Properties

Label 567.2.e.g.163.3
Level $567$
Weight $2$
Character 567.163
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [567,2,Mod(163,567)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(567, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("567.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.3
Root \(0.776749 + 1.18180i\) of defining polynomial
Character \(\chi\) \(=\) 567.163
Dual form 567.2.e.g.487.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.635098 + 1.10002i) q^{2} +(0.193301 + 0.334806i) q^{4} +(0.776749 - 1.34537i) q^{5} +(-1.48662 - 2.18860i) q^{7} -3.03145 q^{8} +(0.986623 + 1.70888i) q^{10} +(-1.60500 - 2.77995i) q^{11} +4.78669 q^{13} +(3.35166 - 0.245346i) q^{14} +(1.53867 - 2.66505i) q^{16} +(-1.05918 - 1.83456i) q^{17} +(2.43201 - 4.21237i) q^{19} +0.600584 q^{20} +4.07734 q^{22} +(1.85379 - 3.21086i) q^{23} +(1.29332 + 2.24010i) q^{25} +(-3.04002 + 5.26547i) q^{26} +(0.445391 - 0.920788i) q^{28} -7.37944 q^{29} +(-2.75209 - 4.76676i) q^{31} +(-1.07704 - 1.86549i) q^{32} +2.69074 q^{34} +(-4.09920 + 0.300067i) q^{35} +(0.0932782 - 0.161563i) q^{37} +(3.08914 + 5.35054i) q^{38} +(-2.35468 + 4.07842i) q^{40} +10.7972 q^{41} +4.86916 q^{43} +(0.620496 - 1.07473i) q^{44} +(2.35468 + 4.07842i) q^{46} +(0.885937 - 1.53449i) q^{47} +(-2.57990 + 6.50724i) q^{49} -3.28555 q^{50} +(0.925270 + 1.60261i) q^{52} +(0.834432 + 1.44528i) q^{53} -4.98674 q^{55} +(4.50663 + 6.63462i) q^{56} +(4.68667 - 8.11755i) q^{58} +(2.91297 + 5.04541i) q^{59} +(-3.43865 + 5.95591i) q^{61} +6.99139 q^{62} +8.89078 q^{64} +(3.71806 - 6.43986i) q^{65} +(-6.11868 - 10.5979i) q^{67} +(0.409481 - 0.709241i) q^{68} +(2.27331 - 4.69978i) q^{70} +13.8101 q^{71} +(-5.93201 - 10.2745i) q^{73} +(0.118482 + 0.205216i) q^{74} +1.88044 q^{76} +(-3.69814 + 7.64544i) q^{77} +(0.654632 - 1.13386i) q^{79} +(-2.39032 - 4.14015i) q^{80} +(-6.85728 + 11.8772i) q^{82} +0.346488 q^{83} -3.29087 q^{85} +(-3.09239 + 5.35618i) q^{86} +(4.86549 + 8.42727i) q^{88} +(-8.70319 + 15.0744i) q^{89} +(-7.11601 - 10.4761i) q^{91} +1.43335 q^{92} +(1.12531 + 1.94910i) q^{94} +(-3.77813 - 6.54391i) q^{95} -10.5683 q^{97} +(-5.51961 - 6.97068i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} + 6 q^{7} - 14 q^{10} + 12 q^{13} - 6 q^{16} - 24 q^{19} + 4 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} - 36 q^{40} + 20 q^{43} + 36 q^{46} - 14 q^{49} - 34 q^{52} + 8 q^{55} + 22 q^{58} - 36 q^{61}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.635098 + 1.10002i −0.449082 + 0.777833i −0.998327 0.0578286i \(-0.981582\pi\)
0.549244 + 0.835662i \(0.314916\pi\)
\(3\) 0 0
\(4\) 0.193301 + 0.334806i 0.0966503 + 0.167403i
\(5\) 0.776749 1.34537i 0.347373 0.601667i −0.638409 0.769697i \(-0.720407\pi\)
0.985782 + 0.168030i \(0.0537406\pi\)
\(6\) 0 0
\(7\) −1.48662 2.18860i −0.561891 0.827211i
\(8\) −3.03145 −1.07178
\(9\) 0 0
\(10\) 0.986623 + 1.70888i 0.311998 + 0.540396i
\(11\) −1.60500 2.77995i −0.483927 0.838185i 0.515903 0.856647i \(-0.327456\pi\)
−0.999830 + 0.0184616i \(0.994123\pi\)
\(12\) 0 0
\(13\) 4.78669 1.32759 0.663795 0.747915i \(-0.268945\pi\)
0.663795 + 0.747915i \(0.268945\pi\)
\(14\) 3.35166 0.245346i 0.895768 0.0655714i
\(15\) 0 0
\(16\) 1.53867 2.66505i 0.384667 0.666263i
\(17\) −1.05918 1.83456i −0.256889 0.444945i 0.708518 0.705693i \(-0.249364\pi\)
−0.965407 + 0.260748i \(0.916031\pi\)
\(18\) 0 0
\(19\) 2.43201 4.21237i 0.557942 0.966384i −0.439726 0.898132i \(-0.644924\pi\)
0.997668 0.0682523i \(-0.0217423\pi\)
\(20\) 0.600584 0.134295
\(21\) 0 0
\(22\) 4.07734 0.869291
\(23\) 1.85379 3.21086i 0.386542 0.669510i −0.605440 0.795891i \(-0.707003\pi\)
0.991982 + 0.126381i \(0.0403362\pi\)
\(24\) 0 0
\(25\) 1.29332 + 2.24010i 0.258665 + 0.448020i
\(26\) −3.04002 + 5.26547i −0.596197 + 1.03264i
\(27\) 0 0
\(28\) 0.445391 0.920788i 0.0841709 0.174013i
\(29\) −7.37944 −1.37033 −0.685164 0.728389i \(-0.740269\pi\)
−0.685164 + 0.728389i \(0.740269\pi\)
\(30\) 0 0
\(31\) −2.75209 4.76676i −0.494290 0.856135i 0.505688 0.862716i \(-0.331239\pi\)
−0.999978 + 0.00658088i \(0.997905\pi\)
\(32\) −1.07704 1.86549i −0.190396 0.329775i
\(33\) 0 0
\(34\) 2.69074 0.461457
\(35\) −4.09920 + 0.300067i −0.692891 + 0.0507206i
\(36\) 0 0
\(37\) 0.0932782 0.161563i 0.0153348 0.0265607i −0.858256 0.513222i \(-0.828452\pi\)
0.873591 + 0.486661i \(0.161785\pi\)
\(38\) 3.08914 + 5.35054i 0.501124 + 0.867972i
\(39\) 0 0
\(40\) −2.35468 + 4.07842i −0.372307 + 0.644855i
\(41\) 10.7972 1.68624 0.843120 0.537726i \(-0.180716\pi\)
0.843120 + 0.537726i \(0.180716\pi\)
\(42\) 0 0
\(43\) 4.86916 0.742539 0.371270 0.928525i \(-0.378923\pi\)
0.371270 + 0.928525i \(0.378923\pi\)
\(44\) 0.620496 1.07473i 0.0935433 0.162022i
\(45\) 0 0
\(46\) 2.35468 + 4.07842i 0.347178 + 0.601330i
\(47\) 0.885937 1.53449i 0.129227 0.223828i −0.794150 0.607722i \(-0.792084\pi\)
0.923377 + 0.383893i \(0.125417\pi\)
\(48\) 0 0
\(49\) −2.57990 + 6.50724i −0.368557 + 0.929605i
\(50\) −3.28555 −0.464647
\(51\) 0 0
\(52\) 0.925270 + 1.60261i 0.128312 + 0.222243i
\(53\) 0.834432 + 1.44528i 0.114618 + 0.198524i 0.917627 0.397443i \(-0.130102\pi\)
−0.803009 + 0.595967i \(0.796769\pi\)
\(54\) 0 0
\(55\) −4.98674 −0.672411
\(56\) 4.50663 + 6.63462i 0.602223 + 0.886589i
\(57\) 0 0
\(58\) 4.68667 8.11755i 0.615390 1.06589i
\(59\) 2.91297 + 5.04541i 0.379236 + 0.656857i 0.990951 0.134221i \(-0.0428534\pi\)
−0.611715 + 0.791078i \(0.709520\pi\)
\(60\) 0 0
\(61\) −3.43865 + 5.95591i −0.440274 + 0.762576i −0.997710 0.0676438i \(-0.978452\pi\)
0.557436 + 0.830220i \(0.311785\pi\)
\(62\) 6.99139 0.887907
\(63\) 0 0
\(64\) 8.89078 1.11135
\(65\) 3.71806 6.43986i 0.461168 0.798766i
\(66\) 0 0
\(67\) −6.11868 10.5979i −0.747516 1.29474i −0.949010 0.315246i \(-0.897913\pi\)
0.201494 0.979490i \(-0.435420\pi\)
\(68\) 0.409481 0.709241i 0.0496568 0.0860081i
\(69\) 0 0
\(70\) 2.27331 4.69978i 0.271713 0.561732i
\(71\) 13.8101 1.63895 0.819477 0.573112i \(-0.194264\pi\)
0.819477 + 0.573112i \(0.194264\pi\)
\(72\) 0 0
\(73\) −5.93201 10.2745i −0.694290 1.20255i −0.970420 0.241425i \(-0.922385\pi\)
0.276130 0.961120i \(-0.410948\pi\)
\(74\) 0.118482 + 0.205216i 0.0137732 + 0.0238559i
\(75\) 0 0
\(76\) 1.88044 0.215701
\(77\) −3.69814 + 7.64544i −0.421443 + 0.871278i
\(78\) 0 0
\(79\) 0.654632 1.13386i 0.0736518 0.127569i −0.826847 0.562426i \(-0.809868\pi\)
0.900499 + 0.434858i \(0.143201\pi\)
\(80\) −2.39032 4.14015i −0.267246 0.462883i
\(81\) 0 0
\(82\) −6.85728 + 11.8772i −0.757260 + 1.31161i
\(83\) 0.346488 0.0380320 0.0190160 0.999819i \(-0.493947\pi\)
0.0190160 + 0.999819i \(0.493947\pi\)
\(84\) 0 0
\(85\) −3.29087 −0.356945
\(86\) −3.09239 + 5.35618i −0.333461 + 0.577572i
\(87\) 0 0
\(88\) 4.86549 + 8.42727i 0.518663 + 0.898350i
\(89\) −8.70319 + 15.0744i −0.922537 + 1.59788i −0.127061 + 0.991895i \(0.540554\pi\)
−0.795476 + 0.605985i \(0.792779\pi\)
\(90\) 0 0
\(91\) −7.11601 10.4761i −0.745960 1.09820i
\(92\) 1.43335 0.149437
\(93\) 0 0
\(94\) 1.12531 + 1.94910i 0.116067 + 0.201035i
\(95\) −3.77813 6.54391i −0.387628 0.671391i
\(96\) 0 0
\(97\) −10.5683 −1.07304 −0.536522 0.843886i \(-0.680262\pi\)
−0.536522 + 0.843886i \(0.680262\pi\)
\(98\) −5.51961 6.97068i −0.557565 0.704145i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −1.01697 1.76144i −0.101192 0.175270i 0.810984 0.585068i \(-0.198932\pi\)
−0.912176 + 0.409798i \(0.865599\pi\)
\(102\) 0 0
\(103\) −9.99080 + 17.3046i −0.984423 + 1.70507i −0.339951 + 0.940443i \(0.610410\pi\)
−0.644472 + 0.764628i \(0.722923\pi\)
\(104\) −14.5106 −1.42288
\(105\) 0 0
\(106\) −2.11979 −0.205892
\(107\) 8.45322 14.6414i 0.817204 1.41544i −0.0905308 0.995894i \(-0.528856\pi\)
0.907735 0.419545i \(-0.137810\pi\)
\(108\) 0 0
\(109\) 5.34955 + 9.26569i 0.512394 + 0.887492i 0.999897 + 0.0143707i \(0.00457451\pi\)
−0.487503 + 0.873121i \(0.662092\pi\)
\(110\) 3.16707 5.48552i 0.301968 0.523024i
\(111\) 0 0
\(112\) −8.12014 + 0.594406i −0.767281 + 0.0561661i
\(113\) −8.58471 −0.807582 −0.403791 0.914851i \(-0.632308\pi\)
−0.403791 + 0.914851i \(0.632308\pi\)
\(114\) 0 0
\(115\) −2.87986 4.98806i −0.268548 0.465139i
\(116\) −1.42645 2.47068i −0.132442 0.229397i
\(117\) 0 0
\(118\) −7.40009 −0.681233
\(119\) −2.44050 + 5.04541i −0.223720 + 0.462512i
\(120\) 0 0
\(121\) 0.347932 0.602636i 0.0316302 0.0547851i
\(122\) −4.36776 7.56518i −0.395438 0.684919i
\(123\) 0 0
\(124\) 1.06396 1.84283i 0.0955465 0.165491i
\(125\) 11.7858 1.05416
\(126\) 0 0
\(127\) 1.95162 0.173178 0.0865892 0.996244i \(-0.472403\pi\)
0.0865892 + 0.996244i \(0.472403\pi\)
\(128\) −3.49244 + 6.04908i −0.308691 + 0.534668i
\(129\) 0 0
\(130\) 4.72266 + 8.17989i 0.414205 + 0.717424i
\(131\) −5.87214 + 10.1708i −0.513051 + 0.888630i 0.486834 + 0.873494i \(0.338151\pi\)
−0.999885 + 0.0151361i \(0.995182\pi\)
\(132\) 0 0
\(133\) −12.8347 + 0.939515i −1.11291 + 0.0814663i
\(134\) 15.5439 1.34278
\(135\) 0 0
\(136\) 3.21086 + 5.56137i 0.275329 + 0.476883i
\(137\) −8.06604 13.9708i −0.689128 1.19361i −0.972120 0.234483i \(-0.924660\pi\)
0.282992 0.959122i \(-0.408673\pi\)
\(138\) 0 0
\(139\) 13.4425 1.14018 0.570091 0.821582i \(-0.306908\pi\)
0.570091 + 0.821582i \(0.306908\pi\)
\(140\) −0.892842 1.31443i −0.0754589 0.111090i
\(141\) 0 0
\(142\) −8.77075 + 15.1914i −0.736025 + 1.27483i
\(143\) −7.68265 13.3067i −0.642456 1.11277i
\(144\) 0 0
\(145\) −5.73197 + 9.92806i −0.476014 + 0.824481i
\(146\) 15.0696 1.24717
\(147\) 0 0
\(148\) 0.0721229 0.00592846
\(149\) −1.60587 + 2.78145i −0.131558 + 0.227865i −0.924277 0.381722i \(-0.875331\pi\)
0.792719 + 0.609587i \(0.208665\pi\)
\(150\) 0 0
\(151\) −8.51610 14.7503i −0.693030 1.20036i −0.970840 0.239727i \(-0.922942\pi\)
0.277810 0.960636i \(-0.410391\pi\)
\(152\) −7.37253 + 12.7696i −0.597991 + 1.03575i
\(153\) 0 0
\(154\) −6.06147 8.92364i −0.488447 0.719088i
\(155\) −8.55073 −0.686811
\(156\) 0 0
\(157\) −4.71709 8.17024i −0.376465 0.652056i 0.614080 0.789243i \(-0.289527\pi\)
−0.990545 + 0.137188i \(0.956194\pi\)
\(158\) 0.831511 + 1.44022i 0.0661515 + 0.114578i
\(159\) 0 0
\(160\) −3.34636 −0.264553
\(161\) −9.78315 + 0.716140i −0.771021 + 0.0564398i
\(162\) 0 0
\(163\) −1.83874 + 3.18478i −0.144021 + 0.249452i −0.929007 0.370062i \(-0.879337\pi\)
0.784986 + 0.619513i \(0.212670\pi\)
\(164\) 2.08710 + 3.61497i 0.162976 + 0.282282i
\(165\) 0 0
\(166\) −0.220054 + 0.381144i −0.0170795 + 0.0295825i
\(167\) −1.61017 −0.124599 −0.0622994 0.998058i \(-0.519843\pi\)
−0.0622994 + 0.998058i \(0.519843\pi\)
\(168\) 0 0
\(169\) 9.91241 0.762493
\(170\) 2.09003 3.62003i 0.160298 0.277644i
\(171\) 0 0
\(172\) 0.941210 + 1.63022i 0.0717666 + 0.124303i
\(173\) 8.09213 14.0160i 0.615233 1.06562i −0.375110 0.926980i \(-0.622395\pi\)
0.990344 0.138635i \(-0.0442716\pi\)
\(174\) 0 0
\(175\) 2.97999 6.16075i 0.225266 0.465709i
\(176\) −9.87827 −0.744603
\(177\) 0 0
\(178\) −11.0548 19.1474i −0.828590 1.43516i
\(179\) 8.70319 + 15.0744i 0.650507 + 1.12671i 0.983000 + 0.183606i \(0.0587770\pi\)
−0.332493 + 0.943106i \(0.607890\pi\)
\(180\) 0 0
\(181\) 8.89591 0.661228 0.330614 0.943766i \(-0.392744\pi\)
0.330614 + 0.943766i \(0.392744\pi\)
\(182\) 16.0433 1.17439i 1.18921 0.0870519i
\(183\) 0 0
\(184\) −5.61967 + 9.73356i −0.414288 + 0.717568i
\(185\) −0.144907 0.250987i −0.0106538 0.0184529i
\(186\) 0 0
\(187\) −3.39998 + 5.88893i −0.248631 + 0.430642i
\(188\) 0.685009 0.0499594
\(189\) 0 0
\(190\) 9.59793 0.696307
\(191\) −7.39609 + 12.8104i −0.535163 + 0.926929i 0.463993 + 0.885839i \(0.346416\pi\)
−0.999155 + 0.0410898i \(0.986917\pi\)
\(192\) 0 0
\(193\) −0.910790 1.57753i −0.0655601 0.113553i 0.831382 0.555701i \(-0.187550\pi\)
−0.896942 + 0.442148i \(0.854217\pi\)
\(194\) 6.71188 11.6253i 0.481885 0.834649i
\(195\) 0 0
\(196\) −2.67736 + 0.394085i −0.191240 + 0.0281489i
\(197\) 7.71970 0.550006 0.275003 0.961443i \(-0.411321\pi\)
0.275003 + 0.961443i \(0.411321\pi\)
\(198\) 0 0
\(199\) −1.10665 1.91678i −0.0784487 0.135877i 0.824132 0.566398i \(-0.191663\pi\)
−0.902581 + 0.430521i \(0.858330\pi\)
\(200\) −3.92065 6.79076i −0.277232 0.480179i
\(201\) 0 0
\(202\) 2.58350 0.181774
\(203\) 10.9704 + 16.1506i 0.769974 + 1.13355i
\(204\) 0 0
\(205\) 8.38671 14.5262i 0.585753 1.01455i
\(206\) −12.6903 21.9802i −0.884174 1.53143i
\(207\) 0 0
\(208\) 7.36513 12.7568i 0.510680 0.884524i
\(209\) −15.6136 −1.08001
\(210\) 0 0
\(211\) −1.81344 −0.124843 −0.0624213 0.998050i \(-0.519882\pi\)
−0.0624213 + 0.998050i \(0.519882\pi\)
\(212\) −0.322592 + 0.558746i −0.0221557 + 0.0383749i
\(213\) 0 0
\(214\) 10.7373 + 18.5975i 0.733983 + 1.27130i
\(215\) 3.78211 6.55081i 0.257938 0.446761i
\(216\) 0 0
\(217\) −6.34119 + 13.1096i −0.430468 + 0.889937i
\(218\) −13.5900 −0.920428
\(219\) 0 0
\(220\) −0.963939 1.66959i −0.0649887 0.112564i
\(221\) −5.06997 8.78145i −0.341043 0.590704i
\(222\) 0 0
\(223\) 9.50616 0.636580 0.318290 0.947993i \(-0.396891\pi\)
0.318290 + 0.947993i \(0.396891\pi\)
\(224\) −2.48165 + 5.13049i −0.165812 + 0.342795i
\(225\) 0 0
\(226\) 5.45213 9.44337i 0.362671 0.628164i
\(227\) 5.41646 + 9.38158i 0.359503 + 0.622678i 0.987878 0.155233i \(-0.0496129\pi\)
−0.628375 + 0.777911i \(0.716280\pi\)
\(228\) 0 0
\(229\) −6.25983 + 10.8423i −0.413661 + 0.716482i −0.995287 0.0969747i \(-0.969083\pi\)
0.581626 + 0.813456i \(0.302417\pi\)
\(230\) 7.31597 0.482401
\(231\) 0 0
\(232\) 22.3704 1.46869
\(233\) −7.64044 + 13.2336i −0.500542 + 0.866964i 0.499458 + 0.866338i \(0.333533\pi\)
−1.00000 0.000625732i \(0.999801\pi\)
\(234\) 0 0
\(235\) −1.37630 2.38382i −0.0897800 0.155504i
\(236\) −1.12616 + 1.95056i −0.0733066 + 0.126971i
\(237\) 0 0
\(238\) −4.00011 5.88893i −0.259289 0.381723i
\(239\) 10.7158 0.693149 0.346574 0.938023i \(-0.387345\pi\)
0.346574 + 0.938023i \(0.387345\pi\)
\(240\) 0 0
\(241\) 7.50011 + 12.9906i 0.483125 + 0.836796i 0.999812 0.0193775i \(-0.00616845\pi\)
−0.516688 + 0.856174i \(0.672835\pi\)
\(242\) 0.441942 + 0.765467i 0.0284091 + 0.0492061i
\(243\) 0 0
\(244\) −2.65877 −0.170210
\(245\) 6.75069 + 8.52540i 0.431286 + 0.544668i
\(246\) 0 0
\(247\) 11.6413 20.1633i 0.740718 1.28296i
\(248\) 8.34283 + 14.4502i 0.529770 + 0.917589i
\(249\) 0 0
\(250\) −7.48516 + 12.9647i −0.473403 + 0.819958i
\(251\) −16.5665 −1.04567 −0.522833 0.852435i \(-0.675125\pi\)
−0.522833 + 0.852435i \(0.675125\pi\)
\(252\) 0 0
\(253\) −11.9013 −0.748231
\(254\) −1.23947 + 2.14683i −0.0777714 + 0.134704i
\(255\) 0 0
\(256\) 4.45470 + 7.71576i 0.278419 + 0.482235i
\(257\) 11.2886 19.5524i 0.704163 1.21965i −0.262829 0.964842i \(-0.584656\pi\)
0.966993 0.254804i \(-0.0820111\pi\)
\(258\) 0 0
\(259\) −0.492265 + 0.0360344i −0.0305878 + 0.00223907i
\(260\) 2.87481 0.178288
\(261\) 0 0
\(262\) −7.45877 12.9190i −0.460804 0.798136i
\(263\) 11.1730 + 19.3523i 0.688959 + 1.19331i 0.972175 + 0.234256i \(0.0752653\pi\)
−0.283216 + 0.959056i \(0.591401\pi\)
\(264\) 0 0
\(265\) 2.59258 0.159261
\(266\) 7.11779 14.7151i 0.436419 0.902241i
\(267\) 0 0
\(268\) 2.36549 4.09715i 0.144495 0.250273i
\(269\) 13.9475 + 24.1577i 0.850392 + 1.47292i 0.880855 + 0.473387i \(0.156969\pi\)
−0.0304623 + 0.999536i \(0.509698\pi\)
\(270\) 0 0
\(271\) −4.93714 + 8.55138i −0.299910 + 0.519459i −0.976115 0.217254i \(-0.930290\pi\)
0.676205 + 0.736713i \(0.263623\pi\)
\(272\) −6.51892 −0.395267
\(273\) 0 0
\(274\) 20.4909 1.23790
\(275\) 4.15157 7.19074i 0.250349 0.433618i
\(276\) 0 0
\(277\) 4.35728 + 7.54704i 0.261804 + 0.453458i 0.966721 0.255832i \(-0.0823493\pi\)
−0.704917 + 0.709289i \(0.749016\pi\)
\(278\) −8.53733 + 14.7871i −0.512035 + 0.886871i
\(279\) 0 0
\(280\) 12.4265 0.909639i 0.742627 0.0543613i
\(281\) 6.20641 0.370243 0.185122 0.982716i \(-0.440732\pi\)
0.185122 + 0.982716i \(0.440732\pi\)
\(282\) 0 0
\(283\) −9.82943 17.0251i −0.584299 1.01204i −0.994962 0.100248i \(-0.968036\pi\)
0.410664 0.911787i \(-0.365297\pi\)
\(284\) 2.66949 + 4.62370i 0.158405 + 0.274366i
\(285\) 0 0
\(286\) 19.5170 1.15406
\(287\) −16.0514 23.6307i −0.947483 1.39488i
\(288\) 0 0
\(289\) 6.25627 10.8362i 0.368016 0.637422i
\(290\) −7.28073 12.6106i −0.427539 0.740519i
\(291\) 0 0
\(292\) 2.29332 3.97215i 0.134207 0.232453i
\(293\) 14.4968 0.846913 0.423456 0.905916i \(-0.360817\pi\)
0.423456 + 0.905916i \(0.360817\pi\)
\(294\) 0 0
\(295\) 9.05058 0.526945
\(296\) −0.282768 + 0.489769i −0.0164356 + 0.0284672i
\(297\) 0 0
\(298\) −2.03977 3.53299i −0.118161 0.204661i
\(299\) 8.87352 15.3694i 0.513169 0.888834i
\(300\) 0 0
\(301\) −7.23860 10.6566i −0.417226 0.614237i
\(302\) 21.6342 1.24491
\(303\) 0 0
\(304\) −7.48413 12.9629i −0.429244 0.743473i
\(305\) 5.34193 + 9.25249i 0.305878 + 0.529796i
\(306\) 0 0
\(307\) 22.2776 1.27145 0.635725 0.771916i \(-0.280701\pi\)
0.635725 + 0.771916i \(0.280701\pi\)
\(308\) −3.27459 + 0.239705i −0.186587 + 0.0136584i
\(309\) 0 0
\(310\) 5.43055 9.40599i 0.308435 0.534225i
\(311\) 8.70027 + 15.0693i 0.493347 + 0.854502i 0.999971 0.00766509i \(-0.00243990\pi\)
−0.506623 + 0.862167i \(0.669107\pi\)
\(312\) 0 0
\(313\) 0.100022 0.173244i 0.00565360 0.00979232i −0.863185 0.504888i \(-0.831534\pi\)
0.868838 + 0.495096i \(0.164867\pi\)
\(314\) 11.9833 0.676254
\(315\) 0 0
\(316\) 0.506163 0.0284739
\(317\) 4.11706 7.13096i 0.231237 0.400514i −0.726935 0.686706i \(-0.759056\pi\)
0.958172 + 0.286192i \(0.0923894\pi\)
\(318\) 0 0
\(319\) 11.8440 + 20.5144i 0.663138 + 1.14859i
\(320\) 6.90590 11.9614i 0.386052 0.668661i
\(321\) 0 0
\(322\) 5.42549 11.2165i 0.302351 0.625072i
\(323\) −10.3038 −0.573317
\(324\) 0 0
\(325\) 6.19074 + 10.7227i 0.343400 + 0.594787i
\(326\) −2.33556 4.04530i −0.129354 0.224049i
\(327\) 0 0
\(328\) −32.7312 −1.80728
\(329\) −4.67543 + 0.342248i −0.257765 + 0.0188687i
\(330\) 0 0
\(331\) 8.31616 14.4040i 0.457098 0.791716i −0.541708 0.840566i \(-0.682222\pi\)
0.998806 + 0.0488501i \(0.0155557\pi\)
\(332\) 0.0669762 + 0.116006i 0.00367580 + 0.00636667i
\(333\) 0 0
\(334\) 1.02262 1.77122i 0.0559551 0.0969170i
\(335\) −19.0107 −1.03867
\(336\) 0 0
\(337\) 15.9095 0.866645 0.433322 0.901239i \(-0.357341\pi\)
0.433322 + 0.901239i \(0.357341\pi\)
\(338\) −6.29535 + 10.9039i −0.342422 + 0.593092i
\(339\) 0 0
\(340\) −0.636127 1.10180i −0.0344988 0.0597537i
\(341\) −8.83422 + 15.3013i −0.478400 + 0.828613i
\(342\) 0 0
\(343\) 18.0770 4.02745i 0.976069 0.217462i
\(344\) −14.7606 −0.795839
\(345\) 0 0
\(346\) 10.2786 + 17.8031i 0.552581 + 0.957098i
\(347\) 3.14462 + 5.44665i 0.168812 + 0.292391i 0.938003 0.346628i \(-0.112674\pi\)
−0.769190 + 0.639020i \(0.779340\pi\)
\(348\) 0 0
\(349\) 1.61955 0.0866927 0.0433463 0.999060i \(-0.486198\pi\)
0.0433463 + 0.999060i \(0.486198\pi\)
\(350\) 4.88437 + 7.19074i 0.261081 + 0.384361i
\(351\) 0 0
\(352\) −3.45731 + 5.98823i −0.184275 + 0.319174i
\(353\) 16.2559 + 28.1560i 0.865213 + 1.49859i 0.866836 + 0.498594i \(0.166150\pi\)
−0.00162266 + 0.999999i \(0.500517\pi\)
\(354\) 0 0
\(355\) 10.7270 18.5796i 0.569328 0.986104i
\(356\) −6.72933 −0.356654
\(357\) 0 0
\(358\) −22.1095 −1.16852
\(359\) 5.59588 9.69235i 0.295339 0.511543i −0.679724 0.733468i \(-0.737901\pi\)
0.975064 + 0.221925i \(0.0712340\pi\)
\(360\) 0 0
\(361\) −2.32938 4.03461i −0.122599 0.212348i
\(362\) −5.64978 + 9.78570i −0.296946 + 0.514325i
\(363\) 0 0
\(364\) 2.13195 4.40753i 0.111744 0.231017i
\(365\) −18.4307 −0.964709
\(366\) 0 0
\(367\) 2.59339 + 4.49188i 0.135374 + 0.234474i 0.925740 0.378160i \(-0.123443\pi\)
−0.790366 + 0.612634i \(0.790110\pi\)
\(368\) −5.70474 9.88089i −0.297380 0.515077i
\(369\) 0 0
\(370\) 0.368122 0.0191377
\(371\) 1.92264 3.97482i 0.0998187 0.206362i
\(372\) 0 0
\(373\) −16.4322 + 28.4614i −0.850825 + 1.47367i 0.0296389 + 0.999561i \(0.490564\pi\)
−0.880464 + 0.474112i \(0.842769\pi\)
\(374\) −4.31864 7.48010i −0.223312 0.386787i
\(375\) 0 0
\(376\) −2.68568 + 4.65173i −0.138503 + 0.239895i
\(377\) −35.3231 −1.81923
\(378\) 0 0
\(379\) 13.9362 0.715856 0.357928 0.933749i \(-0.383483\pi\)
0.357928 + 0.933749i \(0.383483\pi\)
\(380\) 1.46063 2.52988i 0.0749286 0.129780i
\(381\) 0 0
\(382\) −9.39449 16.2717i −0.480664 0.832534i
\(383\) −0.857601 + 1.48541i −0.0438214 + 0.0759008i −0.887104 0.461569i \(-0.847287\pi\)
0.843283 + 0.537470i \(0.180620\pi\)
\(384\) 0 0
\(385\) 7.41340 + 10.9139i 0.377822 + 0.556226i
\(386\) 2.31376 0.117768
\(387\) 0 0
\(388\) −2.04285 3.53832i −0.103710 0.179631i
\(389\) −1.57428 2.72673i −0.0798191 0.138251i 0.823353 0.567530i \(-0.192101\pi\)
−0.903172 + 0.429279i \(0.858768\pi\)
\(390\) 0 0
\(391\) −7.85400 −0.397194
\(392\) 7.82085 19.7264i 0.395012 0.996332i
\(393\) 0 0
\(394\) −4.90277 + 8.49184i −0.246998 + 0.427813i
\(395\) −1.01697 1.76144i −0.0511693 0.0886277i
\(396\) 0 0
\(397\) −13.7172 + 23.7590i −0.688449 + 1.19243i 0.283891 + 0.958857i \(0.408375\pi\)
−0.972340 + 0.233572i \(0.924959\pi\)
\(398\) 2.81134 0.140920
\(399\) 0 0
\(400\) 7.95998 0.397999
\(401\) 14.5185 25.1468i 0.725020 1.25577i −0.233946 0.972250i \(-0.575164\pi\)
0.958966 0.283522i \(-0.0915029\pi\)
\(402\) 0 0
\(403\) −13.1734 22.8170i −0.656214 1.13660i
\(404\) 0.393161 0.680975i 0.0195605 0.0338798i
\(405\) 0 0
\(406\) −24.7333 + 1.81051i −1.22750 + 0.0898543i
\(407\) −0.598847 −0.0296837
\(408\) 0 0
\(409\) 13.8650 + 24.0149i 0.685581 + 1.18746i 0.973254 + 0.229732i \(0.0737851\pi\)
−0.287673 + 0.957729i \(0.592882\pi\)
\(410\) 10.6528 + 18.4511i 0.526103 + 0.911237i
\(411\) 0 0
\(412\) −7.72491 −0.380579
\(413\) 6.71188 13.8759i 0.330270 0.682791i
\(414\) 0 0
\(415\) 0.269134 0.466153i 0.0132113 0.0228826i
\(416\) −5.15546 8.92952i −0.252767 0.437806i
\(417\) 0 0
\(418\) 9.91614 17.1753i 0.485014 0.840070i
\(419\) −30.3598 −1.48317 −0.741586 0.670857i \(-0.765926\pi\)
−0.741586 + 0.670857i \(0.765926\pi\)
\(420\) 0 0
\(421\) −27.7735 −1.35360 −0.676799 0.736168i \(-0.736633\pi\)
−0.676799 + 0.736168i \(0.736633\pi\)
\(422\) 1.15171 1.99483i 0.0560646 0.0971067i
\(423\) 0 0
\(424\) −2.52954 4.38129i −0.122845 0.212774i
\(425\) 2.73973 4.74535i 0.132896 0.230183i
\(426\) 0 0
\(427\) 18.1471 1.32839i 0.878197 0.0642853i
\(428\) 6.53605 0.315932
\(429\) 0 0
\(430\) 4.80402 + 8.32081i 0.231671 + 0.401265i
\(431\) −3.62965 6.28673i −0.174834 0.302821i 0.765270 0.643710i \(-0.222606\pi\)
−0.940104 + 0.340888i \(0.889272\pi\)
\(432\) 0 0
\(433\) 15.0375 0.722658 0.361329 0.932438i \(-0.382323\pi\)
0.361329 + 0.932438i \(0.382323\pi\)
\(434\) −10.3936 15.3013i −0.498907 0.734487i
\(435\) 0 0
\(436\) −2.06814 + 3.58213i −0.0990460 + 0.171553i
\(437\) −9.01688 15.6177i −0.431336 0.747096i
\(438\) 0 0
\(439\) −0.770595 + 1.33471i −0.0367785 + 0.0637022i −0.883829 0.467811i \(-0.845043\pi\)
0.847050 + 0.531513i \(0.178376\pi\)
\(440\) 15.1170 0.720677
\(441\) 0 0
\(442\) 12.8797 0.612626
\(443\) −10.1689 + 17.6131i −0.483141 + 0.836824i −0.999813 0.0193593i \(-0.993837\pi\)
0.516672 + 0.856183i \(0.327171\pi\)
\(444\) 0 0
\(445\) 13.5204 + 23.4180i 0.640928 + 1.11012i
\(446\) −6.03735 + 10.4570i −0.285877 + 0.495153i
\(447\) 0 0
\(448\) −13.2172 19.4583i −0.624456 0.919319i
\(449\) 26.4527 1.24838 0.624190 0.781272i \(-0.285429\pi\)
0.624190 + 0.781272i \(0.285429\pi\)
\(450\) 0 0
\(451\) −17.3295 30.0156i −0.816016 1.41338i
\(452\) −1.65943 2.87422i −0.0780530 0.135192i
\(453\) 0 0
\(454\) −13.7599 −0.645786
\(455\) −19.6216 + 1.43633i −0.919875 + 0.0673361i
\(456\) 0 0
\(457\) 3.24681 5.62363i 0.151879 0.263063i −0.780039 0.625731i \(-0.784801\pi\)
0.931918 + 0.362668i \(0.118134\pi\)
\(458\) −7.95121 13.7719i −0.371536 0.643518i
\(459\) 0 0
\(460\) 1.11336 1.92839i 0.0519105 0.0899116i
\(461\) 15.5916 0.726175 0.363088 0.931755i \(-0.381723\pi\)
0.363088 + 0.931755i \(0.381723\pi\)
\(462\) 0 0
\(463\) 7.65585 0.355797 0.177899 0.984049i \(-0.443070\pi\)
0.177899 + 0.984049i \(0.443070\pi\)
\(464\) −11.3545 + 19.6666i −0.527120 + 0.912999i
\(465\) 0 0
\(466\) −9.70486 16.8093i −0.449569 0.778676i
\(467\) 20.8137 36.0503i 0.963142 1.66821i 0.248615 0.968602i \(-0.420024\pi\)
0.714526 0.699608i \(-0.246642\pi\)
\(468\) 0 0
\(469\) −14.0983 + 29.1464i −0.650998 + 1.34585i
\(470\) 3.49635 0.161274
\(471\) 0 0
\(472\) −8.83053 15.2949i −0.406458 0.704006i
\(473\) −7.81501 13.5360i −0.359335 0.622386i
\(474\) 0 0
\(475\) 12.5815 0.577280
\(476\) −2.16099 + 0.158187i −0.0990486 + 0.00725050i
\(477\) 0 0
\(478\) −6.80560 + 11.7876i −0.311281 + 0.539154i
\(479\) −1.15789 2.00553i −0.0529055 0.0916350i 0.838360 0.545117i \(-0.183515\pi\)
−0.891265 + 0.453482i \(0.850182\pi\)
\(480\) 0 0
\(481\) 0.446494 0.773350i 0.0203584 0.0352617i
\(482\) −19.0532 −0.867851
\(483\) 0 0
\(484\) 0.269022 0.0122283
\(485\) −8.20888 + 14.2182i −0.372746 + 0.645615i
\(486\) 0 0
\(487\) −9.06396 15.6992i −0.410727 0.711401i 0.584242 0.811579i \(-0.301392\pi\)
−0.994969 + 0.100179i \(0.968058\pi\)
\(488\) 10.4241 18.0551i 0.471876 0.817314i
\(489\) 0 0
\(490\) −13.6655 + 2.01144i −0.617344 + 0.0908677i
\(491\) −21.5944 −0.974542 −0.487271 0.873251i \(-0.662008\pi\)
−0.487271 + 0.873251i \(0.662008\pi\)
\(492\) 0 0
\(493\) 7.81616 + 13.5380i 0.352022 + 0.609720i
\(494\) 14.7867 + 25.6114i 0.665287 + 1.15231i
\(495\) 0 0
\(496\) −16.9382 −0.760549
\(497\) −20.5304 30.2247i −0.920913 1.35576i
\(498\) 0 0
\(499\) −13.5827 + 23.5259i −0.608045 + 1.05316i 0.383518 + 0.923534i \(0.374713\pi\)
−0.991562 + 0.129631i \(0.958621\pi\)
\(500\) 2.27821 + 3.94597i 0.101885 + 0.176469i
\(501\) 0 0
\(502\) 10.5213 18.2235i 0.469590 0.813354i
\(503\) −11.8850 −0.529927 −0.264964 0.964258i \(-0.585360\pi\)
−0.264964 + 0.964258i \(0.585360\pi\)
\(504\) 0 0
\(505\) −3.15972 −0.140606
\(506\) 7.55852 13.0917i 0.336017 0.581999i
\(507\) 0 0
\(508\) 0.377250 + 0.653415i 0.0167377 + 0.0289906i
\(509\) −20.7297 + 35.9049i −0.918829 + 1.59146i −0.117632 + 0.993057i \(0.537530\pi\)
−0.801197 + 0.598401i \(0.795803\pi\)
\(510\) 0 0
\(511\) −13.6682 + 28.2572i −0.604644 + 1.25002i
\(512\) −25.2864 −1.11751
\(513\) 0 0
\(514\) 14.3387 + 24.8354i 0.632455 + 1.09544i
\(515\) 15.5207 + 26.8826i 0.683923 + 1.18459i
\(516\) 0 0
\(517\) −5.68773 −0.250146
\(518\) 0.272998 0.564387i 0.0119948 0.0247978i
\(519\) 0 0
\(520\) −11.2711 + 19.5221i −0.494271 + 0.856102i
\(521\) 1.65221 + 2.86171i 0.0723846 + 0.125374i 0.899946 0.436002i \(-0.143606\pi\)
−0.827561 + 0.561375i \(0.810272\pi\)
\(522\) 0 0
\(523\) 1.24483 2.15611i 0.0544327 0.0942803i −0.837525 0.546399i \(-0.815998\pi\)
0.891958 + 0.452119i \(0.149332\pi\)
\(524\) −4.54035 −0.198346
\(525\) 0 0
\(526\) −28.3839 −1.23760
\(527\) −5.82992 + 10.0977i −0.253955 + 0.439864i
\(528\) 0 0
\(529\) 4.62693 + 8.01408i 0.201171 + 0.348438i
\(530\) −1.64654 + 2.85189i −0.0715211 + 0.123878i
\(531\) 0 0
\(532\) −2.79550 4.11552i −0.121200 0.178430i
\(533\) 51.6829 2.23863
\(534\) 0 0
\(535\) −13.1321 22.7454i −0.567748 0.983369i
\(536\) 18.5485 + 32.1269i 0.801173 + 1.38767i
\(537\) 0 0
\(538\) −35.4321 −1.52758
\(539\) 22.2305 3.27214i 0.957536 0.140941i
\(540\) 0 0
\(541\) 11.2397 19.4677i 0.483233 0.836984i −0.516582 0.856238i \(-0.672796\pi\)
0.999815 + 0.0192542i \(0.00612919\pi\)
\(542\) −6.27114 10.8619i −0.269369 0.466560i
\(543\) 0 0
\(544\) −2.28156 + 3.95178i −0.0978212 + 0.169431i
\(545\) 16.6210 0.711966
\(546\) 0 0
\(547\) −14.5545 −0.622307 −0.311154 0.950360i \(-0.600715\pi\)
−0.311154 + 0.950360i \(0.600715\pi\)
\(548\) 3.11834 5.40112i 0.133209 0.230725i
\(549\) 0 0
\(550\) 5.27331 + 9.13365i 0.224855 + 0.389460i
\(551\) −17.9469 + 31.0849i −0.764564 + 1.32426i
\(552\) 0 0
\(553\) −3.45474 + 0.252892i −0.146911 + 0.0107541i
\(554\) −11.0692 −0.470286
\(555\) 0 0
\(556\) 2.59845 + 4.50065i 0.110199 + 0.190870i
\(557\) 7.77331 + 13.4638i 0.329366 + 0.570478i 0.982386 0.186862i \(-0.0598318\pi\)
−0.653021 + 0.757340i \(0.726498\pi\)
\(558\) 0 0
\(559\) 23.3071 0.985787
\(560\) −5.50762 + 11.3863i −0.232739 + 0.481158i
\(561\) 0 0
\(562\) −3.94168 + 6.82719i −0.166270 + 0.287988i
\(563\) −7.36914 12.7637i −0.310572 0.537927i 0.667914 0.744238i \(-0.267187\pi\)
−0.978486 + 0.206312i \(0.933854\pi\)
\(564\) 0 0
\(565\) −6.66816 + 11.5496i −0.280532 + 0.485895i
\(566\) 24.9706 1.04959
\(567\) 0 0
\(568\) −41.8646 −1.75660
\(569\) 6.48539 11.2330i 0.271882 0.470913i −0.697462 0.716622i \(-0.745687\pi\)
0.969344 + 0.245709i \(0.0790207\pi\)
\(570\) 0 0
\(571\) −6.42929 11.1359i −0.269058 0.466021i 0.699561 0.714573i \(-0.253379\pi\)
−0.968619 + 0.248551i \(0.920046\pi\)
\(572\) 2.97012 5.14440i 0.124187 0.215098i
\(573\) 0 0
\(574\) 36.1885 2.64905i 1.51048 0.110569i
\(575\) 9.59019 0.399939
\(576\) 0 0
\(577\) 5.26279 + 9.11542i 0.219093 + 0.379480i 0.954531 0.298112i \(-0.0963569\pi\)
−0.735438 + 0.677592i \(0.763024\pi\)
\(578\) 7.94669 + 13.7641i 0.330539 + 0.572510i
\(579\) 0 0
\(580\) −4.43197 −0.184028
\(581\) −0.515097 0.758321i −0.0213698 0.0314605i
\(582\) 0 0
\(583\) 2.67853 4.63935i 0.110933 0.192142i
\(584\) 17.9826 + 31.1468i 0.744126 + 1.28886i
\(585\) 0 0
\(586\) −9.20690 + 15.9468i −0.380334 + 0.658757i
\(587\) 6.20018 0.255909 0.127954 0.991780i \(-0.459159\pi\)
0.127954 + 0.991780i \(0.459159\pi\)
\(588\) 0 0
\(589\) −26.7725 −1.10314
\(590\) −5.74801 + 9.95585i −0.236642 + 0.409876i
\(591\) 0 0
\(592\) −0.287048 0.497182i −0.0117976 0.0204341i
\(593\) 18.7629 32.4984i 0.770502 1.33455i −0.166787 0.985993i \(-0.553339\pi\)
0.937288 0.348555i \(-0.113327\pi\)
\(594\) 0 0
\(595\) 4.89229 + 7.20239i 0.200564 + 0.295269i
\(596\) −1.24166 −0.0508605
\(597\) 0 0
\(598\) 11.2711 + 19.5221i 0.460910 + 0.798319i
\(599\) −17.5460 30.3905i −0.716909 1.24172i −0.962218 0.272279i \(-0.912223\pi\)
0.245309 0.969445i \(-0.421111\pi\)
\(600\) 0 0
\(601\) 26.2342 1.07012 0.535058 0.844815i \(-0.320290\pi\)
0.535058 + 0.844815i \(0.320290\pi\)
\(602\) 16.3197 1.19463i 0.665143 0.0486894i
\(603\) 0 0
\(604\) 3.29233 5.70249i 0.133963 0.232031i
\(605\) −0.540512 0.936194i −0.0219749 0.0380617i
\(606\) 0 0
\(607\) 1.10933 1.92142i 0.0450263 0.0779879i −0.842634 0.538487i \(-0.818996\pi\)
0.887660 + 0.460499i \(0.152329\pi\)
\(608\) −10.4775 −0.424919
\(609\) 0 0
\(610\) −13.5706 −0.549457
\(611\) 4.24071 7.34512i 0.171561 0.297152i
\(612\) 0 0
\(613\) −7.43312 12.8745i −0.300221 0.519998i 0.675965 0.736934i \(-0.263727\pi\)
−0.976186 + 0.216936i \(0.930394\pi\)
\(614\) −14.1485 + 24.5059i −0.570986 + 0.988976i
\(615\) 0 0
\(616\) 11.2107 23.1768i 0.451694 0.933819i
\(617\) 23.2046 0.934181 0.467091 0.884210i \(-0.345302\pi\)
0.467091 + 0.884210i \(0.345302\pi\)
\(618\) 0 0
\(619\) 4.15562 + 7.19775i 0.167029 + 0.289302i 0.937374 0.348325i \(-0.113249\pi\)
−0.770345 + 0.637627i \(0.779916\pi\)
\(620\) −1.65286 2.86284i −0.0663805 0.114974i
\(621\) 0 0
\(622\) −22.1021 −0.886214
\(623\) 45.9301 3.36215i 1.84015 0.134701i
\(624\) 0 0
\(625\) 2.68802 4.65578i 0.107521 0.186231i
\(626\) 0.127048 + 0.220054i 0.00507786 + 0.00879511i
\(627\) 0 0
\(628\) 1.82363 3.15862i 0.0727708 0.126043i
\(629\) −0.395194 −0.0157574
\(630\) 0 0
\(631\) −24.5415 −0.976982 −0.488491 0.872569i \(-0.662452\pi\)
−0.488491 + 0.872569i \(0.662452\pi\)
\(632\) −1.98448 + 3.43723i −0.0789386 + 0.136726i
\(633\) 0 0
\(634\) 5.22947 + 9.05771i 0.207689 + 0.359728i
\(635\) 1.51592 2.62565i 0.0601574 0.104196i
\(636\) 0 0
\(637\) −12.3492 + 31.1481i −0.489293 + 1.23413i
\(638\) −30.0885 −1.19121
\(639\) 0 0
\(640\) 5.42549 + 9.39723i 0.214461 + 0.371458i
\(641\) −3.98762 6.90677i −0.157502 0.272801i 0.776465 0.630160i \(-0.217011\pi\)
−0.933967 + 0.357359i \(0.883677\pi\)
\(642\) 0 0
\(643\) −3.12279 −0.123151 −0.0615755 0.998102i \(-0.519612\pi\)
−0.0615755 + 0.998102i \(0.519612\pi\)
\(644\) −2.13086 3.13703i −0.0839675 0.123616i
\(645\) 0 0
\(646\) 6.54391 11.3344i 0.257467 0.445945i
\(647\) 6.13273 + 10.6222i 0.241102 + 0.417602i 0.961029 0.276449i \(-0.0891577\pi\)
−0.719926 + 0.694051i \(0.755824\pi\)
\(648\) 0 0
\(649\) 9.35065 16.1958i 0.367045 0.635741i
\(650\) −15.7269 −0.616860
\(651\) 0 0
\(652\) −1.42171 −0.0556786
\(653\) −8.25476 + 14.2977i −0.323034 + 0.559511i −0.981112 0.193438i \(-0.938036\pi\)
0.658079 + 0.752949i \(0.271369\pi\)
\(654\) 0 0
\(655\) 9.12235 + 15.8004i 0.356440 + 0.617372i
\(656\) 16.6133 28.7751i 0.648641 1.12348i
\(657\) 0 0
\(658\) 2.59288 5.36044i 0.101081 0.208972i
\(659\) 10.7388 0.418324 0.209162 0.977881i \(-0.432926\pi\)
0.209162 + 0.977881i \(0.432926\pi\)
\(660\) 0 0
\(661\) 6.68817 + 11.5843i 0.260140 + 0.450575i 0.966279 0.257498i \(-0.0828980\pi\)
−0.706139 + 0.708073i \(0.749565\pi\)
\(662\) 10.5632 + 18.2959i 0.410549 + 0.711092i
\(663\) 0 0
\(664\) −1.05036 −0.0407619
\(665\) −8.70532 + 17.9971i −0.337578 + 0.697898i
\(666\) 0 0
\(667\) −13.6799 + 23.6943i −0.529689 + 0.917448i
\(668\) −0.311247 0.539095i −0.0120425 0.0208582i
\(669\) 0 0
\(670\) 12.0737 20.9122i 0.466447 0.807909i
\(671\) 22.0761 0.852240
\(672\) 0 0
\(673\) 40.8986 1.57653 0.788264 0.615338i \(-0.210980\pi\)
0.788264 + 0.615338i \(0.210980\pi\)
\(674\) −10.1041 + 17.5008i −0.389195 + 0.674105i
\(675\) 0 0
\(676\) 1.91607 + 3.31874i 0.0736951 + 0.127644i
\(677\) 10.6250 18.4031i 0.408353 0.707288i −0.586353 0.810056i \(-0.699437\pi\)
0.994705 + 0.102768i \(0.0327700\pi\)
\(678\) 0 0
\(679\) 15.7110 + 23.1296i 0.602933 + 0.887634i
\(680\) 9.97612 0.382567
\(681\) 0 0
\(682\) −11.2212 19.4357i −0.429682 0.744231i
\(683\) −20.6708 35.8029i −0.790948 1.36996i −0.925381 0.379039i \(-0.876255\pi\)
0.134433 0.990923i \(-0.457079\pi\)
\(684\) 0 0
\(685\) −25.0612 −0.957537
\(686\) −7.05042 + 22.4430i −0.269186 + 0.856877i
\(687\) 0 0
\(688\) 7.49202 12.9766i 0.285631 0.494727i
\(689\) 3.99417 + 6.91810i 0.152166 + 0.263559i
\(690\) 0 0
\(691\) 0.760183 1.31668i 0.0289187 0.0500887i −0.851204 0.524835i \(-0.824127\pi\)
0.880123 + 0.474747i \(0.157460\pi\)
\(692\) 6.25685 0.237850
\(693\) 0 0
\(694\) −7.98858 −0.303242
\(695\) 10.4415 18.0852i 0.396068 0.686009i
\(696\) 0 0
\(697\) −11.4362 19.8081i −0.433177 0.750284i
\(698\) −1.02858 + 1.78154i −0.0389321 + 0.0674325i
\(699\) 0 0
\(700\) 2.63869 0.193156i 0.0997331 0.00730060i
\(701\) −32.5344 −1.22881 −0.614404 0.788991i \(-0.710604\pi\)
−0.614404 + 0.788991i \(0.710604\pi\)
\(702\) 0 0
\(703\) −0.453708 0.785845i −0.0171119 0.0296387i
\(704\) −14.2697 24.7159i −0.537811 0.931515i
\(705\) 0 0
\(706\) −41.2963 −1.55421
\(707\) −2.34323 + 4.84433i −0.0881264 + 0.182190i
\(708\) 0 0
\(709\) −11.2810 + 19.5394i −0.423669 + 0.733816i −0.996295 0.0860007i \(-0.972591\pi\)
0.572626 + 0.819816i \(0.305925\pi\)
\(710\) 13.6253 + 23.5998i 0.511350 + 0.885684i
\(711\) 0 0
\(712\) 26.3833 45.6972i 0.988756 1.71258i
\(713\) −20.4072 −0.764255
\(714\) 0 0
\(715\) −23.8700 −0.892686
\(716\) −3.36466 + 5.82777i −0.125743 + 0.217794i
\(717\) 0 0
\(718\) 7.10787 + 12.3112i 0.265263 + 0.459450i
\(719\) 3.25084 5.63062i 0.121236 0.209987i −0.799019 0.601305i \(-0.794648\pi\)
0.920255 + 0.391319i \(0.127981\pi\)
\(720\) 0 0
\(721\) 52.7253 3.85956i 1.96359 0.143738i
\(722\) 5.91755 0.220228
\(723\) 0 0
\(724\) 1.71958 + 2.97841i 0.0639078 + 0.110692i
\(725\) −9.54400 16.5307i −0.354455 0.613934i
\(726\) 0 0
\(727\) −7.83215 −0.290478 −0.145239 0.989397i \(-0.546395\pi\)
−0.145239 + 0.989397i \(0.546395\pi\)
\(728\) 21.5718 + 31.7579i 0.799505 + 1.17703i
\(729\) 0 0
\(730\) 11.7053 20.2742i 0.433234 0.750383i
\(731\) −5.15732 8.93274i −0.190750 0.330389i
\(732\) 0 0
\(733\) 3.74780 6.49138i 0.138428 0.239764i −0.788474 0.615068i \(-0.789128\pi\)
0.926902 + 0.375304i \(0.122462\pi\)
\(734\) −6.58823 −0.243176
\(735\) 0 0
\(736\) −7.98643 −0.294384
\(737\) −19.6410 + 34.0192i −0.723486 + 1.25311i
\(738\) 0 0
\(739\) −12.0480 20.8678i −0.443194 0.767634i 0.554731 0.832030i \(-0.312821\pi\)
−0.997924 + 0.0643961i \(0.979488\pi\)
\(740\) 0.0560213 0.0970318i 0.00205939 0.00356696i
\(741\) 0 0
\(742\) 3.15132 + 4.63935i 0.115689 + 0.170316i
\(743\) 19.2882 0.707616 0.353808 0.935318i \(-0.384887\pi\)
0.353808 + 0.935318i \(0.384887\pi\)
\(744\) 0 0
\(745\) 2.49472 + 4.32098i 0.0913994 + 0.158308i
\(746\) −20.8721 36.1515i −0.764181 1.32360i
\(747\) 0 0
\(748\) −2.62887 −0.0961210
\(749\) −44.6109 + 3.26558i −1.63005 + 0.119322i
\(750\) 0 0
\(751\) 16.6045 28.7598i 0.605906 1.04946i −0.386002 0.922498i \(-0.626144\pi\)
0.991908 0.126961i \(-0.0405225\pi\)
\(752\) −2.72633 4.72214i −0.0994190 0.172199i
\(753\) 0 0
\(754\) 22.4336 38.8562i 0.816985 1.41506i
\(755\) −26.4595 −0.962959
\(756\) 0 0
\(757\) 9.70935 0.352892 0.176446 0.984310i \(-0.443540\pi\)
0.176446 + 0.984310i \(0.443540\pi\)
\(758\) −8.85088 + 15.3302i −0.321478 + 0.556817i
\(759\) 0 0
\(760\) 11.4532 + 19.8375i 0.415452 + 0.719583i
\(761\) −1.36305 + 2.36086i −0.0494104 + 0.0855813i −0.889673 0.456599i \(-0.849068\pi\)
0.840262 + 0.542180i \(0.182401\pi\)
\(762\) 0 0
\(763\) 12.3261 25.4826i 0.446234 0.922532i
\(764\) −5.71868 −0.206894
\(765\) 0 0
\(766\) −1.08932 1.88676i −0.0393588 0.0681714i
\(767\) 13.9435 + 24.1508i 0.503470 + 0.872036i
\(768\) 0 0
\(769\) 50.0460 1.80470 0.902352 0.430999i \(-0.141839\pi\)
0.902352 + 0.430999i \(0.141839\pi\)
\(770\) −16.7138 + 1.22347i −0.602324 + 0.0440910i
\(771\) 0 0
\(772\) 0.352112 0.609877i 0.0126728 0.0219499i
\(773\) −9.52030 16.4896i −0.342421 0.593091i 0.642461 0.766319i \(-0.277914\pi\)
−0.984882 + 0.173228i \(0.944580\pi\)
\(774\) 0 0
\(775\) 7.11868 12.3299i 0.255711 0.442904i
\(776\) 32.0372 1.15007
\(777\) 0 0
\(778\) 3.99928 0.143381
\(779\) 26.2589 45.4818i 0.940824 1.62956i
\(780\) 0 0
\(781\) −22.1652 38.3912i −0.793133 1.37375i
\(782\) 4.98806 8.63957i 0.178373 0.308950i
\(783\) 0 0
\(784\) 13.3725 + 16.8881i 0.477590 + 0.603145i
\(785\) −14.6560 −0.523094
\(786\) 0 0
\(787\) 16.6011 + 28.7540i 0.591766 + 1.02497i 0.993995 + 0.109430i \(0.0349025\pi\)
−0.402228 + 0.915539i \(0.631764\pi\)
\(788\) 1.49222 + 2.58460i 0.0531582 + 0.0920727i
\(789\) 0 0
\(790\) 2.58350 0.0919168
\(791\) 12.7622 + 18.7885i 0.453773 + 0.668041i
\(792\) 0 0
\(793\) −16.4597 + 28.5091i −0.584502 + 1.01239i
\(794\) −17.4236 30.1785i −0.618340 1.07100i
\(795\) 0 0
\(796\) 0.427834 0.741030i 0.0151642 0.0262651i
\(797\) 2.08944 0.0740118 0.0370059 0.999315i \(-0.488218\pi\)
0.0370059 + 0.999315i \(0.488218\pi\)
\(798\) 0 0
\(799\) −3.75347 −0.132788
\(800\) 2.78592 4.82536i 0.0984972 0.170602i
\(801\) 0 0
\(802\) 18.4414 + 31.9414i 0.651187 + 1.12789i
\(803\) −19.0418 + 32.9814i −0.671970 + 1.16389i
\(804\) 0 0
\(805\) −6.63558 + 13.7182i −0.233873 + 0.483503i
\(806\) 33.4656 1.17878
\(807\) 0 0
\(808\) 3.08289 + 5.33973i 0.108456 + 0.187851i
\(809\) −0.241404 0.418125i −0.00848732 0.0147005i 0.861751 0.507332i \(-0.169368\pi\)
−0.870238 + 0.492632i \(0.836035\pi\)
\(810\) 0 0
\(811\) 17.1671 0.602820 0.301410 0.953495i \(-0.402543\pi\)
0.301410 + 0.953495i \(0.402543\pi\)
\(812\) −3.28673 + 6.79490i −0.115342 + 0.238454i
\(813\) 0 0
\(814\) 0.380327 0.658745i 0.0133304 0.0230890i
\(815\) 2.85647 + 4.94755i 0.100058 + 0.173305i
\(816\) 0 0
\(817\) 11.8419 20.5107i 0.414294 0.717578i
\(818\) −35.2226 −1.23153
\(819\) 0 0
\(820\) 6.48462 0.226453
\(821\) 6.41086 11.1039i 0.223741 0.387530i −0.732200 0.681089i \(-0.761507\pi\)
0.955941 + 0.293559i \(0.0948398\pi\)
\(822\) 0 0
\(823\) −12.2973 21.2995i −0.428655 0.742453i 0.568099 0.822961i \(-0.307679\pi\)
−0.996754 + 0.0805075i \(0.974346\pi\)
\(824\) 30.2866 52.4580i 1.05509 1.82746i
\(825\) 0 0
\(826\) 11.0011 + 16.1958i 0.382779 + 0.563524i
\(827\) 0.527165 0.0183313 0.00916567 0.999958i \(-0.497082\pi\)
0.00916567 + 0.999958i \(0.497082\pi\)
\(828\) 0 0
\(829\) 23.1015 + 40.0130i 0.802348 + 1.38971i 0.918067 + 0.396426i \(0.129750\pi\)
−0.115718 + 0.993282i \(0.536917\pi\)
\(830\) 0.341853 + 0.592106i 0.0118659 + 0.0205523i
\(831\) 0 0
\(832\) 42.5574 1.47541
\(833\) 14.6705 2.15937i 0.508302 0.0748177i
\(834\) 0 0
\(835\) −1.25070 + 2.16627i −0.0432822 + 0.0749669i
\(836\) −3.01811 5.22752i −0.104383 0.180797i
\(837\) 0 0
\(838\) 19.2815 33.3965i 0.666067 1.15366i
\(839\) −10.8258 −0.373747 −0.186874 0.982384i \(-0.559835\pi\)
−0.186874 + 0.982384i \(0.559835\pi\)
\(840\) 0 0
\(841\) 25.4561 0.877797
\(842\) 17.6389 30.5515i 0.607877 1.05287i
\(843\) 0 0
\(844\) −0.350540 0.607152i −0.0120661 0.0208990i
\(845\) 7.69945 13.3358i 0.264869 0.458767i
\(846\) 0 0
\(847\) −1.83617 + 0.134410i −0.0630916 + 0.00461839i
\(848\) 5.13566 0.176359
\(849\) 0 0
\(850\) 3.47999 + 6.02752i 0.119363 + 0.206742i
\(851\) −0.345836 0.599006i −0.0118551 0.0205337i
\(852\) 0 0
\(853\) −43.1922 −1.47887 −0.739437 0.673226i \(-0.764908\pi\)
−0.739437 + 0.673226i \(0.764908\pi\)
\(854\) −10.0639 + 20.8058i −0.344380 + 0.711961i
\(855\) 0 0
\(856\) −25.6255 + 44.3847i −0.875863 + 1.51704i
\(857\) −0.787226 1.36352i −0.0268911 0.0465768i 0.852267 0.523108i \(-0.175227\pi\)
−0.879158 + 0.476531i \(0.841894\pi\)
\(858\) 0 0
\(859\) −3.41090 + 5.90786i −0.116378 + 0.201573i −0.918330 0.395816i \(-0.870462\pi\)
0.801951 + 0.597389i \(0.203795\pi\)
\(860\) 2.92434 0.0997190
\(861\) 0 0
\(862\) 9.22073 0.314059
\(863\) −4.51387 + 7.81825i −0.153654 + 0.266136i −0.932568 0.360994i \(-0.882437\pi\)
0.778914 + 0.627131i \(0.215771\pi\)
\(864\) 0 0
\(865\) −12.5711 21.7738i −0.427430 0.740331i
\(866\) −9.55032 + 16.5416i −0.324533 + 0.562108i
\(867\) 0 0
\(868\) −5.61493 + 0.411021i −0.190583 + 0.0139509i
\(869\) −4.20274 −0.142568
\(870\) 0 0
\(871\) −29.2882 50.7287i −0.992394 1.71888i
\(872\) −16.2169 28.0885i −0.549174 0.951196i
\(873\) 0 0
\(874\) 22.9064 0.774821
\(875\) −17.5211 25.7944i −0.592321 0.872011i
\(876\) 0 0
\(877\) −4.83460 + 8.37377i −0.163253 + 0.282762i −0.936033 0.351911i \(-0.885532\pi\)
0.772781 + 0.634673i \(0.218865\pi\)
\(878\) −0.978807 1.69534i −0.0330331 0.0572151i
\(879\) 0 0
\(880\) −7.67293 + 13.2899i −0.258655 + 0.448003i
\(881\) −21.4721 −0.723415 −0.361707 0.932292i \(-0.617806\pi\)
−0.361707 + 0.932292i \(0.617806\pi\)
\(882\) 0 0
\(883\) −26.5380 −0.893076 −0.446538 0.894765i \(-0.647343\pi\)
−0.446538 + 0.894765i \(0.647343\pi\)
\(884\) 1.96006 3.39492i 0.0659238 0.114183i
\(885\) 0 0
\(886\) −12.9165 22.3721i −0.433940 0.751606i
\(887\) −20.7612 + 35.9594i −0.697091 + 1.20740i 0.272379 + 0.962190i \(0.412190\pi\)
−0.969471 + 0.245208i \(0.921144\pi\)
\(888\) 0 0
\(889\) −2.90133 4.27131i −0.0973074 0.143255i
\(890\) −34.3471 −1.15132
\(891\) 0 0
\(892\) 1.83755 + 3.18272i 0.0615256 + 0.106565i
\(893\) −4.30922 7.46380i −0.144203 0.249766i
\(894\) 0 0
\(895\) 27.0408 0.903873
\(896\) 18.4309 1.34917i 0.615734 0.0450726i
\(897\) 0 0
\(898\) −16.8001 + 29.0986i −0.560626 + 0.971032i
\(899\) 20.3089 + 35.1760i 0.677339 + 1.17319i
\(900\) 0 0
\(901\) 1.76763 3.06162i 0.0588883 0.101997i
\(902\) 44.0238 1.46583
\(903\) 0 0
\(904\) 26.0241 0.865550
\(905\) 6.90989 11.9683i 0.229692 0.397839i
\(906\) 0 0
\(907\) 2.32180 + 4.02148i 0.0770942 + 0.133531i 0.901995 0.431746i \(-0.142102\pi\)
−0.824901 + 0.565277i \(0.808769\pi\)
\(908\) −2.09401 + 3.62693i −0.0694921 + 0.120364i
\(909\) 0 0
\(910\) 10.8817 22.4964i 0.360723 0.745749i
\(911\) −1.34811 −0.0446648 −0.0223324 0.999751i \(-0.507109\pi\)
−0.0223324 + 0.999751i \(0.507109\pi\)
\(912\) 0 0
\(913\) −0.556114 0.963217i −0.0184047 0.0318778i
\(914\) 4.12408 + 7.14312i 0.136413 + 0.236273i
\(915\) 0 0
\(916\) −4.84011 −0.159922
\(917\) 30.9895 2.26848i 1.02336 0.0749116i
\(918\) 0 0
\(919\) 20.2472 35.0692i 0.667893 1.15682i −0.310599 0.950541i \(-0.600530\pi\)
0.978492 0.206284i \(-0.0661370\pi\)
\(920\) 8.73015 + 15.1211i 0.287824 + 0.498527i
\(921\) 0 0
\(922\) −9.90223 + 17.1512i −0.326112 + 0.564843i
\(923\) 66.1045 2.17586
\(924\) 0 0
\(925\) 0.482555 0.0158663
\(926\) −4.86221 + 8.42160i −0.159782 + 0.276751i
\(927\) 0 0
\(928\) 7.94795 + 13.7663i 0.260904 + 0.451900i
\(929\) −11.1569 + 19.3243i −0.366046 + 0.634011i −0.988944 0.148293i \(-0.952622\pi\)
0.622897 + 0.782304i \(0.285956\pi\)
\(930\) 0 0
\(931\) 21.1365 + 26.6932i 0.692722 + 0.874834i
\(932\) −5.90760 −0.193510
\(933\) 0 0
\(934\) 26.4375 + 45.7910i 0.865060 + 1.49833i
\(935\) 5.28186 + 9.14844i 0.172735 + 0.299186i
\(936\) 0 0
\(937\) −1.13943 −0.0372235 −0.0186117 0.999827i \(-0.505925\pi\)
−0.0186117 + 0.999827i \(0.505925\pi\)
\(938\) −23.1079 34.0192i −0.754498 1.11077i
\(939\) 0 0
\(940\) 0.532080 0.921589i 0.0173545 0.0300589i
\(941\) −23.5938 40.8656i −0.769134 1.33218i −0.938033 0.346546i \(-0.887354\pi\)
0.168898 0.985633i \(-0.445979\pi\)
\(942\) 0 0
\(943\) 20.0157 34.6683i 0.651802 1.12895i
\(944\) 17.9284 0.583519
\(945\) 0 0
\(946\) 19.8532 0.645483
\(947\) −12.3230 + 21.3441i −0.400444 + 0.693590i −0.993779 0.111366i \(-0.964477\pi\)
0.593335 + 0.804955i \(0.297811\pi\)
\(948\) 0 0
\(949\) −28.3947 49.1811i −0.921731 1.59649i
\(950\) −7.99050 + 13.8400i −0.259246 + 0.449027i
\(951\) 0 0
\(952\) 7.39825 15.2949i 0.239779 0.495711i
\(953\) −56.2821 −1.82316 −0.911579 0.411125i \(-0.865136\pi\)
−0.911579 + 0.411125i \(0.865136\pi\)
\(954\) 0 0
\(955\) 11.4898 + 19.9009i 0.371802 + 0.643979i
\(956\) 2.07137 + 3.58772i 0.0669930 + 0.116035i
\(957\) 0 0
\(958\) 2.94150 0.0950356
\(959\) −18.5853 + 38.4226i −0.600149 + 1.24073i
\(960\) 0 0
\(961\) 0.352001 0.609683i 0.0113549 0.0196672i
\(962\) 0.567135 + 0.982306i 0.0182852 + 0.0316708i
\(963\) 0 0
\(964\) −2.89955 + 5.02217i −0.0933883 + 0.161753i
\(965\) −2.82982 −0.0910951
\(966\) 0 0
\(967\) −58.5977 −1.88438 −0.942188 0.335084i \(-0.891235\pi\)
−0.942188 + 0.335084i \(0.891235\pi\)
\(968\) −1.05474 + 1.82686i −0.0339006 + 0.0587176i
\(969\) 0 0
\(970\) −10.4269 18.0599i −0.334787 0.579868i
\(971\) 3.04991 5.28260i 0.0978763 0.169527i −0.812929 0.582363i \(-0.802128\pi\)
0.910805 + 0.412836i \(0.135462\pi\)
\(972\) 0 0
\(973\) −19.9840 29.4203i −0.640657 0.943171i
\(974\) 23.0260 0.737801
\(975\) 0 0
\(976\) 10.5819 + 18.3283i 0.338718 + 0.586676i
\(977\) 2.57988 + 4.46849i 0.0825377 + 0.142960i 0.904339 0.426814i \(-0.140364\pi\)
−0.821802 + 0.569774i \(0.807031\pi\)
\(978\) 0 0
\(979\) 55.8746 1.78576
\(980\) −1.54945 + 3.90814i −0.0494953 + 0.124841i
\(981\) 0 0
\(982\) 13.7146 23.7543i 0.437649 0.758031i
\(983\) −31.0536 53.7864i −0.990455 1.71552i −0.614598 0.788841i \(-0.710682\pi\)
−0.375857 0.926678i \(-0.622652\pi\)
\(984\) 0 0
\(985\) 5.99626 10.3858i 0.191057 0.330920i
\(986\) −19.8561 −0.632348
\(987\) 0 0
\(988\) 9.00108 0.286362
\(989\) 9.02639 15.6342i 0.287022 0.497138i
\(990\) 0 0
\(991\) 10.8163 + 18.7343i 0.343590 + 0.595116i 0.985097 0.172002i \(-0.0550235\pi\)
−0.641506 + 0.767118i \(0.721690\pi\)
\(992\) −5.92823 + 10.2680i −0.188221 + 0.326009i
\(993\) 0 0
\(994\) 46.2866 3.38824i 1.46812 0.107469i
\(995\) −3.43837 −0.109004
\(996\) 0 0
\(997\) 20.3681 + 35.2786i 0.645064 + 1.11728i 0.984287 + 0.176578i \(0.0565027\pi\)
−0.339223 + 0.940706i \(0.610164\pi\)
\(998\) −17.2527 29.8825i −0.546124 0.945915i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.e.g.163.3 16
3.2 odd 2 inner 567.2.e.g.163.6 yes 16
7.2 even 3 3969.2.a.bg.1.6 8
7.4 even 3 inner 567.2.e.g.487.3 yes 16
7.5 odd 6 3969.2.a.bf.1.6 8
9.2 odd 6 567.2.h.l.352.3 16
9.4 even 3 567.2.g.l.541.3 16
9.5 odd 6 567.2.g.l.541.6 16
9.7 even 3 567.2.h.l.352.6 16
21.2 odd 6 3969.2.a.bg.1.3 8
21.5 even 6 3969.2.a.bf.1.3 8
21.11 odd 6 inner 567.2.e.g.487.6 yes 16
63.4 even 3 567.2.h.l.298.6 16
63.11 odd 6 567.2.g.l.109.6 16
63.25 even 3 567.2.g.l.109.3 16
63.32 odd 6 567.2.h.l.298.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.3 16 1.1 even 1 trivial
567.2.e.g.163.6 yes 16 3.2 odd 2 inner
567.2.e.g.487.3 yes 16 7.4 even 3 inner
567.2.e.g.487.6 yes 16 21.11 odd 6 inner
567.2.g.l.109.3 16 63.25 even 3
567.2.g.l.109.6 16 63.11 odd 6
567.2.g.l.541.3 16 9.4 even 3
567.2.g.l.541.6 16 9.5 odd 6
567.2.h.l.298.3 16 63.32 odd 6
567.2.h.l.298.6 16 63.4 even 3
567.2.h.l.352.3 16 9.2 odd 6
567.2.h.l.352.6 16 9.7 even 3
3969.2.a.bf.1.3 8 21.5 even 6
3969.2.a.bf.1.6 8 7.5 odd 6
3969.2.a.bg.1.3 8 21.2 odd 6
3969.2.a.bg.1.6 8 7.2 even 3