Properties

Label 567.2.e.g.163.4
Level $567$
Weight $2$
Character 567.163
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(163,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.4
Root \(1.04779 + 0.949812i\) of defining polynomial
Character \(\chi\) \(=\) 567.163
Dual form 567.2.e.g.487.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.298668 + 0.517308i) q^{2} +(0.821595 + 1.42304i) q^{4} +(1.04779 - 1.81482i) q^{5} +(-1.12588 + 2.39424i) q^{7} -2.17621 q^{8} +(0.625881 + 1.08406i) q^{10} +(0.825707 + 1.43017i) q^{11} -0.426044 q^{13} +(-0.902296 - 1.29751i) q^{14} +(-0.993225 + 1.72032i) q^{16} +(3.03819 + 5.26230i) q^{17} +(-2.70625 + 4.68736i) q^{19} +3.44342 q^{20} -0.986450 q^{22} +(3.81729 - 6.61173i) q^{23} +(0.304286 + 0.527039i) q^{25} +(0.127246 - 0.220396i) q^{26} +(-4.33213 + 0.364918i) q^{28} -3.65377 q^{29} +(2.65372 + 4.59638i) q^{31} +(-2.76950 - 4.79691i) q^{32} -3.62964 q^{34} +(3.16543 + 4.55193i) q^{35} +(2.33890 - 4.05110i) q^{37} +(-1.61654 - 2.79993i) q^{38} +(-2.28020 + 3.94943i) q^{40} +1.48565 q^{41} +8.48997 q^{43} +(-1.35679 + 2.35004i) q^{44} +(2.28020 + 3.94943i) q^{46} +(-5.66624 + 9.81422i) q^{47} +(-4.46478 - 5.39126i) q^{49} -0.363522 q^{50} +(-0.350036 - 0.606280i) q^{52} +(-2.74496 - 4.75441i) q^{53} +3.46066 q^{55} +(2.45015 - 5.21037i) q^{56} +(1.09126 - 1.89013i) q^{58} +(0.779098 + 1.34944i) q^{59} +(-2.52408 + 4.37184i) q^{61} -3.17033 q^{62} -0.664256 q^{64} +(-0.446403 + 0.773193i) q^{65} +(2.61498 + 4.52928i) q^{67} +(-4.99232 + 8.64695i) q^{68} +(-3.30016 + 0.277990i) q^{70} -12.5604 q^{71} +(-0.793753 - 1.37482i) q^{73} +(1.39711 + 2.41987i) q^{74} -8.89375 q^{76} +(-4.35381 + 0.366745i) q^{77} +(3.81482 - 6.60746i) q^{79} +(2.08138 + 3.60505i) q^{80} +(-0.443717 + 0.768541i) q^{82} +5.25611 q^{83} +12.7335 q^{85} +(-2.53568 + 4.39193i) q^{86} +(-1.79691 - 3.11234i) q^{88} +(9.27808 - 16.0701i) q^{89} +(0.479675 - 1.02005i) q^{91} +12.5450 q^{92} +(-3.38465 - 5.86239i) q^{94} +(5.67114 + 9.82270i) q^{95} +13.7546 q^{97} +(4.12243 - 0.699472i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} + 6 q^{7} - 14 q^{10} + 12 q^{13} - 6 q^{16} - 24 q^{19} + 4 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} - 36 q^{40} + 20 q^{43} + 36 q^{46} - 14 q^{49} - 34 q^{52} + 8 q^{55} + 22 q^{58} - 36 q^{61}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.298668 + 0.517308i −0.211190 + 0.365792i −0.952087 0.305826i \(-0.901067\pi\)
0.740897 + 0.671619i \(0.234401\pi\)
\(3\) 0 0
\(4\) 0.821595 + 1.42304i 0.410797 + 0.711522i
\(5\) 1.04779 1.81482i 0.468584 0.811612i −0.530771 0.847515i \(-0.678098\pi\)
0.999355 + 0.0359033i \(0.0114308\pi\)
\(6\) 0 0
\(7\) −1.12588 + 2.39424i −0.425543 + 0.904938i
\(8\) −2.17621 −0.769406
\(9\) 0 0
\(10\) 0.625881 + 1.08406i 0.197921 + 0.342809i
\(11\) 0.825707 + 1.43017i 0.248960 + 0.431212i 0.963238 0.268651i \(-0.0865778\pi\)
−0.714277 + 0.699863i \(0.753245\pi\)
\(12\) 0 0
\(13\) −0.426044 −0.118163 −0.0590817 0.998253i \(-0.518817\pi\)
−0.0590817 + 0.998253i \(0.518817\pi\)
\(14\) −0.902296 1.29751i −0.241149 0.346774i
\(15\) 0 0
\(16\) −0.993225 + 1.72032i −0.248306 + 0.430079i
\(17\) 3.03819 + 5.26230i 0.736869 + 1.27629i 0.953899 + 0.300129i \(0.0970298\pi\)
−0.217030 + 0.976165i \(0.569637\pi\)
\(18\) 0 0
\(19\) −2.70625 + 4.68736i −0.620856 + 1.07535i 0.368471 + 0.929639i \(0.379881\pi\)
−0.989327 + 0.145714i \(0.953452\pi\)
\(20\) 3.44342 0.769973
\(21\) 0 0
\(22\) −0.986450 −0.210312
\(23\) 3.81729 6.61173i 0.795959 1.37864i −0.126269 0.991996i \(-0.540300\pi\)
0.922228 0.386645i \(-0.126366\pi\)
\(24\) 0 0
\(25\) 0.304286 + 0.527039i 0.0608573 + 0.105408i
\(26\) 0.127246 0.220396i 0.0249550 0.0432233i
\(27\) 0 0
\(28\) −4.33213 + 0.364918i −0.818695 + 0.0689631i
\(29\) −3.65377 −0.678488 −0.339244 0.940698i \(-0.610171\pi\)
−0.339244 + 0.940698i \(0.610171\pi\)
\(30\) 0 0
\(31\) 2.65372 + 4.59638i 0.476623 + 0.825535i 0.999641 0.0267866i \(-0.00852747\pi\)
−0.523018 + 0.852321i \(0.675194\pi\)
\(32\) −2.76950 4.79691i −0.489583 0.847982i
\(33\) 0 0
\(34\) −3.62964 −0.622478
\(35\) 3.16543 + 4.55193i 0.535056 + 0.769416i
\(36\) 0 0
\(37\) 2.33890 4.05110i 0.384513 0.665997i −0.607188 0.794558i \(-0.707703\pi\)
0.991702 + 0.128561i \(0.0410360\pi\)
\(38\) −1.61654 2.79993i −0.262237 0.454208i
\(39\) 0 0
\(40\) −2.28020 + 3.94943i −0.360532 + 0.624459i
\(41\) 1.48565 0.232020 0.116010 0.993248i \(-0.462990\pi\)
0.116010 + 0.993248i \(0.462990\pi\)
\(42\) 0 0
\(43\) 8.48997 1.29471 0.647354 0.762189i \(-0.275875\pi\)
0.647354 + 0.762189i \(0.275875\pi\)
\(44\) −1.35679 + 2.35004i −0.204544 + 0.354281i
\(45\) 0 0
\(46\) 2.28020 + 3.94943i 0.336198 + 0.582311i
\(47\) −5.66624 + 9.81422i −0.826506 + 1.43155i 0.0742560 + 0.997239i \(0.476342\pi\)
−0.900763 + 0.434312i \(0.856992\pi\)
\(48\) 0 0
\(49\) −4.46478 5.39126i −0.637826 0.770180i
\(50\) −0.363522 −0.0514098
\(51\) 0 0
\(52\) −0.350036 0.606280i −0.0485412 0.0840758i
\(53\) −2.74496 4.75441i −0.377050 0.653069i 0.613582 0.789631i \(-0.289728\pi\)
−0.990632 + 0.136562i \(0.956395\pi\)
\(54\) 0 0
\(55\) 3.46066 0.466635
\(56\) 2.45015 5.21037i 0.327415 0.696265i
\(57\) 0 0
\(58\) 1.09126 1.89013i 0.143290 0.248186i
\(59\) 0.779098 + 1.34944i 0.101430 + 0.175682i 0.912274 0.409581i \(-0.134325\pi\)
−0.810844 + 0.585262i \(0.800992\pi\)
\(60\) 0 0
\(61\) −2.52408 + 4.37184i −0.323176 + 0.559757i −0.981141 0.193291i \(-0.938084\pi\)
0.657966 + 0.753048i \(0.271417\pi\)
\(62\) −3.17033 −0.402632
\(63\) 0 0
\(64\) −0.664256 −0.0830320
\(65\) −0.446403 + 0.773193i −0.0553695 + 0.0959028i
\(66\) 0 0
\(67\) 2.61498 + 4.52928i 0.319471 + 0.553340i 0.980378 0.197128i \(-0.0631615\pi\)
−0.660907 + 0.750468i \(0.729828\pi\)
\(68\) −4.99232 + 8.64695i −0.605407 + 1.04860i
\(69\) 0 0
\(70\) −3.30016 + 0.277990i −0.394445 + 0.0332262i
\(71\) −12.5604 −1.49065 −0.745324 0.666703i \(-0.767705\pi\)
−0.745324 + 0.666703i \(0.767705\pi\)
\(72\) 0 0
\(73\) −0.793753 1.37482i −0.0929017 0.160911i 0.815829 0.578293i \(-0.196281\pi\)
−0.908731 + 0.417382i \(0.862948\pi\)
\(74\) 1.39711 + 2.41987i 0.162411 + 0.281304i
\(75\) 0 0
\(76\) −8.89375 −1.02018
\(77\) −4.35381 + 0.366745i −0.496163 + 0.0417945i
\(78\) 0 0
\(79\) 3.81482 6.60746i 0.429201 0.743398i −0.567602 0.823303i \(-0.692129\pi\)
0.996802 + 0.0799058i \(0.0254620\pi\)
\(80\) 2.08138 + 3.60505i 0.232705 + 0.403057i
\(81\) 0 0
\(82\) −0.443717 + 0.768541i −0.0490004 + 0.0848711i
\(83\) 5.25611 0.576933 0.288467 0.957490i \(-0.406855\pi\)
0.288467 + 0.957490i \(0.406855\pi\)
\(84\) 0 0
\(85\) 12.7335 1.38114
\(86\) −2.53568 + 4.39193i −0.273430 + 0.473595i
\(87\) 0 0
\(88\) −1.79691 3.11234i −0.191551 0.331777i
\(89\) 9.27808 16.0701i 0.983474 1.70343i 0.334946 0.942237i \(-0.391282\pi\)
0.648528 0.761191i \(-0.275385\pi\)
\(90\) 0 0
\(91\) 0.479675 1.02005i 0.0502836 0.106931i
\(92\) 12.5450 1.30791
\(93\) 0 0
\(94\) −3.38465 5.86239i −0.349100 0.604659i
\(95\) 5.67114 + 9.82270i 0.581847 + 1.00779i
\(96\) 0 0
\(97\) 13.7546 1.39656 0.698282 0.715823i \(-0.253948\pi\)
0.698282 + 0.715823i \(0.253948\pi\)
\(98\) 4.12243 0.699472i 0.416429 0.0706574i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −7.99423 13.8464i −0.795456 1.37777i −0.922549 0.385879i \(-0.873898\pi\)
0.127093 0.991891i \(-0.459435\pi\)
\(102\) 0 0
\(103\) 1.18156 2.04653i 0.116423 0.201651i −0.801925 0.597425i \(-0.796191\pi\)
0.918348 + 0.395775i \(0.129524\pi\)
\(104\) 0.927161 0.0909156
\(105\) 0 0
\(106\) 3.27933 0.318517
\(107\) 2.27104 3.93356i 0.219550 0.380272i −0.735120 0.677936i \(-0.762874\pi\)
0.954670 + 0.297665i \(0.0962078\pi\)
\(108\) 0 0
\(109\) −8.62227 14.9342i −0.825863 1.43044i −0.901258 0.433283i \(-0.857355\pi\)
0.0753945 0.997154i \(-0.475978\pi\)
\(110\) −1.03359 + 1.79023i −0.0985489 + 0.170692i
\(111\) 0 0
\(112\) −3.00060 4.31489i −0.283530 0.407719i
\(113\) 10.6752 1.00424 0.502119 0.864799i \(-0.332554\pi\)
0.502119 + 0.864799i \(0.332554\pi\)
\(114\) 0 0
\(115\) −7.99940 13.8554i −0.745948 1.29202i
\(116\) −3.00192 5.19947i −0.278721 0.482759i
\(117\) 0 0
\(118\) −0.930766 −0.0856840
\(119\) −16.0198 + 1.34944i −1.46854 + 0.123703i
\(120\) 0 0
\(121\) 4.13641 7.16448i 0.376038 0.651316i
\(122\) −1.50773 2.61146i −0.136503 0.236430i
\(123\) 0 0
\(124\) −4.36057 + 7.55273i −0.391591 + 0.678255i
\(125\) 11.7532 1.05124
\(126\) 0 0
\(127\) 14.4060 1.27833 0.639163 0.769072i \(-0.279281\pi\)
0.639163 + 0.769072i \(0.279281\pi\)
\(128\) 5.73739 9.93745i 0.507118 0.878355i
\(129\) 0 0
\(130\) −0.266653 0.461856i −0.0233870 0.0405075i
\(131\) −5.09259 + 8.82063i −0.444942 + 0.770662i −0.998048 0.0624487i \(-0.980109\pi\)
0.553106 + 0.833111i \(0.313442\pi\)
\(132\) 0 0
\(133\) −8.17575 11.7568i −0.708928 1.01945i
\(134\) −3.12405 −0.269877
\(135\) 0 0
\(136\) −6.61173 11.4519i −0.566951 0.981989i
\(137\) −1.03116 1.78601i −0.0880976 0.152589i 0.818609 0.574351i \(-0.194745\pi\)
−0.906707 + 0.421761i \(0.861412\pi\)
\(138\) 0 0
\(139\) 6.63789 0.563018 0.281509 0.959559i \(-0.409165\pi\)
0.281509 + 0.959559i \(0.409165\pi\)
\(140\) −3.87689 + 8.24439i −0.327657 + 0.696778i
\(141\) 0 0
\(142\) 3.75140 6.49761i 0.314810 0.545267i
\(143\) −0.351788 0.609314i −0.0294180 0.0509534i
\(144\) 0 0
\(145\) −3.82837 + 6.63093i −0.317929 + 0.550669i
\(146\) 0.948275 0.0784798
\(147\) 0 0
\(148\) 7.68652 0.631828
\(149\) −4.75850 + 8.24197i −0.389832 + 0.675209i −0.992427 0.122839i \(-0.960800\pi\)
0.602595 + 0.798047i \(0.294134\pi\)
\(150\) 0 0
\(151\) 5.54891 + 9.61099i 0.451564 + 0.782131i 0.998483 0.0550537i \(-0.0175330\pi\)
−0.546920 + 0.837185i \(0.684200\pi\)
\(152\) 5.88936 10.2007i 0.477690 0.827384i
\(153\) 0 0
\(154\) 1.11063 2.36180i 0.0894967 0.190319i
\(155\) 11.1221 0.893352
\(156\) 0 0
\(157\) −12.1264 21.0035i −0.967791 1.67626i −0.701921 0.712255i \(-0.747674\pi\)
−0.265870 0.964009i \(-0.585659\pi\)
\(158\) 2.27873 + 3.94688i 0.181286 + 0.313997i
\(159\) 0 0
\(160\) −11.6074 −0.917644
\(161\) 11.5323 + 16.5835i 0.908870 + 1.30696i
\(162\) 0 0
\(163\) 5.54515 9.60448i 0.434330 0.752281i −0.562911 0.826518i \(-0.690319\pi\)
0.997241 + 0.0742364i \(0.0236520\pi\)
\(164\) 1.22060 + 2.11415i 0.0953132 + 0.165087i
\(165\) 0 0
\(166\) −1.56983 + 2.71903i −0.121843 + 0.211038i
\(167\) 2.45100 0.189664 0.0948321 0.995493i \(-0.469769\pi\)
0.0948321 + 0.995493i \(0.469769\pi\)
\(168\) 0 0
\(169\) −12.8185 −0.986037
\(170\) −3.80309 + 6.58714i −0.291684 + 0.505211i
\(171\) 0 0
\(172\) 6.97532 + 12.0816i 0.531863 + 0.921214i
\(173\) −4.64053 + 8.03763i −0.352813 + 0.611090i −0.986741 0.162302i \(-0.948108\pi\)
0.633928 + 0.773392i \(0.281441\pi\)
\(174\) 0 0
\(175\) −1.60445 + 0.135151i −0.121285 + 0.0102165i
\(176\) −3.28045 −0.247273
\(177\) 0 0
\(178\) 5.54213 + 9.59926i 0.415400 + 0.719495i
\(179\) −9.27808 16.0701i −0.693476 1.20114i −0.970692 0.240328i \(-0.922745\pi\)
0.277215 0.960808i \(-0.410588\pi\)
\(180\) 0 0
\(181\) 13.2382 0.983989 0.491994 0.870598i \(-0.336268\pi\)
0.491994 + 0.870598i \(0.336268\pi\)
\(182\) 0.384418 + 0.552797i 0.0284950 + 0.0409761i
\(183\) 0 0
\(184\) −8.30721 + 14.3885i −0.612416 + 1.06074i
\(185\) −4.90134 8.48937i −0.360354 0.624151i
\(186\) 0 0
\(187\) −5.01731 + 8.69023i −0.366902 + 0.635493i
\(188\) −18.6214 −1.35811
\(189\) 0 0
\(190\) −6.77515 −0.491521
\(191\) 5.29867 9.17757i 0.383399 0.664066i −0.608147 0.793824i \(-0.708087\pi\)
0.991546 + 0.129759i \(0.0414202\pi\)
\(192\) 0 0
\(193\) 4.05981 + 7.03179i 0.292231 + 0.506159i 0.974337 0.225094i \(-0.0722690\pi\)
−0.682106 + 0.731254i \(0.738936\pi\)
\(194\) −4.10805 + 7.11535i −0.294941 + 0.510852i
\(195\) 0 0
\(196\) 4.00376 10.7830i 0.285983 0.770215i
\(197\) −9.05534 −0.645166 −0.322583 0.946541i \(-0.604551\pi\)
−0.322583 + 0.946541i \(0.604551\pi\)
\(198\) 0 0
\(199\) −3.71302 6.43114i −0.263209 0.455892i 0.703884 0.710315i \(-0.251448\pi\)
−0.967093 + 0.254424i \(0.918114\pi\)
\(200\) −0.662191 1.14695i −0.0468239 0.0811015i
\(201\) 0 0
\(202\) 9.55049 0.671970
\(203\) 4.11371 8.74800i 0.288726 0.613989i
\(204\) 0 0
\(205\) 1.55665 2.69619i 0.108721 0.188310i
\(206\) 0.705791 + 1.22247i 0.0491748 + 0.0851733i
\(207\) 0 0
\(208\) 0.423158 0.732931i 0.0293407 0.0508196i
\(209\) −8.93827 −0.618273
\(210\) 0 0
\(211\) 2.67781 0.184348 0.0921739 0.995743i \(-0.470618\pi\)
0.0921739 + 0.995743i \(0.470618\pi\)
\(212\) 4.51049 7.81240i 0.309782 0.536558i
\(213\) 0 0
\(214\) 1.35658 + 2.34966i 0.0927336 + 0.160619i
\(215\) 8.89568 15.4078i 0.606680 1.05080i
\(216\) 0 0
\(217\) −13.9926 + 1.17867i −0.949881 + 0.0800136i
\(218\) 10.3008 0.697657
\(219\) 0 0
\(220\) 2.84326 + 4.92467i 0.191693 + 0.332021i
\(221\) −1.29440 2.24197i −0.0870709 0.150811i
\(222\) 0 0
\(223\) 21.5369 1.44222 0.721110 0.692820i \(-0.243632\pi\)
0.721110 + 0.692820i \(0.243632\pi\)
\(224\) 14.6031 1.23010i 0.975710 0.0821892i
\(225\) 0 0
\(226\) −3.18834 + 5.52237i −0.212085 + 0.367342i
\(227\) 6.55051 + 11.3458i 0.434773 + 0.753049i 0.997277 0.0737458i \(-0.0234953\pi\)
−0.562504 + 0.826794i \(0.690162\pi\)
\(228\) 0 0
\(229\) −8.41226 + 14.5705i −0.555898 + 0.962843i 0.441935 + 0.897047i \(0.354292\pi\)
−0.997833 + 0.0657963i \(0.979041\pi\)
\(230\) 9.55666 0.630148
\(231\) 0 0
\(232\) 7.95136 0.522033
\(233\) −11.3842 + 19.7180i −0.745804 + 1.29177i 0.204014 + 0.978968i \(0.434601\pi\)
−0.949818 + 0.312803i \(0.898732\pi\)
\(234\) 0 0
\(235\) 11.8740 + 20.5664i 0.774576 + 1.34161i
\(236\) −1.28020 + 2.21738i −0.0833342 + 0.144339i
\(237\) 0 0
\(238\) 4.08654 8.69023i 0.264891 0.563304i
\(239\) 9.51810 0.615675 0.307837 0.951439i \(-0.400395\pi\)
0.307837 + 0.951439i \(0.400395\pi\)
\(240\) 0 0
\(241\) −0.586542 1.01592i −0.0377825 0.0654412i 0.846516 0.532364i \(-0.178696\pi\)
−0.884298 + 0.466922i \(0.845363\pi\)
\(242\) 2.47083 + 4.27960i 0.158831 + 0.275103i
\(243\) 0 0
\(244\) −8.29509 −0.531039
\(245\) −14.4623 + 2.45389i −0.923963 + 0.156773i
\(246\) 0 0
\(247\) 1.15298 1.99702i 0.0733624 0.127067i
\(248\) −5.77506 10.0027i −0.366716 0.635171i
\(249\) 0 0
\(250\) −3.51030 + 6.08002i −0.222011 + 0.384534i
\(251\) −7.59042 −0.479103 −0.239552 0.970884i \(-0.577000\pi\)
−0.239552 + 0.970884i \(0.577000\pi\)
\(252\) 0 0
\(253\) 12.6078 0.792648
\(254\) −4.30261 + 7.45234i −0.269970 + 0.467601i
\(255\) 0 0
\(256\) 2.76289 + 4.78547i 0.172681 + 0.299092i
\(257\) 11.6431 20.1665i 0.726277 1.25795i −0.232169 0.972675i \(-0.574582\pi\)
0.958446 0.285273i \(-0.0920844\pi\)
\(258\) 0 0
\(259\) 7.06598 + 10.1610i 0.439059 + 0.631371i
\(260\) −1.46705 −0.0909826
\(261\) 0 0
\(262\) −3.04199 5.26888i −0.187935 0.325513i
\(263\) 5.22230 + 9.04529i 0.322021 + 0.557757i 0.980905 0.194488i \(-0.0623045\pi\)
−0.658884 + 0.752245i \(0.728971\pi\)
\(264\) 0 0
\(265\) −11.5045 −0.706718
\(266\) 8.52374 0.718000i 0.522624 0.0440234i
\(267\) 0 0
\(268\) −4.29691 + 7.44247i −0.262476 + 0.454621i
\(269\) 14.2349 + 24.6556i 0.867917 + 1.50328i 0.864122 + 0.503283i \(0.167875\pi\)
0.00379485 + 0.999993i \(0.498792\pi\)
\(270\) 0 0
\(271\) −13.6962 + 23.7226i −0.831986 + 1.44104i 0.0644746 + 0.997919i \(0.479463\pi\)
−0.896461 + 0.443123i \(0.853870\pi\)
\(272\) −12.0704 −0.731876
\(273\) 0 0
\(274\) 1.23189 0.0744214
\(275\) −0.502503 + 0.870361i −0.0303021 + 0.0524847i
\(276\) 0 0
\(277\) −2.05628 3.56159i −0.123550 0.213995i 0.797615 0.603167i \(-0.206095\pi\)
−0.921165 + 0.389172i \(0.872761\pi\)
\(278\) −1.98252 + 3.43383i −0.118904 + 0.205948i
\(279\) 0 0
\(280\) −6.88865 9.90594i −0.411675 0.591993i
\(281\) 7.26126 0.433170 0.216585 0.976264i \(-0.430508\pi\)
0.216585 + 0.976264i \(0.430508\pi\)
\(282\) 0 0
\(283\) 0.640173 + 1.10881i 0.0380543 + 0.0659120i 0.884425 0.466682i \(-0.154551\pi\)
−0.846371 + 0.532594i \(0.821217\pi\)
\(284\) −10.3196 17.8740i −0.612354 1.06063i
\(285\) 0 0
\(286\) 0.420271 0.0248512
\(287\) −1.67267 + 3.55701i −0.0987345 + 0.209964i
\(288\) 0 0
\(289\) −9.96117 + 17.2532i −0.585951 + 1.01490i
\(290\) −2.28682 3.96090i −0.134287 0.232592i
\(291\) 0 0
\(292\) 1.30429 2.25909i 0.0763276 0.132203i
\(293\) −20.0134 −1.16920 −0.584598 0.811323i \(-0.698748\pi\)
−0.584598 + 0.811323i \(0.698748\pi\)
\(294\) 0 0
\(295\) 3.26531 0.190114
\(296\) −5.08994 + 8.81604i −0.295847 + 0.512422i
\(297\) 0 0
\(298\) −2.84243 4.92323i −0.164657 0.285195i
\(299\) −1.62633 + 2.81689i −0.0940532 + 0.162905i
\(300\) 0 0
\(301\) −9.55870 + 20.3270i −0.550954 + 1.17163i
\(302\) −6.62913 −0.381464
\(303\) 0 0
\(304\) −5.37582 9.31120i −0.308325 0.534034i
\(305\) 5.28940 + 9.16151i 0.302870 + 0.524587i
\(306\) 0 0
\(307\) −2.19415 −0.125227 −0.0626134 0.998038i \(-0.519944\pi\)
−0.0626134 + 0.998038i \(0.519944\pi\)
\(308\) −4.09896 5.89435i −0.233560 0.335862i
\(309\) 0 0
\(310\) −3.32183 + 5.75358i −0.188667 + 0.326781i
\(311\) −4.25439 7.36882i −0.241244 0.417847i 0.719825 0.694156i \(-0.244222\pi\)
−0.961069 + 0.276309i \(0.910889\pi\)
\(312\) 0 0
\(313\) −1.51731 + 2.62806i −0.0857633 + 0.148546i −0.905716 0.423885i \(-0.860666\pi\)
0.819953 + 0.572431i \(0.194000\pi\)
\(314\) 14.4871 0.817552
\(315\) 0 0
\(316\) 12.5369 0.705258
\(317\) 2.64225 4.57652i 0.148404 0.257043i −0.782234 0.622985i \(-0.785920\pi\)
0.930638 + 0.365942i \(0.119253\pi\)
\(318\) 0 0
\(319\) −3.01694 5.22550i −0.168916 0.292572i
\(320\) −0.695999 + 1.20551i −0.0389075 + 0.0673898i
\(321\) 0 0
\(322\) −12.0231 + 1.01277i −0.670022 + 0.0564395i
\(323\) −32.8883 −1.82996
\(324\) 0 0
\(325\) −0.129639 0.224542i −0.00719110 0.0124554i
\(326\) 3.31232 + 5.73711i 0.183452 + 0.317749i
\(327\) 0 0
\(328\) −3.23309 −0.178518
\(329\) −17.1181 24.6160i −0.943751 1.35712i
\(330\) 0 0
\(331\) −10.6008 + 18.3612i −0.582675 + 1.00922i 0.412486 + 0.910964i \(0.364660\pi\)
−0.995161 + 0.0982581i \(0.968673\pi\)
\(332\) 4.31839 + 7.47968i 0.237003 + 0.410500i
\(333\) 0 0
\(334\) −0.732036 + 1.26792i −0.0400552 + 0.0693777i
\(335\) 10.9598 0.598797
\(336\) 0 0
\(337\) −14.0497 −0.765333 −0.382667 0.923886i \(-0.624994\pi\)
−0.382667 + 0.923886i \(0.624994\pi\)
\(338\) 3.82847 6.63111i 0.208242 0.360685i
\(339\) 0 0
\(340\) 10.4618 + 18.1203i 0.567369 + 0.982712i
\(341\) −4.38240 + 7.59053i −0.237320 + 0.411051i
\(342\) 0 0
\(343\) 17.9348 4.61985i 0.968388 0.249449i
\(344\) −18.4760 −0.996157
\(345\) 0 0
\(346\) −2.77196 4.80117i −0.149021 0.258112i
\(347\) 10.0290 + 17.3707i 0.538385 + 0.932510i 0.998991 + 0.0449055i \(0.0142987\pi\)
−0.460606 + 0.887605i \(0.652368\pi\)
\(348\) 0 0
\(349\) −27.9294 −1.49503 −0.747513 0.664247i \(-0.768752\pi\)
−0.747513 + 0.664247i \(0.768752\pi\)
\(350\) 0.409283 0.870361i 0.0218771 0.0465227i
\(351\) 0 0
\(352\) 4.57359 7.92169i 0.243773 0.422228i
\(353\) −2.99626 5.18967i −0.159475 0.276218i 0.775205 0.631710i \(-0.217647\pi\)
−0.934679 + 0.355492i \(0.884313\pi\)
\(354\) 0 0
\(355\) −13.1606 + 22.7949i −0.698494 + 1.20983i
\(356\) 30.4913 1.61603
\(357\) 0 0
\(358\) 11.0843 0.585822
\(359\) 8.30710 14.3883i 0.438432 0.759386i −0.559137 0.829075i \(-0.688867\pi\)
0.997569 + 0.0696890i \(0.0222007\pi\)
\(360\) 0 0
\(361\) −5.14755 8.91581i −0.270924 0.469253i
\(362\) −3.95383 + 6.84824i −0.207809 + 0.359935i
\(363\) 0 0
\(364\) 1.84568 0.155471i 0.0967398 0.00814891i
\(365\) −3.32673 −0.174129
\(366\) 0 0
\(367\) −3.24764 5.62508i −0.169525 0.293627i 0.768728 0.639576i \(-0.220890\pi\)
−0.938253 + 0.345950i \(0.887557\pi\)
\(368\) 7.58285 + 13.1339i 0.395283 + 0.684651i
\(369\) 0 0
\(370\) 5.85550 0.304413
\(371\) 14.4737 1.21920i 0.751438 0.0632976i
\(372\) 0 0
\(373\) 10.0805 17.4600i 0.521949 0.904042i −0.477725 0.878509i \(-0.658538\pi\)
0.999674 0.0255327i \(-0.00812820\pi\)
\(374\) −2.99702 5.19099i −0.154972 0.268420i
\(375\) 0 0
\(376\) 12.3309 21.3578i 0.635919 1.10144i
\(377\) 1.55667 0.0801724
\(378\) 0 0
\(379\) −15.3014 −0.785981 −0.392990 0.919543i \(-0.628559\pi\)
−0.392990 + 0.919543i \(0.628559\pi\)
\(380\) −9.31876 + 16.1406i −0.478042 + 0.827993i
\(381\) 0 0
\(382\) 3.16509 + 5.48210i 0.161940 + 0.280488i
\(383\) 3.39296 5.87677i 0.173372 0.300289i −0.766225 0.642573i \(-0.777867\pi\)
0.939597 + 0.342284i \(0.111200\pi\)
\(384\) 0 0
\(385\) −3.89629 + 8.28566i −0.198573 + 0.422276i
\(386\) −4.85014 −0.246866
\(387\) 0 0
\(388\) 11.3007 + 19.5733i 0.573705 + 0.993686i
\(389\) −2.87957 4.98756i −0.146000 0.252879i 0.783746 0.621082i \(-0.213307\pi\)
−0.929746 + 0.368203i \(0.879973\pi\)
\(390\) 0 0
\(391\) 46.3905 2.34607
\(392\) 9.71630 + 11.7325i 0.490747 + 0.592581i
\(393\) 0 0
\(394\) 2.70454 4.68440i 0.136253 0.235997i
\(395\) −7.99423 13.8464i −0.402234 0.696689i
\(396\) 0 0
\(397\) 0.247873 0.429329i 0.0124404 0.0215474i −0.859738 0.510735i \(-0.829373\pi\)
0.872179 + 0.489188i \(0.162707\pi\)
\(398\) 4.43585 0.222349
\(399\) 0 0
\(400\) −1.20890 −0.0604450
\(401\) 5.19147 8.99190i 0.259250 0.449034i −0.706791 0.707422i \(-0.749858\pi\)
0.966041 + 0.258388i \(0.0831914\pi\)
\(402\) 0 0
\(403\) −1.13060 1.95826i −0.0563194 0.0975480i
\(404\) 13.1360 22.7523i 0.653542 1.13197i
\(405\) 0 0
\(406\) 3.29678 + 4.74081i 0.163617 + 0.235282i
\(407\) 7.72500 0.382914
\(408\) 0 0
\(409\) 15.0097 + 25.9976i 0.742182 + 1.28550i 0.951500 + 0.307649i \(0.0995423\pi\)
−0.209318 + 0.977848i \(0.567124\pi\)
\(410\) 0.929842 + 1.61053i 0.0459216 + 0.0795386i
\(411\) 0 0
\(412\) 3.88307 0.191305
\(413\) −4.10805 + 0.346043i −0.202144 + 0.0170276i
\(414\) 0 0
\(415\) 5.50728 9.53889i 0.270342 0.468246i
\(416\) 1.17993 + 2.04370i 0.0578508 + 0.100200i
\(417\) 0 0
\(418\) 2.66958 4.62384i 0.130573 0.226160i
\(419\) −27.6495 −1.35077 −0.675384 0.737467i \(-0.736022\pi\)
−0.675384 + 0.737467i \(0.736022\pi\)
\(420\) 0 0
\(421\) 12.4621 0.607368 0.303684 0.952773i \(-0.401783\pi\)
0.303684 + 0.952773i \(0.401783\pi\)
\(422\) −0.799775 + 1.38525i −0.0389325 + 0.0674330i
\(423\) 0 0
\(424\) 5.97361 + 10.3466i 0.290104 + 0.502475i
\(425\) −1.84896 + 3.20249i −0.0896876 + 0.155344i
\(426\) 0 0
\(427\) −7.62542 10.9654i −0.369020 0.530655i
\(428\) 7.46351 0.360762
\(429\) 0 0
\(430\) 5.31371 + 9.20362i 0.256250 + 0.443838i
\(431\) −7.05162 12.2138i −0.339665 0.588316i 0.644705 0.764431i \(-0.276980\pi\)
−0.984370 + 0.176115i \(0.943647\pi\)
\(432\) 0 0
\(433\) −15.3684 −0.738560 −0.369280 0.929318i \(-0.620396\pi\)
−0.369280 + 0.929318i \(0.620396\pi\)
\(434\) 3.56941 7.59053i 0.171337 0.364357i
\(435\) 0 0
\(436\) 14.1680 24.5397i 0.678525 1.17524i
\(437\) 20.6610 + 35.7860i 0.988351 + 1.71187i
\(438\) 0 0
\(439\) −9.62286 + 16.6673i −0.459274 + 0.795486i −0.998923 0.0464041i \(-0.985224\pi\)
0.539648 + 0.841890i \(0.318557\pi\)
\(440\) −7.53112 −0.359032
\(441\) 0 0
\(442\) 1.54639 0.0735541
\(443\) 12.2849 21.2781i 0.583673 1.01095i −0.411367 0.911470i \(-0.634948\pi\)
0.995039 0.0994811i \(-0.0317183\pi\)
\(444\) 0 0
\(445\) −19.4429 33.6761i −0.921682 1.59640i
\(446\) −6.43240 + 11.1412i −0.304583 + 0.527553i
\(447\) 0 0
\(448\) 0.747873 1.59039i 0.0353337 0.0751389i
\(449\) 40.0045 1.88793 0.943965 0.330046i \(-0.107064\pi\)
0.943965 + 0.330046i \(0.107064\pi\)
\(450\) 0 0
\(451\) 1.22671 + 2.12473i 0.0577637 + 0.100050i
\(452\) 8.77068 + 15.1913i 0.412538 + 0.714537i
\(453\) 0 0
\(454\) −7.82572 −0.367279
\(455\) −1.34861 1.93932i −0.0632240 0.0909168i
\(456\) 0 0
\(457\) 5.31807 9.21117i 0.248769 0.430880i −0.714416 0.699722i \(-0.753307\pi\)
0.963184 + 0.268841i \(0.0866407\pi\)
\(458\) −5.02495 8.70347i −0.234800 0.406686i
\(459\) 0 0
\(460\) 13.1445 22.7670i 0.612867 1.06152i
\(461\) 16.4092 0.764251 0.382125 0.924111i \(-0.375192\pi\)
0.382125 + 0.924111i \(0.375192\pi\)
\(462\) 0 0
\(463\) 6.06393 0.281815 0.140907 0.990023i \(-0.454998\pi\)
0.140907 + 0.990023i \(0.454998\pi\)
\(464\) 3.62901 6.28564i 0.168473 0.291803i
\(465\) 0 0
\(466\) −6.80020 11.7783i −0.315013 0.545619i
\(467\) −12.6433 + 21.8988i −0.585062 + 1.01336i 0.409805 + 0.912173i \(0.365597\pi\)
−0.994868 + 0.101185i \(0.967737\pi\)
\(468\) 0 0
\(469\) −13.7884 + 1.16147i −0.636687 + 0.0536315i
\(470\) −14.1856 −0.654332
\(471\) 0 0
\(472\) −1.69548 2.93666i −0.0780408 0.135171i
\(473\) 7.01023 + 12.1421i 0.322331 + 0.558294i
\(474\) 0 0
\(475\) −3.29390 −0.151134
\(476\) −15.0821 21.6882i −0.691288 0.994079i
\(477\) 0 0
\(478\) −2.84275 + 4.92379i −0.130025 + 0.225209i
\(479\) 1.67124 + 2.89468i 0.0763611 + 0.132261i 0.901677 0.432409i \(-0.142337\pi\)
−0.825316 + 0.564671i \(0.809003\pi\)
\(480\) 0 0
\(481\) −0.996476 + 1.72595i −0.0454354 + 0.0786964i
\(482\) 0.700726 0.0319172
\(483\) 0 0
\(484\) 13.5938 0.617901
\(485\) 14.4118 24.9620i 0.654408 1.13347i
\(486\) 0 0
\(487\) −3.63943 6.30368i −0.164918 0.285647i 0.771708 0.635977i \(-0.219403\pi\)
−0.936626 + 0.350330i \(0.886069\pi\)
\(488\) 5.49293 9.51404i 0.248653 0.430680i
\(489\) 0 0
\(490\) 3.05002 8.21437i 0.137786 0.371087i
\(491\) −2.97131 −0.134093 −0.0670466 0.997750i \(-0.521358\pi\)
−0.0670466 + 0.997750i \(0.521358\pi\)
\(492\) 0 0
\(493\) −11.1008 19.2272i −0.499956 0.865950i
\(494\) 0.688717 + 1.19289i 0.0309869 + 0.0536708i
\(495\) 0 0
\(496\) −10.5430 −0.473394
\(497\) 14.1415 30.0727i 0.634335 1.34894i
\(498\) 0 0
\(499\) −6.24293 + 10.8131i −0.279472 + 0.484060i −0.971254 0.238047i \(-0.923493\pi\)
0.691782 + 0.722107i \(0.256826\pi\)
\(500\) 9.65635 + 16.7253i 0.431845 + 0.747977i
\(501\) 0 0
\(502\) 2.26702 3.92659i 0.101182 0.175252i
\(503\) −17.4657 −0.778755 −0.389377 0.921078i \(-0.627310\pi\)
−0.389377 + 0.921078i \(0.627310\pi\)
\(504\) 0 0
\(505\) −33.5050 −1.49095
\(506\) −3.76556 + 6.52214i −0.167400 + 0.289945i
\(507\) 0 0
\(508\) 11.8359 + 20.5004i 0.525133 + 0.909556i
\(509\) −13.7671 + 23.8453i −0.610215 + 1.05692i 0.380989 + 0.924580i \(0.375584\pi\)
−0.991204 + 0.132344i \(0.957750\pi\)
\(510\) 0 0
\(511\) 4.18532 0.352552i 0.185148 0.0155960i
\(512\) 19.6488 0.868363
\(513\) 0 0
\(514\) 6.95485 + 12.0462i 0.306765 + 0.531333i
\(515\) −2.47606 4.28865i −0.109108 0.188981i
\(516\) 0 0
\(517\) −18.7146 −0.823069
\(518\) −7.36673 + 0.620539i −0.323676 + 0.0272649i
\(519\) 0 0
\(520\) 0.971467 1.68263i 0.0426017 0.0737882i
\(521\) 3.46252 + 5.99726i 0.151696 + 0.262745i 0.931851 0.362841i \(-0.118193\pi\)
−0.780155 + 0.625586i \(0.784860\pi\)
\(522\) 0 0
\(523\) 20.7968 36.0211i 0.909381 1.57509i 0.0944561 0.995529i \(-0.469889\pi\)
0.814925 0.579566i \(-0.196778\pi\)
\(524\) −16.7362 −0.731124
\(525\) 0 0
\(526\) −6.23894 −0.272031
\(527\) −16.1250 + 27.9293i −0.702417 + 1.21662i
\(528\) 0 0
\(529\) −17.6433 30.5591i −0.767101 1.32866i
\(530\) 3.43604 5.95139i 0.149252 0.258512i
\(531\) 0 0
\(532\) 10.0133 21.2938i 0.434132 0.923203i
\(533\) −0.632954 −0.0274163
\(534\) 0 0
\(535\) −4.75914 8.24307i −0.205755 0.356379i
\(536\) −5.69075 9.85667i −0.245803 0.425743i
\(537\) 0 0
\(538\) −17.0060 −0.733182
\(539\) 4.02380 10.8370i 0.173317 0.466782i
\(540\) 0 0
\(541\) 16.8944 29.2619i 0.726345 1.25807i −0.232073 0.972698i \(-0.574551\pi\)
0.958418 0.285368i \(-0.0921158\pi\)
\(542\) −8.18125 14.1703i −0.351415 0.608668i
\(543\) 0 0
\(544\) 16.8285 29.1478i 0.721517 1.24970i
\(545\) −36.1372 −1.54795
\(546\) 0 0
\(547\) −14.1310 −0.604196 −0.302098 0.953277i \(-0.597687\pi\)
−0.302098 + 0.953277i \(0.597687\pi\)
\(548\) 1.69438 2.93476i 0.0723805 0.125367i
\(549\) 0 0
\(550\) −0.300163 0.519898i −0.0127990 0.0221685i
\(551\) 9.88800 17.1265i 0.421243 0.729614i
\(552\) 0 0
\(553\) 11.5248 + 16.5728i 0.490085 + 0.704748i
\(554\) 2.45658 0.104370
\(555\) 0 0
\(556\) 5.45365 + 9.44600i 0.231286 + 0.400600i
\(557\) −3.74784 6.49145i −0.158801 0.275051i 0.775636 0.631181i \(-0.217429\pi\)
−0.934437 + 0.356130i \(0.884096\pi\)
\(558\) 0 0
\(559\) −3.61710 −0.152987
\(560\) −10.9747 + 0.924461i −0.463767 + 0.0390656i
\(561\) 0 0
\(562\) −2.16871 + 3.75631i −0.0914813 + 0.158450i
\(563\) 5.21120 + 9.02606i 0.219626 + 0.380403i 0.954694 0.297591i \(-0.0961830\pi\)
−0.735068 + 0.677994i \(0.762850\pi\)
\(564\) 0 0
\(565\) 11.1853 19.3735i 0.470570 0.815051i
\(566\) −0.764797 −0.0321468
\(567\) 0 0
\(568\) 27.3341 1.14691
\(569\) −14.9832 + 25.9517i −0.628130 + 1.08795i 0.359796 + 0.933031i \(0.382846\pi\)
−0.987927 + 0.154923i \(0.950487\pi\)
\(570\) 0 0
\(571\) −15.7168 27.2223i −0.657727 1.13922i −0.981203 0.192980i \(-0.938185\pi\)
0.323476 0.946236i \(-0.395149\pi\)
\(572\) 0.578054 1.00122i 0.0241697 0.0418631i
\(573\) 0 0
\(574\) −1.34050 1.92765i −0.0559514 0.0804586i
\(575\) 4.64619 0.193760
\(576\) 0 0
\(577\) 1.35570 + 2.34815i 0.0564387 + 0.0977547i 0.892864 0.450326i \(-0.148692\pi\)
−0.836426 + 0.548080i \(0.815359\pi\)
\(578\) −5.95017 10.3060i −0.247494 0.428673i
\(579\) 0 0
\(580\) −12.5815 −0.522417
\(581\) −5.91775 + 12.5844i −0.245510 + 0.522089i
\(582\) 0 0
\(583\) 4.53307 7.85151i 0.187741 0.325176i
\(584\) 1.72737 + 2.99190i 0.0714792 + 0.123806i
\(585\) 0 0
\(586\) 5.97737 10.3531i 0.246923 0.427683i
\(587\) −10.7040 −0.441800 −0.220900 0.975296i \(-0.570899\pi\)
−0.220900 + 0.975296i \(0.570899\pi\)
\(588\) 0 0
\(589\) −28.7265 −1.18366
\(590\) −0.975245 + 1.68917i −0.0401502 + 0.0695422i
\(591\) 0 0
\(592\) 4.64611 + 8.04731i 0.190954 + 0.330742i
\(593\) −14.8489 + 25.7191i −0.609773 + 1.05616i 0.381505 + 0.924367i \(0.375406\pi\)
−0.991278 + 0.131791i \(0.957927\pi\)
\(594\) 0 0
\(595\) −14.3364 + 30.4870i −0.587735 + 1.24985i
\(596\) −15.6382 −0.640568
\(597\) 0 0
\(598\) −0.971467 1.68263i −0.0397262 0.0688079i
\(599\) 7.19914 + 12.4693i 0.294149 + 0.509481i 0.974787 0.223140i \(-0.0716305\pi\)
−0.680638 + 0.732620i \(0.738297\pi\)
\(600\) 0 0
\(601\) 17.7120 0.722486 0.361243 0.932472i \(-0.382353\pi\)
0.361243 + 0.932472i \(0.382353\pi\)
\(602\) −7.66047 11.0158i −0.312218 0.448972i
\(603\) 0 0
\(604\) −9.11791 + 15.7927i −0.371002 + 0.642595i
\(605\) −8.66816 15.0137i −0.352411 0.610393i
\(606\) 0 0
\(607\) 2.57771 4.46473i 0.104626 0.181218i −0.808959 0.587865i \(-0.799969\pi\)
0.913585 + 0.406647i \(0.133302\pi\)
\(608\) 29.9798 1.21584
\(609\) 0 0
\(610\) −6.31910 −0.255853
\(611\) 2.41407 4.18129i 0.0976628 0.169157i
\(612\) 0 0
\(613\) −5.62940 9.75042i −0.227370 0.393816i 0.729658 0.683812i \(-0.239679\pi\)
−0.957028 + 0.289996i \(0.906346\pi\)
\(614\) 0.655323 1.13505i 0.0264467 0.0458070i
\(615\) 0 0
\(616\) 9.47481 0.798114i 0.381751 0.0321569i
\(617\) 0.520304 0.0209467 0.0104733 0.999945i \(-0.496666\pi\)
0.0104733 + 0.999945i \(0.496666\pi\)
\(618\) 0 0
\(619\) 18.7370 + 32.4535i 0.753104 + 1.30441i 0.946311 + 0.323257i \(0.104778\pi\)
−0.193207 + 0.981158i \(0.561889\pi\)
\(620\) 9.13789 + 15.8273i 0.366987 + 0.635639i
\(621\) 0 0
\(622\) 5.08260 0.203794
\(623\) 28.0297 + 40.3070i 1.12299 + 1.61487i
\(624\) 0 0
\(625\) 10.7934 18.6947i 0.431736 0.747788i
\(626\) −0.906343 1.56983i −0.0362248 0.0627431i
\(627\) 0 0
\(628\) 19.9260 34.5128i 0.795132 1.37721i
\(629\) 28.4241 1.13334
\(630\) 0 0
\(631\) 0.502795 0.0200159 0.0100080 0.999950i \(-0.496814\pi\)
0.0100080 + 0.999950i \(0.496814\pi\)
\(632\) −8.30185 + 14.3792i −0.330230 + 0.571975i
\(633\) 0 0
\(634\) 1.57831 + 2.73372i 0.0626828 + 0.108570i
\(635\) 15.0944 26.1443i 0.599003 1.03750i
\(636\) 0 0
\(637\) 1.90220 + 2.29692i 0.0753677 + 0.0910071i
\(638\) 3.60426 0.142694
\(639\) 0 0
\(640\) −12.0231 20.8247i −0.475256 0.823167i
\(641\) −4.98058 8.62662i −0.196721 0.340731i 0.750742 0.660595i \(-0.229696\pi\)
−0.947463 + 0.319864i \(0.896363\pi\)
\(642\) 0 0
\(643\) 21.6236 0.852752 0.426376 0.904546i \(-0.359790\pi\)
0.426376 + 0.904546i \(0.359790\pi\)
\(644\) −14.1242 + 30.0359i −0.556573 + 1.18358i
\(645\) 0 0
\(646\) 9.82270 17.0134i 0.386469 0.669384i
\(647\) −19.3679 33.5462i −0.761430 1.31884i −0.942113 0.335294i \(-0.891164\pi\)
0.180683 0.983541i \(-0.442169\pi\)
\(648\) 0 0
\(649\) −1.28661 + 2.22848i −0.0505040 + 0.0874755i
\(650\) 0.154877 0.00607476
\(651\) 0 0
\(652\) 18.2235 0.713686
\(653\) −10.8989 + 18.8774i −0.426506 + 0.738731i −0.996560 0.0828770i \(-0.973589\pi\)
0.570053 + 0.821608i \(0.306922\pi\)
\(654\) 0 0
\(655\) 10.6719 + 18.4843i 0.416986 + 0.722241i
\(656\) −1.47559 + 2.55579i −0.0576120 + 0.0997870i
\(657\) 0 0
\(658\) 17.8467 1.50332i 0.695737 0.0586056i
\(659\) −5.13619 −0.200078 −0.100039 0.994984i \(-0.531897\pi\)
−0.100039 + 0.994984i \(0.531897\pi\)
\(660\) 0 0
\(661\) −6.58087 11.3984i −0.255966 0.443347i 0.709191 0.705016i \(-0.249060\pi\)
−0.965158 + 0.261670i \(0.915727\pi\)
\(662\) −6.33226 10.9678i −0.246110 0.426276i
\(663\) 0 0
\(664\) −11.4384 −0.443896
\(665\) −29.9029 + 2.51888i −1.15959 + 0.0976781i
\(666\) 0 0
\(667\) −13.9475 + 24.1577i −0.540048 + 0.935391i
\(668\) 2.01373 + 3.48788i 0.0779136 + 0.134950i
\(669\) 0 0
\(670\) −3.27334 + 5.66958i −0.126460 + 0.219035i
\(671\) −8.33662 −0.321832
\(672\) 0 0
\(673\) −7.01209 −0.270296 −0.135148 0.990825i \(-0.543151\pi\)
−0.135148 + 0.990825i \(0.543151\pi\)
\(674\) 4.19618 7.26800i 0.161631 0.279953i
\(675\) 0 0
\(676\) −10.5316 18.2413i −0.405062 0.701587i
\(677\) 18.4481 31.9531i 0.709018 1.22806i −0.256203 0.966623i \(-0.582472\pi\)
0.965222 0.261433i \(-0.0841951\pi\)
\(678\) 0 0
\(679\) −15.4860 + 32.9317i −0.594298 + 1.26380i
\(680\) −27.7107 −1.06266
\(681\) 0 0
\(682\) −2.61776 4.53410i −0.100239 0.173620i
\(683\) −2.79970 4.84921i −0.107127 0.185550i 0.807478 0.589898i \(-0.200832\pi\)
−0.914605 + 0.404348i \(0.867499\pi\)
\(684\) 0 0
\(685\) −4.32172 −0.165125
\(686\) −2.96666 + 10.6576i −0.113268 + 0.406910i
\(687\) 0 0
\(688\) −8.43245 + 14.6054i −0.321484 + 0.556827i
\(689\) 1.16948 + 2.02559i 0.0445535 + 0.0771689i
\(690\) 0 0
\(691\) 3.19219 5.52903i 0.121437 0.210334i −0.798898 0.601467i \(-0.794583\pi\)
0.920334 + 0.391132i \(0.127917\pi\)
\(692\) −15.2505 −0.579738
\(693\) 0 0
\(694\) −11.9814 −0.454807
\(695\) 6.95509 12.0466i 0.263822 0.456952i
\(696\) 0 0
\(697\) 4.51369 + 7.81795i 0.170968 + 0.296126i
\(698\) 8.34162 14.4481i 0.315735 0.546869i
\(699\) 0 0
\(700\) −1.51053 2.17216i −0.0570928 0.0821000i
\(701\) 10.9860 0.414937 0.207468 0.978242i \(-0.433478\pi\)
0.207468 + 0.978242i \(0.433478\pi\)
\(702\) 0 0
\(703\) 12.6593 + 21.9265i 0.477455 + 0.826975i
\(704\) −0.548481 0.949997i −0.0206717 0.0358044i
\(705\) 0 0
\(706\) 3.57955 0.134718
\(707\) 42.1522 3.55071i 1.58530 0.133538i
\(708\) 0 0
\(709\) −13.2658 + 22.9771i −0.498208 + 0.862922i −0.999998 0.00206764i \(-0.999342\pi\)
0.501790 + 0.864990i \(0.332675\pi\)
\(710\) −7.86133 13.6162i −0.295030 0.511008i
\(711\) 0 0
\(712\) −20.1910 + 34.9719i −0.756691 + 1.31063i
\(713\) 40.5201 1.51749
\(714\) 0 0
\(715\) −1.47439 −0.0551392
\(716\) 15.2456 26.4062i 0.569756 0.986847i
\(717\) 0 0
\(718\) 4.96213 + 8.59466i 0.185185 + 0.320750i
\(719\) −10.4980 + 18.1831i −0.391510 + 0.678116i −0.992649 0.121029i \(-0.961381\pi\)
0.601139 + 0.799145i \(0.294714\pi\)
\(720\) 0 0
\(721\) 3.56959 + 5.13310i 0.132938 + 0.191167i
\(722\) 6.14963 0.228866
\(723\) 0 0
\(724\) 10.8764 + 18.8386i 0.404220 + 0.700129i
\(725\) −1.11179 1.92568i −0.0412909 0.0715179i
\(726\) 0 0
\(727\) 17.0632 0.632839 0.316420 0.948619i \(-0.397519\pi\)
0.316420 + 0.948619i \(0.397519\pi\)
\(728\) −1.04387 + 2.21985i −0.0386885 + 0.0822730i
\(729\) 0 0
\(730\) 0.993590 1.72095i 0.0367744 0.0636951i
\(731\) 25.7941 + 44.6768i 0.954031 + 1.65243i
\(732\) 0 0
\(733\) 17.2403 29.8610i 0.636784 1.10294i −0.349351 0.936992i \(-0.613598\pi\)
0.986134 0.165950i \(-0.0530689\pi\)
\(734\) 3.87987 0.143208
\(735\) 0 0
\(736\) −42.2879 −1.55875
\(737\) −4.31842 + 7.47973i −0.159071 + 0.275519i
\(738\) 0 0
\(739\) 0.685922 + 1.18805i 0.0252321 + 0.0437032i 0.878366 0.477989i \(-0.158634\pi\)
−0.853134 + 0.521692i \(0.825301\pi\)
\(740\) 8.05383 13.9497i 0.296065 0.512799i
\(741\) 0 0
\(742\) −3.69214 + 7.85151i −0.135543 + 0.288238i
\(743\) 8.94248 0.328068 0.164034 0.986455i \(-0.447549\pi\)
0.164034 + 0.986455i \(0.447549\pi\)
\(744\) 0 0
\(745\) 9.97179 + 17.2717i 0.365338 + 0.632784i
\(746\) 6.02145 + 10.4295i 0.220461 + 0.381850i
\(747\) 0 0
\(748\) −16.4888 −0.602889
\(749\) 6.86097 + 9.86615i 0.250694 + 0.360501i
\(750\) 0 0
\(751\) −25.2856 + 43.7959i −0.922683 + 1.59813i −0.127437 + 0.991847i \(0.540675\pi\)
−0.795246 + 0.606287i \(0.792658\pi\)
\(752\) −11.2557 19.4955i −0.410453 0.710926i
\(753\) 0 0
\(754\) −0.464927 + 0.805277i −0.0169316 + 0.0293265i
\(755\) 23.2563 0.846383
\(756\) 0 0
\(757\) 9.56041 0.347479 0.173739 0.984792i \(-0.444415\pi\)
0.173739 + 0.984792i \(0.444415\pi\)
\(758\) 4.57004 7.91555i 0.165991 0.287506i
\(759\) 0 0
\(760\) −12.3416 21.3763i −0.447676 0.775398i
\(761\) 18.9406 32.8060i 0.686595 1.18922i −0.286337 0.958129i \(-0.592438\pi\)
0.972933 0.231089i \(-0.0742289\pi\)
\(762\) 0 0
\(763\) 45.4637 3.82965i 1.64590 0.138643i
\(764\) 17.4134 0.629996
\(765\) 0 0
\(766\) 2.02674 + 3.51041i 0.0732289 + 0.126836i
\(767\) −0.331930 0.574920i −0.0119853 0.0207591i
\(768\) 0 0
\(769\) −28.5588 −1.02986 −0.514928 0.857234i \(-0.672181\pi\)
−0.514928 + 0.857234i \(0.672181\pi\)
\(770\) −3.12254 4.49025i −0.112529 0.161817i
\(771\) 0 0
\(772\) −6.67103 + 11.5546i −0.240096 + 0.415858i
\(773\) −5.35149 9.26905i −0.192480 0.333385i 0.753592 0.657343i \(-0.228320\pi\)
−0.946071 + 0.323958i \(0.894986\pi\)
\(774\) 0 0
\(775\) −1.61498 + 2.79723i −0.0580119 + 0.100480i
\(776\) −29.9328 −1.07452
\(777\) 0 0
\(778\) 3.44014 0.123335
\(779\) −4.02054 + 6.96379i −0.144051 + 0.249504i
\(780\) 0 0
\(781\) −10.3712 17.9635i −0.371112 0.642785i
\(782\) −13.8554 + 23.9982i −0.495467 + 0.858174i
\(783\) 0 0
\(784\) 13.7092 2.32610i 0.489615 0.0830752i
\(785\) −50.8235 −1.81397
\(786\) 0 0
\(787\) 18.3183 + 31.7283i 0.652978 + 1.13099i 0.982397 + 0.186808i \(0.0598141\pi\)
−0.329418 + 0.944184i \(0.606853\pi\)
\(788\) −7.43982 12.8861i −0.265033 0.459050i
\(789\) 0 0
\(790\) 9.55049 0.339791
\(791\) −12.0190 + 25.5590i −0.427346 + 0.908773i
\(792\) 0 0
\(793\) 1.07537 1.86260i 0.0381875 0.0661428i
\(794\) 0.148064 + 0.256454i 0.00525459 + 0.00910121i
\(795\) 0 0
\(796\) 6.10120 10.5676i 0.216251 0.374558i
\(797\) −19.0481 −0.674717 −0.337359 0.941376i \(-0.609533\pi\)
−0.337359 + 0.941376i \(0.609533\pi\)
\(798\) 0 0
\(799\) −68.8604 −2.43611
\(800\) 1.68544 2.91927i 0.0595893 0.103212i
\(801\) 0 0
\(802\) 3.10106 + 5.37119i 0.109502 + 0.189663i
\(803\) 1.31082 2.27040i 0.0462577 0.0801206i
\(804\) 0 0
\(805\) 42.1795 3.55300i 1.48663 0.125227i
\(806\) 1.35070 0.0475764
\(807\) 0 0
\(808\) 17.3971 + 30.1327i 0.612029 + 1.06006i
\(809\) 9.24567 + 16.0140i 0.325060 + 0.563021i 0.981525 0.191336i \(-0.0612820\pi\)
−0.656464 + 0.754357i \(0.727949\pi\)
\(810\) 0 0
\(811\) 41.5033 1.45738 0.728690 0.684844i \(-0.240130\pi\)
0.728690 + 0.684844i \(0.240130\pi\)
\(812\) 15.8286 1.33333i 0.555475 0.0467906i
\(813\) 0 0
\(814\) −2.30721 + 3.99621i −0.0808677 + 0.140067i
\(815\) −11.6203 20.1269i −0.407040 0.705014i
\(816\) 0 0
\(817\) −22.9760 + 39.7955i −0.803827 + 1.39227i
\(818\) −17.9317 −0.626966
\(819\) 0 0
\(820\) 5.11573 0.178649
\(821\) −16.2444 + 28.1360i −0.566932 + 0.981955i 0.429935 + 0.902860i \(0.358536\pi\)
−0.996867 + 0.0790951i \(0.974797\pi\)
\(822\) 0 0
\(823\) 7.86963 + 13.6306i 0.274318 + 0.475133i 0.969963 0.243253i \(-0.0782145\pi\)
−0.695645 + 0.718386i \(0.744881\pi\)
\(824\) −2.57133 + 4.45368i −0.0895766 + 0.155151i
\(825\) 0 0
\(826\) 1.04793 2.22848i 0.0364622 0.0775387i
\(827\) 40.6095 1.41213 0.706066 0.708146i \(-0.250468\pi\)
0.706066 + 0.708146i \(0.250468\pi\)
\(828\) 0 0
\(829\) −12.7290 22.0473i −0.442097 0.765734i 0.555748 0.831351i \(-0.312432\pi\)
−0.997845 + 0.0656169i \(0.979098\pi\)
\(830\) 3.28970 + 5.69793i 0.114187 + 0.197778i
\(831\) 0 0
\(832\) 0.283003 0.00981135
\(833\) 14.8056 39.8747i 0.512982 1.38158i
\(834\) 0 0
\(835\) 2.56813 4.44813i 0.0888737 0.153934i
\(836\) −7.34364 12.7196i −0.253985 0.439915i
\(837\) 0 0
\(838\) 8.25803 14.3033i 0.285269 0.494100i
\(839\) −48.3492 −1.66920 −0.834600 0.550856i \(-0.814301\pi\)
−0.834600 + 0.550856i \(0.814301\pi\)
\(840\) 0 0
\(841\) −15.6500 −0.539654
\(842\) −3.72205 + 6.44677i −0.128270 + 0.222170i
\(843\) 0 0
\(844\) 2.20007 + 3.81064i 0.0757296 + 0.131167i
\(845\) −13.4310 + 23.2632i −0.462042 + 0.800280i
\(846\) 0 0
\(847\) 12.4964 + 17.9699i 0.429381 + 0.617454i
\(848\) 10.9055 0.374495
\(849\) 0 0
\(850\) −1.10445 1.91296i −0.0378823 0.0656141i
\(851\) −17.8565 30.9284i −0.612114 1.06021i
\(852\) 0 0
\(853\) −2.65867 −0.0910310 −0.0455155 0.998964i \(-0.514493\pi\)
−0.0455155 + 0.998964i \(0.514493\pi\)
\(854\) 7.94998 0.669669i 0.272043 0.0229156i
\(855\) 0 0
\(856\) −4.94226 + 8.56025i −0.168923 + 0.292583i
\(857\) 7.03319 + 12.1818i 0.240249 + 0.416124i 0.960785 0.277294i \(-0.0894375\pi\)
−0.720536 + 0.693417i \(0.756104\pi\)
\(858\) 0 0
\(859\) 9.64635 16.7080i 0.329129 0.570068i −0.653210 0.757177i \(-0.726578\pi\)
0.982339 + 0.187108i \(0.0599115\pi\)
\(860\) 29.2346 0.996891
\(861\) 0 0
\(862\) 8.42438 0.286935
\(863\) −21.1692 + 36.6661i −0.720608 + 1.24813i 0.240149 + 0.970736i \(0.422804\pi\)
−0.960756 + 0.277393i \(0.910530\pi\)
\(864\) 0 0
\(865\) 9.72457 + 16.8434i 0.330645 + 0.572694i
\(866\) 4.59006 7.95022i 0.155977 0.270159i
\(867\) 0 0
\(868\) −13.1736 18.9437i −0.447140 0.642992i
\(869\) 12.5997 0.427416
\(870\) 0 0
\(871\) −1.11410 1.92967i −0.0377498 0.0653845i
\(872\) 18.7639 + 32.4999i 0.635424 + 1.10059i
\(873\) 0 0
\(874\) −24.6832 −0.834921
\(875\) −13.2327 + 28.1399i −0.447346 + 0.951304i
\(876\) 0 0
\(877\) 5.02542 8.70429i 0.169697 0.293923i −0.768617 0.639710i \(-0.779055\pi\)
0.938313 + 0.345787i \(0.112388\pi\)
\(878\) −5.74809 9.95598i −0.193989 0.335998i
\(879\) 0 0
\(880\) −3.43722 + 5.95343i −0.115868 + 0.200690i
\(881\) 25.7602 0.867885 0.433942 0.900941i \(-0.357122\pi\)
0.433942 + 0.900941i \(0.357122\pi\)
\(882\) 0 0
\(883\) −53.1876 −1.78991 −0.894953 0.446160i \(-0.852791\pi\)
−0.894953 + 0.446160i \(0.852791\pi\)
\(884\) 2.12695 3.68398i 0.0715370 0.123906i
\(885\) 0 0
\(886\) 7.33821 + 12.7102i 0.246532 + 0.427006i
\(887\) 10.4758 18.1447i 0.351745 0.609239i −0.634811 0.772668i \(-0.718922\pi\)
0.986555 + 0.163428i \(0.0522553\pi\)
\(888\) 0 0
\(889\) −16.2194 + 34.4914i −0.543982 + 1.15681i
\(890\) 23.2279 0.778601
\(891\) 0 0
\(892\) 17.6946 + 30.6480i 0.592460 + 1.02617i
\(893\) −30.6685 53.1194i −1.02628 1.77757i
\(894\) 0 0
\(895\) −38.8858 −1.29981
\(896\) 17.3330 + 24.9251i 0.579056 + 0.832688i
\(897\) 0 0
\(898\) −11.9481 + 20.6947i −0.398712 + 0.690590i
\(899\) −9.69609 16.7941i −0.323383 0.560115i
\(900\) 0 0
\(901\) 16.6794 28.8896i 0.555672 0.962452i
\(902\) −1.46552 −0.0487966
\(903\) 0 0
\(904\) −23.2314 −0.772667
\(905\) 13.8708 24.0250i 0.461082 0.798617i
\(906\) 0 0
\(907\) −23.7927 41.2102i −0.790024 1.36836i −0.925952 0.377642i \(-0.876735\pi\)
0.135928 0.990719i \(-0.456598\pi\)
\(908\) −10.7637 + 18.6433i −0.357207 + 0.618701i
\(909\) 0 0
\(910\) 1.40602 0.118436i 0.0466090 0.00392612i
\(911\) 29.7720 0.986389 0.493194 0.869919i \(-0.335829\pi\)
0.493194 + 0.869919i \(0.335829\pi\)
\(912\) 0 0
\(913\) 4.34001 + 7.51712i 0.143633 + 0.248780i
\(914\) 3.17668 + 5.50217i 0.105075 + 0.181995i
\(915\) 0 0
\(916\) −27.6459 −0.913445
\(917\) −15.3851 22.1239i −0.508060 0.730595i
\(918\) 0 0
\(919\) −15.2293 + 26.3779i −0.502367 + 0.870126i 0.497629 + 0.867390i \(0.334204\pi\)
−0.999996 + 0.00273583i \(0.999129\pi\)
\(920\) 17.4084 + 30.1522i 0.573937 + 0.994088i
\(921\) 0 0
\(922\) −4.90089 + 8.48860i −0.161402 + 0.279557i
\(923\) 5.35129 0.176140
\(924\) 0 0
\(925\) 2.84678 0.0936017
\(926\) −1.81110 + 3.13692i −0.0595165 + 0.103086i
\(927\) 0 0
\(928\) 10.1191 + 17.5268i 0.332176 + 0.575346i
\(929\) −10.5830 + 18.3304i −0.347218 + 0.601400i −0.985754 0.168192i \(-0.946207\pi\)
0.638536 + 0.769592i \(0.279540\pi\)
\(930\) 0 0
\(931\) 37.3536 6.33795i 1.22421 0.207718i
\(932\) −37.4128 −1.22550
\(933\) 0 0
\(934\) −7.55230 13.0810i −0.247119 0.428022i
\(935\) 10.5141 + 18.2110i 0.343849 + 0.595564i
\(936\) 0 0
\(937\) 40.2779 1.31582 0.657912 0.753095i \(-0.271440\pi\)
0.657912 + 0.753095i \(0.271440\pi\)
\(938\) 3.51731 7.47973i 0.114844 0.244222i
\(939\) 0 0
\(940\) −19.5113 + 33.7945i −0.636388 + 1.10226i
\(941\) 0.910476 + 1.57699i 0.0296807 + 0.0514084i 0.880484 0.474076i \(-0.157218\pi\)
−0.850804 + 0.525484i \(0.823884\pi\)
\(942\) 0 0
\(943\) 5.67116 9.82274i 0.184678 0.319872i
\(944\) −3.09528 −0.100743
\(945\) 0 0
\(946\) −8.37494 −0.272293
\(947\) 6.74590 11.6842i 0.219212 0.379687i −0.735355 0.677682i \(-0.762985\pi\)
0.954567 + 0.297995i \(0.0963180\pi\)
\(948\) 0 0
\(949\) 0.338174 + 0.585734i 0.0109776 + 0.0190137i
\(950\) 0.983782 1.70396i 0.0319181 0.0552838i
\(951\) 0 0
\(952\) 34.8625 2.93666i 1.12990 0.0951776i
\(953\) 4.95309 0.160446 0.0802232 0.996777i \(-0.474437\pi\)
0.0802232 + 0.996777i \(0.474437\pi\)
\(954\) 0 0
\(955\) −11.1038 19.2323i −0.359309 0.622342i
\(956\) 7.82002 + 13.5447i 0.252918 + 0.438066i
\(957\) 0 0
\(958\) −1.99659 −0.0645069
\(959\) 5.43711 0.457996i 0.175573 0.0147895i
\(960\) 0 0
\(961\) 1.41551 2.45174i 0.0456616 0.0790883i
\(962\) −0.595231 1.03097i −0.0191910 0.0332398i
\(963\) 0 0
\(964\) 0.963800 1.66935i 0.0310419 0.0537661i
\(965\) 17.0152 0.547740
\(966\) 0 0
\(967\) 17.2566 0.554936 0.277468 0.960735i \(-0.410505\pi\)
0.277468 + 0.960735i \(0.410505\pi\)
\(968\) −9.00170 + 15.5914i −0.289326 + 0.501127i
\(969\) 0 0
\(970\) 8.60872 + 14.9107i 0.276409 + 0.478755i
\(971\) −23.4532 + 40.6221i −0.752649 + 1.30363i 0.193886 + 0.981024i \(0.437891\pi\)
−0.946535 + 0.322602i \(0.895442\pi\)
\(972\) 0 0
\(973\) −7.47347 + 15.8927i −0.239588 + 0.509497i
\(974\) 4.34793 0.139317
\(975\) 0 0
\(976\) −5.01397 8.68444i −0.160493 0.277982i
\(977\) −17.5817 30.4524i −0.562488 0.974257i −0.997279 0.0737259i \(-0.976511\pi\)
0.434791 0.900531i \(-0.356822\pi\)
\(978\) 0 0
\(979\) 30.6439 0.979384
\(980\) −15.3741 18.5644i −0.491109 0.593018i
\(981\) 0 0
\(982\) 0.887434 1.53708i 0.0283192 0.0490502i
\(983\) 6.04298 + 10.4667i 0.192741 + 0.333837i 0.946158 0.323706i \(-0.104929\pi\)
−0.753417 + 0.657544i \(0.771596\pi\)
\(984\) 0 0
\(985\) −9.48806 + 16.4338i −0.302315 + 0.523625i
\(986\) 13.2619 0.422344
\(987\) 0 0
\(988\) 3.78913 0.120548
\(989\) 32.4087 56.1334i 1.03054 1.78494i
\(990\) 0 0
\(991\) −16.1874 28.0374i −0.514209 0.890636i −0.999864 0.0164855i \(-0.994752\pi\)
0.485655 0.874150i \(-0.338581\pi\)
\(992\) 14.6990 25.4594i 0.466693 0.808335i
\(993\) 0 0
\(994\) 11.3332 + 16.2973i 0.359468 + 0.516919i
\(995\) −15.5618 −0.493343
\(996\) 0 0
\(997\) 7.36660 + 12.7593i 0.233303 + 0.404092i 0.958778 0.284156i \(-0.0917134\pi\)
−0.725475 + 0.688248i \(0.758380\pi\)
\(998\) −3.72913 6.45904i −0.118044 0.204457i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.e.g.163.4 16
3.2 odd 2 inner 567.2.e.g.163.5 yes 16
7.2 even 3 3969.2.a.bg.1.5 8
7.4 even 3 inner 567.2.e.g.487.4 yes 16
7.5 odd 6 3969.2.a.bf.1.5 8
9.2 odd 6 567.2.h.l.352.4 16
9.4 even 3 567.2.g.l.541.4 16
9.5 odd 6 567.2.g.l.541.5 16
9.7 even 3 567.2.h.l.352.5 16
21.2 odd 6 3969.2.a.bg.1.4 8
21.5 even 6 3969.2.a.bf.1.4 8
21.11 odd 6 inner 567.2.e.g.487.5 yes 16
63.4 even 3 567.2.h.l.298.5 16
63.11 odd 6 567.2.g.l.109.5 16
63.25 even 3 567.2.g.l.109.4 16
63.32 odd 6 567.2.h.l.298.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.4 16 1.1 even 1 trivial
567.2.e.g.163.5 yes 16 3.2 odd 2 inner
567.2.e.g.487.4 yes 16 7.4 even 3 inner
567.2.e.g.487.5 yes 16 21.11 odd 6 inner
567.2.g.l.109.4 16 63.25 even 3
567.2.g.l.109.5 16 63.11 odd 6
567.2.g.l.541.4 16 9.4 even 3
567.2.g.l.541.5 16 9.5 odd 6
567.2.h.l.298.4 16 63.32 odd 6
567.2.h.l.298.5 16 63.4 even 3
567.2.h.l.352.4 16 9.2 odd 6
567.2.h.l.352.5 16 9.7 even 3
3969.2.a.bf.1.4 8 21.5 even 6
3969.2.a.bf.1.5 8 7.5 odd 6
3969.2.a.bg.1.4 8 21.2 odd 6
3969.2.a.bg.1.5 8 7.2 even 3