Properties

Label 567.2.e.g.487.3
Level $567$
Weight $2$
Character 567.487
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(163,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 487.3
Root \(0.776749 - 1.18180i\) of defining polynomial
Character \(\chi\) \(=\) 567.487
Dual form 567.2.e.g.163.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.635098 - 1.10002i) q^{2} +(0.193301 - 0.334806i) q^{4} +(0.776749 + 1.34537i) q^{5} +(-1.48662 + 2.18860i) q^{7} -3.03145 q^{8} +(0.986623 - 1.70888i) q^{10} +(-1.60500 + 2.77995i) q^{11} +4.78669 q^{13} +(3.35166 + 0.245346i) q^{14} +(1.53867 + 2.66505i) q^{16} +(-1.05918 + 1.83456i) q^{17} +(2.43201 + 4.21237i) q^{19} +0.600584 q^{20} +4.07734 q^{22} +(1.85379 + 3.21086i) q^{23} +(1.29332 - 2.24010i) q^{25} +(-3.04002 - 5.26547i) q^{26} +(0.445391 + 0.920788i) q^{28} -7.37944 q^{29} +(-2.75209 + 4.76676i) q^{31} +(-1.07704 + 1.86549i) q^{32} +2.69074 q^{34} +(-4.09920 - 0.300067i) q^{35} +(0.0932782 + 0.161563i) q^{37} +(3.08914 - 5.35054i) q^{38} +(-2.35468 - 4.07842i) q^{40} +10.7972 q^{41} +4.86916 q^{43} +(0.620496 + 1.07473i) q^{44} +(2.35468 - 4.07842i) q^{46} +(0.885937 + 1.53449i) q^{47} +(-2.57990 - 6.50724i) q^{49} -3.28555 q^{50} +(0.925270 - 1.60261i) q^{52} +(0.834432 - 1.44528i) q^{53} -4.98674 q^{55} +(4.50663 - 6.63462i) q^{56} +(4.68667 + 8.11755i) q^{58} +(2.91297 - 5.04541i) q^{59} +(-3.43865 - 5.95591i) q^{61} +6.99139 q^{62} +8.89078 q^{64} +(3.71806 + 6.43986i) q^{65} +(-6.11868 + 10.5979i) q^{67} +(0.409481 + 0.709241i) q^{68} +(2.27331 + 4.69978i) q^{70} +13.8101 q^{71} +(-5.93201 + 10.2745i) q^{73} +(0.118482 - 0.205216i) q^{74} +1.88044 q^{76} +(-3.69814 - 7.64544i) q^{77} +(0.654632 + 1.13386i) q^{79} +(-2.39032 + 4.14015i) q^{80} +(-6.85728 - 11.8772i) q^{82} +0.346488 q^{83} -3.29087 q^{85} +(-3.09239 - 5.35618i) q^{86} +(4.86549 - 8.42727i) q^{88} +(-8.70319 - 15.0744i) q^{89} +(-7.11601 + 10.4761i) q^{91} +1.43335 q^{92} +(1.12531 - 1.94910i) q^{94} +(-3.77813 + 6.54391i) q^{95} -10.5683 q^{97} +(-5.51961 + 6.97068i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} + 6 q^{7} - 14 q^{10} + 12 q^{13} - 6 q^{16} - 24 q^{19} + 4 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} - 36 q^{40} + 20 q^{43} + 36 q^{46} - 14 q^{49} - 34 q^{52} + 8 q^{55} + 22 q^{58} - 36 q^{61}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.635098 1.10002i −0.449082 0.777833i 0.549244 0.835662i \(-0.314916\pi\)
−0.998327 + 0.0578286i \(0.981582\pi\)
\(3\) 0 0
\(4\) 0.193301 0.334806i 0.0966503 0.167403i
\(5\) 0.776749 + 1.34537i 0.347373 + 0.601667i 0.985782 0.168030i \(-0.0537406\pi\)
−0.638409 + 0.769697i \(0.720407\pi\)
\(6\) 0 0
\(7\) −1.48662 + 2.18860i −0.561891 + 0.827211i
\(8\) −3.03145 −1.07178
\(9\) 0 0
\(10\) 0.986623 1.70888i 0.311998 0.540396i
\(11\) −1.60500 + 2.77995i −0.483927 + 0.838185i −0.999830 0.0184616i \(-0.994123\pi\)
0.515903 + 0.856647i \(0.327456\pi\)
\(12\) 0 0
\(13\) 4.78669 1.32759 0.663795 0.747915i \(-0.268945\pi\)
0.663795 + 0.747915i \(0.268945\pi\)
\(14\) 3.35166 + 0.245346i 0.895768 + 0.0655714i
\(15\) 0 0
\(16\) 1.53867 + 2.66505i 0.384667 + 0.666263i
\(17\) −1.05918 + 1.83456i −0.256889 + 0.444945i −0.965407 0.260748i \(-0.916031\pi\)
0.708518 + 0.705693i \(0.249364\pi\)
\(18\) 0 0
\(19\) 2.43201 + 4.21237i 0.557942 + 0.966384i 0.997668 + 0.0682523i \(0.0217423\pi\)
−0.439726 + 0.898132i \(0.644924\pi\)
\(20\) 0.600584 0.134295
\(21\) 0 0
\(22\) 4.07734 0.869291
\(23\) 1.85379 + 3.21086i 0.386542 + 0.669510i 0.991982 0.126381i \(-0.0403362\pi\)
−0.605440 + 0.795891i \(0.707003\pi\)
\(24\) 0 0
\(25\) 1.29332 2.24010i 0.258665 0.448020i
\(26\) −3.04002 5.26547i −0.596197 1.03264i
\(27\) 0 0
\(28\) 0.445391 + 0.920788i 0.0841709 + 0.174013i
\(29\) −7.37944 −1.37033 −0.685164 0.728389i \(-0.740269\pi\)
−0.685164 + 0.728389i \(0.740269\pi\)
\(30\) 0 0
\(31\) −2.75209 + 4.76676i −0.494290 + 0.856135i −0.999978 0.00658088i \(-0.997905\pi\)
0.505688 + 0.862716i \(0.331239\pi\)
\(32\) −1.07704 + 1.86549i −0.190396 + 0.329775i
\(33\) 0 0
\(34\) 2.69074 0.461457
\(35\) −4.09920 0.300067i −0.692891 0.0507206i
\(36\) 0 0
\(37\) 0.0932782 + 0.161563i 0.0153348 + 0.0265607i 0.873591 0.486661i \(-0.161785\pi\)
−0.858256 + 0.513222i \(0.828452\pi\)
\(38\) 3.08914 5.35054i 0.501124 0.867972i
\(39\) 0 0
\(40\) −2.35468 4.07842i −0.372307 0.644855i
\(41\) 10.7972 1.68624 0.843120 0.537726i \(-0.180716\pi\)
0.843120 + 0.537726i \(0.180716\pi\)
\(42\) 0 0
\(43\) 4.86916 0.742539 0.371270 0.928525i \(-0.378923\pi\)
0.371270 + 0.928525i \(0.378923\pi\)
\(44\) 0.620496 + 1.07473i 0.0935433 + 0.162022i
\(45\) 0 0
\(46\) 2.35468 4.07842i 0.347178 0.601330i
\(47\) 0.885937 + 1.53449i 0.129227 + 0.223828i 0.923377 0.383893i \(-0.125417\pi\)
−0.794150 + 0.607722i \(0.792084\pi\)
\(48\) 0 0
\(49\) −2.57990 6.50724i −0.368557 0.929605i
\(50\) −3.28555 −0.464647
\(51\) 0 0
\(52\) 0.925270 1.60261i 0.128312 0.222243i
\(53\) 0.834432 1.44528i 0.114618 0.198524i −0.803009 0.595967i \(-0.796769\pi\)
0.917627 + 0.397443i \(0.130102\pi\)
\(54\) 0 0
\(55\) −4.98674 −0.672411
\(56\) 4.50663 6.63462i 0.602223 0.886589i
\(57\) 0 0
\(58\) 4.68667 + 8.11755i 0.615390 + 1.06589i
\(59\) 2.91297 5.04541i 0.379236 0.656857i −0.611715 0.791078i \(-0.709520\pi\)
0.990951 + 0.134221i \(0.0428534\pi\)
\(60\) 0 0
\(61\) −3.43865 5.95591i −0.440274 0.762576i 0.557436 0.830220i \(-0.311785\pi\)
−0.997710 + 0.0676438i \(0.978452\pi\)
\(62\) 6.99139 0.887907
\(63\) 0 0
\(64\) 8.89078 1.11135
\(65\) 3.71806 + 6.43986i 0.461168 + 0.798766i
\(66\) 0 0
\(67\) −6.11868 + 10.5979i −0.747516 + 1.29474i 0.201494 + 0.979490i \(0.435420\pi\)
−0.949010 + 0.315246i \(0.897913\pi\)
\(68\) 0.409481 + 0.709241i 0.0496568 + 0.0860081i
\(69\) 0 0
\(70\) 2.27331 + 4.69978i 0.271713 + 0.561732i
\(71\) 13.8101 1.63895 0.819477 0.573112i \(-0.194264\pi\)
0.819477 + 0.573112i \(0.194264\pi\)
\(72\) 0 0
\(73\) −5.93201 + 10.2745i −0.694290 + 1.20255i 0.276130 + 0.961120i \(0.410948\pi\)
−0.970420 + 0.241425i \(0.922385\pi\)
\(74\) 0.118482 0.205216i 0.0137732 0.0238559i
\(75\) 0 0
\(76\) 1.88044 0.215701
\(77\) −3.69814 7.64544i −0.421443 0.871278i
\(78\) 0 0
\(79\) 0.654632 + 1.13386i 0.0736518 + 0.127569i 0.900499 0.434858i \(-0.143201\pi\)
−0.826847 + 0.562426i \(0.809868\pi\)
\(80\) −2.39032 + 4.14015i −0.267246 + 0.462883i
\(81\) 0 0
\(82\) −6.85728 11.8772i −0.757260 1.31161i
\(83\) 0.346488 0.0380320 0.0190160 0.999819i \(-0.493947\pi\)
0.0190160 + 0.999819i \(0.493947\pi\)
\(84\) 0 0
\(85\) −3.29087 −0.356945
\(86\) −3.09239 5.35618i −0.333461 0.577572i
\(87\) 0 0
\(88\) 4.86549 8.42727i 0.518663 0.898350i
\(89\) −8.70319 15.0744i −0.922537 1.59788i −0.795476 0.605985i \(-0.792779\pi\)
−0.127061 0.991895i \(-0.540554\pi\)
\(90\) 0 0
\(91\) −7.11601 + 10.4761i −0.745960 + 1.09820i
\(92\) 1.43335 0.149437
\(93\) 0 0
\(94\) 1.12531 1.94910i 0.116067 0.201035i
\(95\) −3.77813 + 6.54391i −0.387628 + 0.671391i
\(96\) 0 0
\(97\) −10.5683 −1.07304 −0.536522 0.843886i \(-0.680262\pi\)
−0.536522 + 0.843886i \(0.680262\pi\)
\(98\) −5.51961 + 6.97068i −0.557565 + 0.704145i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) −1.01697 + 1.76144i −0.101192 + 0.175270i −0.912176 0.409798i \(-0.865599\pi\)
0.810984 + 0.585068i \(0.198932\pi\)
\(102\) 0 0
\(103\) −9.99080 17.3046i −0.984423 1.70507i −0.644472 0.764628i \(-0.722923\pi\)
−0.339951 0.940443i \(-0.610410\pi\)
\(104\) −14.5106 −1.42288
\(105\) 0 0
\(106\) −2.11979 −0.205892
\(107\) 8.45322 + 14.6414i 0.817204 + 1.41544i 0.907735 + 0.419545i \(0.137810\pi\)
−0.0905308 + 0.995894i \(0.528856\pi\)
\(108\) 0 0
\(109\) 5.34955 9.26569i 0.512394 0.887492i −0.487503 0.873121i \(-0.662092\pi\)
0.999897 0.0143707i \(-0.00457451\pi\)
\(110\) 3.16707 + 5.48552i 0.301968 + 0.523024i
\(111\) 0 0
\(112\) −8.12014 0.594406i −0.767281 0.0561661i
\(113\) −8.58471 −0.807582 −0.403791 0.914851i \(-0.632308\pi\)
−0.403791 + 0.914851i \(0.632308\pi\)
\(114\) 0 0
\(115\) −2.87986 + 4.98806i −0.268548 + 0.465139i
\(116\) −1.42645 + 2.47068i −0.132442 + 0.229397i
\(117\) 0 0
\(118\) −7.40009 −0.681233
\(119\) −2.44050 5.04541i −0.223720 0.462512i
\(120\) 0 0
\(121\) 0.347932 + 0.602636i 0.0316302 + 0.0547851i
\(122\) −4.36776 + 7.56518i −0.395438 + 0.684919i
\(123\) 0 0
\(124\) 1.06396 + 1.84283i 0.0955465 + 0.165491i
\(125\) 11.7858 1.05416
\(126\) 0 0
\(127\) 1.95162 0.173178 0.0865892 0.996244i \(-0.472403\pi\)
0.0865892 + 0.996244i \(0.472403\pi\)
\(128\) −3.49244 6.04908i −0.308691 0.534668i
\(129\) 0 0
\(130\) 4.72266 8.17989i 0.414205 0.717424i
\(131\) −5.87214 10.1708i −0.513051 0.888630i −0.999885 0.0151361i \(-0.995182\pi\)
0.486834 0.873494i \(-0.338151\pi\)
\(132\) 0 0
\(133\) −12.8347 0.939515i −1.11291 0.0814663i
\(134\) 15.5439 1.34278
\(135\) 0 0
\(136\) 3.21086 5.56137i 0.275329 0.476883i
\(137\) −8.06604 + 13.9708i −0.689128 + 1.19361i 0.282992 + 0.959122i \(0.408673\pi\)
−0.972120 + 0.234483i \(0.924660\pi\)
\(138\) 0 0
\(139\) 13.4425 1.14018 0.570091 0.821582i \(-0.306908\pi\)
0.570091 + 0.821582i \(0.306908\pi\)
\(140\) −0.892842 + 1.31443i −0.0754589 + 0.111090i
\(141\) 0 0
\(142\) −8.77075 15.1914i −0.736025 1.27483i
\(143\) −7.68265 + 13.3067i −0.642456 + 1.11277i
\(144\) 0 0
\(145\) −5.73197 9.92806i −0.476014 0.824481i
\(146\) 15.0696 1.24717
\(147\) 0 0
\(148\) 0.0721229 0.00592846
\(149\) −1.60587 2.78145i −0.131558 0.227865i 0.792719 0.609587i \(-0.208665\pi\)
−0.924277 + 0.381722i \(0.875331\pi\)
\(150\) 0 0
\(151\) −8.51610 + 14.7503i −0.693030 + 1.20036i 0.277810 + 0.960636i \(0.410391\pi\)
−0.970840 + 0.239727i \(0.922942\pi\)
\(152\) −7.37253 12.7696i −0.597991 1.03575i
\(153\) 0 0
\(154\) −6.06147 + 8.92364i −0.488447 + 0.719088i
\(155\) −8.55073 −0.686811
\(156\) 0 0
\(157\) −4.71709 + 8.17024i −0.376465 + 0.652056i −0.990545 0.137188i \(-0.956194\pi\)
0.614080 + 0.789243i \(0.289527\pi\)
\(158\) 0.831511 1.44022i 0.0661515 0.114578i
\(159\) 0 0
\(160\) −3.34636 −0.264553
\(161\) −9.78315 0.716140i −0.771021 0.0564398i
\(162\) 0 0
\(163\) −1.83874 3.18478i −0.144021 0.249452i 0.784986 0.619513i \(-0.212670\pi\)
−0.929007 + 0.370062i \(0.879337\pi\)
\(164\) 2.08710 3.61497i 0.162976 0.282282i
\(165\) 0 0
\(166\) −0.220054 0.381144i −0.0170795 0.0295825i
\(167\) −1.61017 −0.124599 −0.0622994 0.998058i \(-0.519843\pi\)
−0.0622994 + 0.998058i \(0.519843\pi\)
\(168\) 0 0
\(169\) 9.91241 0.762493
\(170\) 2.09003 + 3.62003i 0.160298 + 0.277644i
\(171\) 0 0
\(172\) 0.941210 1.63022i 0.0717666 0.124303i
\(173\) 8.09213 + 14.0160i 0.615233 + 1.06562i 0.990344 + 0.138635i \(0.0442716\pi\)
−0.375110 + 0.926980i \(0.622395\pi\)
\(174\) 0 0
\(175\) 2.97999 + 6.16075i 0.225266 + 0.465709i
\(176\) −9.87827 −0.744603
\(177\) 0 0
\(178\) −11.0548 + 19.1474i −0.828590 + 1.43516i
\(179\) 8.70319 15.0744i 0.650507 1.12671i −0.332493 0.943106i \(-0.607890\pi\)
0.983000 0.183606i \(-0.0587770\pi\)
\(180\) 0 0
\(181\) 8.89591 0.661228 0.330614 0.943766i \(-0.392744\pi\)
0.330614 + 0.943766i \(0.392744\pi\)
\(182\) 16.0433 + 1.17439i 1.18921 + 0.0870519i
\(183\) 0 0
\(184\) −5.61967 9.73356i −0.414288 0.717568i
\(185\) −0.144907 + 0.250987i −0.0106538 + 0.0184529i
\(186\) 0 0
\(187\) −3.39998 5.88893i −0.248631 0.430642i
\(188\) 0.685009 0.0499594
\(189\) 0 0
\(190\) 9.59793 0.696307
\(191\) −7.39609 12.8104i −0.535163 0.926929i −0.999155 0.0410898i \(-0.986917\pi\)
0.463993 0.885839i \(-0.346416\pi\)
\(192\) 0 0
\(193\) −0.910790 + 1.57753i −0.0655601 + 0.113553i −0.896942 0.442148i \(-0.854217\pi\)
0.831382 + 0.555701i \(0.187550\pi\)
\(194\) 6.71188 + 11.6253i 0.481885 + 0.834649i
\(195\) 0 0
\(196\) −2.67736 0.394085i −0.191240 0.0281489i
\(197\) 7.71970 0.550006 0.275003 0.961443i \(-0.411321\pi\)
0.275003 + 0.961443i \(0.411321\pi\)
\(198\) 0 0
\(199\) −1.10665 + 1.91678i −0.0784487 + 0.135877i −0.902581 0.430521i \(-0.858330\pi\)
0.824132 + 0.566398i \(0.191663\pi\)
\(200\) −3.92065 + 6.79076i −0.277232 + 0.480179i
\(201\) 0 0
\(202\) 2.58350 0.181774
\(203\) 10.9704 16.1506i 0.769974 1.13355i
\(204\) 0 0
\(205\) 8.38671 + 14.5262i 0.585753 + 1.01455i
\(206\) −12.6903 + 21.9802i −0.884174 + 1.53143i
\(207\) 0 0
\(208\) 7.36513 + 12.7568i 0.510680 + 0.884524i
\(209\) −15.6136 −1.08001
\(210\) 0 0
\(211\) −1.81344 −0.124843 −0.0624213 0.998050i \(-0.519882\pi\)
−0.0624213 + 0.998050i \(0.519882\pi\)
\(212\) −0.322592 0.558746i −0.0221557 0.0383749i
\(213\) 0 0
\(214\) 10.7373 18.5975i 0.733983 1.27130i
\(215\) 3.78211 + 6.55081i 0.257938 + 0.446761i
\(216\) 0 0
\(217\) −6.34119 13.1096i −0.430468 0.889937i
\(218\) −13.5900 −0.920428
\(219\) 0 0
\(220\) −0.963939 + 1.66959i −0.0649887 + 0.112564i
\(221\) −5.06997 + 8.78145i −0.341043 + 0.590704i
\(222\) 0 0
\(223\) 9.50616 0.636580 0.318290 0.947993i \(-0.396891\pi\)
0.318290 + 0.947993i \(0.396891\pi\)
\(224\) −2.48165 5.13049i −0.165812 0.342795i
\(225\) 0 0
\(226\) 5.45213 + 9.44337i 0.362671 + 0.628164i
\(227\) 5.41646 9.38158i 0.359503 0.622678i −0.628375 0.777911i \(-0.716280\pi\)
0.987878 + 0.155233i \(0.0496129\pi\)
\(228\) 0 0
\(229\) −6.25983 10.8423i −0.413661 0.716482i 0.581626 0.813456i \(-0.302417\pi\)
−0.995287 + 0.0969747i \(0.969083\pi\)
\(230\) 7.31597 0.482401
\(231\) 0 0
\(232\) 22.3704 1.46869
\(233\) −7.64044 13.2336i −0.500542 0.866964i −1.00000 0.000625732i \(-0.999801\pi\)
0.499458 0.866338i \(-0.333533\pi\)
\(234\) 0 0
\(235\) −1.37630 + 2.38382i −0.0897800 + 0.155504i
\(236\) −1.12616 1.95056i −0.0733066 0.126971i
\(237\) 0 0
\(238\) −4.00011 + 5.88893i −0.259289 + 0.381723i
\(239\) 10.7158 0.693149 0.346574 0.938023i \(-0.387345\pi\)
0.346574 + 0.938023i \(0.387345\pi\)
\(240\) 0 0
\(241\) 7.50011 12.9906i 0.483125 0.836796i −0.516688 0.856174i \(-0.672835\pi\)
0.999812 + 0.0193775i \(0.00616845\pi\)
\(242\) 0.441942 0.765467i 0.0284091 0.0492061i
\(243\) 0 0
\(244\) −2.65877 −0.170210
\(245\) 6.75069 8.52540i 0.431286 0.544668i
\(246\) 0 0
\(247\) 11.6413 + 20.1633i 0.740718 + 1.28296i
\(248\) 8.34283 14.4502i 0.529770 0.917589i
\(249\) 0 0
\(250\) −7.48516 12.9647i −0.473403 0.819958i
\(251\) −16.5665 −1.04567 −0.522833 0.852435i \(-0.675125\pi\)
−0.522833 + 0.852435i \(0.675125\pi\)
\(252\) 0 0
\(253\) −11.9013 −0.748231
\(254\) −1.23947 2.14683i −0.0777714 0.134704i
\(255\) 0 0
\(256\) 4.45470 7.71576i 0.278419 0.482235i
\(257\) 11.2886 + 19.5524i 0.704163 + 1.21965i 0.966993 + 0.254804i \(0.0820111\pi\)
−0.262829 + 0.964842i \(0.584656\pi\)
\(258\) 0 0
\(259\) −0.492265 0.0360344i −0.0305878 0.00223907i
\(260\) 2.87481 0.178288
\(261\) 0 0
\(262\) −7.45877 + 12.9190i −0.460804 + 0.798136i
\(263\) 11.1730 19.3523i 0.688959 1.19331i −0.283216 0.959056i \(-0.591401\pi\)
0.972175 0.234256i \(-0.0752653\pi\)
\(264\) 0 0
\(265\) 2.59258 0.159261
\(266\) 7.11779 + 14.7151i 0.436419 + 0.902241i
\(267\) 0 0
\(268\) 2.36549 + 4.09715i 0.144495 + 0.250273i
\(269\) 13.9475 24.1577i 0.850392 1.47292i −0.0304623 0.999536i \(-0.509698\pi\)
0.880855 0.473387i \(-0.156969\pi\)
\(270\) 0 0
\(271\) −4.93714 8.55138i −0.299910 0.519459i 0.676205 0.736713i \(-0.263623\pi\)
−0.976115 + 0.217254i \(0.930290\pi\)
\(272\) −6.51892 −0.395267
\(273\) 0 0
\(274\) 20.4909 1.23790
\(275\) 4.15157 + 7.19074i 0.250349 + 0.433618i
\(276\) 0 0
\(277\) 4.35728 7.54704i 0.261804 0.453458i −0.704917 0.709289i \(-0.749016\pi\)
0.966721 + 0.255832i \(0.0823493\pi\)
\(278\) −8.53733 14.7871i −0.512035 0.886871i
\(279\) 0 0
\(280\) 12.4265 + 0.909639i 0.742627 + 0.0543613i
\(281\) 6.20641 0.370243 0.185122 0.982716i \(-0.440732\pi\)
0.185122 + 0.982716i \(0.440732\pi\)
\(282\) 0 0
\(283\) −9.82943 + 17.0251i −0.584299 + 1.01204i 0.410664 + 0.911787i \(0.365297\pi\)
−0.994962 + 0.100248i \(0.968036\pi\)
\(284\) 2.66949 4.62370i 0.158405 0.274366i
\(285\) 0 0
\(286\) 19.5170 1.15406
\(287\) −16.0514 + 23.6307i −0.947483 + 1.39488i
\(288\) 0 0
\(289\) 6.25627 + 10.8362i 0.368016 + 0.637422i
\(290\) −7.28073 + 12.6106i −0.427539 + 0.740519i
\(291\) 0 0
\(292\) 2.29332 + 3.97215i 0.134207 + 0.232453i
\(293\) 14.4968 0.846913 0.423456 0.905916i \(-0.360817\pi\)
0.423456 + 0.905916i \(0.360817\pi\)
\(294\) 0 0
\(295\) 9.05058 0.526945
\(296\) −0.282768 0.489769i −0.0164356 0.0284672i
\(297\) 0 0
\(298\) −2.03977 + 3.53299i −0.118161 + 0.204661i
\(299\) 8.87352 + 15.3694i 0.513169 + 0.888834i
\(300\) 0 0
\(301\) −7.23860 + 10.6566i −0.417226 + 0.614237i
\(302\) 21.6342 1.24491
\(303\) 0 0
\(304\) −7.48413 + 12.9629i −0.429244 + 0.743473i
\(305\) 5.34193 9.25249i 0.305878 0.529796i
\(306\) 0 0
\(307\) 22.2776 1.27145 0.635725 0.771916i \(-0.280701\pi\)
0.635725 + 0.771916i \(0.280701\pi\)
\(308\) −3.27459 0.239705i −0.186587 0.0136584i
\(309\) 0 0
\(310\) 5.43055 + 9.40599i 0.308435 + 0.534225i
\(311\) 8.70027 15.0693i 0.493347 0.854502i −0.506623 0.862167i \(-0.669107\pi\)
0.999971 + 0.00766509i \(0.00243990\pi\)
\(312\) 0 0
\(313\) 0.100022 + 0.173244i 0.00565360 + 0.00979232i 0.868838 0.495096i \(-0.164867\pi\)
−0.863185 + 0.504888i \(0.831534\pi\)
\(314\) 11.9833 0.676254
\(315\) 0 0
\(316\) 0.506163 0.0284739
\(317\) 4.11706 + 7.13096i 0.231237 + 0.400514i 0.958172 0.286192i \(-0.0923894\pi\)
−0.726935 + 0.686706i \(0.759056\pi\)
\(318\) 0 0
\(319\) 11.8440 20.5144i 0.663138 1.14859i
\(320\) 6.90590 + 11.9614i 0.386052 + 0.668661i
\(321\) 0 0
\(322\) 5.42549 + 11.2165i 0.302351 + 0.625072i
\(323\) −10.3038 −0.573317
\(324\) 0 0
\(325\) 6.19074 10.7227i 0.343400 0.594787i
\(326\) −2.33556 + 4.04530i −0.129354 + 0.224049i
\(327\) 0 0
\(328\) −32.7312 −1.80728
\(329\) −4.67543 0.342248i −0.257765 0.0188687i
\(330\) 0 0
\(331\) 8.31616 + 14.4040i 0.457098 + 0.791716i 0.998806 0.0488501i \(-0.0155557\pi\)
−0.541708 + 0.840566i \(0.682222\pi\)
\(332\) 0.0669762 0.116006i 0.00367580 0.00636667i
\(333\) 0 0
\(334\) 1.02262 + 1.77122i 0.0559551 + 0.0969170i
\(335\) −19.0107 −1.03867
\(336\) 0 0
\(337\) 15.9095 0.866645 0.433322 0.901239i \(-0.357341\pi\)
0.433322 + 0.901239i \(0.357341\pi\)
\(338\) −6.29535 10.9039i −0.342422 0.593092i
\(339\) 0 0
\(340\) −0.636127 + 1.10180i −0.0344988 + 0.0597537i
\(341\) −8.83422 15.3013i −0.478400 0.828613i
\(342\) 0 0
\(343\) 18.0770 + 4.02745i 0.976069 + 0.217462i
\(344\) −14.7606 −0.795839
\(345\) 0 0
\(346\) 10.2786 17.8031i 0.552581 0.957098i
\(347\) 3.14462 5.44665i 0.168812 0.292391i −0.769190 0.639020i \(-0.779340\pi\)
0.938003 + 0.346628i \(0.112674\pi\)
\(348\) 0 0
\(349\) 1.61955 0.0866927 0.0433463 0.999060i \(-0.486198\pi\)
0.0433463 + 0.999060i \(0.486198\pi\)
\(350\) 4.88437 7.19074i 0.261081 0.384361i
\(351\) 0 0
\(352\) −3.45731 5.98823i −0.184275 0.319174i
\(353\) 16.2559 28.1560i 0.865213 1.49859i −0.00162266 0.999999i \(-0.500517\pi\)
0.866836 0.498594i \(-0.166150\pi\)
\(354\) 0 0
\(355\) 10.7270 + 18.5796i 0.569328 + 0.986104i
\(356\) −6.72933 −0.356654
\(357\) 0 0
\(358\) −22.1095 −1.16852
\(359\) 5.59588 + 9.69235i 0.295339 + 0.511543i 0.975064 0.221925i \(-0.0712340\pi\)
−0.679724 + 0.733468i \(0.737901\pi\)
\(360\) 0 0
\(361\) −2.32938 + 4.03461i −0.122599 + 0.212348i
\(362\) −5.64978 9.78570i −0.296946 0.514325i
\(363\) 0 0
\(364\) 2.13195 + 4.40753i 0.111744 + 0.231017i
\(365\) −18.4307 −0.964709
\(366\) 0 0
\(367\) 2.59339 4.49188i 0.135374 0.234474i −0.790366 0.612634i \(-0.790110\pi\)
0.925740 + 0.378160i \(0.123443\pi\)
\(368\) −5.70474 + 9.88089i −0.297380 + 0.515077i
\(369\) 0 0
\(370\) 0.368122 0.0191377
\(371\) 1.92264 + 3.97482i 0.0998187 + 0.206362i
\(372\) 0 0
\(373\) −16.4322 28.4614i −0.850825 1.47367i −0.880464 0.474112i \(-0.842769\pi\)
0.0296389 0.999561i \(-0.490564\pi\)
\(374\) −4.31864 + 7.48010i −0.223312 + 0.386787i
\(375\) 0 0
\(376\) −2.68568 4.65173i −0.138503 0.239895i
\(377\) −35.3231 −1.81923
\(378\) 0 0
\(379\) 13.9362 0.715856 0.357928 0.933749i \(-0.383483\pi\)
0.357928 + 0.933749i \(0.383483\pi\)
\(380\) 1.46063 + 2.52988i 0.0749286 + 0.129780i
\(381\) 0 0
\(382\) −9.39449 + 16.2717i −0.480664 + 0.832534i
\(383\) −0.857601 1.48541i −0.0438214 0.0759008i 0.843283 0.537470i \(-0.180620\pi\)
−0.887104 + 0.461569i \(0.847287\pi\)
\(384\) 0 0
\(385\) 7.41340 10.9139i 0.377822 0.556226i
\(386\) 2.31376 0.117768
\(387\) 0 0
\(388\) −2.04285 + 3.53832i −0.103710 + 0.179631i
\(389\) −1.57428 + 2.72673i −0.0798191 + 0.138251i −0.903172 0.429279i \(-0.858768\pi\)
0.823353 + 0.567530i \(0.192101\pi\)
\(390\) 0 0
\(391\) −7.85400 −0.397194
\(392\) 7.82085 + 19.7264i 0.395012 + 0.996332i
\(393\) 0 0
\(394\) −4.90277 8.49184i −0.246998 0.427813i
\(395\) −1.01697 + 1.76144i −0.0511693 + 0.0886277i
\(396\) 0 0
\(397\) −13.7172 23.7590i −0.688449 1.19243i −0.972340 0.233572i \(-0.924959\pi\)
0.283891 0.958857i \(-0.408375\pi\)
\(398\) 2.81134 0.140920
\(399\) 0 0
\(400\) 7.95998 0.397999
\(401\) 14.5185 + 25.1468i 0.725020 + 1.25577i 0.958966 + 0.283522i \(0.0915029\pi\)
−0.233946 + 0.972250i \(0.575164\pi\)
\(402\) 0 0
\(403\) −13.1734 + 22.8170i −0.656214 + 1.13660i
\(404\) 0.393161 + 0.680975i 0.0195605 + 0.0338798i
\(405\) 0 0
\(406\) −24.7333 1.81051i −1.22750 0.0898543i
\(407\) −0.598847 −0.0296837
\(408\) 0 0
\(409\) 13.8650 24.0149i 0.685581 1.18746i −0.287673 0.957729i \(-0.592882\pi\)
0.973254 0.229732i \(-0.0737851\pi\)
\(410\) 10.6528 18.4511i 0.526103 0.911237i
\(411\) 0 0
\(412\) −7.72491 −0.380579
\(413\) 6.71188 + 13.8759i 0.330270 + 0.682791i
\(414\) 0 0
\(415\) 0.269134 + 0.466153i 0.0132113 + 0.0228826i
\(416\) −5.15546 + 8.92952i −0.252767 + 0.437806i
\(417\) 0 0
\(418\) 9.91614 + 17.1753i 0.485014 + 0.840070i
\(419\) −30.3598 −1.48317 −0.741586 0.670857i \(-0.765926\pi\)
−0.741586 + 0.670857i \(0.765926\pi\)
\(420\) 0 0
\(421\) −27.7735 −1.35360 −0.676799 0.736168i \(-0.736633\pi\)
−0.676799 + 0.736168i \(0.736633\pi\)
\(422\) 1.15171 + 1.99483i 0.0560646 + 0.0971067i
\(423\) 0 0
\(424\) −2.52954 + 4.38129i −0.122845 + 0.212774i
\(425\) 2.73973 + 4.74535i 0.132896 + 0.230183i
\(426\) 0 0
\(427\) 18.1471 + 1.32839i 0.878197 + 0.0642853i
\(428\) 6.53605 0.315932
\(429\) 0 0
\(430\) 4.80402 8.32081i 0.231671 0.401265i
\(431\) −3.62965 + 6.28673i −0.174834 + 0.302821i −0.940104 0.340888i \(-0.889272\pi\)
0.765270 + 0.643710i \(0.222606\pi\)
\(432\) 0 0
\(433\) 15.0375 0.722658 0.361329 0.932438i \(-0.382323\pi\)
0.361329 + 0.932438i \(0.382323\pi\)
\(434\) −10.3936 + 15.3013i −0.498907 + 0.734487i
\(435\) 0 0
\(436\) −2.06814 3.58213i −0.0990460 0.171553i
\(437\) −9.01688 + 15.6177i −0.431336 + 0.747096i
\(438\) 0 0
\(439\) −0.770595 1.33471i −0.0367785 0.0637022i 0.847050 0.531513i \(-0.178376\pi\)
−0.883829 + 0.467811i \(0.845043\pi\)
\(440\) 15.1170 0.720677
\(441\) 0 0
\(442\) 12.8797 0.612626
\(443\) −10.1689 17.6131i −0.483141 0.836824i 0.516672 0.856183i \(-0.327171\pi\)
−0.999813 + 0.0193593i \(0.993837\pi\)
\(444\) 0 0
\(445\) 13.5204 23.4180i 0.640928 1.11012i
\(446\) −6.03735 10.4570i −0.285877 0.495153i
\(447\) 0 0
\(448\) −13.2172 + 19.4583i −0.624456 + 0.919319i
\(449\) 26.4527 1.24838 0.624190 0.781272i \(-0.285429\pi\)
0.624190 + 0.781272i \(0.285429\pi\)
\(450\) 0 0
\(451\) −17.3295 + 30.0156i −0.816016 + 1.41338i
\(452\) −1.65943 + 2.87422i −0.0780530 + 0.135192i
\(453\) 0 0
\(454\) −13.7599 −0.645786
\(455\) −19.6216 1.43633i −0.919875 0.0673361i
\(456\) 0 0
\(457\) 3.24681 + 5.62363i 0.151879 + 0.263063i 0.931918 0.362668i \(-0.118134\pi\)
−0.780039 + 0.625731i \(0.784801\pi\)
\(458\) −7.95121 + 13.7719i −0.371536 + 0.643518i
\(459\) 0 0
\(460\) 1.11336 + 1.92839i 0.0519105 + 0.0899116i
\(461\) 15.5916 0.726175 0.363088 0.931755i \(-0.381723\pi\)
0.363088 + 0.931755i \(0.381723\pi\)
\(462\) 0 0
\(463\) 7.65585 0.355797 0.177899 0.984049i \(-0.443070\pi\)
0.177899 + 0.984049i \(0.443070\pi\)
\(464\) −11.3545 19.6666i −0.527120 0.912999i
\(465\) 0 0
\(466\) −9.70486 + 16.8093i −0.449569 + 0.778676i
\(467\) 20.8137 + 36.0503i 0.963142 + 1.66821i 0.714526 + 0.699608i \(0.246642\pi\)
0.248615 + 0.968602i \(0.420024\pi\)
\(468\) 0 0
\(469\) −14.0983 29.1464i −0.650998 1.34585i
\(470\) 3.49635 0.161274
\(471\) 0 0
\(472\) −8.83053 + 15.2949i −0.406458 + 0.704006i
\(473\) −7.81501 + 13.5360i −0.359335 + 0.622386i
\(474\) 0 0
\(475\) 12.5815 0.577280
\(476\) −2.16099 0.158187i −0.0990486 0.00725050i
\(477\) 0 0
\(478\) −6.80560 11.7876i −0.311281 0.539154i
\(479\) −1.15789 + 2.00553i −0.0529055 + 0.0916350i −0.891265 0.453482i \(-0.850182\pi\)
0.838360 + 0.545117i \(0.183515\pi\)
\(480\) 0 0
\(481\) 0.446494 + 0.773350i 0.0203584 + 0.0352617i
\(482\) −19.0532 −0.867851
\(483\) 0 0
\(484\) 0.269022 0.0122283
\(485\) −8.20888 14.2182i −0.372746 0.645615i
\(486\) 0 0
\(487\) −9.06396 + 15.6992i −0.410727 + 0.711401i −0.994969 0.100179i \(-0.968058\pi\)
0.584242 + 0.811579i \(0.301392\pi\)
\(488\) 10.4241 + 18.0551i 0.471876 + 0.817314i
\(489\) 0 0
\(490\) −13.6655 2.01144i −0.617344 0.0908677i
\(491\) −21.5944 −0.974542 −0.487271 0.873251i \(-0.662008\pi\)
−0.487271 + 0.873251i \(0.662008\pi\)
\(492\) 0 0
\(493\) 7.81616 13.5380i 0.352022 0.609720i
\(494\) 14.7867 25.6114i 0.665287 1.15231i
\(495\) 0 0
\(496\) −16.9382 −0.760549
\(497\) −20.5304 + 30.2247i −0.920913 + 1.35576i
\(498\) 0 0
\(499\) −13.5827 23.5259i −0.608045 1.05316i −0.991562 0.129631i \(-0.958621\pi\)
0.383518 0.923534i \(-0.374713\pi\)
\(500\) 2.27821 3.94597i 0.101885 0.176469i
\(501\) 0 0
\(502\) 10.5213 + 18.2235i 0.469590 + 0.813354i
\(503\) −11.8850 −0.529927 −0.264964 0.964258i \(-0.585360\pi\)
−0.264964 + 0.964258i \(0.585360\pi\)
\(504\) 0 0
\(505\) −3.15972 −0.140606
\(506\) 7.55852 + 13.0917i 0.336017 + 0.581999i
\(507\) 0 0
\(508\) 0.377250 0.653415i 0.0167377 0.0289906i
\(509\) −20.7297 35.9049i −0.918829 1.59146i −0.801197 0.598401i \(-0.795803\pi\)
−0.117632 0.993057i \(-0.537530\pi\)
\(510\) 0 0
\(511\) −13.6682 28.2572i −0.604644 1.25002i
\(512\) −25.2864 −1.11751
\(513\) 0 0
\(514\) 14.3387 24.8354i 0.632455 1.09544i
\(515\) 15.5207 26.8826i 0.683923 1.18459i
\(516\) 0 0
\(517\) −5.68773 −0.250146
\(518\) 0.272998 + 0.564387i 0.0119948 + 0.0247978i
\(519\) 0 0
\(520\) −11.2711 19.5221i −0.494271 0.856102i
\(521\) 1.65221 2.86171i 0.0723846 0.125374i −0.827561 0.561375i \(-0.810272\pi\)
0.899946 + 0.436002i \(0.143606\pi\)
\(522\) 0 0
\(523\) 1.24483 + 2.15611i 0.0544327 + 0.0942803i 0.891958 0.452119i \(-0.149332\pi\)
−0.837525 + 0.546399i \(0.815998\pi\)
\(524\) −4.54035 −0.198346
\(525\) 0 0
\(526\) −28.3839 −1.23760
\(527\) −5.82992 10.0977i −0.253955 0.439864i
\(528\) 0 0
\(529\) 4.62693 8.01408i 0.201171 0.348438i
\(530\) −1.64654 2.85189i −0.0715211 0.123878i
\(531\) 0 0
\(532\) −2.79550 + 4.11552i −0.121200 + 0.178430i
\(533\) 51.6829 2.23863
\(534\) 0 0
\(535\) −13.1321 + 22.7454i −0.567748 + 0.983369i
\(536\) 18.5485 32.1269i 0.801173 1.38767i
\(537\) 0 0
\(538\) −35.4321 −1.52758
\(539\) 22.2305 + 3.27214i 0.957536 + 0.140941i
\(540\) 0 0
\(541\) 11.2397 + 19.4677i 0.483233 + 0.836984i 0.999815 0.0192542i \(-0.00612919\pi\)
−0.516582 + 0.856238i \(0.672796\pi\)
\(542\) −6.27114 + 10.8619i −0.269369 + 0.466560i
\(543\) 0 0
\(544\) −2.28156 3.95178i −0.0978212 0.169431i
\(545\) 16.6210 0.711966
\(546\) 0 0
\(547\) −14.5545 −0.622307 −0.311154 0.950360i \(-0.600715\pi\)
−0.311154 + 0.950360i \(0.600715\pi\)
\(548\) 3.11834 + 5.40112i 0.133209 + 0.230725i
\(549\) 0 0
\(550\) 5.27331 9.13365i 0.224855 0.389460i
\(551\) −17.9469 31.0849i −0.764564 1.32426i
\(552\) 0 0
\(553\) −3.45474 0.252892i −0.146911 0.0107541i
\(554\) −11.0692 −0.470286
\(555\) 0 0
\(556\) 2.59845 4.50065i 0.110199 0.190870i
\(557\) 7.77331 13.4638i 0.329366 0.570478i −0.653021 0.757340i \(-0.726498\pi\)
0.982386 + 0.186862i \(0.0598318\pi\)
\(558\) 0 0
\(559\) 23.3071 0.985787
\(560\) −5.50762 11.3863i −0.232739 0.481158i
\(561\) 0 0
\(562\) −3.94168 6.82719i −0.166270 0.287988i
\(563\) −7.36914 + 12.7637i −0.310572 + 0.537927i −0.978486 0.206312i \(-0.933854\pi\)
0.667914 + 0.744238i \(0.267187\pi\)
\(564\) 0 0
\(565\) −6.66816 11.5496i −0.280532 0.485895i
\(566\) 24.9706 1.04959
\(567\) 0 0
\(568\) −41.8646 −1.75660
\(569\) 6.48539 + 11.2330i 0.271882 + 0.470913i 0.969344 0.245709i \(-0.0790207\pi\)
−0.697462 + 0.716622i \(0.745687\pi\)
\(570\) 0 0
\(571\) −6.42929 + 11.1359i −0.269058 + 0.466021i −0.968619 0.248551i \(-0.920046\pi\)
0.699561 + 0.714573i \(0.253379\pi\)
\(572\) 2.97012 + 5.14440i 0.124187 + 0.215098i
\(573\) 0 0
\(574\) 36.1885 + 2.64905i 1.51048 + 0.110569i
\(575\) 9.59019 0.399939
\(576\) 0 0
\(577\) 5.26279 9.11542i 0.219093 0.379480i −0.735438 0.677592i \(-0.763024\pi\)
0.954531 + 0.298112i \(0.0963569\pi\)
\(578\) 7.94669 13.7641i 0.330539 0.572510i
\(579\) 0 0
\(580\) −4.43197 −0.184028
\(581\) −0.515097 + 0.758321i −0.0213698 + 0.0314605i
\(582\) 0 0
\(583\) 2.67853 + 4.63935i 0.110933 + 0.192142i
\(584\) 17.9826 31.1468i 0.744126 1.28886i
\(585\) 0 0
\(586\) −9.20690 15.9468i −0.380334 0.658757i
\(587\) 6.20018 0.255909 0.127954 0.991780i \(-0.459159\pi\)
0.127954 + 0.991780i \(0.459159\pi\)
\(588\) 0 0
\(589\) −26.7725 −1.10314
\(590\) −5.74801 9.95585i −0.236642 0.409876i
\(591\) 0 0
\(592\) −0.287048 + 0.497182i −0.0117976 + 0.0204341i
\(593\) 18.7629 + 32.4984i 0.770502 + 1.33455i 0.937288 + 0.348555i \(0.113327\pi\)
−0.166787 + 0.985993i \(0.553339\pi\)
\(594\) 0 0
\(595\) 4.89229 7.20239i 0.200564 0.295269i
\(596\) −1.24166 −0.0508605
\(597\) 0 0
\(598\) 11.2711 19.5221i 0.460910 0.798319i
\(599\) −17.5460 + 30.3905i −0.716909 + 1.24172i 0.245309 + 0.969445i \(0.421111\pi\)
−0.962218 + 0.272279i \(0.912223\pi\)
\(600\) 0 0
\(601\) 26.2342 1.07012 0.535058 0.844815i \(-0.320290\pi\)
0.535058 + 0.844815i \(0.320290\pi\)
\(602\) 16.3197 + 1.19463i 0.665143 + 0.0486894i
\(603\) 0 0
\(604\) 3.29233 + 5.70249i 0.133963 + 0.232031i
\(605\) −0.540512 + 0.936194i −0.0219749 + 0.0380617i
\(606\) 0 0
\(607\) 1.10933 + 1.92142i 0.0450263 + 0.0779879i 0.887660 0.460499i \(-0.152329\pi\)
−0.842634 + 0.538487i \(0.818996\pi\)
\(608\) −10.4775 −0.424919
\(609\) 0 0
\(610\) −13.5706 −0.549457
\(611\) 4.24071 + 7.34512i 0.171561 + 0.297152i
\(612\) 0 0
\(613\) −7.43312 + 12.8745i −0.300221 + 0.519998i −0.976186 0.216936i \(-0.930394\pi\)
0.675965 + 0.736934i \(0.263727\pi\)
\(614\) −14.1485 24.5059i −0.570986 0.988976i
\(615\) 0 0
\(616\) 11.2107 + 23.1768i 0.451694 + 0.933819i
\(617\) 23.2046 0.934181 0.467091 0.884210i \(-0.345302\pi\)
0.467091 + 0.884210i \(0.345302\pi\)
\(618\) 0 0
\(619\) 4.15562 7.19775i 0.167029 0.289302i −0.770345 0.637627i \(-0.779916\pi\)
0.937374 + 0.348325i \(0.113249\pi\)
\(620\) −1.65286 + 2.86284i −0.0663805 + 0.114974i
\(621\) 0 0
\(622\) −22.1021 −0.886214
\(623\) 45.9301 + 3.36215i 1.84015 + 0.134701i
\(624\) 0 0
\(625\) 2.68802 + 4.65578i 0.107521 + 0.186231i
\(626\) 0.127048 0.220054i 0.00507786 0.00879511i
\(627\) 0 0
\(628\) 1.82363 + 3.15862i 0.0727708 + 0.126043i
\(629\) −0.395194 −0.0157574
\(630\) 0 0
\(631\) −24.5415 −0.976982 −0.488491 0.872569i \(-0.662452\pi\)
−0.488491 + 0.872569i \(0.662452\pi\)
\(632\) −1.98448 3.43723i −0.0789386 0.136726i
\(633\) 0 0
\(634\) 5.22947 9.05771i 0.207689 0.359728i
\(635\) 1.51592 + 2.62565i 0.0601574 + 0.104196i
\(636\) 0 0
\(637\) −12.3492 31.1481i −0.489293 1.23413i
\(638\) −30.0885 −1.19121
\(639\) 0 0
\(640\) 5.42549 9.39723i 0.214461 0.371458i
\(641\) −3.98762 + 6.90677i −0.157502 + 0.272801i −0.933967 0.357359i \(-0.883677\pi\)
0.776465 + 0.630160i \(0.217011\pi\)
\(642\) 0 0
\(643\) −3.12279 −0.123151 −0.0615755 0.998102i \(-0.519612\pi\)
−0.0615755 + 0.998102i \(0.519612\pi\)
\(644\) −2.13086 + 3.13703i −0.0839675 + 0.123616i
\(645\) 0 0
\(646\) 6.54391 + 11.3344i 0.257467 + 0.445945i
\(647\) 6.13273 10.6222i 0.241102 0.417602i −0.719926 0.694051i \(-0.755824\pi\)
0.961029 + 0.276449i \(0.0891577\pi\)
\(648\) 0 0
\(649\) 9.35065 + 16.1958i 0.367045 + 0.635741i
\(650\) −15.7269 −0.616860
\(651\) 0 0
\(652\) −1.42171 −0.0556786
\(653\) −8.25476 14.2977i −0.323034 0.559511i 0.658079 0.752949i \(-0.271369\pi\)
−0.981112 + 0.193438i \(0.938036\pi\)
\(654\) 0 0
\(655\) 9.12235 15.8004i 0.356440 0.617372i
\(656\) 16.6133 + 28.7751i 0.648641 + 1.12348i
\(657\) 0 0
\(658\) 2.59288 + 5.36044i 0.101081 + 0.208972i
\(659\) 10.7388 0.418324 0.209162 0.977881i \(-0.432926\pi\)
0.209162 + 0.977881i \(0.432926\pi\)
\(660\) 0 0
\(661\) 6.68817 11.5843i 0.260140 0.450575i −0.706139 0.708073i \(-0.749565\pi\)
0.966279 + 0.257498i \(0.0828980\pi\)
\(662\) 10.5632 18.2959i 0.410549 0.711092i
\(663\) 0 0
\(664\) −1.05036 −0.0407619
\(665\) −8.70532 17.9971i −0.337578 0.697898i
\(666\) 0 0
\(667\) −13.6799 23.6943i −0.529689 0.917448i
\(668\) −0.311247 + 0.539095i −0.0120425 + 0.0208582i
\(669\) 0 0
\(670\) 12.0737 + 20.9122i 0.466447 + 0.807909i
\(671\) 22.0761 0.852240
\(672\) 0 0
\(673\) 40.8986 1.57653 0.788264 0.615338i \(-0.210980\pi\)
0.788264 + 0.615338i \(0.210980\pi\)
\(674\) −10.1041 17.5008i −0.389195 0.674105i
\(675\) 0 0
\(676\) 1.91607 3.31874i 0.0736951 0.127644i
\(677\) 10.6250 + 18.4031i 0.408353 + 0.707288i 0.994705 0.102768i \(-0.0327700\pi\)
−0.586353 + 0.810056i \(0.699437\pi\)
\(678\) 0 0
\(679\) 15.7110 23.1296i 0.602933 0.887634i
\(680\) 9.97612 0.382567
\(681\) 0 0
\(682\) −11.2212 + 19.4357i −0.429682 + 0.744231i
\(683\) −20.6708 + 35.8029i −0.790948 + 1.36996i 0.134433 + 0.990923i \(0.457079\pi\)
−0.925381 + 0.379039i \(0.876255\pi\)
\(684\) 0 0
\(685\) −25.0612 −0.957537
\(686\) −7.05042 22.4430i −0.269186 0.856877i
\(687\) 0 0
\(688\) 7.49202 + 12.9766i 0.285631 + 0.494727i
\(689\) 3.99417 6.91810i 0.152166 0.263559i
\(690\) 0 0
\(691\) 0.760183 + 1.31668i 0.0289187 + 0.0500887i 0.880123 0.474747i \(-0.157460\pi\)
−0.851204 + 0.524835i \(0.824127\pi\)
\(692\) 6.25685 0.237850
\(693\) 0 0
\(694\) −7.98858 −0.303242
\(695\) 10.4415 + 18.0852i 0.396068 + 0.686009i
\(696\) 0 0
\(697\) −11.4362 + 19.8081i −0.433177 + 0.750284i
\(698\) −1.02858 1.78154i −0.0389321 0.0674325i
\(699\) 0 0
\(700\) 2.63869 + 0.193156i 0.0997331 + 0.00730060i
\(701\) −32.5344 −1.22881 −0.614404 0.788991i \(-0.710604\pi\)
−0.614404 + 0.788991i \(0.710604\pi\)
\(702\) 0 0
\(703\) −0.453708 + 0.785845i −0.0171119 + 0.0296387i
\(704\) −14.2697 + 24.7159i −0.537811 + 0.931515i
\(705\) 0 0
\(706\) −41.2963 −1.55421
\(707\) −2.34323 4.84433i −0.0881264 0.182190i
\(708\) 0 0
\(709\) −11.2810 19.5394i −0.423669 0.733816i 0.572626 0.819816i \(-0.305925\pi\)
−0.996295 + 0.0860007i \(0.972591\pi\)
\(710\) 13.6253 23.5998i 0.511350 0.885684i
\(711\) 0 0
\(712\) 26.3833 + 45.6972i 0.988756 + 1.71258i
\(713\) −20.4072 −0.764255
\(714\) 0 0
\(715\) −23.8700 −0.892686
\(716\) −3.36466 5.82777i −0.125743 0.217794i
\(717\) 0 0
\(718\) 7.10787 12.3112i 0.265263 0.459450i
\(719\) 3.25084 + 5.63062i 0.121236 + 0.209987i 0.920255 0.391319i \(-0.127981\pi\)
−0.799019 + 0.601305i \(0.794648\pi\)
\(720\) 0 0
\(721\) 52.7253 + 3.85956i 1.96359 + 0.143738i
\(722\) 5.91755 0.220228
\(723\) 0 0
\(724\) 1.71958 2.97841i 0.0639078 0.110692i
\(725\) −9.54400 + 16.5307i −0.354455 + 0.613934i
\(726\) 0 0
\(727\) −7.83215 −0.290478 −0.145239 0.989397i \(-0.546395\pi\)
−0.145239 + 0.989397i \(0.546395\pi\)
\(728\) 21.5718 31.7579i 0.799505 1.17703i
\(729\) 0 0
\(730\) 11.7053 + 20.2742i 0.433234 + 0.750383i
\(731\) −5.15732 + 8.93274i −0.190750 + 0.330389i
\(732\) 0 0
\(733\) 3.74780 + 6.49138i 0.138428 + 0.239764i 0.926902 0.375304i \(-0.122462\pi\)
−0.788474 + 0.615068i \(0.789128\pi\)
\(734\) −6.58823 −0.243176
\(735\) 0 0
\(736\) −7.98643 −0.294384
\(737\) −19.6410 34.0192i −0.723486 1.25311i
\(738\) 0 0
\(739\) −12.0480 + 20.8678i −0.443194 + 0.767634i −0.997924 0.0643961i \(-0.979488\pi\)
0.554731 + 0.832030i \(0.312821\pi\)
\(740\) 0.0560213 + 0.0970318i 0.00205939 + 0.00356696i
\(741\) 0 0
\(742\) 3.15132 4.63935i 0.115689 0.170316i
\(743\) 19.2882 0.707616 0.353808 0.935318i \(-0.384887\pi\)
0.353808 + 0.935318i \(0.384887\pi\)
\(744\) 0 0
\(745\) 2.49472 4.32098i 0.0913994 0.158308i
\(746\) −20.8721 + 36.1515i −0.764181 + 1.32360i
\(747\) 0 0
\(748\) −2.62887 −0.0961210
\(749\) −44.6109 3.26558i −1.63005 0.119322i
\(750\) 0 0
\(751\) 16.6045 + 28.7598i 0.605906 + 1.04946i 0.991908 + 0.126961i \(0.0405225\pi\)
−0.386002 + 0.922498i \(0.626144\pi\)
\(752\) −2.72633 + 4.72214i −0.0994190 + 0.172199i
\(753\) 0 0
\(754\) 22.4336 + 38.8562i 0.816985 + 1.41506i
\(755\) −26.4595 −0.962959
\(756\) 0 0
\(757\) 9.70935 0.352892 0.176446 0.984310i \(-0.443540\pi\)
0.176446 + 0.984310i \(0.443540\pi\)
\(758\) −8.85088 15.3302i −0.321478 0.556817i
\(759\) 0 0
\(760\) 11.4532 19.8375i 0.415452 0.719583i
\(761\) −1.36305 2.36086i −0.0494104 0.0855813i 0.840262 0.542180i \(-0.182401\pi\)
−0.889673 + 0.456599i \(0.849068\pi\)
\(762\) 0 0
\(763\) 12.3261 + 25.4826i 0.446234 + 0.922532i
\(764\) −5.71868 −0.206894
\(765\) 0 0
\(766\) −1.08932 + 1.88676i −0.0393588 + 0.0681714i
\(767\) 13.9435 24.1508i 0.503470 0.872036i
\(768\) 0 0
\(769\) 50.0460 1.80470 0.902352 0.430999i \(-0.141839\pi\)
0.902352 + 0.430999i \(0.141839\pi\)
\(770\) −16.7138 1.22347i −0.602324 0.0440910i
\(771\) 0 0
\(772\) 0.352112 + 0.609877i 0.0126728 + 0.0219499i
\(773\) −9.52030 + 16.4896i −0.342421 + 0.593091i −0.984882 0.173228i \(-0.944580\pi\)
0.642461 + 0.766319i \(0.277914\pi\)
\(774\) 0 0
\(775\) 7.11868 + 12.3299i 0.255711 + 0.442904i
\(776\) 32.0372 1.15007
\(777\) 0 0
\(778\) 3.99928 0.143381
\(779\) 26.2589 + 45.4818i 0.940824 + 1.62956i
\(780\) 0 0
\(781\) −22.1652 + 38.3912i −0.793133 + 1.37375i
\(782\) 4.98806 + 8.63957i 0.178373 + 0.308950i
\(783\) 0 0
\(784\) 13.3725 16.8881i 0.477590 0.603145i
\(785\) −14.6560 −0.523094
\(786\) 0 0
\(787\) 16.6011 28.7540i 0.591766 1.02497i −0.402228 0.915539i \(-0.631764\pi\)
0.993995 0.109430i \(-0.0349025\pi\)
\(788\) 1.49222 2.58460i 0.0531582 0.0920727i
\(789\) 0 0
\(790\) 2.58350 0.0919168
\(791\) 12.7622 18.7885i 0.453773 0.668041i
\(792\) 0 0
\(793\) −16.4597 28.5091i −0.584502 1.01239i
\(794\) −17.4236 + 30.1785i −0.618340 + 1.07100i
\(795\) 0 0
\(796\) 0.427834 + 0.741030i 0.0151642 + 0.0262651i
\(797\) 2.08944 0.0740118 0.0370059 0.999315i \(-0.488218\pi\)
0.0370059 + 0.999315i \(0.488218\pi\)
\(798\) 0 0
\(799\) −3.75347 −0.132788
\(800\) 2.78592 + 4.82536i 0.0984972 + 0.170602i
\(801\) 0 0
\(802\) 18.4414 31.9414i 0.651187 1.12789i
\(803\) −19.0418 32.9814i −0.671970 1.16389i
\(804\) 0 0
\(805\) −6.63558 13.7182i −0.233873 0.483503i
\(806\) 33.4656 1.17878
\(807\) 0 0
\(808\) 3.08289 5.33973i 0.108456 0.187851i
\(809\) −0.241404 + 0.418125i −0.00848732 + 0.0147005i −0.870238 0.492632i \(-0.836035\pi\)
0.861751 + 0.507332i \(0.169368\pi\)
\(810\) 0 0
\(811\) 17.1671 0.602820 0.301410 0.953495i \(-0.402543\pi\)
0.301410 + 0.953495i \(0.402543\pi\)
\(812\) −3.28673 6.79490i −0.115342 0.238454i
\(813\) 0 0
\(814\) 0.380327 + 0.658745i 0.0133304 + 0.0230890i
\(815\) 2.85647 4.94755i 0.100058 0.173305i
\(816\) 0 0
\(817\) 11.8419 + 20.5107i 0.414294 + 0.717578i
\(818\) −35.2226 −1.23153
\(819\) 0 0
\(820\) 6.48462 0.226453
\(821\) 6.41086 + 11.1039i 0.223741 + 0.387530i 0.955941 0.293559i \(-0.0948398\pi\)
−0.732200 + 0.681089i \(0.761507\pi\)
\(822\) 0 0
\(823\) −12.2973 + 21.2995i −0.428655 + 0.742453i −0.996754 0.0805075i \(-0.974346\pi\)
0.568099 + 0.822961i \(0.307679\pi\)
\(824\) 30.2866 + 52.4580i 1.05509 + 1.82746i
\(825\) 0 0
\(826\) 11.0011 16.1958i 0.382779 0.563524i
\(827\) 0.527165 0.0183313 0.00916567 0.999958i \(-0.497082\pi\)
0.00916567 + 0.999958i \(0.497082\pi\)
\(828\) 0 0
\(829\) 23.1015 40.0130i 0.802348 1.38971i −0.115718 0.993282i \(-0.536917\pi\)
0.918067 0.396426i \(-0.129750\pi\)
\(830\) 0.341853 0.592106i 0.0118659 0.0205523i
\(831\) 0 0
\(832\) 42.5574 1.47541
\(833\) 14.6705 + 2.15937i 0.508302 + 0.0748177i
\(834\) 0 0
\(835\) −1.25070 2.16627i −0.0432822 0.0749669i
\(836\) −3.01811 + 5.22752i −0.104383 + 0.180797i
\(837\) 0 0
\(838\) 19.2815 + 33.3965i 0.666067 + 1.15366i
\(839\) −10.8258 −0.373747 −0.186874 0.982384i \(-0.559835\pi\)
−0.186874 + 0.982384i \(0.559835\pi\)
\(840\) 0 0
\(841\) 25.4561 0.877797
\(842\) 17.6389 + 30.5515i 0.607877 + 1.05287i
\(843\) 0 0
\(844\) −0.350540 + 0.607152i −0.0120661 + 0.0208990i
\(845\) 7.69945 + 13.3358i 0.264869 + 0.458767i
\(846\) 0 0
\(847\) −1.83617 0.134410i −0.0630916 0.00461839i
\(848\) 5.13566 0.176359
\(849\) 0 0
\(850\) 3.47999 6.02752i 0.119363 0.206742i
\(851\) −0.345836 + 0.599006i −0.0118551 + 0.0205337i
\(852\) 0 0
\(853\) −43.1922 −1.47887 −0.739437 0.673226i \(-0.764908\pi\)
−0.739437 + 0.673226i \(0.764908\pi\)
\(854\) −10.0639 20.8058i −0.344380 0.711961i
\(855\) 0 0
\(856\) −25.6255 44.3847i −0.875863 1.51704i
\(857\) −0.787226 + 1.36352i −0.0268911 + 0.0465768i −0.879158 0.476531i \(-0.841894\pi\)
0.852267 + 0.523108i \(0.175227\pi\)
\(858\) 0 0
\(859\) −3.41090 5.90786i −0.116378 0.201573i 0.801951 0.597389i \(-0.203795\pi\)
−0.918330 + 0.395816i \(0.870462\pi\)
\(860\) 2.92434 0.0997190
\(861\) 0 0
\(862\) 9.22073 0.314059
\(863\) −4.51387 7.81825i −0.153654 0.266136i 0.778914 0.627131i \(-0.215771\pi\)
−0.932568 + 0.360994i \(0.882437\pi\)
\(864\) 0 0
\(865\) −12.5711 + 21.7738i −0.427430 + 0.740331i
\(866\) −9.55032 16.5416i −0.324533 0.562108i
\(867\) 0 0
\(868\) −5.61493 0.411021i −0.190583 0.0139509i
\(869\) −4.20274 −0.142568
\(870\) 0 0
\(871\) −29.2882 + 50.7287i −0.992394 + 1.71888i
\(872\) −16.2169 + 28.0885i −0.549174 + 0.951196i
\(873\) 0 0
\(874\) 22.9064 0.774821
\(875\) −17.5211 + 25.7944i −0.592321 + 0.872011i
\(876\) 0 0
\(877\) −4.83460 8.37377i −0.163253 0.282762i 0.772781 0.634673i \(-0.218865\pi\)
−0.936033 + 0.351911i \(0.885532\pi\)
\(878\) −0.978807 + 1.69534i −0.0330331 + 0.0572151i
\(879\) 0 0
\(880\) −7.67293 13.2899i −0.258655 0.448003i
\(881\) −21.4721 −0.723415 −0.361707 0.932292i \(-0.617806\pi\)
−0.361707 + 0.932292i \(0.617806\pi\)
\(882\) 0 0
\(883\) −26.5380 −0.893076 −0.446538 0.894765i \(-0.647343\pi\)
−0.446538 + 0.894765i \(0.647343\pi\)
\(884\) 1.96006 + 3.39492i 0.0659238 + 0.114183i
\(885\) 0 0
\(886\) −12.9165 + 22.3721i −0.433940 + 0.751606i
\(887\) −20.7612 35.9594i −0.697091 1.20740i −0.969471 0.245208i \(-0.921144\pi\)
0.272379 0.962190i \(-0.412190\pi\)
\(888\) 0 0
\(889\) −2.90133 + 4.27131i −0.0973074 + 0.143255i
\(890\) −34.3471 −1.15132
\(891\) 0 0
\(892\) 1.83755 3.18272i 0.0615256 0.106565i
\(893\) −4.30922 + 7.46380i −0.144203 + 0.249766i
\(894\) 0 0
\(895\) 27.0408 0.903873
\(896\) 18.4309 + 1.34917i 0.615734 + 0.0450726i
\(897\) 0 0
\(898\) −16.8001 29.0986i −0.560626 0.971032i
\(899\) 20.3089 35.1760i 0.677339 1.17319i
\(900\) 0 0
\(901\) 1.76763 + 3.06162i 0.0588883 + 0.101997i
\(902\) 44.0238 1.46583
\(903\) 0 0
\(904\) 26.0241 0.865550
\(905\) 6.90989 + 11.9683i 0.229692 + 0.397839i
\(906\) 0 0
\(907\) 2.32180 4.02148i 0.0770942 0.133531i −0.824901 0.565277i \(-0.808769\pi\)
0.901995 + 0.431746i \(0.142102\pi\)
\(908\) −2.09401 3.62693i −0.0694921 0.120364i
\(909\) 0 0
\(910\) 10.8817 + 22.4964i 0.360723 + 0.745749i
\(911\) −1.34811 −0.0446648 −0.0223324 0.999751i \(-0.507109\pi\)
−0.0223324 + 0.999751i \(0.507109\pi\)
\(912\) 0 0
\(913\) −0.556114 + 0.963217i −0.0184047 + 0.0318778i
\(914\) 4.12408 7.14312i 0.136413 0.236273i
\(915\) 0 0
\(916\) −4.84011 −0.159922
\(917\) 30.9895 + 2.26848i 1.02336 + 0.0749116i
\(918\) 0 0
\(919\) 20.2472 + 35.0692i 0.667893 + 1.15682i 0.978492 + 0.206284i \(0.0661370\pi\)
−0.310599 + 0.950541i \(0.600530\pi\)
\(920\) 8.73015 15.1211i 0.287824 0.498527i
\(921\) 0 0
\(922\) −9.90223 17.1512i −0.326112 0.564843i
\(923\) 66.1045 2.17586
\(924\) 0 0
\(925\) 0.482555 0.0158663
\(926\) −4.86221 8.42160i −0.159782 0.276751i
\(927\) 0 0
\(928\) 7.94795 13.7663i 0.260904 0.451900i
\(929\) −11.1569 19.3243i −0.366046 0.634011i 0.622897 0.782304i \(-0.285956\pi\)
−0.988944 + 0.148293i \(0.952622\pi\)
\(930\) 0 0
\(931\) 21.1365 26.6932i 0.692722 0.874834i
\(932\) −5.90760 −0.193510
\(933\) 0 0
\(934\) 26.4375 45.7910i 0.865060 1.49833i
\(935\) 5.28186 9.14844i 0.172735 0.299186i
\(936\) 0 0
\(937\) −1.13943 −0.0372235 −0.0186117 0.999827i \(-0.505925\pi\)
−0.0186117 + 0.999827i \(0.505925\pi\)
\(938\) −23.1079 + 34.0192i −0.754498 + 1.11077i
\(939\) 0 0
\(940\) 0.532080 + 0.921589i 0.0173545 + 0.0300589i
\(941\) −23.5938 + 40.8656i −0.769134 + 1.33218i 0.168898 + 0.985633i \(0.445979\pi\)
−0.938033 + 0.346546i \(0.887354\pi\)
\(942\) 0 0
\(943\) 20.0157 + 34.6683i 0.651802 + 1.12895i
\(944\) 17.9284 0.583519
\(945\) 0 0
\(946\) 19.8532 0.645483
\(947\) −12.3230 21.3441i −0.400444 0.693590i 0.593335 0.804955i \(-0.297811\pi\)
−0.993779 + 0.111366i \(0.964477\pi\)
\(948\) 0 0
\(949\) −28.3947 + 49.1811i −0.921731 + 1.59649i
\(950\) −7.99050 13.8400i −0.259246 0.449027i
\(951\) 0 0
\(952\) 7.39825 + 15.2949i 0.239779 + 0.495711i
\(953\) −56.2821 −1.82316 −0.911579 0.411125i \(-0.865136\pi\)
−0.911579 + 0.411125i \(0.865136\pi\)
\(954\) 0 0
\(955\) 11.4898 19.9009i 0.371802 0.643979i
\(956\) 2.07137 3.58772i 0.0669930 0.116035i
\(957\) 0 0
\(958\) 2.94150 0.0950356
\(959\) −18.5853 38.4226i −0.600149 1.24073i
\(960\) 0 0
\(961\) 0.352001 + 0.609683i 0.0113549 + 0.0196672i
\(962\) 0.567135 0.982306i 0.0182852 0.0316708i
\(963\) 0 0
\(964\) −2.89955 5.02217i −0.0933883 0.161753i
\(965\) −2.82982 −0.0910951
\(966\) 0 0
\(967\) −58.5977 −1.88438 −0.942188 0.335084i \(-0.891235\pi\)
−0.942188 + 0.335084i \(0.891235\pi\)
\(968\) −1.05474 1.82686i −0.0339006 0.0587176i
\(969\) 0 0
\(970\) −10.4269 + 18.0599i −0.334787 + 0.579868i
\(971\) 3.04991 + 5.28260i 0.0978763 + 0.169527i 0.910805 0.412836i \(-0.135462\pi\)
−0.812929 + 0.582363i \(0.802128\pi\)
\(972\) 0 0
\(973\) −19.9840 + 29.4203i −0.640657 + 0.943171i
\(974\) 23.0260 0.737801
\(975\) 0 0
\(976\) 10.5819 18.3283i 0.338718 0.586676i
\(977\) 2.57988 4.46849i 0.0825377 0.142960i −0.821802 0.569774i \(-0.807031\pi\)
0.904339 + 0.426814i \(0.140364\pi\)
\(978\) 0 0
\(979\) 55.8746 1.78576
\(980\) −1.54945 3.90814i −0.0494953 0.124841i
\(981\) 0 0
\(982\) 13.7146 + 23.7543i 0.437649 + 0.758031i
\(983\) −31.0536 + 53.7864i −0.990455 + 1.71552i −0.375857 + 0.926678i \(0.622652\pi\)
−0.614598 + 0.788841i \(0.710682\pi\)
\(984\) 0 0
\(985\) 5.99626 + 10.3858i 0.191057 + 0.330920i
\(986\) −19.8561 −0.632348
\(987\) 0 0
\(988\) 9.00108 0.286362
\(989\) 9.02639 + 15.6342i 0.287022 + 0.497138i
\(990\) 0 0
\(991\) 10.8163 18.7343i 0.343590 0.595116i −0.641506 0.767118i \(-0.721690\pi\)
0.985097 + 0.172002i \(0.0550235\pi\)
\(992\) −5.92823 10.2680i −0.188221 0.326009i
\(993\) 0 0
\(994\) 46.2866 + 3.38824i 1.46812 + 0.107469i
\(995\) −3.43837 −0.109004
\(996\) 0 0
\(997\) 20.3681 35.2786i 0.645064 1.11728i −0.339223 0.940706i \(-0.610164\pi\)
0.984287 0.176578i \(-0.0565027\pi\)
\(998\) −17.2527 + 29.8825i −0.546124 + 0.945915i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.e.g.487.3 yes 16
3.2 odd 2 inner 567.2.e.g.487.6 yes 16
7.2 even 3 inner 567.2.e.g.163.3 16
7.3 odd 6 3969.2.a.bf.1.6 8
7.4 even 3 3969.2.a.bg.1.6 8
9.2 odd 6 567.2.g.l.109.6 16
9.4 even 3 567.2.h.l.298.6 16
9.5 odd 6 567.2.h.l.298.3 16
9.7 even 3 567.2.g.l.109.3 16
21.2 odd 6 inner 567.2.e.g.163.6 yes 16
21.11 odd 6 3969.2.a.bg.1.3 8
21.17 even 6 3969.2.a.bf.1.3 8
63.2 odd 6 567.2.h.l.352.3 16
63.16 even 3 567.2.h.l.352.6 16
63.23 odd 6 567.2.g.l.541.6 16
63.58 even 3 567.2.g.l.541.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.3 16 7.2 even 3 inner
567.2.e.g.163.6 yes 16 21.2 odd 6 inner
567.2.e.g.487.3 yes 16 1.1 even 1 trivial
567.2.e.g.487.6 yes 16 3.2 odd 2 inner
567.2.g.l.109.3 16 9.7 even 3
567.2.g.l.109.6 16 9.2 odd 6
567.2.g.l.541.3 16 63.58 even 3
567.2.g.l.541.6 16 63.23 odd 6
567.2.h.l.298.3 16 9.5 odd 6
567.2.h.l.298.6 16 9.4 even 3
567.2.h.l.352.3 16 63.2 odd 6
567.2.h.l.352.6 16 63.16 even 3
3969.2.a.bf.1.3 8 21.17 even 6
3969.2.a.bf.1.6 8 7.3 odd 6
3969.2.a.bg.1.3 8 21.11 odd 6
3969.2.a.bg.1.6 8 7.4 even 3