Properties

Label 567.2.e.g.487.1
Level $567$
Weight $2$
Character 567.487
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(163,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 487.1
Root \(-1.14160 - 0.834713i\) of defining polynomial
Character \(\chi\) \(=\) 567.487
Dual form 567.2.e.g.163.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.29368 - 2.24073i) q^{2} +(-2.34723 + 4.06553i) q^{4} +(-1.14160 - 1.97731i) q^{5} +(2.45374 - 0.989520i) q^{7} +6.97158 q^{8} +(-2.95374 + 5.11603i) q^{10} +(1.47816 - 2.56025i) q^{11} +4.26843 q^{13} +(-5.39161 - 4.21804i) q^{14} +(-4.32455 - 7.49033i) q^{16} +(0.764218 - 1.32366i) q^{17} +(-3.69033 - 6.39184i) q^{19} +10.7184 q^{20} -7.64909 q^{22} +(3.07601 + 5.32780i) q^{23} +(-0.106508 + 0.184478i) q^{25} +(-5.52200 - 9.56439i) q^{26} +(-1.73659 + 12.2984i) q^{28} -2.34038 q^{29} +(-3.11065 + 5.38780i) q^{31} +(-4.21761 + 7.30512i) q^{32} -3.95462 q^{34} +(-4.75779 - 3.72218i) q^{35} +(-3.58796 - 6.21453i) q^{37} +(-9.54823 + 16.5380i) q^{38} +(-7.95876 - 13.7850i) q^{40} -7.89168 q^{41} +0.834123 q^{43} +(6.93918 + 12.0190i) q^{44} +(7.95876 - 13.7850i) q^{46} +(-2.91322 - 5.04584i) q^{47} +(5.04170 - 4.85605i) q^{49} +0.551152 q^{50} +(-10.0190 + 17.3534i) q^{52} +(-3.71826 + 6.44021i) q^{53} -6.74989 q^{55} +(17.1065 - 6.89851i) q^{56} +(3.02771 + 5.24415i) q^{58} +(2.31179 - 4.00414i) q^{59} +(3.56527 + 6.17523i) q^{61} +16.0968 q^{62} +4.52683 q^{64} +(-4.87285 - 8.44003i) q^{65} +(1.66262 - 2.87974i) q^{67} +(3.58760 + 6.21390i) q^{68} +(-2.18531 + 15.4762i) q^{70} +0.160242 q^{71} +(0.190329 - 0.329659i) q^{73} +(-9.28337 + 16.0793i) q^{74} +34.6483 q^{76} +(1.09361 - 7.74486i) q^{77} +(3.97731 + 6.88891i) q^{79} +(-9.87382 + 17.1020i) q^{80} +(10.2093 + 17.6831i) q^{82} +4.29800 q^{83} -3.48973 q^{85} +(-1.07909 - 1.86904i) q^{86} +(10.3051 - 17.8490i) q^{88} +(3.02828 + 5.24514i) q^{89} +(10.4736 - 4.22370i) q^{91} -28.8804 q^{92} +(-7.53756 + 13.0554i) q^{94} +(-8.42577 + 14.5939i) q^{95} -1.32209 q^{97} +(-17.4034 - 5.01487i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} + 6 q^{7} - 14 q^{10} + 12 q^{13} - 6 q^{16} - 24 q^{19} + 4 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} - 36 q^{40} + 20 q^{43} + 36 q^{46} - 14 q^{49} - 34 q^{52} + 8 q^{55} + 22 q^{58} - 36 q^{61}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.29368 2.24073i −0.914772 1.58443i −0.807234 0.590231i \(-0.799037\pi\)
−0.107538 0.994201i \(-0.534297\pi\)
\(3\) 0 0
\(4\) −2.34723 + 4.06553i −1.17362 + 2.03276i
\(5\) −1.14160 1.97731i −0.510540 0.884281i −0.999925 0.0122133i \(-0.996112\pi\)
0.489386 0.872067i \(-0.337221\pi\)
\(6\) 0 0
\(7\) 2.45374 0.989520i 0.927427 0.374003i
\(8\) 6.97158 2.46482
\(9\) 0 0
\(10\) −2.95374 + 5.11603i −0.934055 + 1.61783i
\(11\) 1.47816 2.56025i 0.445682 0.771945i −0.552417 0.833568i \(-0.686294\pi\)
0.998099 + 0.0616233i \(0.0196277\pi\)
\(12\) 0 0
\(13\) 4.26843 1.18385 0.591925 0.805993i \(-0.298368\pi\)
0.591925 + 0.805993i \(0.298368\pi\)
\(14\) −5.39161 4.21804i −1.44097 1.12732i
\(15\) 0 0
\(16\) −4.32455 7.49033i −1.08114 1.87258i
\(17\) 0.764218 1.32366i 0.185350 0.321036i −0.758344 0.651854i \(-0.773991\pi\)
0.943694 + 0.330818i \(0.107325\pi\)
\(18\) 0 0
\(19\) −3.69033 6.39184i −0.846619 1.46639i −0.884207 0.467095i \(-0.845301\pi\)
0.0375879 0.999293i \(-0.488033\pi\)
\(20\) 10.7184 2.39671
\(21\) 0 0
\(22\) −7.64909 −1.63079
\(23\) 3.07601 + 5.32780i 0.641392 + 1.11092i 0.985122 + 0.171855i \(0.0549761\pi\)
−0.343730 + 0.939068i \(0.611691\pi\)
\(24\) 0 0
\(25\) −0.106508 + 0.184478i −0.0213017 + 0.0368956i
\(26\) −5.52200 9.56439i −1.08295 1.87573i
\(27\) 0 0
\(28\) −1.73659 + 12.2984i −0.328184 + 2.32418i
\(29\) −2.34038 −0.434597 −0.217299 0.976105i \(-0.569725\pi\)
−0.217299 + 0.976105i \(0.569725\pi\)
\(30\) 0 0
\(31\) −3.11065 + 5.38780i −0.558689 + 0.967677i 0.438918 + 0.898527i \(0.355362\pi\)
−0.997606 + 0.0691500i \(0.977971\pi\)
\(32\) −4.21761 + 7.30512i −0.745575 + 1.29137i
\(33\) 0 0
\(34\) −3.95462 −0.678212
\(35\) −4.75779 3.72218i −0.804212 0.629163i
\(36\) 0 0
\(37\) −3.58796 6.21453i −0.589857 1.02166i −0.994251 0.107077i \(-0.965851\pi\)
0.404394 0.914585i \(-0.367483\pi\)
\(38\) −9.54823 + 16.5380i −1.54893 + 2.68282i
\(39\) 0 0
\(40\) −7.95876 13.7850i −1.25839 2.17960i
\(41\) −7.89168 −1.23247 −0.616237 0.787561i \(-0.711344\pi\)
−0.616237 + 0.787561i \(0.711344\pi\)
\(42\) 0 0
\(43\) 0.834123 0.127203 0.0636013 0.997975i \(-0.479741\pi\)
0.0636013 + 0.997975i \(0.479741\pi\)
\(44\) 6.93918 + 12.0190i 1.04612 + 1.81193i
\(45\) 0 0
\(46\) 7.95876 13.7850i 1.17346 2.03248i
\(47\) −2.91322 5.04584i −0.424936 0.736011i 0.571478 0.820617i \(-0.306370\pi\)
−0.996414 + 0.0846058i \(0.973037\pi\)
\(48\) 0 0
\(49\) 5.04170 4.85605i 0.720243 0.693722i
\(50\) 0.551152 0.0779447
\(51\) 0 0
\(52\) −10.0190 + 17.3534i −1.38939 + 2.40649i
\(53\) −3.71826 + 6.44021i −0.510742 + 0.884631i 0.489180 + 0.872183i \(0.337296\pi\)
−0.999923 + 0.0124487i \(0.996037\pi\)
\(54\) 0 0
\(55\) −6.74989 −0.910154
\(56\) 17.1065 6.89851i 2.28595 0.921852i
\(57\) 0 0
\(58\) 3.02771 + 5.24415i 0.397558 + 0.688590i
\(59\) 2.31179 4.00414i 0.300970 0.521295i −0.675386 0.737464i \(-0.736023\pi\)
0.976356 + 0.216170i \(0.0693564\pi\)
\(60\) 0 0
\(61\) 3.56527 + 6.17523i 0.456486 + 0.790657i 0.998772 0.0495366i \(-0.0157744\pi\)
−0.542286 + 0.840194i \(0.682441\pi\)
\(62\) 16.0968 2.04429
\(63\) 0 0
\(64\) 4.52683 0.565853
\(65\) −4.87285 8.44003i −0.604403 1.04686i
\(66\) 0 0
\(67\) 1.66262 2.87974i 0.203121 0.351816i −0.746411 0.665485i \(-0.768225\pi\)
0.949533 + 0.313669i \(0.101558\pi\)
\(68\) 3.58760 + 6.21390i 0.435060 + 0.753546i
\(69\) 0 0
\(70\) −2.18531 + 15.4762i −0.261194 + 1.84976i
\(71\) 0.160242 0.0190172 0.00950860 0.999955i \(-0.496973\pi\)
0.00950860 + 0.999955i \(0.496973\pi\)
\(72\) 0 0
\(73\) 0.190329 0.329659i 0.0222763 0.0385837i −0.854672 0.519168i \(-0.826242\pi\)
0.876949 + 0.480584i \(0.159575\pi\)
\(74\) −9.28337 + 16.0793i −1.07917 + 1.86918i
\(75\) 0 0
\(76\) 34.6483 3.97443
\(77\) 1.09361 7.74486i 0.124628 0.882609i
\(78\) 0 0
\(79\) 3.97731 + 6.88891i 0.447483 + 0.775063i 0.998221 0.0596151i \(-0.0189873\pi\)
−0.550739 + 0.834678i \(0.685654\pi\)
\(80\) −9.87382 + 17.1020i −1.10393 + 1.91206i
\(81\) 0 0
\(82\) 10.2093 + 17.6831i 1.12743 + 1.95277i
\(83\) 4.29800 0.471767 0.235883 0.971781i \(-0.424202\pi\)
0.235883 + 0.971781i \(0.424202\pi\)
\(84\) 0 0
\(85\) −3.48973 −0.378514
\(86\) −1.07909 1.86904i −0.116361 0.201544i
\(87\) 0 0
\(88\) 10.3051 17.8490i 1.09853 1.90271i
\(89\) 3.02828 + 5.24514i 0.320997 + 0.555984i 0.980694 0.195548i \(-0.0626486\pi\)
−0.659697 + 0.751532i \(0.729315\pi\)
\(90\) 0 0
\(91\) 10.4736 4.22370i 1.09794 0.442764i
\(92\) −28.8804 −3.01099
\(93\) 0 0
\(94\) −7.53756 + 13.0554i −0.777440 + 1.34657i
\(95\) −8.42577 + 14.5939i −0.864466 + 1.49730i
\(96\) 0 0
\(97\) −1.32209 −0.134238 −0.0671189 0.997745i \(-0.521381\pi\)
−0.0671189 + 0.997745i \(0.521381\pi\)
\(98\) −17.4034 5.01487i −1.75801 0.506579i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 9.08101 15.7288i 0.903594 1.56507i 0.0808014 0.996730i \(-0.474252\pi\)
0.822793 0.568341i \(-0.192415\pi\)
\(102\) 0 0
\(103\) −6.76755 11.7217i −0.666827 1.15498i −0.978787 0.204883i \(-0.934319\pi\)
0.311960 0.950095i \(-0.399015\pi\)
\(104\) 29.7577 2.91798
\(105\) 0 0
\(106\) 19.2410 1.86885
\(107\) −4.06934 7.04830i −0.393398 0.681385i 0.599498 0.800377i \(-0.295367\pi\)
−0.992895 + 0.118992i \(0.962034\pi\)
\(108\) 0 0
\(109\) 2.74398 4.75272i 0.262826 0.455228i −0.704166 0.710036i \(-0.748679\pi\)
0.966992 + 0.254808i \(0.0820122\pi\)
\(110\) 8.73222 + 15.1246i 0.832584 + 1.44208i
\(111\) 0 0
\(112\) −18.0232 14.1001i −1.70303 1.33234i
\(113\) −6.25508 −0.588429 −0.294214 0.955739i \(-0.595058\pi\)
−0.294214 + 0.955739i \(0.595058\pi\)
\(114\) 0 0
\(115\) 7.02315 12.1645i 0.654912 1.13434i
\(116\) 5.49342 9.51487i 0.510051 0.883434i
\(117\) 0 0
\(118\) −11.9629 −1.10127
\(119\) 0.565402 4.00414i 0.0518303 0.367059i
\(120\) 0 0
\(121\) 1.13008 + 1.95735i 0.102734 + 0.177941i
\(122\) 9.22467 15.9776i 0.835162 1.44654i
\(123\) 0 0
\(124\) −14.6028 25.2929i −1.31137 2.27136i
\(125\) −10.9297 −0.977578
\(126\) 0 0
\(127\) −5.60019 −0.496936 −0.248468 0.968640i \(-0.579927\pi\)
−0.248468 + 0.968640i \(0.579927\pi\)
\(128\) 2.57894 + 4.46685i 0.227948 + 0.394818i
\(129\) 0 0
\(130\) −12.6079 + 21.8374i −1.10578 + 1.91527i
\(131\) −3.56237 6.17020i −0.311246 0.539093i 0.667387 0.744711i \(-0.267413\pi\)
−0.978632 + 0.205618i \(0.934080\pi\)
\(132\) 0 0
\(133\) −15.3800 12.0323i −1.33361 1.04333i
\(134\) −8.60362 −0.743239
\(135\) 0 0
\(136\) 5.32780 9.22803i 0.456855 0.791297i
\(137\) −4.43910 + 7.68875i −0.379258 + 0.656895i −0.990955 0.134198i \(-0.957154\pi\)
0.611696 + 0.791093i \(0.290487\pi\)
\(138\) 0 0
\(139\) 8.37099 0.710018 0.355009 0.934863i \(-0.384478\pi\)
0.355009 + 0.934863i \(0.384478\pi\)
\(140\) 26.3002 10.6061i 2.22278 0.896378i
\(141\) 0 0
\(142\) −0.207302 0.359058i −0.0173964 0.0301315i
\(143\) 6.30943 10.9283i 0.527621 0.913867i
\(144\) 0 0
\(145\) 2.67178 + 4.62766i 0.221879 + 0.384306i
\(146\) −0.984900 −0.0815109
\(147\) 0 0
\(148\) 33.6871 2.76906
\(149\) 6.72612 + 11.6500i 0.551025 + 0.954403i 0.998201 + 0.0599571i \(0.0190964\pi\)
−0.447176 + 0.894446i \(0.647570\pi\)
\(150\) 0 0
\(151\) 4.51074 7.81282i 0.367078 0.635799i −0.622029 0.782994i \(-0.713691\pi\)
0.989107 + 0.147196i \(0.0470247\pi\)
\(152\) −25.7274 44.5612i −2.08677 3.61439i
\(153\) 0 0
\(154\) −18.7689 + 7.56893i −1.51244 + 0.609922i
\(155\) 14.2045 1.14093
\(156\) 0 0
\(157\) −1.46420 + 2.53607i −0.116856 + 0.202400i −0.918520 0.395374i \(-0.870615\pi\)
0.801664 + 0.597775i \(0.203948\pi\)
\(158\) 10.2908 17.8241i 0.818689 1.41801i
\(159\) 0 0
\(160\) 19.2593 1.52258
\(161\) 12.8197 + 10.0293i 1.01033 + 0.790418i
\(162\) 0 0
\(163\) 0.602369 + 1.04333i 0.0471812 + 0.0817202i 0.888652 0.458583i \(-0.151643\pi\)
−0.841470 + 0.540303i \(0.818310\pi\)
\(164\) 18.5236 32.0839i 1.44645 2.50533i
\(165\) 0 0
\(166\) −5.56025 9.63064i −0.431559 0.747482i
\(167\) 14.3693 1.11193 0.555964 0.831206i \(-0.312349\pi\)
0.555964 + 0.831206i \(0.312349\pi\)
\(168\) 0 0
\(169\) 5.21953 0.401502
\(170\) 4.51460 + 7.81953i 0.346254 + 0.599730i
\(171\) 0 0
\(172\) −1.95788 + 3.39115i −0.149287 + 0.258573i
\(173\) −2.72184 4.71436i −0.206938 0.358426i 0.743811 0.668390i \(-0.233016\pi\)
−0.950748 + 0.309964i \(0.899683\pi\)
\(174\) 0 0
\(175\) −0.0787995 + 0.558053i −0.00595669 + 0.0421849i
\(176\) −25.5695 −1.92737
\(177\) 0 0
\(178\) 7.83528 13.5711i 0.587279 1.01720i
\(179\) −3.02828 + 5.24514i −0.226345 + 0.392040i −0.956722 0.291004i \(-0.906011\pi\)
0.730377 + 0.683044i \(0.239344\pi\)
\(180\) 0 0
\(181\) 12.7416 0.947076 0.473538 0.880773i \(-0.342977\pi\)
0.473538 + 0.880773i \(0.342977\pi\)
\(182\) −23.0137 18.0044i −1.70589 1.33458i
\(183\) 0 0
\(184\) 21.4446 + 37.1432i 1.58092 + 2.73823i
\(185\) −8.19204 + 14.1890i −0.602291 + 1.04320i
\(186\) 0 0
\(187\) −2.25927 3.91318i −0.165215 0.286160i
\(188\) 27.3520 1.99485
\(189\) 0 0
\(190\) 43.6011 3.16316
\(191\) 12.0662 + 20.8993i 0.873079 + 1.51222i 0.858795 + 0.512319i \(0.171213\pi\)
0.0142836 + 0.999898i \(0.495453\pi\)
\(192\) 0 0
\(193\) 0.394373 0.683075i 0.0283876 0.0491688i −0.851483 0.524383i \(-0.824296\pi\)
0.879870 + 0.475214i \(0.157629\pi\)
\(194\) 1.71036 + 2.96244i 0.122797 + 0.212691i
\(195\) 0 0
\(196\) 7.90837 + 31.8955i 0.564883 + 2.27825i
\(197\) 14.8985 1.06147 0.530736 0.847537i \(-0.321915\pi\)
0.530736 + 0.847537i \(0.321915\pi\)
\(198\) 0 0
\(199\) −1.36578 + 2.36561i −0.0968178 + 0.167693i −0.910366 0.413804i \(-0.864200\pi\)
0.813548 + 0.581498i \(0.197533\pi\)
\(200\) −0.742531 + 1.28610i −0.0525049 + 0.0909411i
\(201\) 0 0
\(202\) −46.9918 −3.30633
\(203\) −5.74269 + 2.31585i −0.403057 + 0.162541i
\(204\) 0 0
\(205\) 9.00916 + 15.6043i 0.629227 + 1.08985i
\(206\) −17.5101 + 30.3285i −1.21999 + 2.11308i
\(207\) 0 0
\(208\) −18.4590 31.9720i −1.27990 2.21686i
\(209\) −21.8196 −1.50929
\(210\) 0 0
\(211\) −9.17592 −0.631696 −0.315848 0.948810i \(-0.602289\pi\)
−0.315848 + 0.948810i \(0.602289\pi\)
\(212\) −17.4552 30.2334i −1.19883 2.07644i
\(213\) 0 0
\(214\) −10.5289 + 18.2365i −0.719739 + 1.24662i
\(215\) −0.952236 1.64932i −0.0649419 0.112483i
\(216\) 0 0
\(217\) −2.30139 + 16.2983i −0.156229 + 1.10640i
\(218\) −14.1994 −0.961703
\(219\) 0 0
\(220\) 15.8436 27.4418i 1.06817 1.85013i
\(221\) 3.26201 5.64997i 0.219427 0.380058i
\(222\) 0 0
\(223\) −28.3427 −1.89797 −0.948985 0.315322i \(-0.897887\pi\)
−0.948985 + 0.315322i \(0.897887\pi\)
\(224\) −3.12037 + 22.0983i −0.208489 + 1.47650i
\(225\) 0 0
\(226\) 8.09210 + 14.0159i 0.538278 + 0.932326i
\(227\) 1.03599 1.79438i 0.0687608 0.119097i −0.829595 0.558365i \(-0.811429\pi\)
0.898356 + 0.439268i \(0.144762\pi\)
\(228\) 0 0
\(229\) 7.84268 + 13.5839i 0.518259 + 0.897650i 0.999775 + 0.0212133i \(0.00675290\pi\)
−0.481516 + 0.876437i \(0.659914\pi\)
\(230\) −36.3429 −2.39638
\(231\) 0 0
\(232\) −16.3161 −1.07121
\(233\) 14.6262 + 25.3334i 0.958196 + 1.65964i 0.726879 + 0.686766i \(0.240970\pi\)
0.231317 + 0.972878i \(0.425696\pi\)
\(234\) 0 0
\(235\) −6.65147 + 11.5207i −0.433894 + 0.751526i
\(236\) 10.8526 + 18.7973i 0.706446 + 1.22360i
\(237\) 0 0
\(238\) −9.70363 + 3.91318i −0.628993 + 0.253654i
\(239\) 17.7212 1.14629 0.573144 0.819454i \(-0.305723\pi\)
0.573144 + 0.819454i \(0.305723\pi\)
\(240\) 0 0
\(241\) 13.2036 22.8694i 0.850520 1.47314i −0.0302190 0.999543i \(-0.509620\pi\)
0.880739 0.473601i \(-0.157046\pi\)
\(242\) 2.92393 5.06439i 0.187957 0.325551i
\(243\) 0 0
\(244\) −33.4741 −2.14296
\(245\) −15.3575 4.42534i −0.981158 0.282725i
\(246\) 0 0
\(247\) −15.7519 27.2831i −1.00227 1.73598i
\(248\) −21.6861 + 37.5615i −1.37707 + 2.38515i
\(249\) 0 0
\(250\) 14.1395 + 24.4904i 0.894261 + 1.54891i
\(251\) −8.81798 −0.556586 −0.278293 0.960496i \(-0.589769\pi\)
−0.278293 + 0.960496i \(0.589769\pi\)
\(252\) 0 0
\(253\) 18.1873 1.14343
\(254\) 7.24487 + 12.5485i 0.454584 + 0.787362i
\(255\) 0 0
\(256\) 11.1995 19.3981i 0.699968 1.21238i
\(257\) 4.59835 + 7.96458i 0.286837 + 0.496817i 0.973053 0.230581i \(-0.0740627\pi\)
−0.686216 + 0.727398i \(0.740729\pi\)
\(258\) 0 0
\(259\) −14.9533 11.6985i −0.929154 0.726909i
\(260\) 45.7509 2.83735
\(261\) 0 0
\(262\) −9.21716 + 15.9646i −0.569438 + 0.986295i
\(263\) −0.127303 + 0.220495i −0.00784982 + 0.0135963i −0.869924 0.493186i \(-0.835832\pi\)
0.862074 + 0.506783i \(0.169165\pi\)
\(264\) 0 0
\(265\) 16.9791 1.04302
\(266\) −7.06420 + 50.0282i −0.433134 + 3.06743i
\(267\) 0 0
\(268\) 7.80512 + 13.5189i 0.476773 + 0.825796i
\(269\) 0.489721 0.848222i 0.0298588 0.0517170i −0.850710 0.525636i \(-0.823828\pi\)
0.880569 + 0.473919i \(0.157161\pi\)
\(270\) 0 0
\(271\) −7.02445 12.1667i −0.426705 0.739075i 0.569873 0.821733i \(-0.306992\pi\)
−0.996578 + 0.0826580i \(0.973659\pi\)
\(272\) −13.2196 −0.801555
\(273\) 0 0
\(274\) 22.9712 1.38774
\(275\) 0.314873 + 0.545376i 0.0189876 + 0.0328874i
\(276\) 0 0
\(277\) −12.7093 + 22.0132i −0.763630 + 1.32265i 0.177337 + 0.984150i \(0.443252\pi\)
−0.940968 + 0.338496i \(0.890082\pi\)
\(278\) −10.8294 18.7571i −0.649505 1.12498i
\(279\) 0 0
\(280\) −33.1693 25.9494i −1.98224 1.55078i
\(281\) 29.3811 1.75273 0.876366 0.481646i \(-0.159961\pi\)
0.876366 + 0.481646i \(0.159961\pi\)
\(282\) 0 0
\(283\) 1.53844 2.66466i 0.0914510 0.158398i −0.816671 0.577104i \(-0.804183\pi\)
0.908122 + 0.418706i \(0.137516\pi\)
\(284\) −0.376125 + 0.651467i −0.0223189 + 0.0386575i
\(285\) 0 0
\(286\) −32.6496 −1.93061
\(287\) −19.3642 + 7.80898i −1.14303 + 0.460949i
\(288\) 0 0
\(289\) 7.33194 + 12.6993i 0.431291 + 0.747017i
\(290\) 6.91287 11.9734i 0.405938 0.703105i
\(291\) 0 0
\(292\) 0.893492 + 1.54757i 0.0522876 + 0.0905649i
\(293\) 17.0163 0.994105 0.497053 0.867720i \(-0.334416\pi\)
0.497053 + 0.867720i \(0.334416\pi\)
\(294\) 0 0
\(295\) −10.5566 −0.614628
\(296\) −25.0137 43.3251i −1.45389 2.51822i
\(297\) 0 0
\(298\) 17.4029 30.1428i 1.00812 1.74612i
\(299\) 13.1297 + 22.7414i 0.759313 + 1.31517i
\(300\) 0 0
\(301\) 2.04672 0.825381i 0.117971 0.0475742i
\(302\) −23.3419 −1.34317
\(303\) 0 0
\(304\) −31.9180 + 55.2836i −1.83062 + 3.17073i
\(305\) 8.14024 14.0993i 0.466109 0.807324i
\(306\) 0 0
\(307\) 24.2396 1.38343 0.691714 0.722172i \(-0.256856\pi\)
0.691714 + 0.722172i \(0.256856\pi\)
\(308\) 28.9200 + 22.6251i 1.64787 + 1.28918i
\(309\) 0 0
\(310\) −18.3761 31.8283i −1.04369 1.80773i
\(311\) 10.9807 19.0192i 0.622661 1.07848i −0.366328 0.930486i \(-0.619385\pi\)
0.988988 0.147994i \(-0.0472816\pi\)
\(312\) 0 0
\(313\) 1.24073 + 2.14900i 0.0701300 + 0.121469i 0.898958 0.438035i \(-0.144325\pi\)
−0.828828 + 0.559503i \(0.810992\pi\)
\(314\) 7.57685 0.427586
\(315\) 0 0
\(316\) −37.3427 −2.10069
\(317\) 9.73961 + 16.8695i 0.547031 + 0.947486i 0.998476 + 0.0551868i \(0.0175754\pi\)
−0.451445 + 0.892299i \(0.649091\pi\)
\(318\) 0 0
\(319\) −3.45946 + 5.99195i −0.193692 + 0.335485i
\(320\) −5.16783 8.95095i −0.288891 0.500373i
\(321\) 0 0
\(322\) 5.88824 41.7001i 0.328139 2.32386i
\(323\) −11.2809 −0.627684
\(324\) 0 0
\(325\) −0.454624 + 0.787432i −0.0252180 + 0.0436789i
\(326\) 1.55855 2.69949i 0.0863201 0.149511i
\(327\) 0 0
\(328\) −55.0175 −3.03783
\(329\) −12.1412 9.49851i −0.669368 0.523670i
\(330\) 0 0
\(331\) −1.28856 2.23185i −0.0708256 0.122674i 0.828438 0.560081i \(-0.189230\pi\)
−0.899263 + 0.437408i \(0.855897\pi\)
\(332\) −10.0884 + 17.4736i −0.553673 + 0.958990i
\(333\) 0 0
\(334\) −18.5893 32.1976i −1.01716 1.76178i
\(335\) −7.59220 −0.414806
\(336\) 0 0
\(337\) −24.1520 −1.31564 −0.657822 0.753173i \(-0.728522\pi\)
−0.657822 + 0.753173i \(0.728522\pi\)
\(338\) −6.75242 11.6955i −0.367283 0.636153i
\(339\) 0 0
\(340\) 8.19121 14.1876i 0.444231 0.769430i
\(341\) 9.19608 + 15.9281i 0.497996 + 0.862554i
\(342\) 0 0
\(343\) 7.56588 16.9044i 0.408519 0.912750i
\(344\) 5.81515 0.313532
\(345\) 0 0
\(346\) −7.04240 + 12.1978i −0.378602 + 0.655757i
\(347\) −18.1212 + 31.3868i −0.972797 + 1.68493i −0.285775 + 0.958297i \(0.592251\pi\)
−0.687022 + 0.726637i \(0.741082\pi\)
\(348\) 0 0
\(349\) 35.2938 1.88923 0.944617 0.328173i \(-0.106433\pi\)
0.944617 + 0.328173i \(0.106433\pi\)
\(350\) 1.35239 0.545376i 0.0722881 0.0291516i
\(351\) 0 0
\(352\) 12.4686 + 21.5963i 0.664579 + 1.15109i
\(353\) 1.46109 2.53069i 0.0777662 0.134695i −0.824520 0.565833i \(-0.808555\pi\)
0.902286 + 0.431138i \(0.141888\pi\)
\(354\) 0 0
\(355\) −0.182932 0.316848i −0.00970903 0.0168165i
\(356\) −28.4324 −1.50691
\(357\) 0 0
\(358\) 15.6706 0.828215
\(359\) −0.196714 0.340719i −0.0103822 0.0179825i 0.860788 0.508964i \(-0.169971\pi\)
−0.871170 + 0.490982i \(0.836638\pi\)
\(360\) 0 0
\(361\) −17.7371 + 30.7215i −0.933529 + 1.61692i
\(362\) −16.4836 28.5504i −0.866359 1.50058i
\(363\) 0 0
\(364\) −7.41251 + 52.4949i −0.388521 + 2.75148i
\(365\) −0.869118 −0.0454917
\(366\) 0 0
\(367\) 4.61567 7.99457i 0.240936 0.417313i −0.720045 0.693927i \(-0.755879\pi\)
0.960981 + 0.276614i \(0.0892123\pi\)
\(368\) 26.6047 46.0807i 1.38686 2.40212i
\(369\) 0 0
\(370\) 42.3916 2.20384
\(371\) −2.75093 + 19.4819i −0.142821 + 1.01145i
\(372\) 0 0
\(373\) 10.7622 + 18.6407i 0.557245 + 0.965177i 0.997725 + 0.0674147i \(0.0214751\pi\)
−0.440480 + 0.897763i \(0.645192\pi\)
\(374\) −5.84557 + 10.1248i −0.302267 + 0.523542i
\(375\) 0 0
\(376\) −20.3097 35.1775i −1.04739 1.81414i
\(377\) −9.98975 −0.514498
\(378\) 0 0
\(379\) −18.2445 −0.937159 −0.468579 0.883421i \(-0.655234\pi\)
−0.468579 + 0.883421i \(0.655234\pi\)
\(380\) −39.5545 68.5104i −2.02910 3.51451i
\(381\) 0 0
\(382\) 31.2197 54.0740i 1.59734 2.76667i
\(383\) −3.12982 5.42101i −0.159926 0.277001i 0.774915 0.632065i \(-0.217792\pi\)
−0.934842 + 0.355064i \(0.884459\pi\)
\(384\) 0 0
\(385\) −16.5625 + 6.67914i −0.844102 + 0.340401i
\(386\) −2.04078 −0.103873
\(387\) 0 0
\(388\) 3.10325 5.37499i 0.157544 0.272874i
\(389\) 11.3104 19.5902i 0.573460 0.993262i −0.422747 0.906248i \(-0.638934\pi\)
0.996207 0.0870142i \(-0.0277325\pi\)
\(390\) 0 0
\(391\) 9.40296 0.475528
\(392\) 35.1486 33.8543i 1.77527 1.70990i
\(393\) 0 0
\(394\) −19.2739 33.3834i −0.971006 1.68183i
\(395\) 9.08101 15.7288i 0.456915 0.791400i
\(396\) 0 0
\(397\) 10.6077 + 18.3730i 0.532384 + 0.922115i 0.999285 + 0.0378060i \(0.0120369\pi\)
−0.466902 + 0.884309i \(0.654630\pi\)
\(398\) 7.06756 0.354265
\(399\) 0 0
\(400\) 1.84240 0.0921200
\(401\) −2.13721 3.70176i −0.106727 0.184857i 0.807715 0.589573i \(-0.200704\pi\)
−0.914443 + 0.404716i \(0.867370\pi\)
\(402\) 0 0
\(403\) −13.2776 + 22.9975i −0.661404 + 1.14559i
\(404\) 42.6305 + 73.8382i 2.12095 + 3.67359i
\(405\) 0 0
\(406\) 12.6184 + 9.87180i 0.626241 + 0.489929i
\(407\) −21.2143 −1.05156
\(408\) 0 0
\(409\) −17.6627 + 30.5926i −0.873363 + 1.51271i −0.0148660 + 0.999889i \(0.504732\pi\)
−0.858497 + 0.512819i \(0.828601\pi\)
\(410\) 23.3100 40.3741i 1.15120 1.99394i
\(411\) 0 0
\(412\) 63.5401 3.13040
\(413\) 1.71036 12.1127i 0.0841615 0.596026i
\(414\) 0 0
\(415\) −4.90660 8.49849i −0.240856 0.417174i
\(416\) −18.0026 + 31.1814i −0.882650 + 1.52879i
\(417\) 0 0
\(418\) 28.2277 + 48.8917i 1.38066 + 2.39137i
\(419\) −3.74901 −0.183151 −0.0915755 0.995798i \(-0.529190\pi\)
−0.0915755 + 0.995798i \(0.529190\pi\)
\(420\) 0 0
\(421\) 24.5327 1.19565 0.597825 0.801627i \(-0.296032\pi\)
0.597825 + 0.801627i \(0.296032\pi\)
\(422\) 11.8707 + 20.5607i 0.577858 + 1.00088i
\(423\) 0 0
\(424\) −25.9221 + 44.8984i −1.25889 + 2.18046i
\(425\) 0.162791 + 0.281963i 0.00789653 + 0.0136772i
\(426\) 0 0
\(427\) 14.8588 + 11.6245i 0.719066 + 0.562550i
\(428\) 38.2067 1.84679
\(429\) 0 0
\(430\) −2.46378 + 4.26740i −0.118814 + 0.205792i
\(431\) 12.1284 21.0071i 0.584206 1.01187i −0.410768 0.911740i \(-0.634739\pi\)
0.994974 0.100135i \(-0.0319273\pi\)
\(432\) 0 0
\(433\) 8.60056 0.413317 0.206658 0.978413i \(-0.433741\pi\)
0.206658 + 0.978413i \(0.433741\pi\)
\(434\) 39.4973 15.9281i 1.89593 0.764572i
\(435\) 0 0
\(436\) 12.8815 + 22.3115i 0.616914 + 1.06853i
\(437\) 22.7030 39.3227i 1.08603 1.88106i
\(438\) 0 0
\(439\) −13.2792 23.0002i −0.633780 1.09774i −0.986772 0.162113i \(-0.948169\pi\)
0.352992 0.935626i \(-0.385164\pi\)
\(440\) −47.0573 −2.24337
\(441\) 0 0
\(442\) −16.8801 −0.802902
\(443\) −13.8041 23.9094i −0.655853 1.13597i −0.981679 0.190542i \(-0.938976\pi\)
0.325826 0.945430i \(-0.394358\pi\)
\(444\) 0 0
\(445\) 6.91419 11.9757i 0.327764 0.567704i
\(446\) 36.6665 + 63.5083i 1.73621 + 3.00720i
\(447\) 0 0
\(448\) 11.1077 4.47938i 0.524788 0.211631i
\(449\) 15.6315 0.737695 0.368847 0.929490i \(-0.379753\pi\)
0.368847 + 0.929490i \(0.379753\pi\)
\(450\) 0 0
\(451\) −11.6652 + 20.2047i −0.549292 + 0.951402i
\(452\) 14.6821 25.4302i 0.690590 1.19614i
\(453\) 0 0
\(454\) −5.36095 −0.251602
\(455\) −20.3083 15.8879i −0.952067 0.744835i
\(456\) 0 0
\(457\) 16.4677 + 28.5230i 0.770328 + 1.33425i 0.937383 + 0.348300i \(0.113241\pi\)
−0.167055 + 0.985948i \(0.553426\pi\)
\(458\) 20.2919 35.1466i 0.948178 1.64229i
\(459\) 0 0
\(460\) 32.9700 + 57.1057i 1.53723 + 2.66256i
\(461\) −34.9181 −1.62630 −0.813149 0.582055i \(-0.802249\pi\)
−0.813149 + 0.582055i \(0.802249\pi\)
\(462\) 0 0
\(463\) 3.10256 0.144188 0.0720940 0.997398i \(-0.477032\pi\)
0.0720940 + 0.997398i \(0.477032\pi\)
\(464\) 10.1211 + 17.5302i 0.469859 + 0.813820i
\(465\) 0 0
\(466\) 37.8434 65.5467i 1.75306 3.03639i
\(467\) −5.26376 9.11710i −0.243578 0.421889i 0.718153 0.695885i \(-0.244988\pi\)
−0.961731 + 0.273996i \(0.911654\pi\)
\(468\) 0 0
\(469\) 1.23008 8.71134i 0.0567998 0.402252i
\(470\) 34.4196 1.58766
\(471\) 0 0
\(472\) 16.1168 27.9152i 0.741837 1.28490i
\(473\) 1.23297 2.13556i 0.0566919 0.0981933i
\(474\) 0 0
\(475\) 1.57220 0.0721376
\(476\) 14.9518 + 11.6973i 0.685315 + 0.536145i
\(477\) 0 0
\(478\) −22.9256 39.7083i −1.04859 1.81622i
\(479\) −8.48903 + 14.7034i −0.387874 + 0.671817i −0.992163 0.124948i \(-0.960124\pi\)
0.604289 + 0.796765i \(0.293457\pi\)
\(480\) 0 0
\(481\) −15.3150 26.5263i −0.698302 1.20950i
\(482\) −68.3253 −3.11213
\(483\) 0 0
\(484\) −10.6102 −0.482283
\(485\) 1.50930 + 2.61418i 0.0685337 + 0.118704i
\(486\) 0 0
\(487\) 6.60283 11.4364i 0.299203 0.518235i −0.676751 0.736212i \(-0.736613\pi\)
0.975954 + 0.217977i \(0.0699459\pi\)
\(488\) 24.8556 + 43.0511i 1.12516 + 1.94883i
\(489\) 0 0
\(490\) 9.95183 + 40.1370i 0.449578 + 1.81321i
\(491\) 15.7834 0.712293 0.356147 0.934430i \(-0.384090\pi\)
0.356147 + 0.934430i \(0.384090\pi\)
\(492\) 0 0
\(493\) −1.78856 + 3.09787i −0.0805526 + 0.139521i
\(494\) −40.7560 + 70.5915i −1.83370 + 3.17606i
\(495\) 0 0
\(496\) 53.8085 2.41608
\(497\) 0.393192 0.158562i 0.0176371 0.00711249i
\(498\) 0 0
\(499\) −21.4729 37.1922i −0.961261 1.66495i −0.719342 0.694656i \(-0.755556\pi\)
−0.241919 0.970296i \(-0.577777\pi\)
\(500\) 25.6545 44.4348i 1.14730 1.98719i
\(501\) 0 0
\(502\) 11.4077 + 19.7587i 0.509149 + 0.881873i
\(503\) −37.7173 −1.68173 −0.840866 0.541243i \(-0.817954\pi\)
−0.840866 + 0.541243i \(0.817954\pi\)
\(504\) 0 0
\(505\) −41.4676 −1.84528
\(506\) −23.5287 40.7529i −1.04598 1.81169i
\(507\) 0 0
\(508\) 13.1450 22.7677i 0.583213 1.01015i
\(509\) −17.4964 30.3046i −0.775513 1.34323i −0.934506 0.355949i \(-0.884158\pi\)
0.158992 0.987280i \(-0.449176\pi\)
\(510\) 0 0
\(511\) 0.140813 0.997232i 0.00622922 0.0441149i
\(512\) −47.6386 −2.10535
\(513\) 0 0
\(514\) 11.8976 20.6073i 0.524782 0.908949i
\(515\) −15.4517 + 26.7631i −0.680883 + 1.17932i
\(516\) 0 0
\(517\) −17.2248 −0.757547
\(518\) −6.86824 + 48.6404i −0.301773 + 2.13714i
\(519\) 0 0
\(520\) −33.9715 58.8403i −1.48975 2.58032i
\(521\) 6.97005 12.0725i 0.305363 0.528905i −0.671979 0.740570i \(-0.734555\pi\)
0.977342 + 0.211665i \(0.0678887\pi\)
\(522\) 0 0
\(523\) −13.4103 23.2274i −0.586393 1.01566i −0.994700 0.102817i \(-0.967214\pi\)
0.408308 0.912844i \(-0.366119\pi\)
\(524\) 33.4469 1.46113
\(525\) 0 0
\(526\) 0.658757 0.0287232
\(527\) 4.75442 + 8.23490i 0.207106 + 0.358718i
\(528\) 0 0
\(529\) −7.42366 + 12.8582i −0.322768 + 0.559050i
\(530\) −21.9656 38.0455i −0.954123 1.65259i
\(531\) 0 0
\(532\) 85.0179 34.2851i 3.68599 1.48645i
\(533\) −33.6851 −1.45907
\(534\) 0 0
\(535\) −9.29112 + 16.0927i −0.401690 + 0.695748i
\(536\) 11.5911 20.0763i 0.500658 0.867166i
\(537\) 0 0
\(538\) −2.53418 −0.109256
\(539\) −4.98026 20.0860i −0.214515 0.865167i
\(540\) 0 0
\(541\) −11.6251 20.1353i −0.499802 0.865683i 0.500198 0.865911i \(-0.333261\pi\)
−1.00000 0.000228285i \(0.999927\pi\)
\(542\) −18.1748 + 31.4797i −0.780676 + 1.35217i
\(543\) 0 0
\(544\) 6.44635 + 11.1654i 0.276385 + 0.478713i
\(545\) −12.5301 −0.536732
\(546\) 0 0
\(547\) 15.7425 0.673102 0.336551 0.941665i \(-0.390740\pi\)
0.336551 + 0.941665i \(0.390740\pi\)
\(548\) −20.8392 36.0946i −0.890208 1.54189i
\(549\) 0 0
\(550\) 0.814692 1.41109i 0.0347386 0.0601690i
\(551\) 8.63677 + 14.9593i 0.367939 + 0.637288i
\(552\) 0 0
\(553\) 16.5760 + 12.9680i 0.704884 + 0.551454i
\(554\) 65.7675 2.79419
\(555\) 0 0
\(556\) −19.6487 + 34.0325i −0.833289 + 1.44330i
\(557\) 2.06405 3.57504i 0.0874565 0.151479i −0.818979 0.573824i \(-0.805459\pi\)
0.906435 + 0.422345i \(0.138793\pi\)
\(558\) 0 0
\(559\) 3.56040 0.150589
\(560\) −7.30508 + 51.7341i −0.308696 + 2.18617i
\(561\) 0 0
\(562\) −38.0099 65.8351i −1.60335 2.77709i
\(563\) −0.342707 + 0.593585i −0.0144434 + 0.0250166i −0.873157 0.487440i \(-0.837931\pi\)
0.858713 + 0.512456i \(0.171264\pi\)
\(564\) 0 0
\(565\) 7.14081 + 12.3683i 0.300416 + 0.520336i
\(566\) −7.96104 −0.334627
\(567\) 0 0
\(568\) 1.11714 0.0468740
\(569\) 9.25223 + 16.0253i 0.387874 + 0.671817i 0.992163 0.124948i \(-0.0398763\pi\)
−0.604290 + 0.796765i \(0.706543\pi\)
\(570\) 0 0
\(571\) −17.2741 + 29.9197i −0.722901 + 1.25210i 0.236932 + 0.971526i \(0.423858\pi\)
−0.959832 + 0.280574i \(0.909475\pi\)
\(572\) 29.6194 + 51.3024i 1.23845 + 2.14506i
\(573\) 0 0
\(574\) 42.5489 + 33.2874i 1.77596 + 1.38939i
\(575\) −1.31048 −0.0546509
\(576\) 0 0
\(577\) −0.246628 + 0.427172i −0.0102673 + 0.0177834i −0.871113 0.491082i \(-0.836602\pi\)
0.860846 + 0.508865i \(0.169935\pi\)
\(578\) 18.9704 32.8577i 0.789066 1.36670i
\(579\) 0 0
\(580\) −25.0852 −1.04160
\(581\) 10.5462 4.25295i 0.437529 0.176442i
\(582\) 0 0
\(583\) 10.9924 + 19.0394i 0.455258 + 0.788529i
\(584\) 1.32689 2.29824i 0.0549071 0.0951019i
\(585\) 0 0
\(586\) −22.0138 38.1290i −0.909380 1.57509i
\(587\) 37.6412 1.55362 0.776810 0.629735i \(-0.216836\pi\)
0.776810 + 0.629735i \(0.216836\pi\)
\(588\) 0 0
\(589\) 45.9172 1.89199
\(590\) 13.6569 + 23.6544i 0.562244 + 0.973836i
\(591\) 0 0
\(592\) −31.0326 + 53.7500i −1.27543 + 2.20911i
\(593\) 12.5475 + 21.7328i 0.515262 + 0.892460i 0.999843 + 0.0177137i \(0.00563874\pi\)
−0.484581 + 0.874746i \(0.661028\pi\)
\(594\) 0 0
\(595\) −8.56290 + 3.45316i −0.351044 + 0.141566i
\(596\) −63.1511 −2.58677
\(597\) 0 0
\(598\) 33.9715 58.8403i 1.38920 2.40616i
\(599\) −0.269218 + 0.466300i −0.0110000 + 0.0190525i −0.871473 0.490444i \(-0.836835\pi\)
0.860473 + 0.509496i \(0.170168\pi\)
\(600\) 0 0
\(601\) −36.1040 −1.47271 −0.736357 0.676593i \(-0.763456\pi\)
−0.736357 + 0.676593i \(0.763456\pi\)
\(602\) −4.49726 3.51836i −0.183295 0.143398i
\(603\) 0 0
\(604\) 21.1755 + 36.6770i 0.861619 + 1.49237i
\(605\) 2.58020 4.46903i 0.104900 0.181692i
\(606\) 0 0
\(607\) 11.1768 + 19.3588i 0.453652 + 0.785749i 0.998610 0.0527149i \(-0.0167875\pi\)
−0.544957 + 0.838464i \(0.683454\pi\)
\(608\) 62.2575 2.52487
\(609\) 0 0
\(610\) −42.1236 −1.70553
\(611\) −12.4349 21.5378i −0.503061 0.871328i
\(612\) 0 0
\(613\) 12.2687 21.2500i 0.495529 0.858281i −0.504458 0.863436i \(-0.668308\pi\)
0.999987 + 0.00515549i \(0.00164105\pi\)
\(614\) −31.3584 54.3143i −1.26552 2.19195i
\(615\) 0 0
\(616\) 7.62418 53.9939i 0.307187 2.17548i
\(617\) −30.1527 −1.21390 −0.606950 0.794740i \(-0.707607\pi\)
−0.606950 + 0.794740i \(0.707607\pi\)
\(618\) 0 0
\(619\) −11.8047 + 20.4463i −0.474471 + 0.821808i −0.999573 0.0292318i \(-0.990694\pi\)
0.525102 + 0.851039i \(0.324027\pi\)
\(620\) −33.3412 + 57.7487i −1.33902 + 2.31924i
\(621\) 0 0
\(622\) −56.8224 −2.27837
\(623\) 12.6208 + 9.87368i 0.505642 + 0.395581i
\(624\) 0 0
\(625\) 13.0099 + 22.5337i 0.520394 + 0.901349i
\(626\) 3.21021 5.56025i 0.128306 0.222232i
\(627\) 0 0
\(628\) −6.87364 11.9055i −0.274288 0.475081i
\(629\) −10.9679 −0.437320
\(630\) 0 0
\(631\) −7.41460 −0.295171 −0.147585 0.989049i \(-0.547150\pi\)
−0.147585 + 0.989049i \(0.547150\pi\)
\(632\) 27.7281 + 48.0265i 1.10297 + 1.91039i
\(633\) 0 0
\(634\) 25.2000 43.6476i 1.00082 1.73347i
\(635\) 6.39318 + 11.0733i 0.253706 + 0.439431i
\(636\) 0 0
\(637\) 21.5202 20.7277i 0.852660 0.821263i
\(638\) 17.9018 0.708738
\(639\) 0 0
\(640\) 5.88824 10.1987i 0.232753 0.403140i
\(641\) 9.34588 16.1875i 0.369140 0.639369i −0.620291 0.784372i \(-0.712986\pi\)
0.989431 + 0.145002i \(0.0463190\pi\)
\(642\) 0 0
\(643\) 36.4204 1.43628 0.718141 0.695897i \(-0.244993\pi\)
0.718141 + 0.695897i \(0.244993\pi\)
\(644\) −70.8652 + 28.5778i −2.79248 + 1.12612i
\(645\) 0 0
\(646\) 14.5939 + 25.2773i 0.574188 + 0.994522i
\(647\) 8.33593 14.4383i 0.327719 0.567626i −0.654340 0.756201i \(-0.727053\pi\)
0.982059 + 0.188574i \(0.0603867\pi\)
\(648\) 0 0
\(649\) −6.83440 11.8375i −0.268274 0.464664i
\(650\) 2.35256 0.0922749
\(651\) 0 0
\(652\) −5.65561 −0.221491
\(653\) 4.30535 + 7.45708i 0.168481 + 0.291818i 0.937886 0.346943i \(-0.112780\pi\)
−0.769405 + 0.638761i \(0.779447\pi\)
\(654\) 0 0
\(655\) −8.13361 + 14.0878i −0.317807 + 0.550457i
\(656\) 34.1280 + 59.1113i 1.33247 + 2.30791i
\(657\) 0 0
\(658\) −5.57662 + 39.4933i −0.217399 + 1.53961i
\(659\) 14.6903 0.572253 0.286126 0.958192i \(-0.407632\pi\)
0.286126 + 0.958192i \(0.407632\pi\)
\(660\) 0 0
\(661\) −4.06201 + 7.03561i −0.157994 + 0.273654i −0.934145 0.356893i \(-0.883836\pi\)
0.776151 + 0.630547i \(0.217169\pi\)
\(662\) −3.33397 + 5.77461i −0.129579 + 0.224437i
\(663\) 0 0
\(664\) 29.9638 1.16282
\(665\) −6.23375 + 44.1470i −0.241735 + 1.71195i
\(666\) 0 0
\(667\) −7.19902 12.4691i −0.278747 0.482805i
\(668\) −33.7281 + 58.4187i −1.30498 + 2.26029i
\(669\) 0 0
\(670\) 9.82190 + 17.0120i 0.379453 + 0.657232i
\(671\) 21.0802 0.813792
\(672\) 0 0
\(673\) −13.1516 −0.506958 −0.253479 0.967341i \(-0.581575\pi\)
−0.253479 + 0.967341i \(0.581575\pi\)
\(674\) 31.2451 + 54.1180i 1.20351 + 2.08455i
\(675\) 0 0
\(676\) −12.2515 + 21.2202i −0.471210 + 0.816160i
\(677\) −5.40967 9.36982i −0.207910 0.360111i 0.743146 0.669130i \(-0.233333\pi\)
−0.951056 + 0.309018i \(0.900000\pi\)
\(678\) 0 0
\(679\) −3.24406 + 1.30823i −0.124496 + 0.0502054i
\(680\) −24.3289 −0.932971
\(681\) 0 0
\(682\) 23.7936 41.2118i 0.911105 1.57808i
\(683\) −0.684640 + 1.18583i −0.0261970 + 0.0453746i −0.878827 0.477141i \(-0.841673\pi\)
0.852630 + 0.522516i \(0.175006\pi\)
\(684\) 0 0
\(685\) 20.2708 0.774506
\(686\) −47.6659 + 4.91584i −1.81989 + 0.187688i
\(687\) 0 0
\(688\) −3.60720 6.24786i −0.137523 0.238197i
\(689\) −15.8711 + 27.4896i −0.604642 + 1.04727i
\(690\) 0 0
\(691\) 17.9215 + 31.0409i 0.681765 + 1.18085i 0.974442 + 0.224640i \(0.0721207\pi\)
−0.292677 + 0.956211i \(0.594546\pi\)
\(692\) 25.5552 0.971462
\(693\) 0 0
\(694\) 93.7724 3.55955
\(695\) −9.55634 16.5521i −0.362493 0.627855i
\(696\) 0 0
\(697\) −6.03097 + 10.4459i −0.228439 + 0.395668i
\(698\) −45.6590 79.0838i −1.72822 2.99336i
\(699\) 0 0
\(700\) −2.08382 1.63024i −0.0787610 0.0616174i
\(701\) 29.6235 1.11886 0.559431 0.828877i \(-0.311020\pi\)
0.559431 + 0.828877i \(0.311020\pi\)
\(702\) 0 0
\(703\) −26.4815 + 45.8673i −0.998769 + 1.72992i
\(704\) 6.69138 11.5898i 0.252191 0.436807i
\(705\) 0 0
\(706\) −7.56077 −0.284553
\(707\) 6.71853 47.5802i 0.252676 1.78944i
\(708\) 0 0
\(709\) 7.63863 + 13.2305i 0.286875 + 0.496882i 0.973062 0.230543i \(-0.0740503\pi\)
−0.686187 + 0.727425i \(0.740717\pi\)
\(710\) −0.473313 + 0.819802i −0.0177631 + 0.0307666i
\(711\) 0 0
\(712\) 21.1119 + 36.5669i 0.791202 + 1.37040i
\(713\) −38.2735 −1.43335
\(714\) 0 0
\(715\) −28.8114 −1.07749
\(716\) −14.2162 24.6231i −0.531284 0.920210i
\(717\) 0 0
\(718\) −0.508972 + 0.881565i −0.0189947 + 0.0328997i
\(719\) −1.00538 1.74138i −0.0374945 0.0649424i 0.846669 0.532120i \(-0.178604\pi\)
−0.884164 + 0.467177i \(0.845271\pi\)
\(720\) 0 0
\(721\) −28.2047 22.0655i −1.05040 0.821763i
\(722\) 91.7845 3.41587
\(723\) 0 0
\(724\) −29.9075 + 51.8014i −1.11150 + 1.92518i
\(725\) 0.249270 0.431748i 0.00925765 0.0160347i
\(726\) 0 0
\(727\) 20.5029 0.760411 0.380206 0.924902i \(-0.375853\pi\)
0.380206 + 0.924902i \(0.375853\pi\)
\(728\) 73.0178 29.4458i 2.70622 1.09134i
\(729\) 0 0
\(730\) 1.12436 + 1.94745i 0.0416146 + 0.0720785i
\(731\) 0.637452 1.10410i 0.0235770 0.0408366i
\(732\) 0 0
\(733\) −2.31427 4.00844i −0.0854797 0.148055i 0.820116 0.572198i \(-0.193909\pi\)
−0.905596 + 0.424142i \(0.860576\pi\)
\(734\) −23.8849 −0.881606
\(735\) 0 0
\(736\) −51.8936 −1.91282
\(737\) −4.91524 8.51345i −0.181055 0.313597i
\(738\) 0 0
\(739\) 11.6640 20.2026i 0.429066 0.743164i −0.567725 0.823219i \(-0.692176\pi\)
0.996790 + 0.0800546i \(0.0255095\pi\)
\(740\) −38.4573 66.6099i −1.41372 2.44863i
\(741\) 0 0
\(742\) 47.2125 19.0394i 1.73322 0.698957i
\(743\) −52.2565 −1.91711 −0.958553 0.284913i \(-0.908035\pi\)
−0.958553 + 0.284913i \(0.908035\pi\)
\(744\) 0 0
\(745\) 15.3571 26.5993i 0.562640 0.974521i
\(746\) 27.8458 48.2303i 1.01951 1.76584i
\(747\) 0 0
\(748\) 21.2122 0.775594
\(749\) −16.9595 13.2680i −0.619688 0.484803i
\(750\) 0 0
\(751\) 3.09378 + 5.35858i 0.112894 + 0.195538i 0.916936 0.399035i \(-0.130655\pi\)
−0.804042 + 0.594572i \(0.797321\pi\)
\(752\) −25.1967 + 43.6419i −0.918829 + 1.59146i
\(753\) 0 0
\(754\) 12.9236 + 22.3843i 0.470649 + 0.815188i
\(755\) −20.5979 −0.749633
\(756\) 0 0
\(757\) 20.9175 0.760260 0.380130 0.924933i \(-0.375879\pi\)
0.380130 + 0.924933i \(0.375879\pi\)
\(758\) 23.6026 + 40.8810i 0.857287 + 1.48486i
\(759\) 0 0
\(760\) −58.7409 + 101.742i −2.13076 + 3.69058i
\(761\) −16.9572 29.3707i −0.614696 1.06469i −0.990438 0.137961i \(-0.955945\pi\)
0.375741 0.926725i \(-0.377388\pi\)
\(762\) 0 0
\(763\) 2.03012 14.3772i 0.0734952 0.520488i
\(764\) −113.289 −4.09864
\(765\) 0 0
\(766\) −8.09800 + 14.0261i −0.292593 + 0.506785i
\(767\) 9.86773 17.0914i 0.356303 0.617135i
\(768\) 0 0
\(769\) −8.50784 −0.306800 −0.153400 0.988164i \(-0.549022\pi\)
−0.153400 + 0.988164i \(0.549022\pi\)
\(770\) 36.3927 + 28.4713i 1.31150 + 1.02603i
\(771\) 0 0
\(772\) 1.85137 + 3.20667i 0.0666324 + 0.115411i
\(773\) −22.7870 + 39.4682i −0.819590 + 1.41957i 0.0863952 + 0.996261i \(0.472465\pi\)
−0.905985 + 0.423310i \(0.860868\pi\)
\(774\) 0 0
\(775\) −0.662620 1.14769i −0.0238020 0.0412263i
\(776\) −9.21704 −0.330873
\(777\) 0 0
\(778\) −58.5283 −2.09834
\(779\) 29.1229 + 50.4424i 1.04344 + 1.80729i
\(780\) 0 0
\(781\) 0.236863 0.410259i 0.00847563 0.0146802i
\(782\) −12.1645 21.0695i −0.435000 0.753442i
\(783\) 0 0
\(784\) −58.1765 16.7638i −2.07773 0.598707i
\(785\) 6.68614 0.238638
\(786\) 0 0
\(787\) 4.16234 7.20939i 0.148372 0.256987i −0.782254 0.622959i \(-0.785930\pi\)
0.930626 + 0.365972i \(0.119264\pi\)
\(788\) −34.9702 + 60.5702i −1.24576 + 2.15772i
\(789\) 0 0
\(790\) −46.9918 −1.67189
\(791\) −15.3484 + 6.18953i −0.545725 + 0.220074i
\(792\) 0 0
\(793\) 15.2181 + 26.3586i 0.540412 + 0.936020i
\(794\) 27.4459 47.5377i 0.974019 1.68705i
\(795\) 0 0
\(796\) −6.41162 11.1053i −0.227254 0.393615i
\(797\) 39.2773 1.39127 0.695637 0.718394i \(-0.255122\pi\)
0.695637 + 0.718394i \(0.255122\pi\)
\(798\) 0 0
\(799\) −8.90533 −0.315048
\(800\) −0.898421 1.55611i −0.0317640 0.0550168i
\(801\) 0 0
\(802\) −5.52975 + 9.57781i −0.195262 + 0.338204i
\(803\) −0.562673 0.974578i −0.0198563 0.0343921i
\(804\) 0 0
\(805\) 5.19604 36.7980i 0.183136 1.29696i
\(806\) 68.7080 2.42014
\(807\) 0 0
\(808\) 63.3090 109.654i 2.22720 3.85763i
\(809\) 11.4525 19.8364i 0.402649 0.697409i −0.591395 0.806382i \(-0.701423\pi\)
0.994045 + 0.108973i \(0.0347561\pi\)
\(810\) 0 0
\(811\) −17.0254 −0.597842 −0.298921 0.954278i \(-0.596627\pi\)
−0.298921 + 0.954278i \(0.596627\pi\)
\(812\) 4.06427 28.7829i 0.142628 1.01008i
\(813\) 0 0
\(814\) 27.4446 + 47.5355i 0.961934 + 1.66612i
\(815\) 1.37533 2.38214i 0.0481758 0.0834429i
\(816\) 0 0
\(817\) −3.07819 5.33158i −0.107692 0.186528i
\(818\) 91.3996 3.19571
\(819\) 0 0
\(820\) −84.5864 −2.95389
\(821\) 16.3565 + 28.3303i 0.570845 + 0.988733i 0.996479 + 0.0838376i \(0.0267177\pi\)
−0.425634 + 0.904895i \(0.639949\pi\)
\(822\) 0 0
\(823\) 13.9457 24.1547i 0.486118 0.841981i −0.513755 0.857937i \(-0.671746\pi\)
0.999873 + 0.0159561i \(0.00507920\pi\)
\(824\) −47.1805 81.7190i −1.64361 2.84682i
\(825\) 0 0
\(826\) −29.3539 + 11.8375i −1.02135 + 0.411880i
\(827\) 17.5753 0.611153 0.305576 0.952168i \(-0.401151\pi\)
0.305576 + 0.952168i \(0.401151\pi\)
\(828\) 0 0
\(829\) 0.997731 1.72812i 0.0346526 0.0600201i −0.848179 0.529710i \(-0.822301\pi\)
0.882832 + 0.469690i \(0.155634\pi\)
\(830\) −12.6952 + 21.9887i −0.440656 + 0.763239i
\(831\) 0 0
\(832\) 19.3225 0.669886
\(833\) −2.57482 10.3846i −0.0892124 0.359805i
\(834\) 0 0
\(835\) −16.4040 28.4126i −0.567684 0.983257i
\(836\) 51.2157 88.7082i 1.77133 3.06804i
\(837\) 0 0
\(838\) 4.85003 + 8.40049i 0.167541 + 0.290190i
\(839\) 22.6524 0.782046 0.391023 0.920381i \(-0.372121\pi\)
0.391023 + 0.920381i \(0.372121\pi\)
\(840\) 0 0
\(841\) −23.5226 −0.811125
\(842\) −31.7375 54.9710i −1.09375 1.89443i
\(843\) 0 0
\(844\) 21.5380 37.3050i 0.741369 1.28409i
\(845\) −5.95863 10.3206i −0.204983 0.355041i
\(846\) 0 0
\(847\) 4.70976 + 3.68460i 0.161829 + 0.126605i
\(848\) 64.3191 2.20873
\(849\) 0 0
\(850\) 0.421200 0.729541i 0.0144471 0.0250230i
\(851\) 22.0732 38.2319i 0.756659 1.31057i
\(852\) 0 0
\(853\) −13.3024 −0.455465 −0.227732 0.973724i \(-0.573131\pi\)
−0.227732 + 0.973724i \(0.573131\pi\)
\(854\) 6.82481 48.3329i 0.233540 1.65392i
\(855\) 0 0
\(856\) −28.3697 49.1377i −0.969656 1.67949i
\(857\) 12.1665 21.0729i 0.415599 0.719838i −0.579892 0.814693i \(-0.696905\pi\)
0.995491 + 0.0948550i \(0.0302387\pi\)
\(858\) 0 0
\(859\) −7.80925 13.5260i −0.266448 0.461502i 0.701494 0.712676i \(-0.252517\pi\)
−0.967942 + 0.251174i \(0.919183\pi\)
\(860\) 8.94048 0.304868
\(861\) 0 0
\(862\) −62.7614 −2.13766
\(863\) −18.3558 31.7931i −0.624838 1.08225i −0.988572 0.150748i \(-0.951832\pi\)
0.363735 0.931503i \(-0.381502\pi\)
\(864\) 0 0
\(865\) −6.21451 + 10.7638i −0.211300 + 0.365982i
\(866\) −11.1264 19.2715i −0.378091 0.654872i
\(867\) 0 0
\(868\) −60.8594 47.6123i −2.06570 1.61607i
\(869\) 23.5164 0.797740
\(870\) 0 0
\(871\) 7.09678 12.2920i 0.240465 0.416498i
\(872\) 19.1299 33.1339i 0.647820 1.12206i
\(873\) 0 0
\(874\) −117.482 −3.97388
\(875\) −26.8186 + 10.8151i −0.906633 + 0.365617i
\(876\) 0 0
\(877\) 25.0992 + 43.4730i 0.847538 + 1.46798i 0.883398 + 0.468623i \(0.155250\pi\)
−0.0358600 + 0.999357i \(0.511417\pi\)
\(878\) −34.3581 + 59.5099i −1.15953 + 2.00836i
\(879\) 0 0
\(880\) 29.1902 + 50.5589i 0.984001 + 1.70434i
\(881\) 51.6426 1.73989 0.869943 0.493153i \(-0.164156\pi\)
0.869943 + 0.493153i \(0.164156\pi\)
\(882\) 0 0
\(883\) −4.77954 −0.160844 −0.0804222 0.996761i \(-0.525627\pi\)
−0.0804222 + 0.996761i \(0.525627\pi\)
\(884\) 15.3134 + 26.5236i 0.515046 + 0.892086i
\(885\) 0 0
\(886\) −35.7163 + 61.8625i −1.19991 + 2.07831i
\(887\) 15.5782 + 26.9823i 0.523066 + 0.905976i 0.999640 + 0.0268420i \(0.00854509\pi\)
−0.476574 + 0.879134i \(0.658122\pi\)
\(888\) 0 0
\(889\) −13.7414 + 5.54150i −0.460872 + 0.185856i
\(890\) −35.7791 −1.19932
\(891\) 0 0
\(892\) 66.5270 115.228i 2.22749 3.85812i
\(893\) −21.5015 + 37.2416i −0.719519 + 1.24624i
\(894\) 0 0
\(895\) 13.8284 0.462232
\(896\) 10.7481 + 8.40860i 0.359069 + 0.280911i
\(897\) 0 0
\(898\) −20.2222 35.0258i −0.674823 1.16883i
\(899\) 7.28009 12.6095i 0.242805 0.420550i
\(900\) 0 0
\(901\) 5.68312 + 9.84345i 0.189332 + 0.327933i
\(902\) 60.3642 2.00991
\(903\) 0 0
\(904\) −43.6078 −1.45037
\(905\) −14.5458 25.1941i −0.483520 0.837481i
\(906\) 0 0
\(907\) 11.1185 19.2578i 0.369184 0.639445i −0.620254 0.784401i \(-0.712971\pi\)
0.989438 + 0.144955i \(0.0463039\pi\)
\(908\) 4.86340 + 8.42366i 0.161398 + 0.279549i
\(909\) 0 0
\(910\) −9.32784 + 66.0592i −0.309215 + 2.18984i
\(911\) 2.03370 0.0673794 0.0336897 0.999432i \(-0.489274\pi\)
0.0336897 + 0.999432i \(0.489274\pi\)
\(912\) 0 0
\(913\) 6.35314 11.0040i 0.210258 0.364178i
\(914\) 42.6081 73.7993i 1.40935 2.44107i
\(915\) 0 0
\(916\) −73.6344 −2.43295
\(917\) −14.8467 11.6151i −0.490280 0.383563i
\(918\) 0 0
\(919\) 23.8031 + 41.2282i 0.785193 + 1.35999i 0.928884 + 0.370371i \(0.120769\pi\)
−0.143691 + 0.989623i \(0.545897\pi\)
\(920\) 48.9624 84.8054i 1.61424 2.79595i
\(921\) 0 0
\(922\) 45.1730 + 78.2419i 1.48769 + 2.57676i
\(923\) 0.683981 0.0225135
\(924\) 0 0
\(925\) 1.52859 0.0502597
\(926\) −4.01373 6.95198i −0.131899 0.228456i
\(927\) 0 0
\(928\) 9.87080 17.0967i 0.324025 0.561228i
\(929\) 15.6050 + 27.0287i 0.511985 + 0.886784i 0.999903 + 0.0138945i \(0.00442289\pi\)
−0.487919 + 0.872889i \(0.662244\pi\)
\(930\) 0 0
\(931\) −49.6446 14.3053i −1.62704 0.468837i
\(932\) −137.325 −4.49822
\(933\) 0 0
\(934\) −13.6193 + 23.5893i −0.445637 + 0.771865i
\(935\) −5.15838 + 8.93458i −0.168697 + 0.292192i
\(936\) 0 0
\(937\) −18.0157 −0.588548 −0.294274 0.955721i \(-0.595078\pi\)
−0.294274 + 0.955721i \(0.595078\pi\)
\(938\) −21.1111 + 8.51345i −0.689300 + 0.277974i
\(939\) 0 0
\(940\) −31.2251 54.0835i −1.01845 1.76401i
\(941\) −21.8559 + 37.8555i −0.712481 + 1.23405i 0.251442 + 0.967872i \(0.419095\pi\)
−0.963923 + 0.266181i \(0.914238\pi\)
\(942\) 0 0
\(943\) −24.2749 42.0453i −0.790499 1.36918i
\(944\) −39.9898 −1.30156
\(945\) 0 0
\(946\) −6.38028 −0.207441
\(947\) −22.2393 38.5197i −0.722681 1.25172i −0.959921 0.280270i \(-0.909576\pi\)
0.237240 0.971451i \(-0.423757\pi\)
\(948\) 0 0
\(949\) 0.812405 1.40713i 0.0263718 0.0456773i
\(950\) −2.03393 3.52288i −0.0659895 0.114297i
\(951\) 0 0
\(952\) 3.94174 27.9152i 0.127753 0.904736i
\(953\) −52.3118 −1.69454 −0.847272 0.531159i \(-0.821757\pi\)
−0.847272 + 0.531159i \(0.821757\pi\)
\(954\) 0 0
\(955\) 27.5496 47.7172i 0.891483 1.54409i
\(956\) −41.5958 + 72.0460i −1.34530 + 2.33013i
\(957\) 0 0
\(958\) 43.9285 1.41927
\(959\) −3.28424 + 23.2588i −0.106054 + 0.751066i
\(960\) 0 0
\(961\) −3.85225 6.67230i −0.124266 0.215236i
\(962\) −39.6254 + 68.6333i −1.27758 + 2.21283i
\(963\) 0 0
\(964\) 61.9840 + 107.359i 1.99637 + 3.45781i
\(965\) −1.80087 −0.0579720
\(966\) 0 0
\(967\) 0.663672 0.0213423 0.0106711 0.999943i \(-0.496603\pi\)
0.0106711 + 0.999943i \(0.496603\pi\)
\(968\) 7.87843 + 13.6458i 0.253222 + 0.438594i
\(969\) 0 0
\(970\) 3.90511 6.76385i 0.125385 0.217174i
\(971\) 29.2598 + 50.6795i 0.938993 + 1.62638i 0.767354 + 0.641224i \(0.221573\pi\)
0.171639 + 0.985160i \(0.445094\pi\)
\(972\) 0 0
\(973\) 20.5403 8.28326i 0.658490 0.265549i
\(974\) −34.1679 −1.09481
\(975\) 0 0
\(976\) 30.8364 53.4101i 0.987048 1.70962i
\(977\) −27.0201 + 46.8002i −0.864450 + 1.49727i 0.00314297 + 0.999995i \(0.499000\pi\)
−0.867593 + 0.497276i \(0.834334\pi\)
\(978\) 0 0
\(979\) 17.9052 0.572252
\(980\) 54.0391 52.0492i 1.72622 1.66265i
\(981\) 0 0
\(982\) −20.4187 35.3662i −0.651586 1.12858i
\(983\) 10.9261 18.9245i 0.348487 0.603597i −0.637494 0.770455i \(-0.720029\pi\)
0.985981 + 0.166858i \(0.0533622\pi\)
\(984\) 0 0
\(985\) −17.0081 29.4589i −0.541924 0.938640i
\(986\) 9.25532 0.294749
\(987\) 0 0
\(988\) 147.894 4.70513
\(989\) 2.56577 + 4.44404i 0.0815867 + 0.141312i
\(990\) 0 0
\(991\) 6.91507 11.9773i 0.219664 0.380470i −0.735041 0.678023i \(-0.762837\pi\)
0.954705 + 0.297553i \(0.0961704\pi\)
\(992\) −26.2390 45.4473i −0.833089 1.44295i
\(993\) 0 0
\(994\) −0.863961 0.675906i −0.0274032 0.0214384i
\(995\) 6.23672 0.197717
\(996\) 0 0
\(997\) 3.13701 5.43346i 0.0993501 0.172079i −0.812066 0.583566i \(-0.801657\pi\)
0.911416 + 0.411487i \(0.134990\pi\)
\(998\) −55.5584 + 96.2299i −1.75867 + 3.04611i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.e.g.487.1 yes 16
3.2 odd 2 inner 567.2.e.g.487.8 yes 16
7.2 even 3 inner 567.2.e.g.163.1 16
7.3 odd 6 3969.2.a.bf.1.8 8
7.4 even 3 3969.2.a.bg.1.8 8
9.2 odd 6 567.2.g.l.109.8 16
9.4 even 3 567.2.h.l.298.8 16
9.5 odd 6 567.2.h.l.298.1 16
9.7 even 3 567.2.g.l.109.1 16
21.2 odd 6 inner 567.2.e.g.163.8 yes 16
21.11 odd 6 3969.2.a.bg.1.1 8
21.17 even 6 3969.2.a.bf.1.1 8
63.2 odd 6 567.2.h.l.352.1 16
63.16 even 3 567.2.h.l.352.8 16
63.23 odd 6 567.2.g.l.541.8 16
63.58 even 3 567.2.g.l.541.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.1 16 7.2 even 3 inner
567.2.e.g.163.8 yes 16 21.2 odd 6 inner
567.2.e.g.487.1 yes 16 1.1 even 1 trivial
567.2.e.g.487.8 yes 16 3.2 odd 2 inner
567.2.g.l.109.1 16 9.7 even 3
567.2.g.l.109.8 16 9.2 odd 6
567.2.g.l.541.1 16 63.58 even 3
567.2.g.l.541.8 16 63.23 odd 6
567.2.h.l.298.1 16 9.5 odd 6
567.2.h.l.298.8 16 9.4 even 3
567.2.h.l.352.1 16 63.2 odd 6
567.2.h.l.352.8 16 63.16 even 3
3969.2.a.bf.1.1 8 21.17 even 6
3969.2.a.bf.1.8 8 7.3 odd 6
3969.2.a.bg.1.1 8 21.11 odd 6
3969.2.a.bg.1.8 8 7.4 even 3