Properties

Label 567.2.e.g.487.5
Level $567$
Weight $2$
Character 567.487
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(163,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 487.5
Root \(-1.04779 + 0.949812i\) of defining polynomial
Character \(\chi\) \(=\) 567.487
Dual form 567.2.e.g.163.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.298668 + 0.517308i) q^{2} +(0.821595 - 1.42304i) q^{4} +(-1.04779 - 1.81482i) q^{5} +(-1.12588 - 2.39424i) q^{7} +2.17621 q^{8} +(0.625881 - 1.08406i) q^{10} +(-0.825707 + 1.43017i) q^{11} -0.426044 q^{13} +(0.902296 - 1.29751i) q^{14} +(-0.993225 - 1.72032i) q^{16} +(-3.03819 + 5.26230i) q^{17} +(-2.70625 - 4.68736i) q^{19} -3.44342 q^{20} -0.986450 q^{22} +(-3.81729 - 6.61173i) q^{23} +(0.304286 - 0.527039i) q^{25} +(-0.127246 - 0.220396i) q^{26} +(-4.33213 - 0.364918i) q^{28} +3.65377 q^{29} +(2.65372 - 4.59638i) q^{31} +(2.76950 - 4.79691i) q^{32} -3.62964 q^{34} +(-3.16543 + 4.55193i) q^{35} +(2.33890 + 4.05110i) q^{37} +(1.61654 - 2.79993i) q^{38} +(-2.28020 - 3.94943i) q^{40} -1.48565 q^{41} +8.48997 q^{43} +(1.35679 + 2.35004i) q^{44} +(2.28020 - 3.94943i) q^{46} +(5.66624 + 9.81422i) q^{47} +(-4.46478 + 5.39126i) q^{49} +0.363522 q^{50} +(-0.350036 + 0.606280i) q^{52} +(2.74496 - 4.75441i) q^{53} +3.46066 q^{55} +(-2.45015 - 5.21037i) q^{56} +(1.09126 + 1.89013i) q^{58} +(-0.779098 + 1.34944i) q^{59} +(-2.52408 - 4.37184i) q^{61} +3.17033 q^{62} -0.664256 q^{64} +(0.446403 + 0.773193i) q^{65} +(2.61498 - 4.52928i) q^{67} +(4.99232 + 8.64695i) q^{68} +(-3.30016 - 0.277990i) q^{70} +12.5604 q^{71} +(-0.793753 + 1.37482i) q^{73} +(-1.39711 + 2.41987i) q^{74} -8.89375 q^{76} +(4.35381 + 0.366745i) q^{77} +(3.81482 + 6.60746i) q^{79} +(-2.08138 + 3.60505i) q^{80} +(-0.443717 - 0.768541i) q^{82} -5.25611 q^{83} +12.7335 q^{85} +(2.53568 + 4.39193i) q^{86} +(-1.79691 + 3.11234i) q^{88} +(-9.27808 - 16.0701i) q^{89} +(0.479675 + 1.02005i) q^{91} -12.5450 q^{92} +(-3.38465 + 5.86239i) q^{94} +(-5.67114 + 9.82270i) q^{95} +13.7546 q^{97} +(-4.12243 - 0.699472i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} + 6 q^{7} - 14 q^{10} + 12 q^{13} - 6 q^{16} - 24 q^{19} + 4 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} - 36 q^{40} + 20 q^{43} + 36 q^{46} - 14 q^{49} - 34 q^{52} + 8 q^{55} + 22 q^{58} - 36 q^{61}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.298668 + 0.517308i 0.211190 + 0.365792i 0.952087 0.305826i \(-0.0989327\pi\)
−0.740897 + 0.671619i \(0.765599\pi\)
\(3\) 0 0
\(4\) 0.821595 1.42304i 0.410797 0.711522i
\(5\) −1.04779 1.81482i −0.468584 0.811612i 0.530771 0.847515i \(-0.321902\pi\)
−0.999355 + 0.0359033i \(0.988569\pi\)
\(6\) 0 0
\(7\) −1.12588 2.39424i −0.425543 0.904938i
\(8\) 2.17621 0.769406
\(9\) 0 0
\(10\) 0.625881 1.08406i 0.197921 0.342809i
\(11\) −0.825707 + 1.43017i −0.248960 + 0.431212i −0.963238 0.268651i \(-0.913422\pi\)
0.714277 + 0.699863i \(0.246755\pi\)
\(12\) 0 0
\(13\) −0.426044 −0.118163 −0.0590817 0.998253i \(-0.518817\pi\)
−0.0590817 + 0.998253i \(0.518817\pi\)
\(14\) 0.902296 1.29751i 0.241149 0.346774i
\(15\) 0 0
\(16\) −0.993225 1.72032i −0.248306 0.430079i
\(17\) −3.03819 + 5.26230i −0.736869 + 1.27629i 0.217030 + 0.976165i \(0.430363\pi\)
−0.953899 + 0.300129i \(0.902970\pi\)
\(18\) 0 0
\(19\) −2.70625 4.68736i −0.620856 1.07535i −0.989327 0.145714i \(-0.953452\pi\)
0.368471 0.929639i \(-0.379881\pi\)
\(20\) −3.44342 −0.769973
\(21\) 0 0
\(22\) −0.986450 −0.210312
\(23\) −3.81729 6.61173i −0.795959 1.37864i −0.922228 0.386645i \(-0.873634\pi\)
0.126269 0.991996i \(-0.459700\pi\)
\(24\) 0 0
\(25\) 0.304286 0.527039i 0.0608573 0.105408i
\(26\) −0.127246 0.220396i −0.0249550 0.0432233i
\(27\) 0 0
\(28\) −4.33213 0.364918i −0.818695 0.0689631i
\(29\) 3.65377 0.678488 0.339244 0.940698i \(-0.389829\pi\)
0.339244 + 0.940698i \(0.389829\pi\)
\(30\) 0 0
\(31\) 2.65372 4.59638i 0.476623 0.825535i −0.523018 0.852321i \(-0.675194\pi\)
0.999641 + 0.0267866i \(0.00852747\pi\)
\(32\) 2.76950 4.79691i 0.489583 0.847982i
\(33\) 0 0
\(34\) −3.62964 −0.622478
\(35\) −3.16543 + 4.55193i −0.535056 + 0.769416i
\(36\) 0 0
\(37\) 2.33890 + 4.05110i 0.384513 + 0.665997i 0.991702 0.128561i \(-0.0410360\pi\)
−0.607188 + 0.794558i \(0.707703\pi\)
\(38\) 1.61654 2.79993i 0.262237 0.454208i
\(39\) 0 0
\(40\) −2.28020 3.94943i −0.360532 0.624459i
\(41\) −1.48565 −0.232020 −0.116010 0.993248i \(-0.537010\pi\)
−0.116010 + 0.993248i \(0.537010\pi\)
\(42\) 0 0
\(43\) 8.48997 1.29471 0.647354 0.762189i \(-0.275875\pi\)
0.647354 + 0.762189i \(0.275875\pi\)
\(44\) 1.35679 + 2.35004i 0.204544 + 0.354281i
\(45\) 0 0
\(46\) 2.28020 3.94943i 0.336198 0.582311i
\(47\) 5.66624 + 9.81422i 0.826506 + 1.43155i 0.900763 + 0.434312i \(0.143008\pi\)
−0.0742560 + 0.997239i \(0.523658\pi\)
\(48\) 0 0
\(49\) −4.46478 + 5.39126i −0.637826 + 0.770180i
\(50\) 0.363522 0.0514098
\(51\) 0 0
\(52\) −0.350036 + 0.606280i −0.0485412 + 0.0840758i
\(53\) 2.74496 4.75441i 0.377050 0.653069i −0.613582 0.789631i \(-0.710272\pi\)
0.990632 + 0.136562i \(0.0436053\pi\)
\(54\) 0 0
\(55\) 3.46066 0.466635
\(56\) −2.45015 5.21037i −0.327415 0.696265i
\(57\) 0 0
\(58\) 1.09126 + 1.89013i 0.143290 + 0.248186i
\(59\) −0.779098 + 1.34944i −0.101430 + 0.175682i −0.912274 0.409581i \(-0.865675\pi\)
0.810844 + 0.585262i \(0.199008\pi\)
\(60\) 0 0
\(61\) −2.52408 4.37184i −0.323176 0.559757i 0.657966 0.753048i \(-0.271417\pi\)
−0.981141 + 0.193291i \(0.938084\pi\)
\(62\) 3.17033 0.402632
\(63\) 0 0
\(64\) −0.664256 −0.0830320
\(65\) 0.446403 + 0.773193i 0.0553695 + 0.0959028i
\(66\) 0 0
\(67\) 2.61498 4.52928i 0.319471 0.553340i −0.660907 0.750468i \(-0.729828\pi\)
0.980378 + 0.197128i \(0.0631615\pi\)
\(68\) 4.99232 + 8.64695i 0.605407 + 1.04860i
\(69\) 0 0
\(70\) −3.30016 0.277990i −0.394445 0.0332262i
\(71\) 12.5604 1.49065 0.745324 0.666703i \(-0.232295\pi\)
0.745324 + 0.666703i \(0.232295\pi\)
\(72\) 0 0
\(73\) −0.793753 + 1.37482i −0.0929017 + 0.160911i −0.908731 0.417382i \(-0.862948\pi\)
0.815829 + 0.578293i \(0.196281\pi\)
\(74\) −1.39711 + 2.41987i −0.162411 + 0.281304i
\(75\) 0 0
\(76\) −8.89375 −1.02018
\(77\) 4.35381 + 0.366745i 0.496163 + 0.0417945i
\(78\) 0 0
\(79\) 3.81482 + 6.60746i 0.429201 + 0.743398i 0.996802 0.0799058i \(-0.0254620\pi\)
−0.567602 + 0.823303i \(0.692129\pi\)
\(80\) −2.08138 + 3.60505i −0.232705 + 0.403057i
\(81\) 0 0
\(82\) −0.443717 0.768541i −0.0490004 0.0848711i
\(83\) −5.25611 −0.576933 −0.288467 0.957490i \(-0.593145\pi\)
−0.288467 + 0.957490i \(0.593145\pi\)
\(84\) 0 0
\(85\) 12.7335 1.38114
\(86\) 2.53568 + 4.39193i 0.273430 + 0.473595i
\(87\) 0 0
\(88\) −1.79691 + 3.11234i −0.191551 + 0.331777i
\(89\) −9.27808 16.0701i −0.983474 1.70343i −0.648528 0.761191i \(-0.724615\pi\)
−0.334946 0.942237i \(-0.608718\pi\)
\(90\) 0 0
\(91\) 0.479675 + 1.02005i 0.0502836 + 0.106931i
\(92\) −12.5450 −1.30791
\(93\) 0 0
\(94\) −3.38465 + 5.86239i −0.349100 + 0.604659i
\(95\) −5.67114 + 9.82270i −0.581847 + 1.00779i
\(96\) 0 0
\(97\) 13.7546 1.39656 0.698282 0.715823i \(-0.253948\pi\)
0.698282 + 0.715823i \(0.253948\pi\)
\(98\) −4.12243 0.699472i −0.416429 0.0706574i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 7.99423 13.8464i 0.795456 1.37777i −0.127093 0.991891i \(-0.540565\pi\)
0.922549 0.385879i \(-0.126102\pi\)
\(102\) 0 0
\(103\) 1.18156 + 2.04653i 0.116423 + 0.201651i 0.918348 0.395775i \(-0.129524\pi\)
−0.801925 + 0.597425i \(0.796191\pi\)
\(104\) −0.927161 −0.0909156
\(105\) 0 0
\(106\) 3.27933 0.318517
\(107\) −2.27104 3.93356i −0.219550 0.380272i 0.735120 0.677936i \(-0.237126\pi\)
−0.954670 + 0.297665i \(0.903792\pi\)
\(108\) 0 0
\(109\) −8.62227 + 14.9342i −0.825863 + 1.43044i 0.0753945 + 0.997154i \(0.475978\pi\)
−0.901258 + 0.433283i \(0.857355\pi\)
\(110\) 1.03359 + 1.79023i 0.0985489 + 0.170692i
\(111\) 0 0
\(112\) −3.00060 + 4.31489i −0.283530 + 0.407719i
\(113\) −10.6752 −1.00424 −0.502119 0.864799i \(-0.667446\pi\)
−0.502119 + 0.864799i \(0.667446\pi\)
\(114\) 0 0
\(115\) −7.99940 + 13.8554i −0.745948 + 1.29202i
\(116\) 3.00192 5.19947i 0.278721 0.482759i
\(117\) 0 0
\(118\) −0.930766 −0.0856840
\(119\) 16.0198 + 1.34944i 1.46854 + 0.123703i
\(120\) 0 0
\(121\) 4.13641 + 7.16448i 0.376038 + 0.651316i
\(122\) 1.50773 2.61146i 0.136503 0.236430i
\(123\) 0 0
\(124\) −4.36057 7.55273i −0.391591 0.678255i
\(125\) −11.7532 −1.05124
\(126\) 0 0
\(127\) 14.4060 1.27833 0.639163 0.769072i \(-0.279281\pi\)
0.639163 + 0.769072i \(0.279281\pi\)
\(128\) −5.73739 9.93745i −0.507118 0.878355i
\(129\) 0 0
\(130\) −0.266653 + 0.461856i −0.0233870 + 0.0405075i
\(131\) 5.09259 + 8.82063i 0.444942 + 0.770662i 0.998048 0.0624487i \(-0.0198910\pi\)
−0.553106 + 0.833111i \(0.686558\pi\)
\(132\) 0 0
\(133\) −8.17575 + 11.7568i −0.708928 + 1.01945i
\(134\) 3.12405 0.269877
\(135\) 0 0
\(136\) −6.61173 + 11.4519i −0.566951 + 0.981989i
\(137\) 1.03116 1.78601i 0.0880976 0.152589i −0.818609 0.574351i \(-0.805255\pi\)
0.906707 + 0.421761i \(0.138588\pi\)
\(138\) 0 0
\(139\) 6.63789 0.563018 0.281509 0.959559i \(-0.409165\pi\)
0.281509 + 0.959559i \(0.409165\pi\)
\(140\) 3.87689 + 8.24439i 0.327657 + 0.696778i
\(141\) 0 0
\(142\) 3.75140 + 6.49761i 0.314810 + 0.545267i
\(143\) 0.351788 0.609314i 0.0294180 0.0509534i
\(144\) 0 0
\(145\) −3.82837 6.63093i −0.317929 0.550669i
\(146\) −0.948275 −0.0784798
\(147\) 0 0
\(148\) 7.68652 0.631828
\(149\) 4.75850 + 8.24197i 0.389832 + 0.675209i 0.992427 0.122839i \(-0.0391998\pi\)
−0.602595 + 0.798047i \(0.705866\pi\)
\(150\) 0 0
\(151\) 5.54891 9.61099i 0.451564 0.782131i −0.546920 0.837185i \(-0.684200\pi\)
0.998483 + 0.0550537i \(0.0175330\pi\)
\(152\) −5.88936 10.2007i −0.477690 0.827384i
\(153\) 0 0
\(154\) 1.11063 + 2.36180i 0.0894967 + 0.190319i
\(155\) −11.1221 −0.893352
\(156\) 0 0
\(157\) −12.1264 + 21.0035i −0.967791 + 1.67626i −0.265870 + 0.964009i \(0.585659\pi\)
−0.701921 + 0.712255i \(0.747674\pi\)
\(158\) −2.27873 + 3.94688i −0.181286 + 0.313997i
\(159\) 0 0
\(160\) −11.6074 −0.917644
\(161\) −11.5323 + 16.5835i −0.908870 + 1.30696i
\(162\) 0 0
\(163\) 5.54515 + 9.60448i 0.434330 + 0.752281i 0.997241 0.0742364i \(-0.0236520\pi\)
−0.562911 + 0.826518i \(0.690319\pi\)
\(164\) −1.22060 + 2.11415i −0.0953132 + 0.165087i
\(165\) 0 0
\(166\) −1.56983 2.71903i −0.121843 0.211038i
\(167\) −2.45100 −0.189664 −0.0948321 0.995493i \(-0.530231\pi\)
−0.0948321 + 0.995493i \(0.530231\pi\)
\(168\) 0 0
\(169\) −12.8185 −0.986037
\(170\) 3.80309 + 6.58714i 0.291684 + 0.505211i
\(171\) 0 0
\(172\) 6.97532 12.0816i 0.531863 0.921214i
\(173\) 4.64053 + 8.03763i 0.352813 + 0.611090i 0.986741 0.162302i \(-0.0518919\pi\)
−0.633928 + 0.773392i \(0.718559\pi\)
\(174\) 0 0
\(175\) −1.60445 0.135151i −0.121285 0.0102165i
\(176\) 3.28045 0.247273
\(177\) 0 0
\(178\) 5.54213 9.59926i 0.415400 0.719495i
\(179\) 9.27808 16.0701i 0.693476 1.20114i −0.277215 0.960808i \(-0.589412\pi\)
0.970692 0.240328i \(-0.0772551\pi\)
\(180\) 0 0
\(181\) 13.2382 0.983989 0.491994 0.870598i \(-0.336268\pi\)
0.491994 + 0.870598i \(0.336268\pi\)
\(182\) −0.384418 + 0.552797i −0.0284950 + 0.0409761i
\(183\) 0 0
\(184\) −8.30721 14.3885i −0.612416 1.06074i
\(185\) 4.90134 8.48937i 0.360354 0.624151i
\(186\) 0 0
\(187\) −5.01731 8.69023i −0.366902 0.635493i
\(188\) 18.6214 1.35811
\(189\) 0 0
\(190\) −6.77515 −0.491521
\(191\) −5.29867 9.17757i −0.383399 0.664066i 0.608147 0.793824i \(-0.291913\pi\)
−0.991546 + 0.129759i \(0.958580\pi\)
\(192\) 0 0
\(193\) 4.05981 7.03179i 0.292231 0.506159i −0.682106 0.731254i \(-0.738936\pi\)
0.974337 + 0.225094i \(0.0722690\pi\)
\(194\) 4.10805 + 7.11535i 0.294941 + 0.510852i
\(195\) 0 0
\(196\) 4.00376 + 10.7830i 0.285983 + 0.770215i
\(197\) 9.05534 0.645166 0.322583 0.946541i \(-0.395449\pi\)
0.322583 + 0.946541i \(0.395449\pi\)
\(198\) 0 0
\(199\) −3.71302 + 6.43114i −0.263209 + 0.455892i −0.967093 0.254424i \(-0.918114\pi\)
0.703884 + 0.710315i \(0.251448\pi\)
\(200\) 0.662191 1.14695i 0.0468239 0.0811015i
\(201\) 0 0
\(202\) 9.55049 0.671970
\(203\) −4.11371 8.74800i −0.288726 0.613989i
\(204\) 0 0
\(205\) 1.55665 + 2.69619i 0.108721 + 0.188310i
\(206\) −0.705791 + 1.22247i −0.0491748 + 0.0851733i
\(207\) 0 0
\(208\) 0.423158 + 0.732931i 0.0293407 + 0.0508196i
\(209\) 8.93827 0.618273
\(210\) 0 0
\(211\) 2.67781 0.184348 0.0921739 0.995743i \(-0.470618\pi\)
0.0921739 + 0.995743i \(0.470618\pi\)
\(212\) −4.51049 7.81240i −0.309782 0.536558i
\(213\) 0 0
\(214\) 1.35658 2.34966i 0.0927336 0.160619i
\(215\) −8.89568 15.4078i −0.606680 1.05080i
\(216\) 0 0
\(217\) −13.9926 1.17867i −0.949881 0.0800136i
\(218\) −10.3008 −0.697657
\(219\) 0 0
\(220\) 2.84326 4.92467i 0.191693 0.332021i
\(221\) 1.29440 2.24197i 0.0870709 0.150811i
\(222\) 0 0
\(223\) 21.5369 1.44222 0.721110 0.692820i \(-0.243632\pi\)
0.721110 + 0.692820i \(0.243632\pi\)
\(224\) −14.6031 1.23010i −0.975710 0.0821892i
\(225\) 0 0
\(226\) −3.18834 5.52237i −0.212085 0.367342i
\(227\) −6.55051 + 11.3458i −0.434773 + 0.753049i −0.997277 0.0737458i \(-0.976505\pi\)
0.562504 + 0.826794i \(0.309838\pi\)
\(228\) 0 0
\(229\) −8.41226 14.5705i −0.555898 0.962843i −0.997833 0.0657963i \(-0.979041\pi\)
0.441935 0.897047i \(-0.354292\pi\)
\(230\) −9.55666 −0.630148
\(231\) 0 0
\(232\) 7.95136 0.522033
\(233\) 11.3842 + 19.7180i 0.745804 + 1.29177i 0.949818 + 0.312803i \(0.101268\pi\)
−0.204014 + 0.978968i \(0.565399\pi\)
\(234\) 0 0
\(235\) 11.8740 20.5664i 0.774576 1.34161i
\(236\) 1.28020 + 2.21738i 0.0833342 + 0.144339i
\(237\) 0 0
\(238\) 4.08654 + 8.69023i 0.264891 + 0.563304i
\(239\) −9.51810 −0.615675 −0.307837 0.951439i \(-0.599605\pi\)
−0.307837 + 0.951439i \(0.599605\pi\)
\(240\) 0 0
\(241\) −0.586542 + 1.01592i −0.0377825 + 0.0654412i −0.884298 0.466922i \(-0.845363\pi\)
0.846516 + 0.532364i \(0.178696\pi\)
\(242\) −2.47083 + 4.27960i −0.158831 + 0.275103i
\(243\) 0 0
\(244\) −8.29509 −0.531039
\(245\) 14.4623 + 2.45389i 0.923963 + 0.156773i
\(246\) 0 0
\(247\) 1.15298 + 1.99702i 0.0733624 + 0.127067i
\(248\) 5.77506 10.0027i 0.366716 0.635171i
\(249\) 0 0
\(250\) −3.51030 6.08002i −0.222011 0.384534i
\(251\) 7.59042 0.479103 0.239552 0.970884i \(-0.423000\pi\)
0.239552 + 0.970884i \(0.423000\pi\)
\(252\) 0 0
\(253\) 12.6078 0.792648
\(254\) 4.30261 + 7.45234i 0.269970 + 0.467601i
\(255\) 0 0
\(256\) 2.76289 4.78547i 0.172681 0.299092i
\(257\) −11.6431 20.1665i −0.726277 1.25795i −0.958446 0.285273i \(-0.907916\pi\)
0.232169 0.972675i \(-0.425418\pi\)
\(258\) 0 0
\(259\) 7.06598 10.1610i 0.439059 0.631371i
\(260\) 1.46705 0.0909826
\(261\) 0 0
\(262\) −3.04199 + 5.26888i −0.187935 + 0.325513i
\(263\) −5.22230 + 9.04529i −0.322021 + 0.557757i −0.980905 0.194488i \(-0.937695\pi\)
0.658884 + 0.752245i \(0.271029\pi\)
\(264\) 0 0
\(265\) −11.5045 −0.706718
\(266\) −8.52374 0.718000i −0.522624 0.0440234i
\(267\) 0 0
\(268\) −4.29691 7.44247i −0.262476 0.454621i
\(269\) −14.2349 + 24.6556i −0.867917 + 1.50328i −0.00379485 + 0.999993i \(0.501208\pi\)
−0.864122 + 0.503283i \(0.832125\pi\)
\(270\) 0 0
\(271\) −13.6962 23.7226i −0.831986 1.44104i −0.896461 0.443123i \(-0.853870\pi\)
0.0644746 0.997919i \(-0.479463\pi\)
\(272\) 12.0704 0.731876
\(273\) 0 0
\(274\) 1.23189 0.0744214
\(275\) 0.502503 + 0.870361i 0.0303021 + 0.0524847i
\(276\) 0 0
\(277\) −2.05628 + 3.56159i −0.123550 + 0.213995i −0.921165 0.389172i \(-0.872761\pi\)
0.797615 + 0.603167i \(0.206095\pi\)
\(278\) 1.98252 + 3.43383i 0.118904 + 0.205948i
\(279\) 0 0
\(280\) −6.88865 + 9.90594i −0.411675 + 0.591993i
\(281\) −7.26126 −0.433170 −0.216585 0.976264i \(-0.569492\pi\)
−0.216585 + 0.976264i \(0.569492\pi\)
\(282\) 0 0
\(283\) 0.640173 1.10881i 0.0380543 0.0659120i −0.846371 0.532594i \(-0.821217\pi\)
0.884425 + 0.466682i \(0.154551\pi\)
\(284\) 10.3196 17.8740i 0.612354 1.06063i
\(285\) 0 0
\(286\) 0.420271 0.0248512
\(287\) 1.67267 + 3.55701i 0.0987345 + 0.209964i
\(288\) 0 0
\(289\) −9.96117 17.2532i −0.585951 1.01490i
\(290\) 2.28682 3.96090i 0.134287 0.232592i
\(291\) 0 0
\(292\) 1.30429 + 2.25909i 0.0763276 + 0.132203i
\(293\) 20.0134 1.16920 0.584598 0.811323i \(-0.301252\pi\)
0.584598 + 0.811323i \(0.301252\pi\)
\(294\) 0 0
\(295\) 3.26531 0.190114
\(296\) 5.08994 + 8.81604i 0.295847 + 0.512422i
\(297\) 0 0
\(298\) −2.84243 + 4.92323i −0.164657 + 0.285195i
\(299\) 1.62633 + 2.81689i 0.0940532 + 0.162905i
\(300\) 0 0
\(301\) −9.55870 20.3270i −0.550954 1.17163i
\(302\) 6.62913 0.381464
\(303\) 0 0
\(304\) −5.37582 + 9.31120i −0.308325 + 0.534034i
\(305\) −5.28940 + 9.16151i −0.302870 + 0.524587i
\(306\) 0 0
\(307\) −2.19415 −0.125227 −0.0626134 0.998038i \(-0.519944\pi\)
−0.0626134 + 0.998038i \(0.519944\pi\)
\(308\) 4.09896 5.89435i 0.233560 0.335862i
\(309\) 0 0
\(310\) −3.32183 5.75358i −0.188667 0.326781i
\(311\) 4.25439 7.36882i 0.241244 0.417847i −0.719825 0.694156i \(-0.755778\pi\)
0.961069 + 0.276309i \(0.0891112\pi\)
\(312\) 0 0
\(313\) −1.51731 2.62806i −0.0857633 0.148546i 0.819953 0.572431i \(-0.194000\pi\)
−0.905716 + 0.423885i \(0.860666\pi\)
\(314\) −14.4871 −0.817552
\(315\) 0 0
\(316\) 12.5369 0.705258
\(317\) −2.64225 4.57652i −0.148404 0.257043i 0.782234 0.622985i \(-0.214080\pi\)
−0.930638 + 0.365942i \(0.880747\pi\)
\(318\) 0 0
\(319\) −3.01694 + 5.22550i −0.168916 + 0.292572i
\(320\) 0.695999 + 1.20551i 0.0389075 + 0.0673898i
\(321\) 0 0
\(322\) −12.0231 1.01277i −0.670022 0.0564395i
\(323\) 32.8883 1.82996
\(324\) 0 0
\(325\) −0.129639 + 0.224542i −0.00719110 + 0.0124554i
\(326\) −3.31232 + 5.73711i −0.183452 + 0.317749i
\(327\) 0 0
\(328\) −3.23309 −0.178518
\(329\) 17.1181 24.6160i 0.943751 1.35712i
\(330\) 0 0
\(331\) −10.6008 18.3612i −0.582675 1.00922i −0.995161 0.0982581i \(-0.968673\pi\)
0.412486 0.910964i \(-0.364660\pi\)
\(332\) −4.31839 + 7.47968i −0.237003 + 0.410500i
\(333\) 0 0
\(334\) −0.732036 1.26792i −0.0400552 0.0693777i
\(335\) −10.9598 −0.598797
\(336\) 0 0
\(337\) −14.0497 −0.765333 −0.382667 0.923886i \(-0.624994\pi\)
−0.382667 + 0.923886i \(0.624994\pi\)
\(338\) −3.82847 6.63111i −0.208242 0.360685i
\(339\) 0 0
\(340\) 10.4618 18.1203i 0.567369 0.982712i
\(341\) 4.38240 + 7.59053i 0.237320 + 0.411051i
\(342\) 0 0
\(343\) 17.9348 + 4.61985i 0.968388 + 0.249449i
\(344\) 18.4760 0.996157
\(345\) 0 0
\(346\) −2.77196 + 4.80117i −0.149021 + 0.258112i
\(347\) −10.0290 + 17.3707i −0.538385 + 0.932510i 0.460606 + 0.887605i \(0.347632\pi\)
−0.998991 + 0.0449055i \(0.985701\pi\)
\(348\) 0 0
\(349\) −27.9294 −1.49503 −0.747513 0.664247i \(-0.768752\pi\)
−0.747513 + 0.664247i \(0.768752\pi\)
\(350\) −0.409283 0.870361i −0.0218771 0.0465227i
\(351\) 0 0
\(352\) 4.57359 + 7.92169i 0.243773 + 0.422228i
\(353\) 2.99626 5.18967i 0.159475 0.276218i −0.775205 0.631710i \(-0.782353\pi\)
0.934679 + 0.355492i \(0.115687\pi\)
\(354\) 0 0
\(355\) −13.1606 22.7949i −0.698494 1.20983i
\(356\) −30.4913 −1.61603
\(357\) 0 0
\(358\) 11.0843 0.585822
\(359\) −8.30710 14.3883i −0.438432 0.759386i 0.559137 0.829075i \(-0.311133\pi\)
−0.997569 + 0.0696890i \(0.977799\pi\)
\(360\) 0 0
\(361\) −5.14755 + 8.91581i −0.270924 + 0.469253i
\(362\) 3.95383 + 6.84824i 0.207809 + 0.359935i
\(363\) 0 0
\(364\) 1.84568 + 0.155471i 0.0967398 + 0.00814891i
\(365\) 3.32673 0.174129
\(366\) 0 0
\(367\) −3.24764 + 5.62508i −0.169525 + 0.293627i −0.938253 0.345950i \(-0.887557\pi\)
0.768728 + 0.639576i \(0.220890\pi\)
\(368\) −7.58285 + 13.1339i −0.395283 + 0.684651i
\(369\) 0 0
\(370\) 5.85550 0.304413
\(371\) −14.4737 1.21920i −0.751438 0.0632976i
\(372\) 0 0
\(373\) 10.0805 + 17.4600i 0.521949 + 0.904042i 0.999674 + 0.0255327i \(0.00812820\pi\)
−0.477725 + 0.878509i \(0.658538\pi\)
\(374\) 2.99702 5.19099i 0.154972 0.268420i
\(375\) 0 0
\(376\) 12.3309 + 21.3578i 0.635919 + 1.10144i
\(377\) −1.55667 −0.0801724
\(378\) 0 0
\(379\) −15.3014 −0.785981 −0.392990 0.919543i \(-0.628559\pi\)
−0.392990 + 0.919543i \(0.628559\pi\)
\(380\) 9.31876 + 16.1406i 0.478042 + 0.827993i
\(381\) 0 0
\(382\) 3.16509 5.48210i 0.161940 0.280488i
\(383\) −3.39296 5.87677i −0.173372 0.300289i 0.766225 0.642573i \(-0.222133\pi\)
−0.939597 + 0.342284i \(0.888800\pi\)
\(384\) 0 0
\(385\) −3.89629 8.28566i −0.198573 0.422276i
\(386\) 4.85014 0.246866
\(387\) 0 0
\(388\) 11.3007 19.5733i 0.573705 0.993686i
\(389\) 2.87957 4.98756i 0.146000 0.252879i −0.783746 0.621082i \(-0.786693\pi\)
0.929746 + 0.368203i \(0.120027\pi\)
\(390\) 0 0
\(391\) 46.3905 2.34607
\(392\) −9.71630 + 11.7325i −0.490747 + 0.592581i
\(393\) 0 0
\(394\) 2.70454 + 4.68440i 0.136253 + 0.235997i
\(395\) 7.99423 13.8464i 0.402234 0.696689i
\(396\) 0 0
\(397\) 0.247873 + 0.429329i 0.0124404 + 0.0215474i 0.872179 0.489188i \(-0.162707\pi\)
−0.859738 + 0.510735i \(0.829373\pi\)
\(398\) −4.43585 −0.222349
\(399\) 0 0
\(400\) −1.20890 −0.0604450
\(401\) −5.19147 8.99190i −0.259250 0.449034i 0.706791 0.707422i \(-0.250142\pi\)
−0.966041 + 0.258388i \(0.916809\pi\)
\(402\) 0 0
\(403\) −1.13060 + 1.95826i −0.0563194 + 0.0975480i
\(404\) −13.1360 22.7523i −0.653542 1.13197i
\(405\) 0 0
\(406\) 3.29678 4.74081i 0.163617 0.235282i
\(407\) −7.72500 −0.382914
\(408\) 0 0
\(409\) 15.0097 25.9976i 0.742182 1.28550i −0.209318 0.977848i \(-0.567124\pi\)
0.951500 0.307649i \(-0.0995423\pi\)
\(410\) −0.929842 + 1.61053i −0.0459216 + 0.0795386i
\(411\) 0 0
\(412\) 3.88307 0.191305
\(413\) 4.10805 + 0.346043i 0.202144 + 0.0170276i
\(414\) 0 0
\(415\) 5.50728 + 9.53889i 0.270342 + 0.468246i
\(416\) −1.17993 + 2.04370i −0.0578508 + 0.100200i
\(417\) 0 0
\(418\) 2.66958 + 4.62384i 0.130573 + 0.226160i
\(419\) 27.6495 1.35077 0.675384 0.737467i \(-0.263978\pi\)
0.675384 + 0.737467i \(0.263978\pi\)
\(420\) 0 0
\(421\) 12.4621 0.607368 0.303684 0.952773i \(-0.401783\pi\)
0.303684 + 0.952773i \(0.401783\pi\)
\(422\) 0.799775 + 1.38525i 0.0389325 + 0.0674330i
\(423\) 0 0
\(424\) 5.97361 10.3466i 0.290104 0.502475i
\(425\) 1.84896 + 3.20249i 0.0896876 + 0.155344i
\(426\) 0 0
\(427\) −7.62542 + 10.9654i −0.369020 + 0.530655i
\(428\) −7.46351 −0.360762
\(429\) 0 0
\(430\) 5.31371 9.20362i 0.256250 0.443838i
\(431\) 7.05162 12.2138i 0.339665 0.588316i −0.644705 0.764431i \(-0.723020\pi\)
0.984370 + 0.176115i \(0.0563531\pi\)
\(432\) 0 0
\(433\) −15.3684 −0.738560 −0.369280 0.929318i \(-0.620396\pi\)
−0.369280 + 0.929318i \(0.620396\pi\)
\(434\) −3.56941 7.59053i −0.171337 0.364357i
\(435\) 0 0
\(436\) 14.1680 + 24.5397i 0.678525 + 1.17524i
\(437\) −20.6610 + 35.7860i −0.988351 + 1.71187i
\(438\) 0 0
\(439\) −9.62286 16.6673i −0.459274 0.795486i 0.539648 0.841890i \(-0.318557\pi\)
−0.998923 + 0.0464041i \(0.985224\pi\)
\(440\) 7.53112 0.359032
\(441\) 0 0
\(442\) 1.54639 0.0735541
\(443\) −12.2849 21.2781i −0.583673 1.01095i −0.995039 0.0994811i \(-0.968282\pi\)
0.411367 0.911470i \(-0.365052\pi\)
\(444\) 0 0
\(445\) −19.4429 + 33.6761i −0.921682 + 1.59640i
\(446\) 6.43240 + 11.1412i 0.304583 + 0.527553i
\(447\) 0 0
\(448\) 0.747873 + 1.59039i 0.0353337 + 0.0751389i
\(449\) −40.0045 −1.88793 −0.943965 0.330046i \(-0.892936\pi\)
−0.943965 + 0.330046i \(0.892936\pi\)
\(450\) 0 0
\(451\) 1.22671 2.12473i 0.0577637 0.100050i
\(452\) −8.77068 + 15.1913i −0.412538 + 0.714537i
\(453\) 0 0
\(454\) −7.82572 −0.367279
\(455\) 1.34861 1.93932i 0.0632240 0.0909168i
\(456\) 0 0
\(457\) 5.31807 + 9.21117i 0.248769 + 0.430880i 0.963184 0.268841i \(-0.0866407\pi\)
−0.714416 + 0.699722i \(0.753307\pi\)
\(458\) 5.02495 8.70347i 0.234800 0.406686i
\(459\) 0 0
\(460\) 13.1445 + 22.7670i 0.612867 + 1.06152i
\(461\) −16.4092 −0.764251 −0.382125 0.924111i \(-0.624808\pi\)
−0.382125 + 0.924111i \(0.624808\pi\)
\(462\) 0 0
\(463\) 6.06393 0.281815 0.140907 0.990023i \(-0.454998\pi\)
0.140907 + 0.990023i \(0.454998\pi\)
\(464\) −3.62901 6.28564i −0.168473 0.291803i
\(465\) 0 0
\(466\) −6.80020 + 11.7783i −0.315013 + 0.545619i
\(467\) 12.6433 + 21.8988i 0.585062 + 1.01336i 0.994868 + 0.101185i \(0.0322632\pi\)
−0.409805 + 0.912173i \(0.634403\pi\)
\(468\) 0 0
\(469\) −13.7884 1.16147i −0.636687 0.0536315i
\(470\) 14.1856 0.654332
\(471\) 0 0
\(472\) −1.69548 + 2.93666i −0.0780408 + 0.135171i
\(473\) −7.01023 + 12.1421i −0.322331 + 0.558294i
\(474\) 0 0
\(475\) −3.29390 −0.151134
\(476\) 15.0821 21.6882i 0.691288 0.994079i
\(477\) 0 0
\(478\) −2.84275 4.92379i −0.130025 0.225209i
\(479\) −1.67124 + 2.89468i −0.0763611 + 0.132261i −0.901677 0.432409i \(-0.857663\pi\)
0.825316 + 0.564671i \(0.190997\pi\)
\(480\) 0 0
\(481\) −0.996476 1.72595i −0.0454354 0.0786964i
\(482\) −0.700726 −0.0319172
\(483\) 0 0
\(484\) 13.5938 0.617901
\(485\) −14.4118 24.9620i −0.654408 1.13347i
\(486\) 0 0
\(487\) −3.63943 + 6.30368i −0.164918 + 0.285647i −0.936626 0.350330i \(-0.886069\pi\)
0.771708 + 0.635977i \(0.219403\pi\)
\(488\) −5.49293 9.51404i −0.248653 0.430680i
\(489\) 0 0
\(490\) 3.05002 + 8.21437i 0.137786 + 0.371087i
\(491\) 2.97131 0.134093 0.0670466 0.997750i \(-0.478642\pi\)
0.0670466 + 0.997750i \(0.478642\pi\)
\(492\) 0 0
\(493\) −11.1008 + 19.2272i −0.499956 + 0.865950i
\(494\) −0.688717 + 1.19289i −0.0309869 + 0.0536708i
\(495\) 0 0
\(496\) −10.5430 −0.473394
\(497\) −14.1415 30.0727i −0.634335 1.34894i
\(498\) 0 0
\(499\) −6.24293 10.8131i −0.279472 0.484060i 0.691782 0.722107i \(-0.256826\pi\)
−0.971254 + 0.238047i \(0.923493\pi\)
\(500\) −9.65635 + 16.7253i −0.431845 + 0.747977i
\(501\) 0 0
\(502\) 2.26702 + 3.92659i 0.101182 + 0.175252i
\(503\) 17.4657 0.778755 0.389377 0.921078i \(-0.372690\pi\)
0.389377 + 0.921078i \(0.372690\pi\)
\(504\) 0 0
\(505\) −33.5050 −1.49095
\(506\) 3.76556 + 6.52214i 0.167400 + 0.289945i
\(507\) 0 0
\(508\) 11.8359 20.5004i 0.525133 0.909556i
\(509\) 13.7671 + 23.8453i 0.610215 + 1.05692i 0.991204 + 0.132344i \(0.0422502\pi\)
−0.380989 + 0.924580i \(0.624416\pi\)
\(510\) 0 0
\(511\) 4.18532 + 0.352552i 0.185148 + 0.0155960i
\(512\) −19.6488 −0.868363
\(513\) 0 0
\(514\) 6.95485 12.0462i 0.306765 0.531333i
\(515\) 2.47606 4.28865i 0.109108 0.188981i
\(516\) 0 0
\(517\) −18.7146 −0.823069
\(518\) 7.36673 + 0.620539i 0.323676 + 0.0272649i
\(519\) 0 0
\(520\) 0.971467 + 1.68263i 0.0426017 + 0.0737882i
\(521\) −3.46252 + 5.99726i −0.151696 + 0.262745i −0.931851 0.362841i \(-0.881807\pi\)
0.780155 + 0.625586i \(0.215140\pi\)
\(522\) 0 0
\(523\) 20.7968 + 36.0211i 0.909381 + 1.57509i 0.814925 + 0.579566i \(0.196778\pi\)
0.0944561 + 0.995529i \(0.469889\pi\)
\(524\) 16.7362 0.731124
\(525\) 0 0
\(526\) −6.23894 −0.272031
\(527\) 16.1250 + 27.9293i 0.702417 + 1.21662i
\(528\) 0 0
\(529\) −17.6433 + 30.5591i −0.767101 + 1.32866i
\(530\) −3.43604 5.95139i −0.149252 0.258512i
\(531\) 0 0
\(532\) 10.0133 + 21.2938i 0.434132 + 0.923203i
\(533\) 0.632954 0.0274163
\(534\) 0 0
\(535\) −4.75914 + 8.24307i −0.205755 + 0.356379i
\(536\) 5.69075 9.85667i 0.245803 0.425743i
\(537\) 0 0
\(538\) −17.0060 −0.733182
\(539\) −4.02380 10.8370i −0.173317 0.466782i
\(540\) 0 0
\(541\) 16.8944 + 29.2619i 0.726345 + 1.25807i 0.958418 + 0.285368i \(0.0921158\pi\)
−0.232073 + 0.972698i \(0.574551\pi\)
\(542\) 8.18125 14.1703i 0.351415 0.608668i
\(543\) 0 0
\(544\) 16.8285 + 29.1478i 0.721517 + 1.24970i
\(545\) 36.1372 1.54795
\(546\) 0 0
\(547\) −14.1310 −0.604196 −0.302098 0.953277i \(-0.597687\pi\)
−0.302098 + 0.953277i \(0.597687\pi\)
\(548\) −1.69438 2.93476i −0.0723805 0.125367i
\(549\) 0 0
\(550\) −0.300163 + 0.519898i −0.0127990 + 0.0221685i
\(551\) −9.88800 17.1265i −0.421243 0.729614i
\(552\) 0 0
\(553\) 11.5248 16.5728i 0.490085 0.704748i
\(554\) −2.45658 −0.104370
\(555\) 0 0
\(556\) 5.45365 9.44600i 0.231286 0.400600i
\(557\) 3.74784 6.49145i 0.158801 0.275051i −0.775636 0.631181i \(-0.782571\pi\)
0.934437 + 0.356130i \(0.115904\pi\)
\(558\) 0 0
\(559\) −3.61710 −0.152987
\(560\) 10.9747 + 0.924461i 0.463767 + 0.0390656i
\(561\) 0 0
\(562\) −2.16871 3.75631i −0.0914813 0.158450i
\(563\) −5.21120 + 9.02606i −0.219626 + 0.380403i −0.954694 0.297591i \(-0.903817\pi\)
0.735068 + 0.677994i \(0.237150\pi\)
\(564\) 0 0
\(565\) 11.1853 + 19.3735i 0.470570 + 0.815051i
\(566\) 0.764797 0.0321468
\(567\) 0 0
\(568\) 27.3341 1.14691
\(569\) 14.9832 + 25.9517i 0.628130 + 1.08795i 0.987927 + 0.154923i \(0.0495129\pi\)
−0.359796 + 0.933031i \(0.617154\pi\)
\(570\) 0 0
\(571\) −15.7168 + 27.2223i −0.657727 + 1.13922i 0.323476 + 0.946236i \(0.395149\pi\)
−0.981203 + 0.192980i \(0.938185\pi\)
\(572\) −0.578054 1.00122i −0.0241697 0.0418631i
\(573\) 0 0
\(574\) −1.34050 + 1.92765i −0.0559514 + 0.0804586i
\(575\) −4.64619 −0.193760
\(576\) 0 0
\(577\) 1.35570 2.34815i 0.0564387 0.0977547i −0.836426 0.548080i \(-0.815359\pi\)
0.892864 + 0.450326i \(0.148692\pi\)
\(578\) 5.95017 10.3060i 0.247494 0.428673i
\(579\) 0 0
\(580\) −12.5815 −0.522417
\(581\) 5.91775 + 12.5844i 0.245510 + 0.522089i
\(582\) 0 0
\(583\) 4.53307 + 7.85151i 0.187741 + 0.325176i
\(584\) −1.72737 + 2.99190i −0.0714792 + 0.123806i
\(585\) 0 0
\(586\) 5.97737 + 10.3531i 0.246923 + 0.427683i
\(587\) 10.7040 0.441800 0.220900 0.975296i \(-0.429101\pi\)
0.220900 + 0.975296i \(0.429101\pi\)
\(588\) 0 0
\(589\) −28.7265 −1.18366
\(590\) 0.975245 + 1.68917i 0.0401502 + 0.0695422i
\(591\) 0 0
\(592\) 4.64611 8.04731i 0.190954 0.330742i
\(593\) 14.8489 + 25.7191i 0.609773 + 1.05616i 0.991278 + 0.131791i \(0.0420727\pi\)
−0.381505 + 0.924367i \(0.624594\pi\)
\(594\) 0 0
\(595\) −14.3364 30.4870i −0.587735 1.24985i
\(596\) 15.6382 0.640568
\(597\) 0 0
\(598\) −0.971467 + 1.68263i −0.0397262 + 0.0688079i
\(599\) −7.19914 + 12.4693i −0.294149 + 0.509481i −0.974787 0.223140i \(-0.928369\pi\)
0.680638 + 0.732620i \(0.261703\pi\)
\(600\) 0 0
\(601\) 17.7120 0.722486 0.361243 0.932472i \(-0.382353\pi\)
0.361243 + 0.932472i \(0.382353\pi\)
\(602\) 7.66047 11.0158i 0.312218 0.448972i
\(603\) 0 0
\(604\) −9.11791 15.7927i −0.371002 0.642595i
\(605\) 8.66816 15.0137i 0.352411 0.610393i
\(606\) 0 0
\(607\) 2.57771 + 4.46473i 0.104626 + 0.181218i 0.913585 0.406647i \(-0.133302\pi\)
−0.808959 + 0.587865i \(0.799969\pi\)
\(608\) −29.9798 −1.21584
\(609\) 0 0
\(610\) −6.31910 −0.255853
\(611\) −2.41407 4.18129i −0.0976628 0.169157i
\(612\) 0 0
\(613\) −5.62940 + 9.75042i −0.227370 + 0.393816i −0.957028 0.289996i \(-0.906346\pi\)
0.729658 + 0.683812i \(0.239679\pi\)
\(614\) −0.655323 1.13505i −0.0264467 0.0458070i
\(615\) 0 0
\(616\) 9.47481 + 0.798114i 0.381751 + 0.0321569i
\(617\) −0.520304 −0.0209467 −0.0104733 0.999945i \(-0.503334\pi\)
−0.0104733 + 0.999945i \(0.503334\pi\)
\(618\) 0 0
\(619\) 18.7370 32.4535i 0.753104 1.30441i −0.193207 0.981158i \(-0.561889\pi\)
0.946311 0.323257i \(-0.104778\pi\)
\(620\) −9.13789 + 15.8273i −0.366987 + 0.635639i
\(621\) 0 0
\(622\) 5.08260 0.203794
\(623\) −28.0297 + 40.3070i −1.12299 + 1.61487i
\(624\) 0 0
\(625\) 10.7934 + 18.6947i 0.431736 + 0.747788i
\(626\) 0.906343 1.56983i 0.0362248 0.0627431i
\(627\) 0 0
\(628\) 19.9260 + 34.5128i 0.795132 + 1.37721i
\(629\) −28.4241 −1.13334
\(630\) 0 0
\(631\) 0.502795 0.0200159 0.0100080 0.999950i \(-0.496814\pi\)
0.0100080 + 0.999950i \(0.496814\pi\)
\(632\) 8.30185 + 14.3792i 0.330230 + 0.571975i
\(633\) 0 0
\(634\) 1.57831 2.73372i 0.0626828 0.108570i
\(635\) −15.0944 26.1443i −0.599003 1.03750i
\(636\) 0 0
\(637\) 1.90220 2.29692i 0.0753677 0.0910071i
\(638\) −3.60426 −0.142694
\(639\) 0 0
\(640\) −12.0231 + 20.8247i −0.475256 + 0.823167i
\(641\) 4.98058 8.62662i 0.196721 0.340731i −0.750742 0.660595i \(-0.770304\pi\)
0.947463 + 0.319864i \(0.103637\pi\)
\(642\) 0 0
\(643\) 21.6236 0.852752 0.426376 0.904546i \(-0.359790\pi\)
0.426376 + 0.904546i \(0.359790\pi\)
\(644\) 14.1242 + 30.0359i 0.556573 + 1.18358i
\(645\) 0 0
\(646\) 9.82270 + 17.0134i 0.386469 + 0.669384i
\(647\) 19.3679 33.5462i 0.761430 1.31884i −0.180683 0.983541i \(-0.557831\pi\)
0.942113 0.335294i \(-0.108836\pi\)
\(648\) 0 0
\(649\) −1.28661 2.22848i −0.0505040 0.0874755i
\(650\) −0.154877 −0.00607476
\(651\) 0 0
\(652\) 18.2235 0.713686
\(653\) 10.8989 + 18.8774i 0.426506 + 0.738731i 0.996560 0.0828770i \(-0.0264109\pi\)
−0.570053 + 0.821608i \(0.693078\pi\)
\(654\) 0 0
\(655\) 10.6719 18.4843i 0.416986 0.722241i
\(656\) 1.47559 + 2.55579i 0.0576120 + 0.0997870i
\(657\) 0 0
\(658\) 17.8467 + 1.50332i 0.695737 + 0.0586056i
\(659\) 5.13619 0.200078 0.100039 0.994984i \(-0.468103\pi\)
0.100039 + 0.994984i \(0.468103\pi\)
\(660\) 0 0
\(661\) −6.58087 + 11.3984i −0.255966 + 0.443347i −0.965158 0.261670i \(-0.915727\pi\)
0.709191 + 0.705016i \(0.249060\pi\)
\(662\) 6.33226 10.9678i 0.246110 0.426276i
\(663\) 0 0
\(664\) −11.4384 −0.443896
\(665\) 29.9029 + 2.51888i 1.15959 + 0.0976781i
\(666\) 0 0
\(667\) −13.9475 24.1577i −0.540048 0.935391i
\(668\) −2.01373 + 3.48788i −0.0779136 + 0.134950i
\(669\) 0 0
\(670\) −3.27334 5.66958i −0.126460 0.219035i
\(671\) 8.33662 0.321832
\(672\) 0 0
\(673\) −7.01209 −0.270296 −0.135148 0.990825i \(-0.543151\pi\)
−0.135148 + 0.990825i \(0.543151\pi\)
\(674\) −4.19618 7.26800i −0.161631 0.279953i
\(675\) 0 0
\(676\) −10.5316 + 18.2413i −0.405062 + 0.701587i
\(677\) −18.4481 31.9531i −0.709018 1.22806i −0.965222 0.261433i \(-0.915805\pi\)
0.256203 0.966623i \(-0.417528\pi\)
\(678\) 0 0
\(679\) −15.4860 32.9317i −0.594298 1.26380i
\(680\) 27.7107 1.06266
\(681\) 0 0
\(682\) −2.61776 + 4.53410i −0.100239 + 0.173620i
\(683\) 2.79970 4.84921i 0.107127 0.185550i −0.807478 0.589898i \(-0.799168\pi\)
0.914605 + 0.404348i \(0.132501\pi\)
\(684\) 0 0
\(685\) −4.32172 −0.165125
\(686\) 2.96666 + 10.6576i 0.113268 + 0.406910i
\(687\) 0 0
\(688\) −8.43245 14.6054i −0.321484 0.556827i
\(689\) −1.16948 + 2.02559i −0.0445535 + 0.0771689i
\(690\) 0 0
\(691\) 3.19219 + 5.52903i 0.121437 + 0.210334i 0.920334 0.391132i \(-0.127917\pi\)
−0.798898 + 0.601467i \(0.794583\pi\)
\(692\) 15.2505 0.579738
\(693\) 0 0
\(694\) −11.9814 −0.454807
\(695\) −6.95509 12.0466i −0.263822 0.456952i
\(696\) 0 0
\(697\) 4.51369 7.81795i 0.170968 0.296126i
\(698\) −8.34162 14.4481i −0.315735 0.546869i
\(699\) 0 0
\(700\) −1.51053 + 2.17216i −0.0570928 + 0.0821000i
\(701\) −10.9860 −0.414937 −0.207468 0.978242i \(-0.566522\pi\)
−0.207468 + 0.978242i \(0.566522\pi\)
\(702\) 0 0
\(703\) 12.6593 21.9265i 0.477455 0.826975i
\(704\) 0.548481 0.949997i 0.0206717 0.0358044i
\(705\) 0 0
\(706\) 3.57955 0.134718
\(707\) −42.1522 3.55071i −1.58530 0.133538i
\(708\) 0 0
\(709\) −13.2658 22.9771i −0.498208 0.862922i 0.501790 0.864990i \(-0.332675\pi\)
−0.999998 + 0.00206764i \(0.999342\pi\)
\(710\) 7.86133 13.6162i 0.295030 0.511008i
\(711\) 0 0
\(712\) −20.1910 34.9719i −0.756691 1.31063i
\(713\) −40.5201 −1.51749
\(714\) 0 0
\(715\) −1.47439 −0.0551392
\(716\) −15.2456 26.4062i −0.569756 0.986847i
\(717\) 0 0
\(718\) 4.96213 8.59466i 0.185185 0.320750i
\(719\) 10.4980 + 18.1831i 0.391510 + 0.678116i 0.992649 0.121029i \(-0.0386194\pi\)
−0.601139 + 0.799145i \(0.705286\pi\)
\(720\) 0 0
\(721\) 3.56959 5.13310i 0.132938 0.191167i
\(722\) −6.14963 −0.228866
\(723\) 0 0
\(724\) 10.8764 18.8386i 0.404220 0.700129i
\(725\) 1.11179 1.92568i 0.0412909 0.0715179i
\(726\) 0 0
\(727\) 17.0632 0.632839 0.316420 0.948619i \(-0.397519\pi\)
0.316420 + 0.948619i \(0.397519\pi\)
\(728\) 1.04387 + 2.21985i 0.0386885 + 0.0822730i
\(729\) 0 0
\(730\) 0.993590 + 1.72095i 0.0367744 + 0.0636951i
\(731\) −25.7941 + 44.6768i −0.954031 + 1.65243i
\(732\) 0 0
\(733\) 17.2403 + 29.8610i 0.636784 + 1.10294i 0.986134 + 0.165950i \(0.0530689\pi\)
−0.349351 + 0.936992i \(0.613598\pi\)
\(734\) −3.87987 −0.143208
\(735\) 0 0
\(736\) −42.2879 −1.55875
\(737\) 4.31842 + 7.47973i 0.159071 + 0.275519i
\(738\) 0 0
\(739\) 0.685922 1.18805i 0.0252321 0.0437032i −0.853134 0.521692i \(-0.825301\pi\)
0.878366 + 0.477989i \(0.158634\pi\)
\(740\) −8.05383 13.9497i −0.296065 0.512799i
\(741\) 0 0
\(742\) −3.69214 7.85151i −0.135543 0.288238i
\(743\) −8.94248 −0.328068 −0.164034 0.986455i \(-0.552451\pi\)
−0.164034 + 0.986455i \(0.552451\pi\)
\(744\) 0 0
\(745\) 9.97179 17.2717i 0.365338 0.632784i
\(746\) −6.02145 + 10.4295i −0.220461 + 0.381850i
\(747\) 0 0
\(748\) −16.4888 −0.602889
\(749\) −6.86097 + 9.86615i −0.250694 + 0.360501i
\(750\) 0 0
\(751\) −25.2856 43.7959i −0.922683 1.59813i −0.795246 0.606287i \(-0.792658\pi\)
−0.127437 0.991847i \(-0.540675\pi\)
\(752\) 11.2557 19.4955i 0.410453 0.710926i
\(753\) 0 0
\(754\) −0.464927 0.805277i −0.0169316 0.0293265i
\(755\) −23.2563 −0.846383
\(756\) 0 0
\(757\) 9.56041 0.347479 0.173739 0.984792i \(-0.444415\pi\)
0.173739 + 0.984792i \(0.444415\pi\)
\(758\) −4.57004 7.91555i −0.165991 0.287506i
\(759\) 0 0
\(760\) −12.3416 + 21.3763i −0.447676 + 0.775398i
\(761\) −18.9406 32.8060i −0.686595 1.18922i −0.972933 0.231089i \(-0.925771\pi\)
0.286337 0.958129i \(-0.407562\pi\)
\(762\) 0 0
\(763\) 45.4637 + 3.82965i 1.64590 + 0.138643i
\(764\) −17.4134 −0.629996
\(765\) 0 0
\(766\) 2.02674 3.51041i 0.0732289 0.126836i
\(767\) 0.331930 0.574920i 0.0119853 0.0207591i
\(768\) 0 0
\(769\) −28.5588 −1.02986 −0.514928 0.857234i \(-0.672181\pi\)
−0.514928 + 0.857234i \(0.672181\pi\)
\(770\) 3.12254 4.49025i 0.112529 0.161817i
\(771\) 0 0
\(772\) −6.67103 11.5546i −0.240096 0.415858i
\(773\) 5.35149 9.26905i 0.192480 0.333385i −0.753592 0.657343i \(-0.771680\pi\)
0.946071 + 0.323958i \(0.105014\pi\)
\(774\) 0 0
\(775\) −1.61498 2.79723i −0.0580119 0.100480i
\(776\) 29.9328 1.07452
\(777\) 0 0
\(778\) 3.44014 0.123335
\(779\) 4.02054 + 6.96379i 0.144051 + 0.249504i
\(780\) 0 0
\(781\) −10.3712 + 17.9635i −0.371112 + 0.642785i
\(782\) 13.8554 + 23.9982i 0.495467 + 0.858174i
\(783\) 0 0
\(784\) 13.7092 + 2.32610i 0.489615 + 0.0830752i
\(785\) 50.8235 1.81397
\(786\) 0 0
\(787\) 18.3183 31.7283i 0.652978 1.13099i −0.329418 0.944184i \(-0.606853\pi\)
0.982397 0.186808i \(-0.0598141\pi\)
\(788\) 7.43982 12.8861i 0.265033 0.459050i
\(789\) 0 0
\(790\) 9.55049 0.339791
\(791\) 12.0190 + 25.5590i 0.427346 + 0.908773i
\(792\) 0 0
\(793\) 1.07537 + 1.86260i 0.0381875 + 0.0661428i
\(794\) −0.148064 + 0.256454i −0.00525459 + 0.00910121i
\(795\) 0 0
\(796\) 6.10120 + 10.5676i 0.216251 + 0.374558i
\(797\) 19.0481 0.674717 0.337359 0.941376i \(-0.390467\pi\)
0.337359 + 0.941376i \(0.390467\pi\)
\(798\) 0 0
\(799\) −68.8604 −2.43611
\(800\) −1.68544 2.91927i −0.0595893 0.103212i
\(801\) 0 0
\(802\) 3.10106 5.37119i 0.109502 0.189663i
\(803\) −1.31082 2.27040i −0.0462577 0.0801206i
\(804\) 0 0
\(805\) 42.1795 + 3.55300i 1.48663 + 0.125227i
\(806\) −1.35070 −0.0475764
\(807\) 0 0
\(808\) 17.3971 30.1327i 0.612029 1.06006i
\(809\) −9.24567 + 16.0140i −0.325060 + 0.563021i −0.981525 0.191336i \(-0.938718\pi\)
0.656464 + 0.754357i \(0.272051\pi\)
\(810\) 0 0
\(811\) 41.5033 1.45738 0.728690 0.684844i \(-0.240130\pi\)
0.728690 + 0.684844i \(0.240130\pi\)
\(812\) −15.8286 1.33333i −0.555475 0.0467906i
\(813\) 0 0
\(814\) −2.30721 3.99621i −0.0808677 0.140067i
\(815\) 11.6203 20.1269i 0.407040 0.705014i
\(816\) 0 0
\(817\) −22.9760 39.7955i −0.803827 1.39227i
\(818\) 17.9317 0.626966
\(819\) 0 0
\(820\) 5.11573 0.178649
\(821\) 16.2444 + 28.1360i 0.566932 + 0.981955i 0.996867 + 0.0790951i \(0.0252031\pi\)
−0.429935 + 0.902860i \(0.641464\pi\)
\(822\) 0 0
\(823\) 7.86963 13.6306i 0.274318 0.475133i −0.695645 0.718386i \(-0.744881\pi\)
0.969963 + 0.243253i \(0.0782145\pi\)
\(824\) 2.57133 + 4.45368i 0.0895766 + 0.155151i
\(825\) 0 0
\(826\) 1.04793 + 2.22848i 0.0364622 + 0.0775387i
\(827\) −40.6095 −1.41213 −0.706066 0.708146i \(-0.749532\pi\)
−0.706066 + 0.708146i \(0.749532\pi\)
\(828\) 0 0
\(829\) −12.7290 + 22.0473i −0.442097 + 0.765734i −0.997845 0.0656169i \(-0.979098\pi\)
0.555748 + 0.831351i \(0.312432\pi\)
\(830\) −3.28970 + 5.69793i −0.114187 + 0.197778i
\(831\) 0 0
\(832\) 0.283003 0.00981135
\(833\) −14.8056 39.8747i −0.512982 1.38158i
\(834\) 0 0
\(835\) 2.56813 + 4.44813i 0.0888737 + 0.153934i
\(836\) 7.34364 12.7196i 0.253985 0.439915i
\(837\) 0 0
\(838\) 8.25803 + 14.3033i 0.285269 + 0.494100i
\(839\) 48.3492 1.66920 0.834600 0.550856i \(-0.185699\pi\)
0.834600 + 0.550856i \(0.185699\pi\)
\(840\) 0 0
\(841\) −15.6500 −0.539654
\(842\) 3.72205 + 6.44677i 0.128270 + 0.222170i
\(843\) 0 0
\(844\) 2.20007 3.81064i 0.0757296 0.131167i
\(845\) 13.4310 + 23.2632i 0.462042 + 0.800280i
\(846\) 0 0
\(847\) 12.4964 17.9699i 0.429381 0.617454i
\(848\) −10.9055 −0.374495
\(849\) 0 0
\(850\) −1.10445 + 1.91296i −0.0378823 + 0.0656141i
\(851\) 17.8565 30.9284i 0.612114 1.06021i
\(852\) 0 0
\(853\) −2.65867 −0.0910310 −0.0455155 0.998964i \(-0.514493\pi\)
−0.0455155 + 0.998964i \(0.514493\pi\)
\(854\) −7.94998 0.669669i −0.272043 0.0229156i
\(855\) 0 0
\(856\) −4.94226 8.56025i −0.168923 0.292583i
\(857\) −7.03319 + 12.1818i −0.240249 + 0.416124i −0.960785 0.277294i \(-0.910562\pi\)
0.720536 + 0.693417i \(0.243896\pi\)
\(858\) 0 0
\(859\) 9.64635 + 16.7080i 0.329129 + 0.570068i 0.982339 0.187108i \(-0.0599115\pi\)
−0.653210 + 0.757177i \(0.726578\pi\)
\(860\) −29.2346 −0.996891
\(861\) 0 0
\(862\) 8.42438 0.286935
\(863\) 21.1692 + 36.6661i 0.720608 + 1.24813i 0.960756 + 0.277393i \(0.0894705\pi\)
−0.240149 + 0.970736i \(0.577196\pi\)
\(864\) 0 0
\(865\) 9.72457 16.8434i 0.330645 0.572694i
\(866\) −4.59006 7.95022i −0.155977 0.270159i
\(867\) 0 0
\(868\) −13.1736 + 18.9437i −0.447140 + 0.642992i
\(869\) −12.5997 −0.427416
\(870\) 0 0
\(871\) −1.11410 + 1.92967i −0.0377498 + 0.0653845i
\(872\) −18.7639 + 32.4999i −0.635424 + 1.10059i
\(873\) 0 0
\(874\) −24.6832 −0.834921
\(875\) 13.2327 + 28.1399i 0.447346 + 0.951304i
\(876\) 0 0
\(877\) 5.02542 + 8.70429i 0.169697 + 0.293923i 0.938313 0.345787i \(-0.112388\pi\)
−0.768617 + 0.639710i \(0.779055\pi\)
\(878\) 5.74809 9.95598i 0.193989 0.335998i
\(879\) 0 0
\(880\) −3.43722 5.95343i −0.115868 0.200690i
\(881\) −25.7602 −0.867885 −0.433942 0.900941i \(-0.642878\pi\)
−0.433942 + 0.900941i \(0.642878\pi\)
\(882\) 0 0
\(883\) −53.1876 −1.78991 −0.894953 0.446160i \(-0.852791\pi\)
−0.894953 + 0.446160i \(0.852791\pi\)
\(884\) −2.12695 3.68398i −0.0715370 0.123906i
\(885\) 0 0
\(886\) 7.33821 12.7102i 0.246532 0.427006i
\(887\) −10.4758 18.1447i −0.351745 0.609239i 0.634811 0.772668i \(-0.281078\pi\)
−0.986555 + 0.163428i \(0.947745\pi\)
\(888\) 0 0
\(889\) −16.2194 34.4914i −0.543982 1.15681i
\(890\) −23.2279 −0.778601
\(891\) 0 0
\(892\) 17.6946 30.6480i 0.592460 1.02617i
\(893\) 30.6685 53.1194i 1.02628 1.77757i
\(894\) 0 0
\(895\) −38.8858 −1.29981
\(896\) −17.3330 + 24.9251i −0.579056 + 0.832688i
\(897\) 0 0
\(898\) −11.9481 20.6947i −0.398712 0.690590i
\(899\) 9.69609 16.7941i 0.323383 0.560115i
\(900\) 0 0
\(901\) 16.6794 + 28.8896i 0.555672 + 0.962452i
\(902\) 1.46552 0.0487966
\(903\) 0 0
\(904\) −23.2314 −0.772667
\(905\) −13.8708 24.0250i −0.461082 0.798617i
\(906\) 0 0
\(907\) −23.7927 + 41.2102i −0.790024 + 1.36836i 0.135928 + 0.990719i \(0.456598\pi\)
−0.925952 + 0.377642i \(0.876735\pi\)
\(908\) 10.7637 + 18.6433i 0.357207 + 0.618701i
\(909\) 0 0
\(910\) 1.40602 + 0.118436i 0.0466090 + 0.00392612i
\(911\) −29.7720 −0.986389 −0.493194 0.869919i \(-0.664171\pi\)
−0.493194 + 0.869919i \(0.664171\pi\)
\(912\) 0 0
\(913\) 4.34001 7.51712i 0.143633 0.248780i
\(914\) −3.17668 + 5.50217i −0.105075 + 0.181995i
\(915\) 0 0
\(916\) −27.6459 −0.913445
\(917\) 15.3851 22.1239i 0.508060 0.730595i
\(918\) 0 0
\(919\) −15.2293 26.3779i −0.502367 0.870126i −0.999996 0.00273583i \(-0.999129\pi\)
0.497629 0.867390i \(-0.334204\pi\)
\(920\) −17.4084 + 30.1522i −0.573937 + 0.994088i
\(921\) 0 0
\(922\) −4.90089 8.48860i −0.161402 0.279557i
\(923\) −5.35129 −0.176140
\(924\) 0 0
\(925\) 2.84678 0.0936017
\(926\) 1.81110 + 3.13692i 0.0595165 + 0.103086i
\(927\) 0 0
\(928\) 10.1191 17.5268i 0.332176 0.575346i
\(929\) 10.5830 + 18.3304i 0.347218 + 0.601400i 0.985754 0.168192i \(-0.0537930\pi\)
−0.638536 + 0.769592i \(0.720460\pi\)
\(930\) 0 0
\(931\) 37.3536 + 6.33795i 1.22421 + 0.207718i
\(932\) 37.4128 1.22550
\(933\) 0 0
\(934\) −7.55230 + 13.0810i −0.247119 + 0.428022i
\(935\) −10.5141 + 18.2110i −0.343849 + 0.595564i
\(936\) 0 0
\(937\) 40.2779 1.31582 0.657912 0.753095i \(-0.271440\pi\)
0.657912 + 0.753095i \(0.271440\pi\)
\(938\) −3.51731 7.47973i −0.114844 0.244222i
\(939\) 0 0
\(940\) −19.5113 33.7945i −0.636388 1.10226i
\(941\) −0.910476 + 1.57699i −0.0296807 + 0.0514084i −0.880484 0.474076i \(-0.842782\pi\)
0.850804 + 0.525484i \(0.176116\pi\)
\(942\) 0 0
\(943\) 5.67116 + 9.82274i 0.184678 + 0.319872i
\(944\) 3.09528 0.100743
\(945\) 0 0
\(946\) −8.37494 −0.272293
\(947\) −6.74590 11.6842i −0.219212 0.379687i 0.735355 0.677682i \(-0.237015\pi\)
−0.954567 + 0.297995i \(0.903682\pi\)
\(948\) 0 0
\(949\) 0.338174 0.585734i 0.0109776 0.0190137i
\(950\) −0.983782 1.70396i −0.0319181 0.0552838i
\(951\) 0 0
\(952\) 34.8625 + 2.93666i 1.12990 + 0.0951776i
\(953\) −4.95309 −0.160446 −0.0802232 0.996777i \(-0.525563\pi\)
−0.0802232 + 0.996777i \(0.525563\pi\)
\(954\) 0 0
\(955\) −11.1038 + 19.2323i −0.359309 + 0.622342i
\(956\) −7.82002 + 13.5447i −0.252918 + 0.438066i
\(957\) 0 0
\(958\) −1.99659 −0.0645069
\(959\) −5.43711 0.457996i −0.175573 0.0147895i
\(960\) 0 0
\(961\) 1.41551 + 2.45174i 0.0456616 + 0.0790883i
\(962\) 0.595231 1.03097i 0.0191910 0.0332398i
\(963\) 0 0
\(964\) 0.963800 + 1.66935i 0.0310419 + 0.0537661i
\(965\) −17.0152 −0.547740
\(966\) 0 0
\(967\) 17.2566 0.554936 0.277468 0.960735i \(-0.410505\pi\)
0.277468 + 0.960735i \(0.410505\pi\)
\(968\) 9.00170 + 15.5914i 0.289326 + 0.501127i
\(969\) 0 0
\(970\) 8.60872 14.9107i 0.276409 0.478755i
\(971\) 23.4532 + 40.6221i 0.752649 + 1.30363i 0.946535 + 0.322602i \(0.104558\pi\)
−0.193886 + 0.981024i \(0.562109\pi\)
\(972\) 0 0
\(973\) −7.47347 15.8927i −0.239588 0.509497i
\(974\) −4.34793 −0.139317
\(975\) 0 0
\(976\) −5.01397 + 8.68444i −0.160493 + 0.277982i
\(977\) 17.5817 30.4524i 0.562488 0.974257i −0.434791 0.900531i \(-0.643178\pi\)
0.997279 0.0737259i \(-0.0234890\pi\)
\(978\) 0 0
\(979\) 30.6439 0.979384
\(980\) 15.3741 18.5644i 0.491109 0.593018i
\(981\) 0 0
\(982\) 0.887434 + 1.53708i 0.0283192 + 0.0490502i
\(983\) −6.04298 + 10.4667i −0.192741 + 0.333837i −0.946158 0.323706i \(-0.895071\pi\)
0.753417 + 0.657544i \(0.228404\pi\)
\(984\) 0 0
\(985\) −9.48806 16.4338i −0.302315 0.523625i
\(986\) −13.2619 −0.422344
\(987\) 0 0
\(988\) 3.78913 0.120548
\(989\) −32.4087 56.1334i −1.03054 1.78494i
\(990\) 0 0
\(991\) −16.1874 + 28.0374i −0.514209 + 0.890636i 0.485655 + 0.874150i \(0.338581\pi\)
−0.999864 + 0.0164855i \(0.994752\pi\)
\(992\) −14.6990 25.4594i −0.466693 0.808335i
\(993\) 0 0
\(994\) 11.3332 16.2973i 0.359468 0.516919i
\(995\) 15.5618 0.493343
\(996\) 0 0
\(997\) 7.36660 12.7593i 0.233303 0.404092i −0.725475 0.688248i \(-0.758380\pi\)
0.958778 + 0.284156i \(0.0917134\pi\)
\(998\) 3.72913 6.45904i 0.118044 0.204457i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.e.g.487.5 yes 16
3.2 odd 2 inner 567.2.e.g.487.4 yes 16
7.2 even 3 inner 567.2.e.g.163.5 yes 16
7.3 odd 6 3969.2.a.bf.1.4 8
7.4 even 3 3969.2.a.bg.1.4 8
9.2 odd 6 567.2.g.l.109.4 16
9.4 even 3 567.2.h.l.298.4 16
9.5 odd 6 567.2.h.l.298.5 16
9.7 even 3 567.2.g.l.109.5 16
21.2 odd 6 inner 567.2.e.g.163.4 16
21.11 odd 6 3969.2.a.bg.1.5 8
21.17 even 6 3969.2.a.bf.1.5 8
63.2 odd 6 567.2.h.l.352.5 16
63.16 even 3 567.2.h.l.352.4 16
63.23 odd 6 567.2.g.l.541.4 16
63.58 even 3 567.2.g.l.541.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.4 16 21.2 odd 6 inner
567.2.e.g.163.5 yes 16 7.2 even 3 inner
567.2.e.g.487.4 yes 16 3.2 odd 2 inner
567.2.e.g.487.5 yes 16 1.1 even 1 trivial
567.2.g.l.109.4 16 9.2 odd 6
567.2.g.l.109.5 16 9.7 even 3
567.2.g.l.541.4 16 63.23 odd 6
567.2.g.l.541.5 16 63.58 even 3
567.2.h.l.298.4 16 9.4 even 3
567.2.h.l.298.5 16 9.5 odd 6
567.2.h.l.352.4 16 63.16 even 3
567.2.h.l.352.5 16 63.2 odd 6
3969.2.a.bf.1.4 8 7.3 odd 6
3969.2.a.bf.1.5 8 21.17 even 6
3969.2.a.bg.1.4 8 7.4 even 3
3969.2.a.bg.1.5 8 21.11 odd 6