Properties

Label 567.2.e.g.163.6
Level $567$
Weight $2$
Character 567.163
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(163,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.6
Root \(-0.776749 - 1.18180i\) of defining polynomial
Character \(\chi\) \(=\) 567.163
Dual form 567.2.e.g.487.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.635098 - 1.10002i) q^{2} +(0.193301 + 0.334806i) q^{4} +(-0.776749 + 1.34537i) q^{5} +(-1.48662 - 2.18860i) q^{7} +3.03145 q^{8} +(0.986623 + 1.70888i) q^{10} +(1.60500 + 2.77995i) q^{11} +4.78669 q^{13} +(-3.35166 + 0.245346i) q^{14} +(1.53867 - 2.66505i) q^{16} +(1.05918 + 1.83456i) q^{17} +(2.43201 - 4.21237i) q^{19} -0.600584 q^{20} +4.07734 q^{22} +(-1.85379 + 3.21086i) q^{23} +(1.29332 + 2.24010i) q^{25} +(3.04002 - 5.26547i) q^{26} +(0.445391 - 0.920788i) q^{28} +7.37944 q^{29} +(-2.75209 - 4.76676i) q^{31} +(1.07704 + 1.86549i) q^{32} +2.69074 q^{34} +(4.09920 - 0.300067i) q^{35} +(0.0932782 - 0.161563i) q^{37} +(-3.08914 - 5.35054i) q^{38} +(-2.35468 + 4.07842i) q^{40} -10.7972 q^{41} +4.86916 q^{43} +(-0.620496 + 1.07473i) q^{44} +(2.35468 + 4.07842i) q^{46} +(-0.885937 + 1.53449i) q^{47} +(-2.57990 + 6.50724i) q^{49} +3.28555 q^{50} +(0.925270 + 1.60261i) q^{52} +(-0.834432 - 1.44528i) q^{53} -4.98674 q^{55} +(-4.50663 - 6.63462i) q^{56} +(4.68667 - 8.11755i) q^{58} +(-2.91297 - 5.04541i) q^{59} +(-3.43865 + 5.95591i) q^{61} -6.99139 q^{62} +8.89078 q^{64} +(-3.71806 + 6.43986i) q^{65} +(-6.11868 - 10.5979i) q^{67} +(-0.409481 + 0.709241i) q^{68} +(2.27331 - 4.69978i) q^{70} -13.8101 q^{71} +(-5.93201 - 10.2745i) q^{73} +(-0.118482 - 0.205216i) q^{74} +1.88044 q^{76} +(3.69814 - 7.64544i) q^{77} +(0.654632 - 1.13386i) q^{79} +(2.39032 + 4.14015i) q^{80} +(-6.85728 + 11.8772i) q^{82} -0.346488 q^{83} -3.29087 q^{85} +(3.09239 - 5.35618i) q^{86} +(4.86549 + 8.42727i) q^{88} +(8.70319 - 15.0744i) q^{89} +(-7.11601 - 10.4761i) q^{91} -1.43335 q^{92} +(1.12531 + 1.94910i) q^{94} +(3.77813 + 6.54391i) q^{95} -10.5683 q^{97} +(5.51961 + 6.97068i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} + 6 q^{7} - 14 q^{10} + 12 q^{13} - 6 q^{16} - 24 q^{19} + 4 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} - 36 q^{40} + 20 q^{43} + 36 q^{46} - 14 q^{49} - 34 q^{52} + 8 q^{55} + 22 q^{58} - 36 q^{61}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.635098 1.10002i 0.449082 0.777833i −0.549244 0.835662i \(-0.685084\pi\)
0.998327 + 0.0578286i \(0.0184177\pi\)
\(3\) 0 0
\(4\) 0.193301 + 0.334806i 0.0966503 + 0.167403i
\(5\) −0.776749 + 1.34537i −0.347373 + 0.601667i −0.985782 0.168030i \(-0.946259\pi\)
0.638409 + 0.769697i \(0.279593\pi\)
\(6\) 0 0
\(7\) −1.48662 2.18860i −0.561891 0.827211i
\(8\) 3.03145 1.07178
\(9\) 0 0
\(10\) 0.986623 + 1.70888i 0.311998 + 0.540396i
\(11\) 1.60500 + 2.77995i 0.483927 + 0.838185i 0.999830 0.0184616i \(-0.00587686\pi\)
−0.515903 + 0.856647i \(0.672544\pi\)
\(12\) 0 0
\(13\) 4.78669 1.32759 0.663795 0.747915i \(-0.268945\pi\)
0.663795 + 0.747915i \(0.268945\pi\)
\(14\) −3.35166 + 0.245346i −0.895768 + 0.0655714i
\(15\) 0 0
\(16\) 1.53867 2.66505i 0.384667 0.666263i
\(17\) 1.05918 + 1.83456i 0.256889 + 0.444945i 0.965407 0.260748i \(-0.0839691\pi\)
−0.708518 + 0.705693i \(0.750636\pi\)
\(18\) 0 0
\(19\) 2.43201 4.21237i 0.557942 0.966384i −0.439726 0.898132i \(-0.644924\pi\)
0.997668 0.0682523i \(-0.0217423\pi\)
\(20\) −0.600584 −0.134295
\(21\) 0 0
\(22\) 4.07734 0.869291
\(23\) −1.85379 + 3.21086i −0.386542 + 0.669510i −0.991982 0.126381i \(-0.959664\pi\)
0.605440 + 0.795891i \(0.292997\pi\)
\(24\) 0 0
\(25\) 1.29332 + 2.24010i 0.258665 + 0.448020i
\(26\) 3.04002 5.26547i 0.596197 1.03264i
\(27\) 0 0
\(28\) 0.445391 0.920788i 0.0841709 0.174013i
\(29\) 7.37944 1.37033 0.685164 0.728389i \(-0.259731\pi\)
0.685164 + 0.728389i \(0.259731\pi\)
\(30\) 0 0
\(31\) −2.75209 4.76676i −0.494290 0.856135i 0.505688 0.862716i \(-0.331239\pi\)
−0.999978 + 0.00658088i \(0.997905\pi\)
\(32\) 1.07704 + 1.86549i 0.190396 + 0.329775i
\(33\) 0 0
\(34\) 2.69074 0.461457
\(35\) 4.09920 0.300067i 0.692891 0.0507206i
\(36\) 0 0
\(37\) 0.0932782 0.161563i 0.0153348 0.0265607i −0.858256 0.513222i \(-0.828452\pi\)
0.873591 + 0.486661i \(0.161785\pi\)
\(38\) −3.08914 5.35054i −0.501124 0.867972i
\(39\) 0 0
\(40\) −2.35468 + 4.07842i −0.372307 + 0.644855i
\(41\) −10.7972 −1.68624 −0.843120 0.537726i \(-0.819284\pi\)
−0.843120 + 0.537726i \(0.819284\pi\)
\(42\) 0 0
\(43\) 4.86916 0.742539 0.371270 0.928525i \(-0.378923\pi\)
0.371270 + 0.928525i \(0.378923\pi\)
\(44\) −0.620496 + 1.07473i −0.0935433 + 0.162022i
\(45\) 0 0
\(46\) 2.35468 + 4.07842i 0.347178 + 0.601330i
\(47\) −0.885937 + 1.53449i −0.129227 + 0.223828i −0.923377 0.383893i \(-0.874583\pi\)
0.794150 + 0.607722i \(0.207916\pi\)
\(48\) 0 0
\(49\) −2.57990 + 6.50724i −0.368557 + 0.929605i
\(50\) 3.28555 0.464647
\(51\) 0 0
\(52\) 0.925270 + 1.60261i 0.128312 + 0.222243i
\(53\) −0.834432 1.44528i −0.114618 0.198524i 0.803009 0.595967i \(-0.203231\pi\)
−0.917627 + 0.397443i \(0.869898\pi\)
\(54\) 0 0
\(55\) −4.98674 −0.672411
\(56\) −4.50663 6.63462i −0.602223 0.886589i
\(57\) 0 0
\(58\) 4.68667 8.11755i 0.615390 1.06589i
\(59\) −2.91297 5.04541i −0.379236 0.656857i 0.611715 0.791078i \(-0.290480\pi\)
−0.990951 + 0.134221i \(0.957147\pi\)
\(60\) 0 0
\(61\) −3.43865 + 5.95591i −0.440274 + 0.762576i −0.997710 0.0676438i \(-0.978452\pi\)
0.557436 + 0.830220i \(0.311785\pi\)
\(62\) −6.99139 −0.887907
\(63\) 0 0
\(64\) 8.89078 1.11135
\(65\) −3.71806 + 6.43986i −0.461168 + 0.798766i
\(66\) 0 0
\(67\) −6.11868 10.5979i −0.747516 1.29474i −0.949010 0.315246i \(-0.897913\pi\)
0.201494 0.979490i \(-0.435420\pi\)
\(68\) −0.409481 + 0.709241i −0.0496568 + 0.0860081i
\(69\) 0 0
\(70\) 2.27331 4.69978i 0.271713 0.561732i
\(71\) −13.8101 −1.63895 −0.819477 0.573112i \(-0.805736\pi\)
−0.819477 + 0.573112i \(0.805736\pi\)
\(72\) 0 0
\(73\) −5.93201 10.2745i −0.694290 1.20255i −0.970420 0.241425i \(-0.922385\pi\)
0.276130 0.961120i \(-0.410948\pi\)
\(74\) −0.118482 0.205216i −0.0137732 0.0238559i
\(75\) 0 0
\(76\) 1.88044 0.215701
\(77\) 3.69814 7.64544i 0.421443 0.871278i
\(78\) 0 0
\(79\) 0.654632 1.13386i 0.0736518 0.127569i −0.826847 0.562426i \(-0.809868\pi\)
0.900499 + 0.434858i \(0.143201\pi\)
\(80\) 2.39032 + 4.14015i 0.267246 + 0.462883i
\(81\) 0 0
\(82\) −6.85728 + 11.8772i −0.757260 + 1.31161i
\(83\) −0.346488 −0.0380320 −0.0190160 0.999819i \(-0.506053\pi\)
−0.0190160 + 0.999819i \(0.506053\pi\)
\(84\) 0 0
\(85\) −3.29087 −0.356945
\(86\) 3.09239 5.35618i 0.333461 0.577572i
\(87\) 0 0
\(88\) 4.86549 + 8.42727i 0.518663 + 0.898350i
\(89\) 8.70319 15.0744i 0.922537 1.59788i 0.127061 0.991895i \(-0.459446\pi\)
0.795476 0.605985i \(-0.207221\pi\)
\(90\) 0 0
\(91\) −7.11601 10.4761i −0.745960 1.09820i
\(92\) −1.43335 −0.149437
\(93\) 0 0
\(94\) 1.12531 + 1.94910i 0.116067 + 0.201035i
\(95\) 3.77813 + 6.54391i 0.387628 + 0.671391i
\(96\) 0 0
\(97\) −10.5683 −1.07304 −0.536522 0.843886i \(-0.680262\pi\)
−0.536522 + 0.843886i \(0.680262\pi\)
\(98\) 5.51961 + 6.97068i 0.557565 + 0.704145i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) 1.01697 + 1.76144i 0.101192 + 0.175270i 0.912176 0.409798i \(-0.134401\pi\)
−0.810984 + 0.585068i \(0.801068\pi\)
\(102\) 0 0
\(103\) −9.99080 + 17.3046i −0.984423 + 1.70507i −0.339951 + 0.940443i \(0.610410\pi\)
−0.644472 + 0.764628i \(0.722923\pi\)
\(104\) 14.5106 1.42288
\(105\) 0 0
\(106\) −2.11979 −0.205892
\(107\) −8.45322 + 14.6414i −0.817204 + 1.41544i 0.0905308 + 0.995894i \(0.471144\pi\)
−0.907735 + 0.419545i \(0.862190\pi\)
\(108\) 0 0
\(109\) 5.34955 + 9.26569i 0.512394 + 0.887492i 0.999897 + 0.0143707i \(0.00457451\pi\)
−0.487503 + 0.873121i \(0.662092\pi\)
\(110\) −3.16707 + 5.48552i −0.301968 + 0.523024i
\(111\) 0 0
\(112\) −8.12014 + 0.594406i −0.767281 + 0.0561661i
\(113\) 8.58471 0.807582 0.403791 0.914851i \(-0.367692\pi\)
0.403791 + 0.914851i \(0.367692\pi\)
\(114\) 0 0
\(115\) −2.87986 4.98806i −0.268548 0.465139i
\(116\) 1.42645 + 2.47068i 0.132442 + 0.229397i
\(117\) 0 0
\(118\) −7.40009 −0.681233
\(119\) 2.44050 5.04541i 0.223720 0.462512i
\(120\) 0 0
\(121\) 0.347932 0.602636i 0.0316302 0.0547851i
\(122\) 4.36776 + 7.56518i 0.395438 + 0.684919i
\(123\) 0 0
\(124\) 1.06396 1.84283i 0.0955465 0.165491i
\(125\) −11.7858 −1.05416
\(126\) 0 0
\(127\) 1.95162 0.173178 0.0865892 0.996244i \(-0.472403\pi\)
0.0865892 + 0.996244i \(0.472403\pi\)
\(128\) 3.49244 6.04908i 0.308691 0.534668i
\(129\) 0 0
\(130\) 4.72266 + 8.17989i 0.414205 + 0.717424i
\(131\) 5.87214 10.1708i 0.513051 0.888630i −0.486834 0.873494i \(-0.661849\pi\)
0.999885 0.0151361i \(-0.00481816\pi\)
\(132\) 0 0
\(133\) −12.8347 + 0.939515i −1.11291 + 0.0814663i
\(134\) −15.5439 −1.34278
\(135\) 0 0
\(136\) 3.21086 + 5.56137i 0.275329 + 0.476883i
\(137\) 8.06604 + 13.9708i 0.689128 + 1.19361i 0.972120 + 0.234483i \(0.0753398\pi\)
−0.282992 + 0.959122i \(0.591327\pi\)
\(138\) 0 0
\(139\) 13.4425 1.14018 0.570091 0.821582i \(-0.306908\pi\)
0.570091 + 0.821582i \(0.306908\pi\)
\(140\) 0.892842 + 1.31443i 0.0754589 + 0.111090i
\(141\) 0 0
\(142\) −8.77075 + 15.1914i −0.736025 + 1.27483i
\(143\) 7.68265 + 13.3067i 0.642456 + 1.11277i
\(144\) 0 0
\(145\) −5.73197 + 9.92806i −0.476014 + 0.824481i
\(146\) −15.0696 −1.24717
\(147\) 0 0
\(148\) 0.0721229 0.00592846
\(149\) 1.60587 2.78145i 0.131558 0.227865i −0.792719 0.609587i \(-0.791335\pi\)
0.924277 + 0.381722i \(0.124669\pi\)
\(150\) 0 0
\(151\) −8.51610 14.7503i −0.693030 1.20036i −0.970840 0.239727i \(-0.922942\pi\)
0.277810 0.960636i \(-0.410391\pi\)
\(152\) 7.37253 12.7696i 0.597991 1.03575i
\(153\) 0 0
\(154\) −6.06147 8.92364i −0.488447 0.719088i
\(155\) 8.55073 0.686811
\(156\) 0 0
\(157\) −4.71709 8.17024i −0.376465 0.652056i 0.614080 0.789243i \(-0.289527\pi\)
−0.990545 + 0.137188i \(0.956194\pi\)
\(158\) −0.831511 1.44022i −0.0661515 0.114578i
\(159\) 0 0
\(160\) −3.34636 −0.264553
\(161\) 9.78315 0.716140i 0.771021 0.0564398i
\(162\) 0 0
\(163\) −1.83874 + 3.18478i −0.144021 + 0.249452i −0.929007 0.370062i \(-0.879337\pi\)
0.784986 + 0.619513i \(0.212670\pi\)
\(164\) −2.08710 3.61497i −0.162976 0.282282i
\(165\) 0 0
\(166\) −0.220054 + 0.381144i −0.0170795 + 0.0295825i
\(167\) 1.61017 0.124599 0.0622994 0.998058i \(-0.480157\pi\)
0.0622994 + 0.998058i \(0.480157\pi\)
\(168\) 0 0
\(169\) 9.91241 0.762493
\(170\) −2.09003 + 3.62003i −0.160298 + 0.277644i
\(171\) 0 0
\(172\) 0.941210 + 1.63022i 0.0717666 + 0.124303i
\(173\) −8.09213 + 14.0160i −0.615233 + 1.06562i 0.375110 + 0.926980i \(0.377605\pi\)
−0.990344 + 0.138635i \(0.955728\pi\)
\(174\) 0 0
\(175\) 2.97999 6.16075i 0.225266 0.465709i
\(176\) 9.87827 0.744603
\(177\) 0 0
\(178\) −11.0548 19.1474i −0.828590 1.43516i
\(179\) −8.70319 15.0744i −0.650507 1.12671i −0.983000 0.183606i \(-0.941223\pi\)
0.332493 0.943106i \(-0.392110\pi\)
\(180\) 0 0
\(181\) 8.89591 0.661228 0.330614 0.943766i \(-0.392744\pi\)
0.330614 + 0.943766i \(0.392744\pi\)
\(182\) −16.0433 + 1.17439i −1.18921 + 0.0870519i
\(183\) 0 0
\(184\) −5.61967 + 9.73356i −0.414288 + 0.717568i
\(185\) 0.144907 + 0.250987i 0.0106538 + 0.0184529i
\(186\) 0 0
\(187\) −3.39998 + 5.88893i −0.248631 + 0.430642i
\(188\) −0.685009 −0.0499594
\(189\) 0 0
\(190\) 9.59793 0.696307
\(191\) 7.39609 12.8104i 0.535163 0.926929i −0.463993 0.885839i \(-0.653584\pi\)
0.999155 0.0410898i \(-0.0130830\pi\)
\(192\) 0 0
\(193\) −0.910790 1.57753i −0.0655601 0.113553i 0.831382 0.555701i \(-0.187550\pi\)
−0.896942 + 0.442148i \(0.854217\pi\)
\(194\) −6.71188 + 11.6253i −0.481885 + 0.834649i
\(195\) 0 0
\(196\) −2.67736 + 0.394085i −0.191240 + 0.0281489i
\(197\) −7.71970 −0.550006 −0.275003 0.961443i \(-0.588679\pi\)
−0.275003 + 0.961443i \(0.588679\pi\)
\(198\) 0 0
\(199\) −1.10665 1.91678i −0.0784487 0.135877i 0.824132 0.566398i \(-0.191663\pi\)
−0.902581 + 0.430521i \(0.858330\pi\)
\(200\) 3.92065 + 6.79076i 0.277232 + 0.480179i
\(201\) 0 0
\(202\) 2.58350 0.181774
\(203\) −10.9704 16.1506i −0.769974 1.13355i
\(204\) 0 0
\(205\) 8.38671 14.5262i 0.585753 1.01455i
\(206\) 12.6903 + 21.9802i 0.884174 + 1.53143i
\(207\) 0 0
\(208\) 7.36513 12.7568i 0.510680 0.884524i
\(209\) 15.6136 1.08001
\(210\) 0 0
\(211\) −1.81344 −0.124843 −0.0624213 0.998050i \(-0.519882\pi\)
−0.0624213 + 0.998050i \(0.519882\pi\)
\(212\) 0.322592 0.558746i 0.0221557 0.0383749i
\(213\) 0 0
\(214\) 10.7373 + 18.5975i 0.733983 + 1.27130i
\(215\) −3.78211 + 6.55081i −0.257938 + 0.446761i
\(216\) 0 0
\(217\) −6.34119 + 13.1096i −0.430468 + 0.889937i
\(218\) 13.5900 0.920428
\(219\) 0 0
\(220\) −0.963939 1.66959i −0.0649887 0.112564i
\(221\) 5.06997 + 8.78145i 0.341043 + 0.590704i
\(222\) 0 0
\(223\) 9.50616 0.636580 0.318290 0.947993i \(-0.396891\pi\)
0.318290 + 0.947993i \(0.396891\pi\)
\(224\) 2.48165 5.13049i 0.165812 0.342795i
\(225\) 0 0
\(226\) 5.45213 9.44337i 0.362671 0.628164i
\(227\) −5.41646 9.38158i −0.359503 0.622678i 0.628375 0.777911i \(-0.283720\pi\)
−0.987878 + 0.155233i \(0.950387\pi\)
\(228\) 0 0
\(229\) −6.25983 + 10.8423i −0.413661 + 0.716482i −0.995287 0.0969747i \(-0.969083\pi\)
0.581626 + 0.813456i \(0.302417\pi\)
\(230\) −7.31597 −0.482401
\(231\) 0 0
\(232\) 22.3704 1.46869
\(233\) 7.64044 13.2336i 0.500542 0.866964i −0.499458 0.866338i \(-0.666467\pi\)
1.00000 0.000625732i \(-0.000199177\pi\)
\(234\) 0 0
\(235\) −1.37630 2.38382i −0.0897800 0.155504i
\(236\) 1.12616 1.95056i 0.0733066 0.126971i
\(237\) 0 0
\(238\) −4.00011 5.88893i −0.259289 0.381723i
\(239\) −10.7158 −0.693149 −0.346574 0.938023i \(-0.612655\pi\)
−0.346574 + 0.938023i \(0.612655\pi\)
\(240\) 0 0
\(241\) 7.50011 + 12.9906i 0.483125 + 0.836796i 0.999812 0.0193775i \(-0.00616845\pi\)
−0.516688 + 0.856174i \(0.672835\pi\)
\(242\) −0.441942 0.765467i −0.0284091 0.0492061i
\(243\) 0 0
\(244\) −2.65877 −0.170210
\(245\) −6.75069 8.52540i −0.431286 0.544668i
\(246\) 0 0
\(247\) 11.6413 20.1633i 0.740718 1.28296i
\(248\) −8.34283 14.4502i −0.529770 0.917589i
\(249\) 0 0
\(250\) −7.48516 + 12.9647i −0.473403 + 0.819958i
\(251\) 16.5665 1.04567 0.522833 0.852435i \(-0.324875\pi\)
0.522833 + 0.852435i \(0.324875\pi\)
\(252\) 0 0
\(253\) −11.9013 −0.748231
\(254\) 1.23947 2.14683i 0.0777714 0.134704i
\(255\) 0 0
\(256\) 4.45470 + 7.71576i 0.278419 + 0.482235i
\(257\) −11.2886 + 19.5524i −0.704163 + 1.21965i 0.262829 + 0.964842i \(0.415344\pi\)
−0.966993 + 0.254804i \(0.917989\pi\)
\(258\) 0 0
\(259\) −0.492265 + 0.0360344i −0.0305878 + 0.00223907i
\(260\) −2.87481 −0.178288
\(261\) 0 0
\(262\) −7.45877 12.9190i −0.460804 0.798136i
\(263\) −11.1730 19.3523i −0.688959 1.19331i −0.972175 0.234256i \(-0.924735\pi\)
0.283216 0.959056i \(-0.408599\pi\)
\(264\) 0 0
\(265\) 2.59258 0.159261
\(266\) −7.11779 + 14.7151i −0.436419 + 0.902241i
\(267\) 0 0
\(268\) 2.36549 4.09715i 0.144495 0.250273i
\(269\) −13.9475 24.1577i −0.850392 1.47292i −0.880855 0.473387i \(-0.843031\pi\)
0.0304623 0.999536i \(-0.490302\pi\)
\(270\) 0 0
\(271\) −4.93714 + 8.55138i −0.299910 + 0.519459i −0.976115 0.217254i \(-0.930290\pi\)
0.676205 + 0.736713i \(0.263623\pi\)
\(272\) 6.51892 0.395267
\(273\) 0 0
\(274\) 20.4909 1.23790
\(275\) −4.15157 + 7.19074i −0.250349 + 0.433618i
\(276\) 0 0
\(277\) 4.35728 + 7.54704i 0.261804 + 0.453458i 0.966721 0.255832i \(-0.0823493\pi\)
−0.704917 + 0.709289i \(0.749016\pi\)
\(278\) 8.53733 14.7871i 0.512035 0.886871i
\(279\) 0 0
\(280\) 12.4265 0.909639i 0.742627 0.0543613i
\(281\) −6.20641 −0.370243 −0.185122 0.982716i \(-0.559268\pi\)
−0.185122 + 0.982716i \(0.559268\pi\)
\(282\) 0 0
\(283\) −9.82943 17.0251i −0.584299 1.01204i −0.994962 0.100248i \(-0.968036\pi\)
0.410664 0.911787i \(-0.365297\pi\)
\(284\) −2.66949 4.62370i −0.158405 0.274366i
\(285\) 0 0
\(286\) 19.5170 1.15406
\(287\) 16.0514 + 23.6307i 0.947483 + 1.39488i
\(288\) 0 0
\(289\) 6.25627 10.8362i 0.368016 0.637422i
\(290\) 7.28073 + 12.6106i 0.427539 + 0.740519i
\(291\) 0 0
\(292\) 2.29332 3.97215i 0.134207 0.232453i
\(293\) −14.4968 −0.846913 −0.423456 0.905916i \(-0.639183\pi\)
−0.423456 + 0.905916i \(0.639183\pi\)
\(294\) 0 0
\(295\) 9.05058 0.526945
\(296\) 0.282768 0.489769i 0.0164356 0.0284672i
\(297\) 0 0
\(298\) −2.03977 3.53299i −0.118161 0.204661i
\(299\) −8.87352 + 15.3694i −0.513169 + 0.888834i
\(300\) 0 0
\(301\) −7.23860 10.6566i −0.417226 0.614237i
\(302\) −21.6342 −1.24491
\(303\) 0 0
\(304\) −7.48413 12.9629i −0.429244 0.743473i
\(305\) −5.34193 9.25249i −0.305878 0.529796i
\(306\) 0 0
\(307\) 22.2776 1.27145 0.635725 0.771916i \(-0.280701\pi\)
0.635725 + 0.771916i \(0.280701\pi\)
\(308\) 3.27459 0.239705i 0.186587 0.0136584i
\(309\) 0 0
\(310\) 5.43055 9.40599i 0.308435 0.534225i
\(311\) −8.70027 15.0693i −0.493347 0.854502i 0.506623 0.862167i \(-0.330893\pi\)
−0.999971 + 0.00766509i \(0.997560\pi\)
\(312\) 0 0
\(313\) 0.100022 0.173244i 0.00565360 0.00979232i −0.863185 0.504888i \(-0.831534\pi\)
0.868838 + 0.495096i \(0.164867\pi\)
\(314\) −11.9833 −0.676254
\(315\) 0 0
\(316\) 0.506163 0.0284739
\(317\) −4.11706 + 7.13096i −0.231237 + 0.400514i −0.958172 0.286192i \(-0.907611\pi\)
0.726935 + 0.686706i \(0.240944\pi\)
\(318\) 0 0
\(319\) 11.8440 + 20.5144i 0.663138 + 1.14859i
\(320\) −6.90590 + 11.9614i −0.386052 + 0.668661i
\(321\) 0 0
\(322\) 5.42549 11.2165i 0.302351 0.625072i
\(323\) 10.3038 0.573317
\(324\) 0 0
\(325\) 6.19074 + 10.7227i 0.343400 + 0.594787i
\(326\) 2.33556 + 4.04530i 0.129354 + 0.224049i
\(327\) 0 0
\(328\) −32.7312 −1.80728
\(329\) 4.67543 0.342248i 0.257765 0.0188687i
\(330\) 0 0
\(331\) 8.31616 14.4040i 0.457098 0.791716i −0.541708 0.840566i \(-0.682222\pi\)
0.998806 + 0.0488501i \(0.0155557\pi\)
\(332\) −0.0669762 0.116006i −0.00367580 0.00636667i
\(333\) 0 0
\(334\) 1.02262 1.77122i 0.0559551 0.0969170i
\(335\) 19.0107 1.03867
\(336\) 0 0
\(337\) 15.9095 0.866645 0.433322 0.901239i \(-0.357341\pi\)
0.433322 + 0.901239i \(0.357341\pi\)
\(338\) 6.29535 10.9039i 0.342422 0.593092i
\(339\) 0 0
\(340\) −0.636127 1.10180i −0.0344988 0.0597537i
\(341\) 8.83422 15.3013i 0.478400 0.828613i
\(342\) 0 0
\(343\) 18.0770 4.02745i 0.976069 0.217462i
\(344\) 14.7606 0.795839
\(345\) 0 0
\(346\) 10.2786 + 17.8031i 0.552581 + 0.957098i
\(347\) −3.14462 5.44665i −0.168812 0.292391i 0.769190 0.639020i \(-0.220660\pi\)
−0.938003 + 0.346628i \(0.887326\pi\)
\(348\) 0 0
\(349\) 1.61955 0.0866927 0.0433463 0.999060i \(-0.486198\pi\)
0.0433463 + 0.999060i \(0.486198\pi\)
\(350\) −4.88437 7.19074i −0.261081 0.384361i
\(351\) 0 0
\(352\) −3.45731 + 5.98823i −0.184275 + 0.319174i
\(353\) −16.2559 28.1560i −0.865213 1.49859i −0.866836 0.498594i \(-0.833850\pi\)
0.00162266 0.999999i \(-0.499483\pi\)
\(354\) 0 0
\(355\) 10.7270 18.5796i 0.569328 0.986104i
\(356\) 6.72933 0.356654
\(357\) 0 0
\(358\) −22.1095 −1.16852
\(359\) −5.59588 + 9.69235i −0.295339 + 0.511543i −0.975064 0.221925i \(-0.928766\pi\)
0.679724 + 0.733468i \(0.262099\pi\)
\(360\) 0 0
\(361\) −2.32938 4.03461i −0.122599 0.212348i
\(362\) 5.64978 9.78570i 0.296946 0.514325i
\(363\) 0 0
\(364\) 2.13195 4.40753i 0.111744 0.231017i
\(365\) 18.4307 0.964709
\(366\) 0 0
\(367\) 2.59339 + 4.49188i 0.135374 + 0.234474i 0.925740 0.378160i \(-0.123443\pi\)
−0.790366 + 0.612634i \(0.790110\pi\)
\(368\) 5.70474 + 9.88089i 0.297380 + 0.515077i
\(369\) 0 0
\(370\) 0.368122 0.0191377
\(371\) −1.92264 + 3.97482i −0.0998187 + 0.206362i
\(372\) 0 0
\(373\) −16.4322 + 28.4614i −0.850825 + 1.47367i 0.0296389 + 0.999561i \(0.490564\pi\)
−0.880464 + 0.474112i \(0.842769\pi\)
\(374\) 4.31864 + 7.48010i 0.223312 + 0.386787i
\(375\) 0 0
\(376\) −2.68568 + 4.65173i −0.138503 + 0.239895i
\(377\) 35.3231 1.81923
\(378\) 0 0
\(379\) 13.9362 0.715856 0.357928 0.933749i \(-0.383483\pi\)
0.357928 + 0.933749i \(0.383483\pi\)
\(380\) −1.46063 + 2.52988i −0.0749286 + 0.129780i
\(381\) 0 0
\(382\) −9.39449 16.2717i −0.480664 0.832534i
\(383\) 0.857601 1.48541i 0.0438214 0.0759008i −0.843283 0.537470i \(-0.819380\pi\)
0.887104 + 0.461569i \(0.152713\pi\)
\(384\) 0 0
\(385\) 7.41340 + 10.9139i 0.377822 + 0.556226i
\(386\) −2.31376 −0.117768
\(387\) 0 0
\(388\) −2.04285 3.53832i −0.103710 0.179631i
\(389\) 1.57428 + 2.72673i 0.0798191 + 0.138251i 0.903172 0.429279i \(-0.141232\pi\)
−0.823353 + 0.567530i \(0.807899\pi\)
\(390\) 0 0
\(391\) −7.85400 −0.397194
\(392\) −7.82085 + 19.7264i −0.395012 + 0.996332i
\(393\) 0 0
\(394\) −4.90277 + 8.49184i −0.246998 + 0.427813i
\(395\) 1.01697 + 1.76144i 0.0511693 + 0.0886277i
\(396\) 0 0
\(397\) −13.7172 + 23.7590i −0.688449 + 1.19243i 0.283891 + 0.958857i \(0.408375\pi\)
−0.972340 + 0.233572i \(0.924959\pi\)
\(398\) −2.81134 −0.140920
\(399\) 0 0
\(400\) 7.95998 0.397999
\(401\) −14.5185 + 25.1468i −0.725020 + 1.25577i 0.233946 + 0.972250i \(0.424836\pi\)
−0.958966 + 0.283522i \(0.908497\pi\)
\(402\) 0 0
\(403\) −13.1734 22.8170i −0.656214 1.13660i
\(404\) −0.393161 + 0.680975i −0.0195605 + 0.0338798i
\(405\) 0 0
\(406\) −24.7333 + 1.81051i −1.22750 + 0.0898543i
\(407\) 0.598847 0.0296837
\(408\) 0 0
\(409\) 13.8650 + 24.0149i 0.685581 + 1.18746i 0.973254 + 0.229732i \(0.0737851\pi\)
−0.287673 + 0.957729i \(0.592882\pi\)
\(410\) −10.6528 18.4511i −0.526103 0.911237i
\(411\) 0 0
\(412\) −7.72491 −0.380579
\(413\) −6.71188 + 13.8759i −0.330270 + 0.682791i
\(414\) 0 0
\(415\) 0.269134 0.466153i 0.0132113 0.0228826i
\(416\) 5.15546 + 8.92952i 0.252767 + 0.437806i
\(417\) 0 0
\(418\) 9.91614 17.1753i 0.485014 0.840070i
\(419\) 30.3598 1.48317 0.741586 0.670857i \(-0.234074\pi\)
0.741586 + 0.670857i \(0.234074\pi\)
\(420\) 0 0
\(421\) −27.7735 −1.35360 −0.676799 0.736168i \(-0.736633\pi\)
−0.676799 + 0.736168i \(0.736633\pi\)
\(422\) −1.15171 + 1.99483i −0.0560646 + 0.0971067i
\(423\) 0 0
\(424\) −2.52954 4.38129i −0.122845 0.212774i
\(425\) −2.73973 + 4.74535i −0.132896 + 0.230183i
\(426\) 0 0
\(427\) 18.1471 1.32839i 0.878197 0.0642853i
\(428\) −6.53605 −0.315932
\(429\) 0 0
\(430\) 4.80402 + 8.32081i 0.231671 + 0.401265i
\(431\) 3.62965 + 6.28673i 0.174834 + 0.302821i 0.940104 0.340888i \(-0.110728\pi\)
−0.765270 + 0.643710i \(0.777394\pi\)
\(432\) 0 0
\(433\) 15.0375 0.722658 0.361329 0.932438i \(-0.382323\pi\)
0.361329 + 0.932438i \(0.382323\pi\)
\(434\) 10.3936 + 15.3013i 0.498907 + 0.734487i
\(435\) 0 0
\(436\) −2.06814 + 3.58213i −0.0990460 + 0.171553i
\(437\) 9.01688 + 15.6177i 0.431336 + 0.747096i
\(438\) 0 0
\(439\) −0.770595 + 1.33471i −0.0367785 + 0.0637022i −0.883829 0.467811i \(-0.845043\pi\)
0.847050 + 0.531513i \(0.178376\pi\)
\(440\) −15.1170 −0.720677
\(441\) 0 0
\(442\) 12.8797 0.612626
\(443\) 10.1689 17.6131i 0.483141 0.836824i −0.516672 0.856183i \(-0.672829\pi\)
0.999813 + 0.0193593i \(0.00616265\pi\)
\(444\) 0 0
\(445\) 13.5204 + 23.4180i 0.640928 + 1.11012i
\(446\) 6.03735 10.4570i 0.285877 0.495153i
\(447\) 0 0
\(448\) −13.2172 19.4583i −0.624456 0.919319i
\(449\) −26.4527 −1.24838 −0.624190 0.781272i \(-0.714571\pi\)
−0.624190 + 0.781272i \(0.714571\pi\)
\(450\) 0 0
\(451\) −17.3295 30.0156i −0.816016 1.41338i
\(452\) 1.65943 + 2.87422i 0.0780530 + 0.135192i
\(453\) 0 0
\(454\) −13.7599 −0.645786
\(455\) 19.6216 1.43633i 0.919875 0.0673361i
\(456\) 0 0
\(457\) 3.24681 5.62363i 0.151879 0.263063i −0.780039 0.625731i \(-0.784801\pi\)
0.931918 + 0.362668i \(0.118134\pi\)
\(458\) 7.95121 + 13.7719i 0.371536 + 0.643518i
\(459\) 0 0
\(460\) 1.11336 1.92839i 0.0519105 0.0899116i
\(461\) −15.5916 −0.726175 −0.363088 0.931755i \(-0.618277\pi\)
−0.363088 + 0.931755i \(0.618277\pi\)
\(462\) 0 0
\(463\) 7.65585 0.355797 0.177899 0.984049i \(-0.443070\pi\)
0.177899 + 0.984049i \(0.443070\pi\)
\(464\) 11.3545 19.6666i 0.527120 0.912999i
\(465\) 0 0
\(466\) −9.70486 16.8093i −0.449569 0.778676i
\(467\) −20.8137 + 36.0503i −0.963142 + 1.66821i −0.248615 + 0.968602i \(0.579976\pi\)
−0.714526 + 0.699608i \(0.753358\pi\)
\(468\) 0 0
\(469\) −14.0983 + 29.1464i −0.650998 + 1.34585i
\(470\) −3.49635 −0.161274
\(471\) 0 0
\(472\) −8.83053 15.2949i −0.406458 0.704006i
\(473\) 7.81501 + 13.5360i 0.359335 + 0.622386i
\(474\) 0 0
\(475\) 12.5815 0.577280
\(476\) 2.16099 0.158187i 0.0990486 0.00725050i
\(477\) 0 0
\(478\) −6.80560 + 11.7876i −0.311281 + 0.539154i
\(479\) 1.15789 + 2.00553i 0.0529055 + 0.0916350i 0.891265 0.453482i \(-0.149818\pi\)
−0.838360 + 0.545117i \(0.816485\pi\)
\(480\) 0 0
\(481\) 0.446494 0.773350i 0.0203584 0.0352617i
\(482\) 19.0532 0.867851
\(483\) 0 0
\(484\) 0.269022 0.0122283
\(485\) 8.20888 14.2182i 0.372746 0.645615i
\(486\) 0 0
\(487\) −9.06396 15.6992i −0.410727 0.711401i 0.584242 0.811579i \(-0.301392\pi\)
−0.994969 + 0.100179i \(0.968058\pi\)
\(488\) −10.4241 + 18.0551i −0.471876 + 0.817314i
\(489\) 0 0
\(490\) −13.6655 + 2.01144i −0.617344 + 0.0908677i
\(491\) 21.5944 0.974542 0.487271 0.873251i \(-0.337992\pi\)
0.487271 + 0.873251i \(0.337992\pi\)
\(492\) 0 0
\(493\) 7.81616 + 13.5380i 0.352022 + 0.609720i
\(494\) −14.7867 25.6114i −0.665287 1.15231i
\(495\) 0 0
\(496\) −16.9382 −0.760549
\(497\) 20.5304 + 30.2247i 0.920913 + 1.35576i
\(498\) 0 0
\(499\) −13.5827 + 23.5259i −0.608045 + 1.05316i 0.383518 + 0.923534i \(0.374713\pi\)
−0.991562 + 0.129631i \(0.958621\pi\)
\(500\) −2.27821 3.94597i −0.101885 0.176469i
\(501\) 0 0
\(502\) 10.5213 18.2235i 0.469590 0.813354i
\(503\) 11.8850 0.529927 0.264964 0.964258i \(-0.414640\pi\)
0.264964 + 0.964258i \(0.414640\pi\)
\(504\) 0 0
\(505\) −3.15972 −0.140606
\(506\) −7.55852 + 13.0917i −0.336017 + 0.581999i
\(507\) 0 0
\(508\) 0.377250 + 0.653415i 0.0167377 + 0.0289906i
\(509\) 20.7297 35.9049i 0.918829 1.59146i 0.117632 0.993057i \(-0.462470\pi\)
0.801197 0.598401i \(-0.204197\pi\)
\(510\) 0 0
\(511\) −13.6682 + 28.2572i −0.604644 + 1.25002i
\(512\) 25.2864 1.11751
\(513\) 0 0
\(514\) 14.3387 + 24.8354i 0.632455 + 1.09544i
\(515\) −15.5207 26.8826i −0.683923 1.18459i
\(516\) 0 0
\(517\) −5.68773 −0.250146
\(518\) −0.272998 + 0.564387i −0.0119948 + 0.0247978i
\(519\) 0 0
\(520\) −11.2711 + 19.5221i −0.494271 + 0.856102i
\(521\) −1.65221 2.86171i −0.0723846 0.125374i 0.827561 0.561375i \(-0.189728\pi\)
−0.899946 + 0.436002i \(0.856394\pi\)
\(522\) 0 0
\(523\) 1.24483 2.15611i 0.0544327 0.0942803i −0.837525 0.546399i \(-0.815998\pi\)
0.891958 + 0.452119i \(0.149332\pi\)
\(524\) 4.54035 0.198346
\(525\) 0 0
\(526\) −28.3839 −1.23760
\(527\) 5.82992 10.0977i 0.253955 0.439864i
\(528\) 0 0
\(529\) 4.62693 + 8.01408i 0.201171 + 0.348438i
\(530\) 1.64654 2.85189i 0.0715211 0.123878i
\(531\) 0 0
\(532\) −2.79550 4.11552i −0.121200 0.178430i
\(533\) −51.6829 −2.23863
\(534\) 0 0
\(535\) −13.1321 22.7454i −0.567748 0.983369i
\(536\) −18.5485 32.1269i −0.801173 1.38767i
\(537\) 0 0
\(538\) −35.4321 −1.52758
\(539\) −22.2305 + 3.27214i −0.957536 + 0.140941i
\(540\) 0 0
\(541\) 11.2397 19.4677i 0.483233 0.836984i −0.516582 0.856238i \(-0.672796\pi\)
0.999815 + 0.0192542i \(0.00612919\pi\)
\(542\) 6.27114 + 10.8619i 0.269369 + 0.466560i
\(543\) 0 0
\(544\) −2.28156 + 3.95178i −0.0978212 + 0.169431i
\(545\) −16.6210 −0.711966
\(546\) 0 0
\(547\) −14.5545 −0.622307 −0.311154 0.950360i \(-0.600715\pi\)
−0.311154 + 0.950360i \(0.600715\pi\)
\(548\) −3.11834 + 5.40112i −0.133209 + 0.230725i
\(549\) 0 0
\(550\) 5.27331 + 9.13365i 0.224855 + 0.389460i
\(551\) 17.9469 31.0849i 0.764564 1.32426i
\(552\) 0 0
\(553\) −3.45474 + 0.252892i −0.146911 + 0.0107541i
\(554\) 11.0692 0.470286
\(555\) 0 0
\(556\) 2.59845 + 4.50065i 0.110199 + 0.190870i
\(557\) −7.77331 13.4638i −0.329366 0.570478i 0.653021 0.757340i \(-0.273502\pi\)
−0.982386 + 0.186862i \(0.940168\pi\)
\(558\) 0 0
\(559\) 23.3071 0.985787
\(560\) 5.50762 11.3863i 0.232739 0.481158i
\(561\) 0 0
\(562\) −3.94168 + 6.82719i −0.166270 + 0.287988i
\(563\) 7.36914 + 12.7637i 0.310572 + 0.537927i 0.978486 0.206312i \(-0.0661461\pi\)
−0.667914 + 0.744238i \(0.732813\pi\)
\(564\) 0 0
\(565\) −6.66816 + 11.5496i −0.280532 + 0.485895i
\(566\) −24.9706 −1.04959
\(567\) 0 0
\(568\) −41.8646 −1.75660
\(569\) −6.48539 + 11.2330i −0.271882 + 0.470913i −0.969344 0.245709i \(-0.920979\pi\)
0.697462 + 0.716622i \(0.254313\pi\)
\(570\) 0 0
\(571\) −6.42929 11.1359i −0.269058 0.466021i 0.699561 0.714573i \(-0.253379\pi\)
−0.968619 + 0.248551i \(0.920046\pi\)
\(572\) −2.97012 + 5.14440i −0.124187 + 0.215098i
\(573\) 0 0
\(574\) 36.1885 2.64905i 1.51048 0.110569i
\(575\) −9.59019 −0.399939
\(576\) 0 0
\(577\) 5.26279 + 9.11542i 0.219093 + 0.379480i 0.954531 0.298112i \(-0.0963569\pi\)
−0.735438 + 0.677592i \(0.763024\pi\)
\(578\) −7.94669 13.7641i −0.330539 0.572510i
\(579\) 0 0
\(580\) −4.43197 −0.184028
\(581\) 0.515097 + 0.758321i 0.0213698 + 0.0314605i
\(582\) 0 0
\(583\) 2.67853 4.63935i 0.110933 0.192142i
\(584\) −17.9826 31.1468i −0.744126 1.28886i
\(585\) 0 0
\(586\) −9.20690 + 15.9468i −0.380334 + 0.658757i
\(587\) −6.20018 −0.255909 −0.127954 0.991780i \(-0.540841\pi\)
−0.127954 + 0.991780i \(0.540841\pi\)
\(588\) 0 0
\(589\) −26.7725 −1.10314
\(590\) 5.74801 9.95585i 0.236642 0.409876i
\(591\) 0 0
\(592\) −0.287048 0.497182i −0.0117976 0.0204341i
\(593\) −18.7629 + 32.4984i −0.770502 + 1.33455i 0.166787 + 0.985993i \(0.446661\pi\)
−0.937288 + 0.348555i \(0.886673\pi\)
\(594\) 0 0
\(595\) 4.89229 + 7.20239i 0.200564 + 0.295269i
\(596\) 1.24166 0.0508605
\(597\) 0 0
\(598\) 11.2711 + 19.5221i 0.460910 + 0.798319i
\(599\) 17.5460 + 30.3905i 0.716909 + 1.24172i 0.962218 + 0.272279i \(0.0877773\pi\)
−0.245309 + 0.969445i \(0.578889\pi\)
\(600\) 0 0
\(601\) 26.2342 1.07012 0.535058 0.844815i \(-0.320290\pi\)
0.535058 + 0.844815i \(0.320290\pi\)
\(602\) −16.3197 + 1.19463i −0.665143 + 0.0486894i
\(603\) 0 0
\(604\) 3.29233 5.70249i 0.133963 0.232031i
\(605\) 0.540512 + 0.936194i 0.0219749 + 0.0380617i
\(606\) 0 0
\(607\) 1.10933 1.92142i 0.0450263 0.0779879i −0.842634 0.538487i \(-0.818996\pi\)
0.887660 + 0.460499i \(0.152329\pi\)
\(608\) 10.4775 0.424919
\(609\) 0 0
\(610\) −13.5706 −0.549457
\(611\) −4.24071 + 7.34512i −0.171561 + 0.297152i
\(612\) 0 0
\(613\) −7.43312 12.8745i −0.300221 0.519998i 0.675965 0.736934i \(-0.263727\pi\)
−0.976186 + 0.216936i \(0.930394\pi\)
\(614\) 14.1485 24.5059i 0.570986 0.988976i
\(615\) 0 0
\(616\) 11.2107 23.1768i 0.451694 0.933819i
\(617\) −23.2046 −0.934181 −0.467091 0.884210i \(-0.654698\pi\)
−0.467091 + 0.884210i \(0.654698\pi\)
\(618\) 0 0
\(619\) 4.15562 + 7.19775i 0.167029 + 0.289302i 0.937374 0.348325i \(-0.113249\pi\)
−0.770345 + 0.637627i \(0.779916\pi\)
\(620\) 1.65286 + 2.86284i 0.0663805 + 0.114974i
\(621\) 0 0
\(622\) −22.1021 −0.886214
\(623\) −45.9301 + 3.36215i −1.84015 + 0.134701i
\(624\) 0 0
\(625\) 2.68802 4.65578i 0.107521 0.186231i
\(626\) −0.127048 0.220054i −0.00507786 0.00879511i
\(627\) 0 0
\(628\) 1.82363 3.15862i 0.0727708 0.126043i
\(629\) 0.395194 0.0157574
\(630\) 0 0
\(631\) −24.5415 −0.976982 −0.488491 0.872569i \(-0.662452\pi\)
−0.488491 + 0.872569i \(0.662452\pi\)
\(632\) 1.98448 3.43723i 0.0789386 0.136726i
\(633\) 0 0
\(634\) 5.22947 + 9.05771i 0.207689 + 0.359728i
\(635\) −1.51592 + 2.62565i −0.0601574 + 0.104196i
\(636\) 0 0
\(637\) −12.3492 + 31.1481i −0.489293 + 1.23413i
\(638\) 30.0885 1.19121
\(639\) 0 0
\(640\) 5.42549 + 9.39723i 0.214461 + 0.371458i
\(641\) 3.98762 + 6.90677i 0.157502 + 0.272801i 0.933967 0.357359i \(-0.116323\pi\)
−0.776465 + 0.630160i \(0.782989\pi\)
\(642\) 0 0
\(643\) −3.12279 −0.123151 −0.0615755 0.998102i \(-0.519612\pi\)
−0.0615755 + 0.998102i \(0.519612\pi\)
\(644\) 2.13086 + 3.13703i 0.0839675 + 0.123616i
\(645\) 0 0
\(646\) 6.54391 11.3344i 0.257467 0.445945i
\(647\) −6.13273 10.6222i −0.241102 0.417602i 0.719926 0.694051i \(-0.244176\pi\)
−0.961029 + 0.276449i \(0.910842\pi\)
\(648\) 0 0
\(649\) 9.35065 16.1958i 0.367045 0.635741i
\(650\) 15.7269 0.616860
\(651\) 0 0
\(652\) −1.42171 −0.0556786
\(653\) 8.25476 14.2977i 0.323034 0.559511i −0.658079 0.752949i \(-0.728631\pi\)
0.981112 + 0.193438i \(0.0619640\pi\)
\(654\) 0 0
\(655\) 9.12235 + 15.8004i 0.356440 + 0.617372i
\(656\) −16.6133 + 28.7751i −0.648641 + 1.12348i
\(657\) 0 0
\(658\) 2.59288 5.36044i 0.101081 0.208972i
\(659\) −10.7388 −0.418324 −0.209162 0.977881i \(-0.567074\pi\)
−0.209162 + 0.977881i \(0.567074\pi\)
\(660\) 0 0
\(661\) 6.68817 + 11.5843i 0.260140 + 0.450575i 0.966279 0.257498i \(-0.0828980\pi\)
−0.706139 + 0.708073i \(0.749565\pi\)
\(662\) −10.5632 18.2959i −0.410549 0.711092i
\(663\) 0 0
\(664\) −1.05036 −0.0407619
\(665\) 8.70532 17.9971i 0.337578 0.697898i
\(666\) 0 0
\(667\) −13.6799 + 23.6943i −0.529689 + 0.917448i
\(668\) 0.311247 + 0.539095i 0.0120425 + 0.0208582i
\(669\) 0 0
\(670\) 12.0737 20.9122i 0.466447 0.807909i
\(671\) −22.0761 −0.852240
\(672\) 0 0
\(673\) 40.8986 1.57653 0.788264 0.615338i \(-0.210980\pi\)
0.788264 + 0.615338i \(0.210980\pi\)
\(674\) 10.1041 17.5008i 0.389195 0.674105i
\(675\) 0 0
\(676\) 1.91607 + 3.31874i 0.0736951 + 0.127644i
\(677\) −10.6250 + 18.4031i −0.408353 + 0.707288i −0.994705 0.102768i \(-0.967230\pi\)
0.586353 + 0.810056i \(0.300563\pi\)
\(678\) 0 0
\(679\) 15.7110 + 23.1296i 0.602933 + 0.887634i
\(680\) −9.97612 −0.382567
\(681\) 0 0
\(682\) −11.2212 19.4357i −0.429682 0.744231i
\(683\) 20.6708 + 35.8029i 0.790948 + 1.36996i 0.925381 + 0.379039i \(0.123745\pi\)
−0.134433 + 0.990923i \(0.542921\pi\)
\(684\) 0 0
\(685\) −25.0612 −0.957537
\(686\) 7.05042 22.4430i 0.269186 0.856877i
\(687\) 0 0
\(688\) 7.49202 12.9766i 0.285631 0.494727i
\(689\) −3.99417 6.91810i −0.152166 0.263559i
\(690\) 0 0
\(691\) 0.760183 1.31668i 0.0289187 0.0500887i −0.851204 0.524835i \(-0.824127\pi\)
0.880123 + 0.474747i \(0.157460\pi\)
\(692\) −6.25685 −0.237850
\(693\) 0 0
\(694\) −7.98858 −0.303242
\(695\) −10.4415 + 18.0852i −0.396068 + 0.686009i
\(696\) 0 0
\(697\) −11.4362 19.8081i −0.433177 0.750284i
\(698\) 1.02858 1.78154i 0.0389321 0.0674325i
\(699\) 0 0
\(700\) 2.63869 0.193156i 0.0997331 0.00730060i
\(701\) 32.5344 1.22881 0.614404 0.788991i \(-0.289396\pi\)
0.614404 + 0.788991i \(0.289396\pi\)
\(702\) 0 0
\(703\) −0.453708 0.785845i −0.0171119 0.0296387i
\(704\) 14.2697 + 24.7159i 0.537811 + 0.931515i
\(705\) 0 0
\(706\) −41.2963 −1.55421
\(707\) 2.34323 4.84433i 0.0881264 0.182190i
\(708\) 0 0
\(709\) −11.2810 + 19.5394i −0.423669 + 0.733816i −0.996295 0.0860007i \(-0.972591\pi\)
0.572626 + 0.819816i \(0.305925\pi\)
\(710\) −13.6253 23.5998i −0.511350 0.885684i
\(711\) 0 0
\(712\) 26.3833 45.6972i 0.988756 1.71258i
\(713\) 20.4072 0.764255
\(714\) 0 0
\(715\) −23.8700 −0.892686
\(716\) 3.36466 5.82777i 0.125743 0.217794i
\(717\) 0 0
\(718\) 7.10787 + 12.3112i 0.265263 + 0.459450i
\(719\) −3.25084 + 5.63062i −0.121236 + 0.209987i −0.920255 0.391319i \(-0.872019\pi\)
0.799019 + 0.601305i \(0.205352\pi\)
\(720\) 0 0
\(721\) 52.7253 3.85956i 1.96359 0.143738i
\(722\) −5.91755 −0.220228
\(723\) 0 0
\(724\) 1.71958 + 2.97841i 0.0639078 + 0.110692i
\(725\) 9.54400 + 16.5307i 0.354455 + 0.613934i
\(726\) 0 0
\(727\) −7.83215 −0.290478 −0.145239 0.989397i \(-0.546395\pi\)
−0.145239 + 0.989397i \(0.546395\pi\)
\(728\) −21.5718 31.7579i −0.799505 1.17703i
\(729\) 0 0
\(730\) 11.7053 20.2742i 0.433234 0.750383i
\(731\) 5.15732 + 8.93274i 0.190750 + 0.330389i
\(732\) 0 0
\(733\) 3.74780 6.49138i 0.138428 0.239764i −0.788474 0.615068i \(-0.789128\pi\)
0.926902 + 0.375304i \(0.122462\pi\)
\(734\) 6.58823 0.243176
\(735\) 0 0
\(736\) −7.98643 −0.294384
\(737\) 19.6410 34.0192i 0.723486 1.25311i
\(738\) 0 0
\(739\) −12.0480 20.8678i −0.443194 0.767634i 0.554731 0.832030i \(-0.312821\pi\)
−0.997924 + 0.0643961i \(0.979488\pi\)
\(740\) −0.0560213 + 0.0970318i −0.00205939 + 0.00356696i
\(741\) 0 0
\(742\) 3.15132 + 4.63935i 0.115689 + 0.170316i
\(743\) −19.2882 −0.707616 −0.353808 0.935318i \(-0.615113\pi\)
−0.353808 + 0.935318i \(0.615113\pi\)
\(744\) 0 0
\(745\) 2.49472 + 4.32098i 0.0913994 + 0.158308i
\(746\) 20.8721 + 36.1515i 0.764181 + 1.32360i
\(747\) 0 0
\(748\) −2.62887 −0.0961210
\(749\) 44.6109 3.26558i 1.63005 0.119322i
\(750\) 0 0
\(751\) 16.6045 28.7598i 0.605906 1.04946i −0.386002 0.922498i \(-0.626144\pi\)
0.991908 0.126961i \(-0.0405225\pi\)
\(752\) 2.72633 + 4.72214i 0.0994190 + 0.172199i
\(753\) 0 0
\(754\) 22.4336 38.8562i 0.816985 1.41506i
\(755\) 26.4595 0.962959
\(756\) 0 0
\(757\) 9.70935 0.352892 0.176446 0.984310i \(-0.443540\pi\)
0.176446 + 0.984310i \(0.443540\pi\)
\(758\) 8.85088 15.3302i 0.321478 0.556817i
\(759\) 0 0
\(760\) 11.4532 + 19.8375i 0.415452 + 0.719583i
\(761\) 1.36305 2.36086i 0.0494104 0.0855813i −0.840262 0.542180i \(-0.817599\pi\)
0.889673 + 0.456599i \(0.150932\pi\)
\(762\) 0 0
\(763\) 12.3261 25.4826i 0.446234 0.922532i
\(764\) 5.71868 0.206894
\(765\) 0 0
\(766\) −1.08932 1.88676i −0.0393588 0.0681714i
\(767\) −13.9435 24.1508i −0.503470 0.872036i
\(768\) 0 0
\(769\) 50.0460 1.80470 0.902352 0.430999i \(-0.141839\pi\)
0.902352 + 0.430999i \(0.141839\pi\)
\(770\) 16.7138 1.22347i 0.602324 0.0440910i
\(771\) 0 0
\(772\) 0.352112 0.609877i 0.0126728 0.0219499i
\(773\) 9.52030 + 16.4896i 0.342421 + 0.593091i 0.984882 0.173228i \(-0.0554197\pi\)
−0.642461 + 0.766319i \(0.722086\pi\)
\(774\) 0 0
\(775\) 7.11868 12.3299i 0.255711 0.442904i
\(776\) −32.0372 −1.15007
\(777\) 0 0
\(778\) 3.99928 0.143381
\(779\) −26.2589 + 45.4818i −0.940824 + 1.62956i
\(780\) 0 0
\(781\) −22.1652 38.3912i −0.793133 1.37375i
\(782\) −4.98806 + 8.63957i −0.178373 + 0.308950i
\(783\) 0 0
\(784\) 13.3725 + 16.8881i 0.477590 + 0.603145i
\(785\) 14.6560 0.523094
\(786\) 0 0
\(787\) 16.6011 + 28.7540i 0.591766 + 1.02497i 0.993995 + 0.109430i \(0.0349025\pi\)
−0.402228 + 0.915539i \(0.631764\pi\)
\(788\) −1.49222 2.58460i −0.0531582 0.0920727i
\(789\) 0 0
\(790\) 2.58350 0.0919168
\(791\) −12.7622 18.7885i −0.453773 0.668041i
\(792\) 0 0
\(793\) −16.4597 + 28.5091i −0.584502 + 1.01239i
\(794\) 17.4236 + 30.1785i 0.618340 + 1.07100i
\(795\) 0 0
\(796\) 0.427834 0.741030i 0.0151642 0.0262651i
\(797\) −2.08944 −0.0740118 −0.0370059 0.999315i \(-0.511782\pi\)
−0.0370059 + 0.999315i \(0.511782\pi\)
\(798\) 0 0
\(799\) −3.75347 −0.132788
\(800\) −2.78592 + 4.82536i −0.0984972 + 0.170602i
\(801\) 0 0
\(802\) 18.4414 + 31.9414i 0.651187 + 1.12789i
\(803\) 19.0418 32.9814i 0.671970 1.16389i
\(804\) 0 0
\(805\) −6.63558 + 13.7182i −0.233873 + 0.483503i
\(806\) −33.4656 −1.17878
\(807\) 0 0
\(808\) 3.08289 + 5.33973i 0.108456 + 0.187851i
\(809\) 0.241404 + 0.418125i 0.00848732 + 0.0147005i 0.870238 0.492632i \(-0.163965\pi\)
−0.861751 + 0.507332i \(0.830632\pi\)
\(810\) 0 0
\(811\) 17.1671 0.602820 0.301410 0.953495i \(-0.402543\pi\)
0.301410 + 0.953495i \(0.402543\pi\)
\(812\) 3.28673 6.79490i 0.115342 0.238454i
\(813\) 0 0
\(814\) 0.380327 0.658745i 0.0133304 0.0230890i
\(815\) −2.85647 4.94755i −0.100058 0.173305i
\(816\) 0 0
\(817\) 11.8419 20.5107i 0.414294 0.717578i
\(818\) 35.2226 1.23153
\(819\) 0 0
\(820\) 6.48462 0.226453
\(821\) −6.41086 + 11.1039i −0.223741 + 0.387530i −0.955941 0.293559i \(-0.905160\pi\)
0.732200 + 0.681089i \(0.238493\pi\)
\(822\) 0 0
\(823\) −12.2973 21.2995i −0.428655 0.742453i 0.568099 0.822961i \(-0.307679\pi\)
−0.996754 + 0.0805075i \(0.974346\pi\)
\(824\) −30.2866 + 52.4580i −1.05509 + 1.82746i
\(825\) 0 0
\(826\) 11.0011 + 16.1958i 0.382779 + 0.563524i
\(827\) −0.527165 −0.0183313 −0.00916567 0.999958i \(-0.502918\pi\)
−0.00916567 + 0.999958i \(0.502918\pi\)
\(828\) 0 0
\(829\) 23.1015 + 40.0130i 0.802348 + 1.38971i 0.918067 + 0.396426i \(0.129750\pi\)
−0.115718 + 0.993282i \(0.536917\pi\)
\(830\) −0.341853 0.592106i −0.0118659 0.0205523i
\(831\) 0 0
\(832\) 42.5574 1.47541
\(833\) −14.6705 + 2.15937i −0.508302 + 0.0748177i
\(834\) 0 0
\(835\) −1.25070 + 2.16627i −0.0432822 + 0.0749669i
\(836\) 3.01811 + 5.22752i 0.104383 + 0.180797i
\(837\) 0 0
\(838\) 19.2815 33.3965i 0.666067 1.15366i
\(839\) 10.8258 0.373747 0.186874 0.982384i \(-0.440165\pi\)
0.186874 + 0.982384i \(0.440165\pi\)
\(840\) 0 0
\(841\) 25.4561 0.877797
\(842\) −17.6389 + 30.5515i −0.607877 + 1.05287i
\(843\) 0 0
\(844\) −0.350540 0.607152i −0.0120661 0.0208990i
\(845\) −7.69945 + 13.3358i −0.264869 + 0.458767i
\(846\) 0 0
\(847\) −1.83617 + 0.134410i −0.0630916 + 0.00461839i
\(848\) −5.13566 −0.176359
\(849\) 0 0
\(850\) 3.47999 + 6.02752i 0.119363 + 0.206742i
\(851\) 0.345836 + 0.599006i 0.0118551 + 0.0205337i
\(852\) 0 0
\(853\) −43.1922 −1.47887 −0.739437 0.673226i \(-0.764908\pi\)
−0.739437 + 0.673226i \(0.764908\pi\)
\(854\) 10.0639 20.8058i 0.344380 0.711961i
\(855\) 0 0
\(856\) −25.6255 + 44.3847i −0.875863 + 1.51704i
\(857\) 0.787226 + 1.36352i 0.0268911 + 0.0465768i 0.879158 0.476531i \(-0.158106\pi\)
−0.852267 + 0.523108i \(0.824773\pi\)
\(858\) 0 0
\(859\) −3.41090 + 5.90786i −0.116378 + 0.201573i −0.918330 0.395816i \(-0.870462\pi\)
0.801951 + 0.597389i \(0.203795\pi\)
\(860\) −2.92434 −0.0997190
\(861\) 0 0
\(862\) 9.22073 0.314059
\(863\) 4.51387 7.81825i 0.153654 0.266136i −0.778914 0.627131i \(-0.784229\pi\)
0.932568 + 0.360994i \(0.117563\pi\)
\(864\) 0 0
\(865\) −12.5711 21.7738i −0.427430 0.740331i
\(866\) 9.55032 16.5416i 0.324533 0.562108i
\(867\) 0 0
\(868\) −5.61493 + 0.411021i −0.190583 + 0.0139509i
\(869\) 4.20274 0.142568
\(870\) 0 0
\(871\) −29.2882 50.7287i −0.992394 1.71888i
\(872\) 16.2169 + 28.0885i 0.549174 + 0.951196i
\(873\) 0 0
\(874\) 22.9064 0.774821
\(875\) 17.5211 + 25.7944i 0.592321 + 0.872011i
\(876\) 0 0
\(877\) −4.83460 + 8.37377i −0.163253 + 0.282762i −0.936033 0.351911i \(-0.885532\pi\)
0.772781 + 0.634673i \(0.218865\pi\)
\(878\) 0.978807 + 1.69534i 0.0330331 + 0.0572151i
\(879\) 0 0
\(880\) −7.67293 + 13.2899i −0.258655 + 0.448003i
\(881\) 21.4721 0.723415 0.361707 0.932292i \(-0.382194\pi\)
0.361707 + 0.932292i \(0.382194\pi\)
\(882\) 0 0
\(883\) −26.5380 −0.893076 −0.446538 0.894765i \(-0.647343\pi\)
−0.446538 + 0.894765i \(0.647343\pi\)
\(884\) −1.96006 + 3.39492i −0.0659238 + 0.114183i
\(885\) 0 0
\(886\) −12.9165 22.3721i −0.433940 0.751606i
\(887\) 20.7612 35.9594i 0.697091 1.20740i −0.272379 0.962190i \(-0.587810\pi\)
0.969471 0.245208i \(-0.0788562\pi\)
\(888\) 0 0
\(889\) −2.90133 4.27131i −0.0973074 0.143255i
\(890\) 34.3471 1.15132
\(891\) 0 0
\(892\) 1.83755 + 3.18272i 0.0615256 + 0.106565i
\(893\) 4.30922 + 7.46380i 0.144203 + 0.249766i
\(894\) 0 0
\(895\) 27.0408 0.903873
\(896\) −18.4309 + 1.34917i −0.615734 + 0.0450726i
\(897\) 0 0
\(898\) −16.8001 + 29.0986i −0.560626 + 0.971032i
\(899\) −20.3089 35.1760i −0.677339 1.17319i
\(900\) 0 0
\(901\) 1.76763 3.06162i 0.0588883 0.101997i
\(902\) −44.0238 −1.46583
\(903\) 0 0
\(904\) 26.0241 0.865550
\(905\) −6.90989 + 11.9683i −0.229692 + 0.397839i
\(906\) 0 0
\(907\) 2.32180 + 4.02148i 0.0770942 + 0.133531i 0.901995 0.431746i \(-0.142102\pi\)
−0.824901 + 0.565277i \(0.808769\pi\)
\(908\) 2.09401 3.62693i 0.0694921 0.120364i
\(909\) 0 0
\(910\) 10.8817 22.4964i 0.360723 0.745749i
\(911\) 1.34811 0.0446648 0.0223324 0.999751i \(-0.492891\pi\)
0.0223324 + 0.999751i \(0.492891\pi\)
\(912\) 0 0
\(913\) −0.556114 0.963217i −0.0184047 0.0318778i
\(914\) −4.12408 7.14312i −0.136413 0.236273i
\(915\) 0 0
\(916\) −4.84011 −0.159922
\(917\) −30.9895 + 2.26848i −1.02336 + 0.0749116i
\(918\) 0 0
\(919\) 20.2472 35.0692i 0.667893 1.15682i −0.310599 0.950541i \(-0.600530\pi\)
0.978492 0.206284i \(-0.0661370\pi\)
\(920\) −8.73015 15.1211i −0.287824 0.498527i
\(921\) 0 0
\(922\) −9.90223 + 17.1512i −0.326112 + 0.564843i
\(923\) −66.1045 −2.17586
\(924\) 0 0
\(925\) 0.482555 0.0158663
\(926\) 4.86221 8.42160i 0.159782 0.276751i
\(927\) 0 0
\(928\) 7.94795 + 13.7663i 0.260904 + 0.451900i
\(929\) 11.1569 19.3243i 0.366046 0.634011i −0.622897 0.782304i \(-0.714044\pi\)
0.988944 + 0.148293i \(0.0473778\pi\)
\(930\) 0 0
\(931\) 21.1365 + 26.6932i 0.692722 + 0.874834i
\(932\) 5.90760 0.193510
\(933\) 0 0
\(934\) 26.4375 + 45.7910i 0.865060 + 1.49833i
\(935\) −5.28186 9.14844i −0.172735 0.299186i
\(936\) 0 0
\(937\) −1.13943 −0.0372235 −0.0186117 0.999827i \(-0.505925\pi\)
−0.0186117 + 0.999827i \(0.505925\pi\)
\(938\) 23.1079 + 34.0192i 0.754498 + 1.11077i
\(939\) 0 0
\(940\) 0.532080 0.921589i 0.0173545 0.0300589i
\(941\) 23.5938 + 40.8656i 0.769134 + 1.33218i 0.938033 + 0.346546i \(0.112646\pi\)
−0.168898 + 0.985633i \(0.554021\pi\)
\(942\) 0 0
\(943\) 20.0157 34.6683i 0.651802 1.12895i
\(944\) −17.9284 −0.583519
\(945\) 0 0
\(946\) 19.8532 0.645483
\(947\) 12.3230 21.3441i 0.400444 0.693590i −0.593335 0.804955i \(-0.702189\pi\)
0.993779 + 0.111366i \(0.0355225\pi\)
\(948\) 0 0
\(949\) −28.3947 49.1811i −0.921731 1.59649i
\(950\) 7.99050 13.8400i 0.259246 0.449027i
\(951\) 0 0
\(952\) 7.39825 15.2949i 0.239779 0.495711i
\(953\) 56.2821 1.82316 0.911579 0.411125i \(-0.134864\pi\)
0.911579 + 0.411125i \(0.134864\pi\)
\(954\) 0 0
\(955\) 11.4898 + 19.9009i 0.371802 + 0.643979i
\(956\) −2.07137 3.58772i −0.0669930 0.116035i
\(957\) 0 0
\(958\) 2.94150 0.0950356
\(959\) 18.5853 38.4226i 0.600149 1.24073i
\(960\) 0 0
\(961\) 0.352001 0.609683i 0.0113549 0.0196672i
\(962\) −0.567135 0.982306i −0.0182852 0.0316708i
\(963\) 0 0
\(964\) −2.89955 + 5.02217i −0.0933883 + 0.161753i
\(965\) 2.82982 0.0910951
\(966\) 0 0
\(967\) −58.5977 −1.88438 −0.942188 0.335084i \(-0.891235\pi\)
−0.942188 + 0.335084i \(0.891235\pi\)
\(968\) 1.05474 1.82686i 0.0339006 0.0587176i
\(969\) 0 0
\(970\) −10.4269 18.0599i −0.334787 0.579868i
\(971\) −3.04991 + 5.28260i −0.0978763 + 0.169527i −0.910805 0.412836i \(-0.864538\pi\)
0.812929 + 0.582363i \(0.197872\pi\)
\(972\) 0 0
\(973\) −19.9840 29.4203i −0.640657 0.943171i
\(974\) −23.0260 −0.737801
\(975\) 0 0
\(976\) 10.5819 + 18.3283i 0.338718 + 0.586676i
\(977\) −2.57988 4.46849i −0.0825377 0.142960i 0.821802 0.569774i \(-0.192969\pi\)
−0.904339 + 0.426814i \(0.859636\pi\)
\(978\) 0 0
\(979\) 55.8746 1.78576
\(980\) 1.54945 3.90814i 0.0494953 0.124841i
\(981\) 0 0
\(982\) 13.7146 23.7543i 0.437649 0.758031i
\(983\) 31.0536 + 53.7864i 0.990455 + 1.71552i 0.614598 + 0.788841i \(0.289318\pi\)
0.375857 + 0.926678i \(0.377348\pi\)
\(984\) 0 0
\(985\) 5.99626 10.3858i 0.191057 0.330920i
\(986\) 19.8561 0.632348
\(987\) 0 0
\(988\) 9.00108 0.286362
\(989\) −9.02639 + 15.6342i −0.287022 + 0.497138i
\(990\) 0 0
\(991\) 10.8163 + 18.7343i 0.343590 + 0.595116i 0.985097 0.172002i \(-0.0550235\pi\)
−0.641506 + 0.767118i \(0.721690\pi\)
\(992\) 5.92823 10.2680i 0.188221 0.326009i
\(993\) 0 0
\(994\) 46.2866 3.38824i 1.46812 0.107469i
\(995\) 3.43837 0.109004
\(996\) 0 0
\(997\) 20.3681 + 35.2786i 0.645064 + 1.11728i 0.984287 + 0.176578i \(0.0565027\pi\)
−0.339223 + 0.940706i \(0.610164\pi\)
\(998\) 17.2527 + 29.8825i 0.546124 + 0.945915i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.e.g.163.6 yes 16
3.2 odd 2 inner 567.2.e.g.163.3 16
7.2 even 3 3969.2.a.bg.1.3 8
7.4 even 3 inner 567.2.e.g.487.6 yes 16
7.5 odd 6 3969.2.a.bf.1.3 8
9.2 odd 6 567.2.h.l.352.6 16
9.4 even 3 567.2.g.l.541.6 16
9.5 odd 6 567.2.g.l.541.3 16
9.7 even 3 567.2.h.l.352.3 16
21.2 odd 6 3969.2.a.bg.1.6 8
21.5 even 6 3969.2.a.bf.1.6 8
21.11 odd 6 inner 567.2.e.g.487.3 yes 16
63.4 even 3 567.2.h.l.298.3 16
63.11 odd 6 567.2.g.l.109.3 16
63.25 even 3 567.2.g.l.109.6 16
63.32 odd 6 567.2.h.l.298.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.3 16 3.2 odd 2 inner
567.2.e.g.163.6 yes 16 1.1 even 1 trivial
567.2.e.g.487.3 yes 16 21.11 odd 6 inner
567.2.e.g.487.6 yes 16 7.4 even 3 inner
567.2.g.l.109.3 16 63.11 odd 6
567.2.g.l.109.6 16 63.25 even 3
567.2.g.l.541.3 16 9.5 odd 6
567.2.g.l.541.6 16 9.4 even 3
567.2.h.l.298.3 16 63.4 even 3
567.2.h.l.298.6 16 63.32 odd 6
567.2.h.l.352.3 16 9.7 even 3
567.2.h.l.352.6 16 9.2 odd 6
3969.2.a.bf.1.3 8 7.5 odd 6
3969.2.a.bf.1.6 8 21.5 even 6
3969.2.a.bg.1.3 8 7.2 even 3
3969.2.a.bg.1.6 8 21.2 odd 6