) −10.7972 −1.68624 −0.843120 0.537726i \(-0.819284\pi\)
−0.843120 + 0.537726i \(0.819284\pi\)
\(42\) 0 0
\(43\) 4.86916 0.742539 0.371270 0.928525i \(-0.378923\pi\)
0.371270 + 0.928525i \(0.378923\pi\)
\(44\) −0.620496 1.07473i −0.0935433 0.162022i
\(45\) 0 0
\(46\) 2.35468 4.07842i 0.347178 0.601330i
\(47\) −0.885937 1.53449i −0.129227 0.223828i 0.794150 0.607722i \(-0.207916\pi\)
−0.923377 + 0.383893i \(0.874583\pi\)
\(48\) 0 0
\(49\) −2.57990 6.50724i −0.368557 0.929605i
\(50\) 3.28555 0.464647
\(51\) 0 0
\(52\) 0.925270 1.60261i 0.128312 0.222243i
\(53\) −0.834432 + 1.44528i −0.114618 + 0.198524i −0.917627 0.397443i \(-0.869898\pi\)
0.803009 + 0.595967i \(0.203231\pi\)
\(54\) 0 0
\(55\) −4.98674 −0.672411
\(56\) −4.50663 + 6.63462i −0.602223 + 0.886589i
\(57\) 0 0
\(58\) 4.68667 + 8.11755i 0.615390 + 1.06589i
\(59\) −2.91297 + 5.04541i −0.379236 + 0.656857i −0.990951 0.134221i \(-0.957147\pi\)
0.611715 + 0.791078i \(0.290480\pi\)
\(60\) 0 0
\(61\) −3.43865 5.95591i −0.440274 0.762576i 0.557436 0.830220i \(-0.311785\pi\)
−0.997710 + 0.0676438i \(0.978452\pi\)
\(62\) −6.99139 −0.887907
\(63\) 0 0
\(64\) 8.89078 1.11135
\(65\) −3.71806 6.43986i −0.461168 0.798766i
\(66\) 0 0
\(67\) −6.11868 + 10.5979i −0.747516 + 1.29474i 0.201494 + 0.979490i \(0.435420\pi\)
−0.949010 + 0.315246i \(0.897913\pi\)
\(68\) −0.409481 0.709241i −0.0496568 0.0860081i
\(69\) 0 0
\(70\) 2.27331 + 4.69978i 0.271713 + 0.561732i
\(71\) −13.8101 −1.63895 −0.819477 0.573112i \(-0.805736\pi\)
−0.819477 + 0.573112i \(0.805736\pi\)
\(72\) 0 0
\(73\) −5.93201 + 10.2745i −0.694290 + 1.20255i 0.276130 + 0.961120i \(0.410948\pi\)
−0.970420 + 0.241425i \(0.922385\pi\)
\(74\) −0.118482 + 0.205216i −0.0137732 + 0.0238559i
\(75\) 0 0
\(76\) 1.88044 0.215701
\(77\) 3.69814 + 7.64544i 0.421443 + 0.871278i
\(78\) 0 0
\(79\) 0.654632 + 1.13386i 0.0736518 + 0.127569i 0.900499 0.434858i \(-0.143201\pi\)
−0.826847 + 0.562426i \(0.809868\pi\)
\(80\) 2.39032 4.14015i 0.267246 0.462883i
\(81\) 0 0
\(82\) −6.85728 11.8772i −0.757260 1.31161i
\(83\) −0.346488 −0.0380320 −0.0190160 0.999819i \(-0.506053\pi\)
−0.0190160 + 0.999819i \(0.506053\pi\)
\(84\) 0 0
\(85\) −3.29087 −0.356945
\(86\) 3.09239 + 5.35618i 0.333461 + 0.577572i
\(87\) 0 0
\(88\) 4.86549 8.42727i 0.518663 0.898350i
\(89\) 8.70319 + 15.0744i 0.922537 + 1.59788i 0.795476 + 0.605985i \(0.207221\pi\)
0.127061 + 0.991895i \(0.459446\pi\)
\(90\) 0 0
\(91\) −7.11601 + 10.4761i −0.745960 + 1.09820i
\(92\) −1.43335 −0.149437
\(93\) 0 0
\(94\) 1.12531 1.94910i 0.116067 0.201035i
\(95\) 3.77813 6.54391i 0.387628 0.671391i
\(96\) 0 0
\(97\) −10.5683 −1.07304 −0.536522 0.843886i \(-0.680262\pi\)
−0.536522 + 0.843886i \(0.680262\pi\)
\(98\) 5.51961 6.97068i 0.557565 0.704145i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 1.01697 1.76144i 0.101192 0.175270i −0.810984 0.585068i \(-0.801068\pi\)
0.912176 + 0.409798i \(0.134401\pi\)
\(102\) 0 0
\(103\) −9.99080 17.3046i −0.984423 1.70507i −0.644472 0.764628i \(-0.722923\pi\)
−0.339951 0.940443i \(-0.610410\pi\)
\(104\) 14.5106 1.42288
\(105\) 0 0
\(106\) −2.11979 −0.205892
\(107\) −8.45322 14.6414i −0.817204 1.41544i −0.907735 0.419545i \(-0.862190\pi\)
0.0905308 0.995894i \(-0.471144\pi\)
\(108\) 0 0
\(109\) 5.34955 9.26569i 0.512394 0.887492i −0.487503 0.873121i \(-0.662092\pi\)
0.999897 0.0143707i \(-0.00457451\pi\)
\(110\) −3.16707 5.48552i −0.301968 0.523024i
\(111\) 0 0
\(112\) −8.12014 0.594406i −0.767281 0.0561661i
\(113\) 8.58471 0.807582 0.403791 0.914851i \(-0.367692\pi\)
0.403791 + 0.914851i \(0.367692\pi\)
\(114\) 0 0
\(115\) −2.87986 + 4.98806i −0.268548 + 0.465139i
\(116\) 1.42645 2.47068i 0.132442 0.229397i
\(117\) 0 0
\(118\) −7.40009 −0.681233
\(119\) 2.44050 + 5.04541i 0.223720 + 0.462512i
\(120\) 0 0
\(121\) 0.347932 + 0.602636i 0.0316302 + 0.0547851i
\(122\) 4.36776 7.56518i 0.395438 0.684919i
\(123\) 0 0
\(124\) 1.06396 + 1.84283i 0.0955465 + 0.165491i
\(125\) −11.7858 −1.05416
\(126\) 0 0
\(127\) 1.95162 0.173178 0.0865892 0.996244i \(-0.472403\pi\)
0.0865892 + 0.996244i \(0.472403\pi\)
\(128\) 3.49244 + 6.04908i 0.308691 + 0.534668i
\(129\) 0 0
\(130\) 4.72266 8.17989i 0.414205 0.717424i
\(131\) 5.87214 + 10.1708i 0.513051 + 0.888630i 0.999885 + 0.0151361i \(0.00481816\pi\)
−0.486834 + 0.873494i \(0.661849\pi\)
\(132\) 0 0
\(133\) −12.8347 0.939515i −1.11291 0.0814663i
\(134\) −15.5439 −1.34278
\(135\) 0 0
\(136\) 3.21086 5.56137i 0.275329 0.476883i
\(137\) 8.06604 13.9708i 0.689128 1.19361i −0.282992 0.959122i \(-0.591327\pi\)
0.972120 0.234483i \(-0.0753398\pi\)
\(138\) 0 0
\(139\) 13.4425 1.14018 0.570091 0.821582i \(-0.306908\pi\)
0.570091 + 0.821582i \(0.306908\pi\)
\(140\) 0.892842 1.31443i 0.0754589 0.111090i
\(141\) 0 0
\(142\) −8.77075 15.1914i −0.736025 1.27483i
\(143\) 7.68265 13.3067i 0.642456 1.11277i
\(144\) 0 0
\(145\) −5.73197 9.92806i −0.476014 0.824481i
\(146\) −15.0696 −1.24717
\(147\) 0 0
\(148\) 0.0721229 0.00592846
\(149\) 1.60587 + 2.78145i 0.131558 + 0.227865i 0.924277 0.381722i \(-0.124669\pi\)
−0.792719 + 0.609587i \(0.791335\pi\)
\(150\) 0 0
\(151\) −8.51610 + 14.7503i −0.693030 + 1.20036i 0.277810 + 0.960636i \(0.410391\pi\)
−0.970840 + 0.239727i \(0.922942\pi\)
\(152\) 7.37253 + 12.7696i 0.597991 + 1.03575i
\(153\) 0 0
\(154\) −6.06147 + 8.92364i −0.488447 + 0.719088i
\(155\) 8.55073 0.686811
\(156\) 0 0
\(157\) −4.71709 + 8.17024i −0.376465 + 0.652056i −0.990545 0.137188i \(-0.956194\pi\)
0.614080 + 0.789243i \(0.289527\pi\)
\(158\) −0.831511 + 1.44022i −0.0661515 + 0.114578i
\(159\) 0 0
\(160\) −3.34636 −0.264553
\(161\) 9.78315 + 0.716140i 0.771021 + 0.0564398i
\(162\) 0 0
\(163\) −1.83874 3.18478i −0.144021 0.249452i 0.784986 0.619513i \(-0.212670\pi\)
−0.929007 + 0.370062i \(0.879337\pi\)
\(164\) −2.08710 + 3.61497i −0.162976 + 0.282282i
\(165\) 0 0
\(166\) −0.220054 0.381144i −0.0170795 0.0295825i
\(167\) 1.61017 0.124599 0.0622994 0.998058i \(-0.480157\pi\)
0.0622994 + 0.998058i \(0.480157\pi\)
\(168\) 0 0
\(169\) 9.91241 0.762493
\(170\) −2.09003 3.62003i −0.160298 0.277644i
\(171\) 0 0
\(172\) 0.941210 1.63022i 0.0717666 0.124303i
\(173\) −8.09213 14.0160i −0.615233 1.06562i −0.990344 0.138635i \(-0.955728\pi\)
0.375110 0.926980i \(-0.377605\pi\)
\(174\) 0 0
\(175\) 2.97999 + 6.16075i 0.225266 + 0.465709i
\(176\) 9.87827 0.744603
\(177\) 0 0
\(178\) −11.0548 + 19.1474i −0.828590 + 1.43516i
\(179\) −8.70319 + 15.0744i −0.650507 + 1.12671i 0.332493 + 0.943106i \(0.392110\pi\)
−0.983000 + 0.183606i \(0.941223\pi\)
\(180\) 0 0
\(181\) 8.89591 0.661228 0.330614 0.943766i \(-0.392744\pi\)
0.330614 + 0.943766i \(0.392744\pi\)
\(182\) −16.0433 1.17439i −1.18921 0.0870519i
\(183\) 0 0
\(184\) −5.61967 9.73356i −0.414288 0.717568i
\(185\) 0.144907 0.250987i 0.0106538 0.0184529i
\(186\) 0 0
\(187\) −3.39998 5.88893i −0.248631 0.430642i
\(188\) −0.685009 −0.0499594
\(189\) 0 0
\(190\) 9.59793 0.696307
\(191\) 7.39609 + 12.8104i 0.535163 + 0.926929i 0.999155 + 0.0410898i \(0.0130830\pi\)
−0.463993 + 0.885839i \(0.653584\pi\)
\(192\) 0 0
\(193\) −0.910790 + 1.57753i −0.0655601 + 0.113553i −0.896942 0.442148i \(-0.854217\pi\)
0.831382 + 0.555701i \(0.187550\pi\)
\(194\) −6.71188 11.6253i −0.481885 0.834649i
\(195\) 0 0
\(196\) −2.67736 0.394085i −0.191240 0.0281489i
\(197\) −7.71970 −0.550006 −0.275003 0.961443i \(-0.588679\pi\)
−0.275003 + 0.961443i \(0.588679\pi\)
\(198\) 0 0
\(199\) −1.10665 + 1.91678i −0.0784487 + 0.135877i −0.902581 0.430521i \(-0.858330\pi\)
0.824132 + 0.566398i \(0.191663\pi\)
\(200\) 3.92065 6.79076i 0.277232 0.480179i
\(201\) 0 0
\(202\) 2.58350 0.181774
\(203\) −10.9704 + 16.1506i −0.769974 + 1.13355i
\(204\) 0 0
\(205\) 8.38671 + 14.5262i 0.585753 + 1.01455i
\(206\) 12.6903 21.9802i 0.884174 1.53143i
\(207\) 0 0
\(208\) 7.36513 + 12.7568i 0.510680 + 0.884524i
\(209\) 15.6136 1.08001
\(210\) 0 0
\(211\) −1.81344 −0.124843 −0.0624213 0.998050i \(-0.519882\pi\)
−0.0624213 + 0.998050i \(0.519882\pi\)
\(212\) 0.322592 + 0.558746i 0.0221557 + 0.0383749i
\(213\) 0 0
\(214\) 10.7373 18.5975i 0.733983 1.27130i
\(215\) −3.78211 6.55081i −0.257938 0.446761i
\(216\) 0 0
\(217\) −6.34119 13.1096i −0.430468 0.889937i
\(218\) 13.5900 0.920428
\(219\) 0 0
\(220\) −0.963939 + 1.66959i −0.0649887 + 0.112564i
\(221\) 5.06997 8.78145i 0.341043 0.590704i
\(222\) 0 0
\(223\) 9.50616 0.636580 0.318290 0.947993i \(-0.396891\pi\)
0.318290 + 0.947993i \(0.396891\pi\)
\(224\) 2.48165 + 5.13049i 0.165812 + 0.342795i
\(225\) 0 0
\(226\) 5.45213 + 9.44337i 0.362671 + 0.628164i
\(227\) −5.41646 + 9.38158i −0.359503 + 0.622678i −0.987878 0.155233i \(-0.950387\pi\)
0.628375 + 0.777911i \(0.283720\pi\)
\(228\) 0 0
\(229\) −6.25983 10.8423i −0.413661 0.716482i 0.581626 0.813456i \(-0.302417\pi\)
−0.995287 + 0.0969747i \(0.969083\pi\)
\(230\) −7.31597 −0.482401
\(231\) 0 0
\(232\) 22.3704 1.46869
\(233\) 7.64044 + 13.2336i 0.500542 + 0.866964i 1.00000 0.000625732i \(0.000199177\pi\)
−0.499458 + 0.866338i \(0.666467\pi\)
\(234\) 0 0
\(235\) −1.37630 + 2.38382i −0.0897800 + 0.155504i
\(236\) 1.12616 + 1.95056i 0.0733066 + 0.126971i
\(237\) 0 0
\(238\) −4.00011 + 5.88893i −0.259289 + 0.381723i
\(239\) −10.7158 −0.693149 −0.346574 0.938023i \(-0.612655\pi\)
−0.346574 + 0.938023i \(0.612655\pi\)
\(240\) 0 0
\(241\) 7.50011 12.9906i 0.483125 0.836796i −0.516688 0.856174i \(-0.672835\pi\)
0.999812 + 0.0193775i \(0.00616845\pi\)
\(242\) −0.441942 + 0.765467i −0.0284091 + 0.0492061i
\(243\) 0 0
\(244\) −2.65877 −0.170210
\(245\) −6.75069 + 8.52540i −0.431286 + 0.544668i
\(246\) 0 0
\(247\) 11.6413 + 20.1633i 0.740718 + 1.28296i
\(248\) −8.34283 + 14.4502i −0.529770 + 0.917589i
\(249\) 0 0
\(250\) −7.48516 12.9647i −0.473403 0.819958i
\(251\) 16.5665 1.04567 0.522833 0.852435i \(-0.324875\pi\)
0.522833 + 0.852435i \(0.324875\pi\)
\(252\) 0 0
\(253\) −11.9013 −0.748231
\(254\) 1.23947 + 2.14683i 0.0777714 + 0.134704i
\(255\) 0 0
\(256\) 4.45470 7.71576i 0.278419 0.482235i
\(257\) −11.2886 19.5524i −0.704163 1.21965i −0.966993 0.254804i \(-0.917989\pi\)
0.262829 0.964842i \(-0.415344\pi\)
\(258\) 0 0
\(259\) −0.492265 0.0360344i −0.0305878 0.00223907i
\(260\) −2.87481 −0.178288
\(261\) 0 0
\(262\) −7.45877 + 12.9190i −0.460804 + 0.798136i
\(263\) −11.1730 + 19.3523i −0.688959 + 1.19331i 0.283216 + 0.959056i \(0.408599\pi\)
−0.972175 + 0.234256i \(0.924735\pi\)
\(264\) 0 0
\(265\) 2.59258 0.159261
\(266\) −7.11779 14.7151i −0.436419 0.902241i
\(267\) 0 0
\(268\) 2.36549 + 4.09715i 0.144495 + 0.250273i
\(269\) −13.9475 + 24.1577i −0.850392 + 1.47292i 0.0304623 + 0.999536i \(0.490302\pi\)
−0.880855 + 0.473387i \(0.843031\pi\)
\(270\) 0 0
\(271\) −4.93714 8.55138i −0.299910 0.519459i 0.676205 0.736713i \(-0.263623\pi\)
−0.976115 + 0.217254i \(0.930290\pi\)
\(272\) 6.51892 0.395267
\(273\) 0 0
\(274\) 20.4909 1.23790
\(275\) −4.15157 7.19074i −0.250349 0.433618i
\(276\) 0 0
\(277\) 4.35728 7.54704i 0.261804 0.453458i −0.704917 0.709289i \(-0.749016\pi\)
0.966721 + 0.255832i \(0.0823493\pi\)
\(278\) 8.53733 + 14.7871i 0.512035 + 0.886871i
\(279\) 0 0
\(280\) 12.4265 + 0.909639i 0.742627 + 0.0543613i
\(281\) −6.20641 −0.370243 −0.185122 0.982716i \(-0.559268\pi\)
−0.185122 + 0.982716i \(0.559268\pi\)
\(282\) 0 0
\(283\) −9.82943 + 17.0251i −0.584299 + 1.01204i 0.410664 + 0.911787i \(0.365297\pi\)
−0.994962 + 0.100248i \(0.968036\pi\)
\(284\) −2.66949 + 4.62370i −0.158405 + 0.274366i
\(285\) 0 0
\(286\) 19.5170 1.15406
\(287\) 16.0514 23.6307i 0.947483 1.39488i
\(288\) 0 0
\(289\) 6.25627 + 10.8362i 0.368016 + 0.637422i
\(290\) 7.28073 12.6106i 0.427539 0.740519i
\(291\) 0 0
\(292\) 2.29332 + 3.97215i 0.134207 + 0.232453i
\(293\) −14.4968 −0.846913 −0.423456 0.905916i \(-0.639183\pi\)
−0.423456 + 0.905916i \(0.639183\pi\)
\(294\) 0 0
\(295\) 9.05058 0.526945
\(296\) 0.282768 + 0.489769i 0.0164356 + 0.0284672i
\(297\) 0 0
\(298\) −2.03977 + 3.53299i −0.118161 + 0.204661i
\(299\) −8.87352 15.3694i −0.513169 0.888834i
\(300\) 0 0
\(301\) −7.23860 + 10.6566i −0.417226 + 0.614237i
\(302\) −21.6342 −1.24491
\(303\) 0 0
\(304\) −7.48413 + 12.9629i −0.429244 + 0.743473i
\(305\) −5.34193 + 9.25249i −0.305878 + 0.529796i
\(306\) 0 0
\(307\) 22.2776 1.27145 0.635725 0.771916i \(-0.280701\pi\)
0.635725 + 0.771916i \(0.280701\pi\)
\(308\) 3.27459 + 0.239705i 0.186587 + 0.0136584i
\(309\) 0 0
\(310\) 5.43055 + 9.40599i 0.308435 + 0.534225i
\(311\) −8.70027 + 15.0693i −0.493347 + 0.854502i −0.999971 0.00766509i \(-0.997560\pi\)
0.506623 + 0.862167i \(0.330893\pi\)
\(312\) 0 0
\(313\) 0.100022 + 0.173244i 0.00565360 + 0.00979232i 0.868838 0.495096i \(-0.164867\pi\)
−0.863185 + 0.504888i \(0.831534\pi\)
\(314\) −11.9833 −0.676254
\(315\) 0 0
\(316\) 0.506163 0.0284739
\(317\) −4.11706 7.13096i −0.231237 0.400514i 0.726935 0.686706i \(-0.240944\pi\)
−0.958172 + 0.286192i \(0.907611\pi\)
\(318\) 0 0
\(319\) 11.8440 20.5144i 0.663138 1.14859i
\(320\) −6.90590 11.9614i −0.386052 0.668661i
\(321\) 0 0
\(322\) 5.42549 + 11.2165i 0.302351 + 0.625072i
\(323\) 10.3038 0.573317
\(324\) 0 0
\(325\) 6.19074 10.7227i 0.343400 0.594787i
\(326\) 2.33556 4.04530i 0.129354 0.224049i
\(327\) 0 0
\(328\) −32.7312 −1.80728
\(329\) 4.67543 + 0.342248i 0.257765 + 0.0188687i
\(330\) 0 0
\(331\) 8.31616 + 14.4040i 0.457098 + 0.791716i 0.998806 0.0488501i \(-0.0155557\pi\)
−0.541708 + 0.840566i \(0.682222\pi\)
\(332\) −0.0669762 + 0.116006i −0.00367580 + 0.00636667i
\(333\) 0 0
\(334\) 1.02262 + 1.77122i 0.0559551 + 0.0969170i
\(335\) 19.0107 1.03867
\(336\) 0 0
\(337\) 15.9095 0.866645 0.433322 0.901239i \(-0.357341\pi\)
0.433322 + 0.901239i \(0.357341\pi\)
\(338\) 6.29535 + 10.9039i 0.342422 + 0.593092i
\(339\) 0 0
\(340\) −0.636127 + 1.10180i −0.0344988 + 0.0597537i
\(341\) 8.83422 + 15.3013i 0.478400 + 0.828613i
\(342\) 0 0
\(343\) 18.0770 + 4.02745i 0.976069 + 0.217462i
\(344\) 14.7606 0.795839
\(345\) 0 0
\(346\) 10.2786 17.8031i 0.552581 0.957098i
\(347\) −3.14462 + 5.44665i −0.168812 + 0.292391i −0.938003 0.346628i \(-0.887326\pi\)
0.769190 + 0.639020i \(0.220660\pi\)
\(348\) 0 0
\(349\) 1.61955 0.0866927 0.0433463 0.999060i \(-0.486198\pi\)
0.0433463 + 0.999060i \(0.486198\pi\)
\(350\) −4.88437 + 7.19074i −0.261081 + 0.384361i
\(351\) 0 0
\(352\) −3.45731 5.98823i −0.184275 0.319174i
\(353\) −16.2559 + 28.1560i −0.865213 + 1.49859i 0.00162266 + 0.999999i \(0.499483\pi\)
−0.866836 + 0.498594i \(0.833850\pi\)
\(354\) 0 0
\(355\) 10.7270 + 18.5796i 0.569328 + 0.986104i
\(356\) 6.72933 0.356654
\(357\) 0 0
\(358\) −22.1095 −1.16852
\(359\) −5.59588 9.69235i −0.295339 0.511543i 0.679724 0.733468i \(-0.262099\pi\)
−0.975064 + 0.221925i \(0.928766\pi\)
\(360\) 0 0
\(361\) −2.32938 + 4.03461i −0.122599 + 0.212348i
\(362\) 5.64978 + 9.78570i 0.296946 + 0.514325i
\(363\) 0 0
\(364\) 2.13195 + 4.40753i 0.111744 + 0.231017i
\(365\) 18.4307 0.964709
\(366\) 0 0
\(367\) 2.59339 4.49188i 0.135374 0.234474i −0.790366 0.612634i \(-0.790110\pi\)
0.925740 + 0.378160i \(0.123443\pi\)
\(368\) 5.70474 9.88089i 0.297380 0.515077i
\(369\) 0 0
\(370\) 0.368122 0.0191377
\(371\) −1.92264 3.97482i −0.0998187 0.206362i
\(372\) 0 0
\(373\) −16.4322 28.4614i −0.850825 1.47367i −0.880464 0.474112i \(-0.842769\pi\)
0.0296389 0.999561i \(-0.490564\pi\)
\(374\) 4.31864 7.48010i 0.223312 0.386787i
\(375\) 0 0
\(376\) −2.68568 4.65173i −0.138503 0.239895i
\(377\) 35.3231 1.81923
\(378\) 0 0
\(379\) 13.9362 0.715856 0.357928 0.933749i \(-0.383483\pi\)
0.357928 + 0.933749i \(0.383483\pi\)
\(380\) −1.46063 2.52988i −0.0749286 0.129780i
\(381\) 0 0
\(382\) −9.39449 + 16.2717i −0.480664 + 0.832534i
\(383\) 0.857601 + 1.48541i 0.0438214 + 0.0759008i 0.887104 0.461569i \(-0.152713\pi\)
−0.843283 + 0.537470i \(0.819380\pi\)
\(384\) 0 0
\(385\) 7.41340 10.9139i 0.377822 0.556226i
\(386\) −2.31376 −0.117768
\(387\) 0 0
\(388\) −2.04285 + 3.53832i −0.103710 + 0.179631i
\(389\) 1.57428 2.72673i 0.0798191 0.138251i −0.823353 0.567530i \(-0.807899\pi\)
0.903172 + 0.429279i \(0.141232\pi\)
\(390\) 0 0
\(391\) −7.85400 −0.397194
\(392\) −7.82085 19.7264i −0.395012 0.996332i
\(393\) 0 0
\(394\) −4.90277 8.49184i −0.246998 0.427813i
\(395\) 1.01697 1.76144i 0.0511693 0.0886277i
\(396\) 0 0
\(397\) −13.7172 23.7590i −0.688449 1.19243i −0.972340 0.233572i \(-0.924959\pi\)
0.283891 0.958857i \(-0.408375\pi\)
\(398\) −2.81134 −0.140920
\(399\) 0 0
\(400\) 7.95998 0.397999
\(401\) −14.5185 25.1468i −0.725020 1.25577i −0.958966 0.283522i \(-0.908497\pi\)
0.233946 0.972250i \(-0.424836\pi\)
\(402\) 0 0
\(403\) −13.1734 + 22.8170i −0.656214 + 1.13660i
\(404\) −0.393161 0.680975i −0.0195605 0.0338798i
\(405\) 0 0
\(406\) −24.7333 1.81051i −1.22750 0.0898543i
\(407\) 0.598847 0.0296837
\(408\) 0 0
\(409\) 13.8650 24.0149i 0.685581 1.18746i −0.287673 0.957729i \(-0.592882\pi\)
0.973254 0.229732i \(-0.0737851\pi\)
\(410\) −10.6528 + 18.4511i −0.526103 + 0.911237i
\(411\) 0 0
\(412\) −7.72491 −0.380579
\(413\) −6.71188 13.8759i −0.330270 0.682791i
\(414\) 0 0
\(415\) 0.269134 + 0.466153i 0.0132113 + 0.0228826i
\(416\) 5.15546 8.92952i 0.252767 0.437806i
\(417\) 0 0
\(418\) 9.91614 + 17.1753i 0.485014 + 0.840070i
\(419\) 30.3598 1.48317 0.741586 0.670857i \(-0.234074\pi\)
0.741586 + 0.670857i \(0.234074\pi\)
\(420\) 0 0
\(421\) −27.7735 −1.35360 −0.676799 0.736168i \(-0.736633\pi\)
−0.676799 + 0.736168i \(0.736633\pi\)
\(422\) −1.15171 1.99483i −0.0560646 0.0971067i
\(423\) 0 0
\(424\) −2.52954 + 4.38129i −0.122845 + 0.212774i
\(425\) −2.73973 4.74535i −0.132896 0.230183i
\(426\) 0 0
\(427\) 18.1471 + 1.32839i 0.878197 + 0.0642853i
\(428\) −6.53605 −0.315932
\(429\) 0 0
\(430\) 4.80402 8.32081i 0.231671 0.401265i
\(431\) 3.62965 6.28673i 0.174834 0.302821i −0.765270 0.643710i \(-0.777394\pi\)
0.940104 + 0.340888i \(0.110728\pi\)
\(432\) 0 0
\(433\) 15.0375 0.722658 0.361329 0.932438i \(-0.382323\pi\)
0.361329 + 0.932438i \(0.382323\pi\)
\(434\) 10.3936 15.3013i 0.498907 0.734487i
\(435\) 0 0
\(436\) −2.06814 3.58213i −0.0990460 0.171553i
\(437\) 9.01688 15.6177i 0.431336 0.747096i
\(438\) 0 0
\(439\) −0.770595 1.33471i −0.0367785 0.0637022i 0.847050 0.531513i \(-0.178376\pi\)
−0.883829 + 0.467811i \(0.845043\pi\)
\(440\) −15.1170 −0.720677
\(441\) 0 0
\(442\) 12.8797 0.612626
\(443\) 10.1689 + 17.6131i 0.483141 + 0.836824i 0.999813 0.0193593i \(-0.00616265\pi\)
−0.516672 + 0.856183i \(0.672829\pi\)
\(444\) 0 0
\(445\) 13.5204 23.4180i 0.640928 1.11012i
\(446\) 6.03735 + 10.4570i 0.285877 + 0.495153i
\(447\) 0 0
\(448\) −13.2172 + 19.4583i −0.624456 + 0.919319i
\(449\) −26.4527 −1.24838 −0.624190 0.781272i \(-0.714571\pi\)
−0.624190 + 0.781272i \(0.714571\pi\)
\(450\) 0 0
\(451\) −17.3295 + 30.0156i −0.816016 + 1.41338i
\(452\) 1.65943 2.87422i 0.0780530 0.135192i
\(453\) 0 0
\(454\) −13.7599 −0.645786
\(455\) 19.6216 + 1.43633i 0.919875 + 0.0673361i
\(456\) 0 0
\(457\) 3.24681 + 5.62363i 0.151879 + 0.263063i 0.931918 0.362668i \(-0.118134\pi\)
−0.780039 + 0.625731i \(0.784801\pi\)
\(458\) 7.95121 13.7719i 0.371536 0.643518i
\(459\) 0 0
\(460\) 1.11336 + 1.92839i 0.0519105 + 0.0899116i
\(461\) −15.5916 −0.726175 −0.363088 0.931755i \(-0.618277\pi\)
−0.363088 + 0.931755i \(0.618277\pi\)
\(462\) 0 0
\(463\) 7.65585 0.355797 0.177899 0.984049i \(-0.443070\pi\)
0.177899 + 0.984049i \(0.443070\pi\)
\(464\) 11.3545 + 19.6666i 0.527120 + 0.912999i
\(465\) 0 0
\(466\) −9.70486 + 16.8093i −0.449569 + 0.778676i
\(467\) −20.8137 36.0503i −0.963142 1.66821i −0.714526 0.699608i \(-0.753358\pi\)
−0.248615 0.968602i \(-0.579976\pi\)
\(468\) 0 0
\(469\) −14.0983 29.1464i −0.650998 1.34585i
\(470\) −3.49635 −0.161274
\(471\) 0 0
\(472\) −8.83053 + 15.2949i −0.406458 + 0.704006i
\(473\) 7.81501 13.5360i 0.359335 0.622386i
\(474\) 0 0
\(475\) 12.5815 0.577280
\(476\) 2.16099 + 0.158187i 0.0990486 + 0.00725050i
\(477\) 0 0
\(478\) −6.80560 11.7876i −0.311281 0.539154i
\(479\) 1.15789 2.00553i 0.0529055 0.0916350i −0.838360 0.545117i \(-0.816485\pi\)
0.891265 + 0.453482i \(0.149818\pi\)
\(480\) 0 0
\(481\) 0.446494 + 0.773350i 0.0203584 + 0.0352617i
\(482\) 19.0532 0.867851
\(483\) 0 0
\(484\) 0.269022 0.0122283
\(485\) 8.20888 + 14.2182i 0.372746 + 0.645615i
\(486\) 0 0
\(487\) −9.06396 + 15.6992i −0.410727 + 0.711401i −0.994969 0.100179i \(-0.968058\pi\)
0.584242 + 0.811579i \(0.301392\pi\)
\(488\) −10.4241 18.0551i −0.471876 0.817314i
\(489\) 0 0
\(490\) −13.6655 2.01144i −0.617344 0.0908677i
\(491\) 21.5944 0.974542 0.487271 0.873251i \(-0.337992\pi\)
0.487271 + 0.873251i \(0.337992\pi\)
\(492\) 0 0
\(493\) 7.81616 13.5380i 0.352022 0.609720i
\(494\) −14.7867 + 25.6114i −0.665287 + 1.15231i
\(495\) 0 0
\(496\) −16.9382 −0.760549
\(497\) 20.5304 30.2247i 0.920913 1.35576i
\(498\) 0 0
\(499\) −13.5827 23.5259i −0.608045 1.05316i −0.991562 0.129631i \(-0.958621\pi\)
0.383518 0.923534i \(-0.374713\pi\)
\(500\) −2.27821 + 3.94597i −0.101885 + 0.176469i
\(501\) 0 0
\(502\) 10.5213 + 18.2235i 0.469590 + 0.813354i
\(503\) 11.8850 0.529927 0.264964 0.964258i \(-0.414640\pi\)
0.264964 + 0.964258i \(0.414640\pi\)
\(504\) 0 0
\(505\) −3.15972 −0.140606
\(506\) −7.55852 13.0917i −0.336017 0.581999i
\(507\) 0 0
\(508\) 0.377250 0.653415i 0.0167377 0.0289906i
\(509\) 20.7297 + 35.9049i 0.918829 + 1.59146i 0.801197 + 0.598401i \(0.204197\pi\)
0.117632 + 0.993057i \(0.462470\pi\)
\(510\) 0 0
\(511\) −13.6682 28.2572i −0.604644 1.25002i
\(512\) 25.2864 1.11751
\(513\) 0 0
\(514\) 14.3387 24.8354i 0.632455 1.09544i
\(515\) −15.5207 + 26.8826i −0.683923 + 1.18459i
\(516\) 0 0
\(517\) −5.68773 −0.250146
\(518\) −0.272998 0.564387i −0.0119948 0.0247978i
\(519\) 0 0
\(520\) −11.2711 19.5221i −0.494271 0.856102i
\(521\) −1.65221 + 2.86171i −0.0723846 + 0.125374i −0.899946 0.436002i \(-0.856394\pi\)
0.827561 + 0.561375i \(0.189728\pi\)
\(522\) 0 0
\(523\) 1.24483 + 2.15611i 0.0544327 + 0.0942803i 0.891958 0.452119i \(-0.149332\pi\)
−0.837525 + 0.546399i \(0.815998\pi\)
\(524\) 4.54035 0.198346
\(525\) 0 0
\(526\) −28.3839 −1.23760
\(527\) 5.82992 + 10.0977i 0.253955 + 0.439864i
\(528\) 0 0
\(529\) 4.62693 8.01408i 0.201171 0.348438i
\(530\) 1.64654 + 2.85189i 0.0715211 + 0.123878i
\(531\) 0 0
\(532\) −2.79550 + 4.11552i −0.121200 + 0.178430i
\(533\) −51.6829 −2.23863
\(534\) 0 0
\(535\) −13.1321 + 22.7454i −0.567748 + 0.983369i
\(536\) −18.5485 + 32.1269i −0.801173 + 1.38767i
\(537\) 0 0
\(538\) −35.4321 −1.52758
\(539\) −22.2305 3.27214i −0.957536 0.140941i
\(540\) 0 0
\(541\) 11.2397 + 19.4677i 0.483233 + 0.836984i 0.999815 0.0192542i \(-0.00612919\pi\)
−0.516582 + 0.856238i \(0.672796\pi\)
\(542\) 6.27114 10.8619i 0.269369 0.466560i
\(543\) 0 0
\(544\) −2.28156 3.95178i −0.0978212 0.169431i
\(545\) −16.6210 −0.711966
\(546\) 0 0
\(547\) −14.5545 −0.622307 −0.311154 0.950360i \(-0.600715\pi\)
−0.311154 + 0.950360i \(0.600715\pi\)
\(548\) −3.11834 5.40112i −0.133209 0.230725i
\(549\) 0 0
\(550\) 5.27331 9.13365i 0.224855 0.389460i
\(551\) 17.9469 + 31.0849i 0.764564 + 1.32426i
\(552\) 0 0
\(553\) −3.45474 0.252892i −0.146911 0.0107541i
\(554\) 11.0692 0.470286
\(555\) 0 0
\(556\) 2.59845 4.50065i 0.110199 0.190870i
\(557\) −7.77331 + 13.4638i −0.329366 + 0.570478i −0.982386 0.186862i \(-0.940168\pi\)
0.653021 + 0.757340i \(0.273502\pi\)
\(558\) 0 0
\(559\) 23.3071 0.985787
\(560\) 5.50762 + 11.3863i 0.232739 + 0.481158i
\(561\) 0 0
\(562\) −3.94168 6.82719i −0.166270 0.287988i
\(563\) 7.36914 12.7637i 0.310572 0.537927i −0.667914 0.744238i \(-0.732813\pi\)
0.978486 + 0.206312i \(0.0661461\pi\)
\(564\) 0 0
\(565\) −6.66816 11.5496i −0.280532 0.485895i
\(566\) −24.9706 −1.04959
\(567\) 0 0
\(568\) −41.8646 −1.75660
\(569\) −6.48539 11.2330i −0.271882 0.470913i 0.697462 0.716622i \(-0.254313\pi\)
−0.969344 + 0.245709i \(0.920979\pi\)
\(570\) 0 0
\(571\) −6.42929 + 11.1359i −0.269058 + 0.466021i −0.968619 0.248551i \(-0.920046\pi\)
0.699561 + 0.714573i \(0.253379\pi\)
\(572\) −2.97012 5.14440i −0.124187 0.215098i
\(573\) 0 0
\(574\) 36.1885 + 2.64905i 1.51048 + 0.110569i
\(575\) −9.59019 −0.399939
\(576\) 0 0
\(577\) 5.26279 9.11542i 0.219093 0.379480i −0.735438 0.677592i \(-0.763024\pi\)
0.954531 + 0.298112i \(0.0963569\pi\)
\(578\) −7.94669 + 13.7641i −0.330539 + 0.572510i
\(579\) 0 0
\(580\) −4.43197 −0.184028
\(581\) 0.515097 0.758321i 0.0213698 0.0314605i
\(582\) 0 0
\(583\) 2.67853 + 4.63935i 0.110933 + 0.192142i
\(584\) −17.9826 + 31.1468i −0.744126 + 1.28886i
\(585\) 0 0
\(586\) −9.20690 15.9468i −0.380334 0.658757i
\(587\) −6.20018 −0.255909 −0.127954 0.991780i \(-0.540841\pi\)
−0.127954 + 0.991780i \(0.540841\pi\)
\(588\) 0 0
\(589\) −26.7725 −1.10314
\(590\) 5.74801 + 9.95585i 0.236642 + 0.409876i
\(591\) 0 0
\(592\) −0.287048 + 0.497182i −0.0117976 + 0.0204341i
\(593\) −18.7629 32.4984i −0.770502 1.33455i −0.937288 0.348555i \(-0.886673\pi\)
0.166787 0.985993i \(-0.446661\pi\)
\(594\) 0 0
\(595\) 4.89229 7.20239i 0.200564 0.295269i
\(596\) 1.24166 0.0508605
\(597\) 0 0
\(598\) 11.2711 19.5221i 0.460910 0.798319i
\(599\) 17.5460 30.3905i 0.716909 1.24172i −0.245309 0.969445i \(-0.578889\pi\)
0.962218 0.272279i \(-0.0877773\pi\)
\(600\) 0 0
\(601\) 26.2342 1.07012 0.535058 0.844815i \(-0.320290\pi\)
0.535058 + 0.844815i \(0.320290\pi\)
\(602\) −16.3197 1.19463i −0.665143 0.0486894i
\(603\) 0 0
\(604\) 3.29233 + 5.70249i 0.133963 + 0.232031i
\(605\) 0.540512 0.936194i 0.0219749 0.0380617i
\(606\) 0 0
\(607\) 1.10933 + 1.92142i 0.0450263 + 0.0779879i 0.887660 0.460499i \(-0.152329\pi\)
−0.842634 + 0.538487i \(0.818996\pi\)
\(608\) 10.4775 0.424919
\(609\) 0 0
\(610\) −13.5706 −0.549457
\(611\) −4.24071 7.34512i −0.171561 0.297152i
\(612\) 0 0
\(613\) −7.43312 + 12.8745i −0.300221 + 0.519998i −0.976186 0.216936i \(-0.930394\pi\)
0.675965 + 0.736934i \(0.263727\pi\)
\(614\) 14.1485 + 24.5059i 0.570986 + 0.988976i
\(615\) 0 0
\(616\) 11.2107 + 23.1768i 0.451694 + 0.933819i
\(617\) −23.2046 −0.934181 −0.467091 0.884210i \(-0.654698\pi\)
−0.467091 + 0.884210i \(0.654698\pi\)
\(618\) 0 0
\(619\) 4.15562 7.19775i 0.167029 0.289302i −0.770345 0.637627i \(-0.779916\pi\)
0.937374 + 0.348325i \(0.113249\pi\)
\(620\) 1.65286 2.86284i 0.0663805 0.114974i
\(621\) 0 0
\(622\) −22.1021 −0.886214
\(623\) −45.9301 3.36215i −1.84015 0.134701i
\(624\) 0 0
\(625\) 2.68802 + 4.65578i 0.107521 + 0.186231i
\(626\) −0.127048 + 0.220054i −0.00507786 + 0.00879511i
\(627\) 0 0
\(628\) 1.82363 + 3.15862i 0.0727708 + 0.126043i
\(629\) 0.395194 0.0157574
\(630\) 0 0
\(631\) −24.5415 −0.976982 −0.488491 0.872569i \(-0.662452\pi\)
−0.488491 + 0.872569i \(0.662452\pi\)
\(632\) 1.98448 + 3.43723i 0.0789386 + 0.136726i
\(633\) 0 0
\(634\) 5.22947 9.05771i 0.207689 0.359728i
\(635\) −1.51592 2.62565i −0.0601574 0.104196i
\(636\) 0 0
\(637\) −12.3492 31.1481i −0.489293 1.23413i
\(638\) 30.0885 1.19121
\(639\) 0 0
\(640\) 5.42549 9.39723i 0.214461 0.371458i
\(641\) 3.98762 6.90677i 0.157502 0.272801i −0.776465 0.630160i \(-0.782989\pi\)
0.933967 + 0.357359i \(0.116323\pi\)
\(642\) 0 0
\(643\) −3.12279 −0.123151 −0.0615755 0.998102i \(-0.519612\pi\)
−0.0615755 + 0.998102i \(0.519612\pi\)
\(644\) 2.13086 3.13703i 0.0839675 0.123616i
\(645\) 0 0
\(646\) 6.54391 + 11.3344i 0.257467 + 0.445945i
\(647\) −6.13273 + 10.6222i −0.241102 + 0.417602i −0.961029 0.276449i \(-0.910842\pi\)
0.719926 + 0.694051i \(0.244176\pi\)
\(648\) 0 0
\(649\) 9.35065 + 16.1958i 0.367045 + 0.635741i
\(650\) 15.7269 0.616860
\(651\) 0 0
\(652\) −1.42171 −0.0556786
\(653\) 8.25476 + 14.2977i 0.323034 + 0.559511i 0.981112 0.193438i \(-0.0619640\pi\)
−0.658079 + 0.752949i \(0.728631\pi\)
\(654\) 0 0
\(655\) 9.12235 15.8004i 0.356440 0.617372i
\(656\) −16.6133 28.7751i −0.648641 1.12348i
\(657\) 0 0
\(658\) 2.59288 + 5.36044i 0.101081 + 0.208972i
\(659\) −10.7388 −0.418324 −0.209162 0.977881i \(-0.567074\pi\)
−0.209162 + 0.977881i \(0.567074\pi\)
\(660\) 0 0
\(661\) 6.68817 11.5843i 0.260140 0.450575i −0.706139 0.708073i \(-0.749565\pi\)
0.966279 + 0.257498i \(0.0828980\pi\)
\(662\) −10.5632 + 18.2959i −0.410549 + 0.711092i
\(663\) 0 0
\(664\) −1.05036 −0.0407619
\(665\) 8.70532 + 17.9971i 0.337578 + 0.697898i
\(666\) 0 0
\(667\) −13.6799 23.6943i −0.529689 0.917448i
\(668\) 0.311247 0.539095i 0.0120425 0.0208582i
\(669\) 0 0
\(670\) 12.0737 + 20.9122i 0.466447 + 0.807909i
\(671\) −22.0761 −0.852240
\(672\) 0 0
\(673\) 40.8986 1.57653 0.788264 0.615338i \(-0.210980\pi\)
0.788264 + 0.615338i \(0.210980\pi\)
\(674\) 10.1041 + 17.5008i 0.389195 + 0.674105i
\(675\) 0 0
\(676\) 1.91607 3.31874i 0.0736951 0.127644i
\(677\) −10.6250 18.4031i −0.408353 0.707288i 0.586353 0.810056i \(-0.300563\pi\)
−0.994705 + 0.102768i \(0.967230\pi\)
\(678\) 0 0
\(679\) 15.7110 23.1296i 0.602933 0.887634i
\(680\) −9.97612 −0.382567
\(681\) 0 0
\(682\) −11.2212 + 19.4357i −0.429682 + 0.744231i
\(683\) 20.6708 35.8029i 0.790948 1.36996i −0.134433 0.990923i \(-0.542921\pi\)
0.925381 0.379039i \(-0.123745\pi\)
\(684\) 0 0
\(685\) −25.0612 −0.957537
\(686\) 7.05042 + 22.4430i 0.269186 + 0.856877i
\(687\) 0 0
\(688\) 7.49202 + 12.9766i 0.285631 + 0.494727i
\(689\) −3.99417 + 6.91810i −0.152166 + 0.263559i
\(690\) 0 0
\(691\) 0.760183 + 1.31668i 0.0289187 + 0.0500887i 0.880123 0.474747i \(-0.157460\pi\)
−0.851204 + 0.524835i \(0.824127\pi\)
\(692\) −6.25685 −0.237850
\(693\) 0 0
\(694\) −7.98858 −0.303242
\(695\) −10.4415 18.0852i −0.396068 0.686009i
\(696\) 0 0
\(697\) −11.4362 + 19.8081i −0.433177 + 0.750284i
\(698\) 1.02858 + 1.78154i 0.0389321 + 0.0674325i
\(699\) 0 0
\(700\) 2.63869 + 0.193156i 0.0997331 + 0.00730060i
\(701\) 32.5344 1.22881 0.614404 0.788991i \(-0.289396\pi\)
0.614404 + 0.788991i \(0.289396\pi\)
\(702\) 0 0
\(703\) −0.453708 + 0.785845i −0.0171119 + 0.0296387i
\(704\) 14.2697 24.7159i 0.537811 0.931515i
\(705\) 0 0
\(706\) −41.2963 −1.55421
\(707\) 2.34323 + 4.84433i 0.0881264 + 0.182190i
\(708\) 0 0
\(709\) −11.2810 19.5394i −0.423669 0.733816i 0.572626 0.819816i \(-0.305925\pi\)
−0.996295 + 0.0860007i \(0.972591\pi\)
\(710\) −13.6253 + 23.5998i −0.511350 + 0.885684i
\(711\) 0 0
\(712\) 26.3833 + 45.6972i 0.988756 + 1.71258i
\(713\) 20.4072 0.764255
\(714\) 0 0
\(715\) −23.8700 −0.892686
\(716\) 3.36466 + 5.82777i 0.125743 + 0.217794i
\(717\) 0 0
\(718\) 7.10787 12.3112i 0.265263 0.459450i
\(719\) −3.25084 5.63062i −0.121236 0.209987i 0.799019 0.601305i \(-0.205352\pi\)
−0.920255 + 0.391319i \(0.872019\pi\)
\(720\) 0 0
\(721\) 52.7253 + 3.85956i 1.96359 + 0.143738i
\(722\) −5.91755 −0.220228
\(723\) 0 0
\(724\) 1.71958 2.97841i 0.0639078 0.110692i
\(725\) 9.54400 16.5307i 0.354455 0.613934i
\(726\) 0 0
\(727\) −7.83215 −0.290478 −0.145239 0.989397i \(-0.546395\pi\)
−0.145239 + 0.989397i \(0.546395\pi\)
\(728\) −21.5718 + 31.7579i −0.799505 + 1.17703i
\(729\) 0 0
\(730\) 11.7053 + 20.2742i 0.433234 + 0.750383i
\(731\) 5.15732 8.93274i 0.190750 0.330389i
\(732\) 0 0
\(733\) 3.74780 + 6.49138i 0.138428 + 0.239764i 0.926902 0.375304i \(-0.122462\pi\)
−0.788474 + 0.615068i \(0.789128\pi\)
\(734\) 6.58823 0.243176
\(735\) 0 0
\(736\) −7.98643 −0.294384
\(737\) 19.6410 + 34.0192i 0.723486 + 1.25311i
\(738\) 0 0
\(739\) −12.0480 + 20.8678i −0.443194 + 0.767634i −0.997924 0.0643961i \(-0.979488\pi\)
0.554731 + 0.832030i \(0.312821\pi\)
\(740\) −0.0560213 0.0970318i −0.00205939 0.00356696i
\(741\) 0 0
\(742\) 3.15132 4.63935i 0.115689 0.170316i
\(743\) −19.2882 −0.707616 −0.353808 0.935318i \(-0.615113\pi\)
−0.353808 + 0.935318i \(0.615113\pi\)
\(744\) 0 0
\(745\) 2.49472 4.32098i 0.0913994 0.158308i
\(746\) 20.8721 36.1515i 0.764181 1.32360i
\(747\) 0 0
\(748\) −2.62887 −0.0961210
\(749\) 44.6109 + 3.26558i 1.63005 + 0.119322i
\(750\) 0 0
\(751\) 16.6045 + 28.7598i 0.605906 + 1.04946i 0.991908 + 0.126961i \(0.0405225\pi\)
−0.386002 + 0.922498i \(0.626144\pi\)
\(752\) 2.72633 4.72214i 0.0994190 0.172199i
\(753\) 0 0
\(754\) 22.4336 + 38.8562i 0.816985 + 1.41506i
\(755\) 26.4595 0.962959
\(756\) 0 0
\(757\) 9.70935 0.352892 0.176446 0.984310i \(-0.443540\pi\)
0.176446 + 0.984310i \(0.443540\pi\)
\(758\) 8.85088 + 15.3302i 0.321478 + 0.556817i
\(759\) 0 0
\(760\) 11.4532 19.8375i 0.415452 0.719583i
\(761\) 1.36305 + 2.36086i 0.0494104 + 0.0855813i 0.889673 0.456599i \(-0.150932\pi\)
−0.840262 + 0.542180i \(0.817599\pi\)
\(762\) 0 0
\(763\) 12.3261 + 25.4826i 0.446234 + 0.922532i
\(764\) 5.71868 0.206894
\(765\) 0 0
\(766\) −1.08932 + 1.88676i −0.0393588 + 0.0681714i
\(767\) −13.9435 + 24.1508i −0.503470 + 0.872036i
\(768\) 0 0
\(769\) 50.0460 1.80470 0.902352 0.430999i \(-0.141839\pi\)
0.902352 + 0.430999i \(0.141839\pi\)
\(770\) 16.7138 + 1.22347i 0.602324 + 0.0440910i
\(771\) 0 0
\(772\) 0.352112 + 0.609877i 0.0126728 + 0.0219499i
\(773\) 9.52030 16.4896i 0.342421 0.593091i −0.642461 0.766319i \(-0.722086\pi\)
0.984882 + 0.173228i \(0.0554197\pi\)
\(774\) 0 0
\(775\) 7.11868 + 12.3299i 0.255711 + 0.442904i
\(776\) −32.0372 −1.15007
\(777\) 0 0
\(778\) 3.99928 0.143381
\(779\) −26.2589 45.4818i −0.940824 1.62956i
\(780\) 0 0
\(781\) −22.1652 + 38.3912i −0.793133 + 1.37375i
\(782\) −4.98806 8.63957i −0.178373 0.308950i
\(783\) 0 0
\(784\) 13.3725 16.8881i 0.477590 0.603145i
\(785\) 14.6560 0.523094
\(786\) 0 0
\(787\) 16.6011 28.7540i 0.591766 1.02497i −0.402228 0.915539i \(-0.631764\pi\)
0.993995 0.109430i \(-0.0349025\pi\)
\(788\) −1.49222 + 2.58460i −0.0531582 + 0.0920727i
\(789\) 0 0
\(790\) 2.58350 0.0919168
\(791\) −12.7622 + 18.7885i −0.453773 + 0.668041i
\(792\) 0 0
\(793\) −16.4597 28.5091i −0.584502 1.01239i
\(794\) 17.4236 30.1785i 0.618340 1.07100i
\(795\) 0 0
\(796\) 0.427834 + 0.741030i 0.0151642 + 0.0262651i
\(797\) −2.08944 −0.0740118 −0.0370059 0.999315i \(-0.511782\pi\)
−0.0370059 + 0.999315i \(0.511782\pi\)
\(798\) 0 0
\(799\) −3.75347 −0.132788
\(800\) −2.78592 4.82536i −0.0984972 0.170602i
\(801\) 0 0
\(802\) 18.4414 31.9414i 0.651187 1.12789i
\(803\) 19.0418 + 32.9814i 0.671970 + 1.16389i
\(804\) 0 0
\(805\) −6.63558 13.7182i −0.233873 0.483503i
\(806\) −33.4656 −1.17878
\(807\) 0 0
\(808\) 3.08289 5.33973i 0.108456 0.187851i
\(809\) 0.241404 0.418125i 0.00848732 0.0147005i −0.861751 0.507332i \(-0.830632\pi\)
0.870238 + 0.492632i \(0.163965\pi\)
\(810\) 0 0
\(811\) 17.1671 0.602820 0.301410 0.953495i \(-0.402543\pi\)
0.301410 + 0.953495i \(0.402543\pi\)
\(812\) 3.28673 + 6.79490i 0.115342 + 0.238454i
\(813\) 0 0
\(814\) 0.380327 + 0.658745i 0.0133304 + 0.0230890i
\(815\) −2.85647 + 4.94755i −0.100058 + 0.173305i
\(816\) 0 0
\(817\) 11.8419 + 20.5107i 0.414294 + 0.717578i
\(818\) 35.2226 1.23153
\(819\) 0 0
\(820\) 6.48462 0.226453
\(821\) −6.41086 11.1039i −0.223741 0.387530i 0.732200 0.681089i \(-0.238493\pi\)
−0.955941 + 0.293559i \(0.905160\pi\)
\(822\) 0 0
\(823\) −12.2973 + 21.2995i −0.428655 + 0.742453i −0.996754 0.0805075i \(-0.974346\pi\)
0.568099 + 0.822961i \(0.307679\pi\)
\(824\) −30.2866 52.4580i −1.05509 1.82746i
\(825\) 0 0
\(826\) 11.0011 16.1958i 0.382779 0.563524i
\(827\) −0.527165 −0.0183313 −0.00916567 0.999958i \(-0.502918\pi\)
−0.00916567 + 0.999958i \(0.502918\pi\)
\(828\) 0 0
\(829\) 23.1015 40.0130i 0.802348 1.38971i −0.115718 0.993282i \(-0.536917\pi\)
0.918067 0.396426i \(-0.129750\pi\)
\(830\) −0.341853 + 0.592106i −0.0118659 + 0.0205523i
\(831\) 0 0
\(832\) 42.5574 1.47541
\(833\) −14.6705 2.15937i −0.508302 0.0748177i
\(834\) 0 0
\(835\) −1.25070 2.16627i −0.0432822 0.0749669i
\(836\) 3.01811 5.22752i 0.104383 0.180797i
\(837\) 0 0
\(838\) 19.2815 + 33.3965i 0.666067 + 1.15366i
\(839\) 10.8258 0.373747 0.186874 0.982384i \(-0.440165\pi\)
0.186874 + 0.982384i \(0.440165\pi\)
\(840\) 0 0
\(841\) 25.4561 0.877797
\(842\) −17.6389 30.5515i −0.607877 1.05287i
\(843\) 0 0
\(844\) −0.350540 + 0.607152i −0.0120661 + 0.0208990i
\(845\) −7.69945 13.3358i −0.264869 0.458767i
\(846\) 0 0
\(847\) −1.83617 0.134410i −0.0630916 0.00461839i
\(848\) −5.13566 −0.176359
\(849\) 0 0
\(850\) 3.47999 6.02752i 0.119363 0.206742i
\(851\) 0.345836 0.599006i 0.0118551 0.0205337i
\(852\) 0 0
\(853\) −43.1922 −1.47887 −0.739437 0.673226i \(-0.764908\pi\)
−0.739437 + 0.673226i \(0.764908\pi\)
\(854\) 10.0639 + 20.8058i 0.344380 + 0.711961i
\(855\) 0 0
\(856\) −25.6255 44.3847i −0.875863 1.51704i
\(857\) 0.787226 1.36352i 0.0268911 0.0465768i −0.852267 0.523108i \(-0.824773\pi\)
0.879158 + 0.476531i \(0.158106\pi\)
\(858\) 0 0
\(859\) −3.41090 5.90786i −0.116378 0.201573i 0.801951 0.597389i \(-0.203795\pi\)
−0.918330 + 0.395816i \(0.870462\pi\)
\(860\) −2.92434 −0.0997190
\(861\) 0 0
\(862\) 9.22073 0.314059
\(863\) 4.51387 + 7.81825i 0.153654 + 0.266136i 0.932568 0.360994i \(-0.117563\pi\)
−0.778914 + 0.627131i \(0.784229\pi\)
\(864\) 0 0
\(865\) −12.5711 + 21.7738i −0.427430 + 0.740331i
\(866\) 9.55032 + 16.5416i 0.324533 + 0.562108i
\(867\) 0 0
\(868\) −5.61493 0.411021i −0.190583 0.0139509i
\(869\) 4.20274 0.142568
\(870\) 0 0
\(871\) −29.2882 + 50.7287i −0.992394 + 1.71888i
\(872\) 16.2169 28.0885i 0.549174 0.951196i
\(873\) 0 0
\(874\) 22.9064 0.774821
\(875\) 17.5211 25.7944i 0.592321 0.872011i
\(876\) 0 0
\(877\) −4.83460 8.37377i −0.163253 0.282762i 0.772781 0.634673i \(-0.218865\pi\)
−0.936033 + 0.351911i \(0.885532\pi\)
\(878\) 0.978807 1.69534i 0.0330331 0.0572151i
\(879\) 0 0
\(880\) −7.67293 13.2899i −0.258655 0.448003i
\(881\) 21.4721 0.723415 0.361707 0.932292i \(-0.382194\pi\)
0.361707 + 0.932292i \(0.382194\pi\)
\(882\) 0 0
\(883\) −26.5380 −0.893076 −0.446538 0.894765i \(-0.647343\pi\)
−0.446538 + 0.894765i \(0.647343\pi\)
\(884\) −1.96006 3.39492i −0.0659238 0.114183i
\(885\) 0 0
\(886\) −12.9165 + 22.3721i −0.433940 + 0.751606i
\(887\) 20.7612 + 35.9594i 0.697091 + 1.20740i 0.969471 + 0.245208i \(0.0788562\pi\)
−0.272379 + 0.962190i \(0.587810\pi\)
\(888\) 0 0
\(889\) −2.90133 + 4.27131i −0.0973074 + 0.143255i
\(890\) 34.3471 1.15132
\(891\) 0 0
\(892\) 1.83755 3.18272i 0.0615256 0.106565i
\(893\) 4.30922 7.46380i 0.144203 0.249766i
\(894\) 0 0
\(895\) 27.0408 0.903873
\(896\) −18.4309 1.34917i −0.615734 0.0450726i
\(897\) 0 0
\(898\) −16.8001 29.0986i −0.560626 0.971032i
\(899\) −20.3089 + 35.1760i −0.677339 + 1.17319i
\(900\) 0 0
\(901\) 1.76763 + 3.06162i 0.0588883 + 0.101997i
\(902\) −44.0238 −1.46583
\(903\) 0 0
\(904\) 26.0241 0.865550
\(905\) −6.90989 11.9683i −0.229692 0.397839i
\(906\) 0 0
\(907\) 2.32180 4.02148i 0.0770942 0.133531i −0.824901 0.565277i \(-0.808769\pi\)
0.901995 + 0.431746i \(0.142102\pi\)
\(908\) 2.09401 + 3.62693i 0.0694921 + 0.120364i
\(909\) 0 0
\(910\) 10.8817 + 22.4964i 0.360723 + 0.745749i
\(911\) 1.34811 0.0446648 0.0223324 0.999751i \(-0.492891\pi\)
0.0223324 + 0.999751i \(0.492891\pi\)
\(912\) 0 0
\(913\) −0.556114 + 0.963217i −0.0184047 + 0.0318778i
\(914\) −4.12408 + 7.14312i −0.136413 + 0.236273i
\(915\) 0 0
\(916\) −4.84011 −0.159922
\(917\) −30.9895 2.26848i −1.02336 0.0749116i
\(918\) 0 0
\(919\) 20.2472 + 35.0692i 0.667893 + 1.15682i 0.978492 + 0.206284i \(0.0661370\pi\)
−0.310599 + 0.950541i \(0.600530\pi\)
\(920\) −8.73015 + 15.1211i −0.287824 + 0.498527i
\(921\) 0 0
\(922\) −9.90223 17.1512i −0.326112 0.564843i
\(923\) −66.1045 −2.17586
\(924\) 0 0
\(925\) 0.482555 0.0158663
\(926\) 4.86221 + 8.42160i 0.159782 + 0.276751i
\(927\) 0 0
\(928\) 7.94795 13.7663i 0.260904 0.451900i
\(929\) 11.1569 + 19.3243i 0.366046 + 0.634011i 0.988944 0.148293i \(-0.0473778\pi\)
−0.622897 + 0.782304i \(0.714044\pi\)
\(930\) 0 0
\(931\) 21.1365 26.6932i 0.692722 0.874834i
\(932\) 5.90760 0.193510
\(933\) 0 0
\(934\) 26.4375 45.7910i 0.865060 1.49833i
\(935\) −5.28186 + 9.14844i −0.172735 + 0.299186i
\(936\) 0 0
\(937\) −1.13943 −0.0372235 −0.0186117 0.999827i \(-0.505925\pi\)
−0.0186117 + 0.999827i \(0.505925\pi\)
\(938\) 23.1079 34.0192i 0.754498 1.11077i
\(939\) 0 0
\(940\) 0.532080 + 0.921589i 0.0173545 + 0.0300589i
\(941\) 23.5938 40.8656i 0.769134 1.33218i −0.168898 0.985633i \(-0.554021\pi\)
0.938033 0.346546i \(-0.112646\pi\)
\(942\) 0 0
\(943\) 20.0157 + 34.6683i 0.651802 + 1.12895i
\(944\) −17.9284 −0.583519
\(945\) 0 0
\(946\) 19.8532 0.645483
\(947\) 12.3230 + 21.3441i 0.400444 + 0.693590i 0.993779 0.111366i \(-0.0355225\pi\)
−0.593335 + 0.804955i \(0.702189\pi\)
\(948\) 0 0
\(949\) −28.3947 + 49.1811i −0.921731 + 1.59649i
\(950\) 7.99050 + 13.8400i 0.259246 + 0.449027i
\(951\) 0 0
\(952\) 7.39825 + 15.2949i 0.239779 + 0.495711i
\(953\) 56.2821 1.82316 0.911579 0.411125i \(-0.134864\pi\)
0.911579 + 0.411125i \(0.134864\pi\)
\(954\) 0 0
\(955\) 11.4898 19.9009i 0.371802 0.643979i
\(956\) −2.07137 + 3.58772i −0.0669930 + 0.116035i
\(957\) 0 0
\(958\) 2.94150 0.0950356
\(959\) 18.5853 + 38.4226i 0.600149 + 1.24073i
\(960\) 0 0
\(961\) 0.352001 + 0.609683i 0.0113549 + 0.0196672i
\(962\) −0.567135 + 0.982306i −0.0182852 + 0.0316708i
\(963\) 0 0
\(964\) −2.89955 5.02217i −0.0933883 0.161753i
\(965\) 2.82982 0.0910951
\(966\) 0 0
\(967\) −58.5977 −1.88438 −0.942188 0.335084i \(-0.891235\pi\)
−0.942188 + 0.335084i \(0.891235\pi\)
\(968\) 1.05474 + 1.82686i 0.0339006 + 0.0587176i
\(969\) 0 0
\(970\) −10.4269 + 18.0599i −0.334787 + 0.579868i
\(971\) −3.04991 5.28260i −0.0978763 0.169527i 0.812929 0.582363i \(-0.197872\pi\)
−0.910805 + 0.412836i \(0.864538\pi\)
\(972\) 0 0
\(973\) −19.9840 + 29.4203i −0.640657 + 0.943171i
\(974\) −23.0260 −0.737801
\(975\) 0 0
\(976\) 10.5819 18.3283i 0.338718 0.586676i
\(977\) −2.57988 + 4.46849i −0.0825377 + 0.142960i −0.904339 0.426814i \(-0.859636\pi\)
0.821802 + 0.569774i \(0.192969\pi\)
\(978\) 0 0
\(979\) 55.8746 1.78576
\(980\) 1.54945 + 3.90814i 0.0494953 + 0.124841i
\(981\) 0 0
\(982\) 13.7146 + 23.7543i 0.437649 + 0.758031i
\(983\) 31.0536 53.7864i 0.990455 1.71552i 0.375857 0.926678i \(-0.377348\pi\)
0.614598 0.788841i \(-0.289318\pi\)
\(984\) 0 0
\(985\) 5.99626 + 10.3858i 0.191057 + 0.330920i
\(986\) 19.8561 0.632348
\(987\) 0 0
\(988\) 9.00108 0.286362
\(989\) −9.02639 15.6342i −0.287022 0.497138i
\(990\) 0 0
\(991\) 10.8163 18.7343i 0.343590 0.595116i −0.641506 0.767118i \(-0.721690\pi\)
0.985097 + 0.172002i \(0.0550235\pi\)
\(992\) 5.92823 + 10.2680i 0.188221 + 0.326009i
\(993\) 0 0
\(994\) 46.2866 + 3.38824i 1.46812 + 0.107469i
\(995\) 3.43837 0.109004
\(996\) 0 0
\(997\) 20.3681 35.2786i 0.645064 1.11728i −0.339223 0.940706i \(-0.610164\pi\)
0.984287 0.176578i \(-0.0565027\pi\)
\(998\) 17.2527 29.8825i 0.546124 0.945915i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.e.g.487.6 yes 16
3.2 odd 2 inner 567.2.e.g.487.3 yes 16
7.2 even 3 inner 567.2.e.g.163.6 yes 16
7.3 odd 6 3969.2.a.bf.1.3 8
7.4 even 3 3969.2.a.bg.1.3 8
9.2 odd 6 567.2.g.l.109.3 16
9.4 even 3 567.2.h.l.298.3 16
9.5 odd 6 567.2.h.l.298.6 16
9.7 even 3 567.2.g.l.109.6 16
21.2 odd 6 inner 567.2.e.g.163.3 16
21.11 odd 6 3969.2.a.bg.1.6 8
21.17 even 6 3969.2.a.bf.1.6 8
63.2 odd 6 567.2.h.l.352.6 16
63.16 even 3 567.2.h.l.352.3 16
63.23 odd 6 567.2.g.l.541.3 16
63.58 even 3 567.2.g.l.541.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.3 16 21.2 odd 6 inner
567.2.e.g.163.6 yes 16 7.2 even 3 inner
567.2.e.g.487.3 yes 16 3.2 odd 2 inner
567.2.e.g.487.6 yes 16 1.1 even 1 trivial
567.2.g.l.109.3 16 9.2 odd 6
567.2.g.l.109.6 16 9.7 even 3
567.2.g.l.541.3 16 63.23 odd 6
567.2.g.l.541.6 16 63.58 even 3
567.2.h.l.298.3 16 9.4 even 3
567.2.h.l.298.6 16 9.5 odd 6
567.2.h.l.352.3 16 63.16 even 3
567.2.h.l.352.6 16 63.2 odd 6
3969.2.a.bf.1.3 8 7.3 odd 6
3969.2.a.bf.1.6 8 21.17 even 6
3969.2.a.bg.1.3 8 7.4 even 3
3969.2.a.bg.1.6 8 21.11 odd 6