Properties

Label 567.2.bd.a.467.16
Level $567$
Weight $2$
Character 567.467
Analytic conductor $4.528$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(17,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([11, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.bd (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 467.16
Character \(\chi\) \(=\) 567.467
Dual form 567.2.bd.a.17.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.38665 + 0.244504i) q^{2} +(-0.0163608 - 0.00595485i) q^{4} +(-1.98299 - 0.721749i) q^{5} +(-2.18605 + 1.49037i) q^{7} +(-2.46004 - 1.42030i) q^{8} +(-2.57325 - 1.48566i) q^{10} +(1.26664 + 3.48007i) q^{11} +(-2.27684 + 6.25557i) q^{13} +(-3.39569 + 1.53213i) q^{14} +(-3.03727 - 2.54857i) q^{16} +(1.61887 - 2.80397i) q^{17} +(-4.61385 + 2.66381i) q^{19} +(0.0281454 + 0.0236168i) q^{20} +(0.905502 + 5.13536i) q^{22} +(-0.689782 + 0.121627i) q^{23} +(-0.418902 - 0.351501i) q^{25} +(-4.68670 + 8.11761i) q^{26} +(0.0446405 - 0.0113661i) q^{28} +(-1.50083 - 4.12351i) q^{29} +(-0.513951 + 1.41207i) q^{31} +(0.0633067 + 0.0754460i) q^{32} +(2.93040 - 3.49232i) q^{34} +(5.41058 - 1.37761i) q^{35} +6.49662 q^{37} +(-7.04913 + 2.56567i) q^{38} +(3.85312 + 4.59197i) q^{40} +(-10.4849 - 3.81619i) q^{41} +(1.29121 - 7.32280i) q^{43} -0.0644796i q^{44} -0.986227 q^{46} +(5.63412 - 2.05065i) q^{47} +(2.55760 - 6.51603i) q^{49} +(-0.494929 - 0.589833i) q^{50} +(0.0745020 - 0.0887880i) q^{52} +(-0.766350 + 0.442452i) q^{53} -7.81514i q^{55} +(7.49453 - 0.561517i) q^{56} +(-1.07292 - 6.08484i) q^{58} +(-4.77604 + 4.00757i) q^{59} +(2.54368 + 6.98869i) q^{61} +(-1.05793 + 1.83239i) q^{62} +(4.03421 + 6.98746i) q^{64} +(9.02990 - 10.7614i) q^{65} +(1.82662 + 10.3593i) q^{67} +(-0.0431834 + 0.0362352i) q^{68} +(7.83942 - 0.587358i) q^{70} +(3.83248 - 2.21268i) q^{71} +3.06138i q^{73} +(9.00855 + 1.58845i) q^{74} +(0.0913491 - 0.0161073i) q^{76} +(-7.95554 - 5.71984i) q^{77} +(-1.65307 + 9.37505i) q^{79} +(4.18344 + 7.24593i) q^{80} +(-13.6058 - 7.85533i) q^{82} +(-11.4377 + 4.16299i) q^{83} +(-5.23397 + 4.39182i) q^{85} +(3.58091 - 9.83847i) q^{86} +(1.82677 - 10.3601i) q^{88} +(2.17916 + 3.77442i) q^{89} +(-4.34583 - 17.0683i) q^{91} +(0.0120097 + 0.00211763i) q^{92} +(8.31397 - 1.46598i) q^{94} +(11.0718 - 1.95226i) q^{95} +(-6.85869 - 1.20937i) q^{97} +(5.13970 - 8.41014i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q + 3 q^{2} - 3 q^{4} + 9 q^{5} - 6 q^{7} + 18 q^{8} - 9 q^{10} - 9 q^{11} + 42 q^{14} - 15 q^{16} + 9 q^{17} - 9 q^{19} + 18 q^{20} - 12 q^{22} - 30 q^{23} - 3 q^{25} - 12 q^{28} - 6 q^{29} - 9 q^{31}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38665 + 0.244504i 0.980512 + 0.172891i 0.640858 0.767660i \(-0.278579\pi\)
0.339654 + 0.940550i \(0.389690\pi\)
\(3\) 0 0
\(4\) −0.0163608 0.00595485i −0.00818041 0.00297743i
\(5\) −1.98299 0.721749i −0.886819 0.322776i −0.141861 0.989887i \(-0.545309\pi\)
−0.744958 + 0.667111i \(0.767531\pi\)
\(6\) 0 0
\(7\) −2.18605 + 1.49037i −0.826248 + 0.563307i
\(8\) −2.46004 1.42030i −0.869754 0.502153i
\(9\) 0 0
\(10\) −2.57325 1.48566i −0.813732 0.469808i
\(11\) 1.26664 + 3.48007i 0.381907 + 1.04928i 0.970552 + 0.240890i \(0.0774394\pi\)
−0.588645 + 0.808392i \(0.700338\pi\)
\(12\) 0 0
\(13\) −2.27684 + 6.25557i −0.631482 + 1.73498i 0.0454806 + 0.998965i \(0.485518\pi\)
−0.676963 + 0.736017i \(0.736704\pi\)
\(14\) −3.39569 + 1.53213i −0.907536 + 0.409478i
\(15\) 0 0
\(16\) −3.03727 2.54857i −0.759318 0.637143i
\(17\) 1.61887 2.80397i 0.392635 0.680063i −0.600161 0.799879i \(-0.704897\pi\)
0.992796 + 0.119816i \(0.0382303\pi\)
\(18\) 0 0
\(19\) −4.61385 + 2.66381i −1.05849 + 0.611120i −0.925014 0.379932i \(-0.875947\pi\)
−0.133476 + 0.991052i \(0.542614\pi\)
\(20\) 0.0281454 + 0.0236168i 0.00629351 + 0.00528088i
\(21\) 0 0
\(22\) 0.905502 + 5.13536i 0.193054 + 1.09486i
\(23\) −0.689782 + 0.121627i −0.143829 + 0.0253610i −0.245099 0.969498i \(-0.578821\pi\)
0.101270 + 0.994859i \(0.467709\pi\)
\(24\) 0 0
\(25\) −0.418902 0.351501i −0.0837805 0.0703002i
\(26\) −4.68670 + 8.11761i −0.919138 + 1.59199i
\(27\) 0 0
\(28\) 0.0446405 0.0113661i 0.00843625 0.00214799i
\(29\) −1.50083 4.12351i −0.278698 0.765716i −0.997511 0.0705128i \(-0.977536\pi\)
0.718813 0.695204i \(-0.244686\pi\)
\(30\) 0 0
\(31\) −0.513951 + 1.41207i −0.0923084 + 0.253615i −0.977251 0.212084i \(-0.931975\pi\)
0.884943 + 0.465699i \(0.154197\pi\)
\(32\) 0.0633067 + 0.0754460i 0.0111911 + 0.0133371i
\(33\) 0 0
\(34\) 2.93040 3.49232i 0.502560 0.598927i
\(35\) 5.41058 1.37761i 0.914554 0.232859i
\(36\) 0 0
\(37\) 6.49662 1.06804 0.534019 0.845473i \(-0.320681\pi\)
0.534019 + 0.845473i \(0.320681\pi\)
\(38\) −7.04913 + 2.56567i −1.14352 + 0.416207i
\(39\) 0 0
\(40\) 3.85312 + 4.59197i 0.609232 + 0.726054i
\(41\) −10.4849 3.81619i −1.63746 0.595988i −0.650871 0.759188i \(-0.725596\pi\)
−0.986593 + 0.163200i \(0.947818\pi\)
\(42\) 0 0
\(43\) 1.29121 7.32280i 0.196907 1.11672i −0.712769 0.701399i \(-0.752559\pi\)
0.909676 0.415318i \(-0.136330\pi\)
\(44\) 0.0644796i 0.00972066i
\(45\) 0 0
\(46\) −0.986227 −0.145411
\(47\) 5.63412 2.05065i 0.821821 0.299119i 0.103324 0.994648i \(-0.467052\pi\)
0.718498 + 0.695529i \(0.244830\pi\)
\(48\) 0 0
\(49\) 2.55760 6.51603i 0.365371 0.930862i
\(50\) −0.494929 0.589833i −0.0699935 0.0834150i
\(51\) 0 0
\(52\) 0.0745020 0.0887880i 0.0103316 0.0123127i
\(53\) −0.766350 + 0.442452i −0.105266 + 0.0607755i −0.551709 0.834037i \(-0.686024\pi\)
0.446443 + 0.894812i \(0.352691\pi\)
\(54\) 0 0
\(55\) 7.81514i 1.05379i
\(56\) 7.49453 0.561517i 1.00150 0.0750358i
\(57\) 0 0
\(58\) −1.07292 6.08484i −0.140881 0.798978i
\(59\) −4.77604 + 4.00757i −0.621787 + 0.521742i −0.898365 0.439250i \(-0.855244\pi\)
0.276577 + 0.960992i \(0.410800\pi\)
\(60\) 0 0
\(61\) 2.54368 + 6.98869i 0.325684 + 0.894811i 0.989190 + 0.146639i \(0.0468456\pi\)
−0.663506 + 0.748171i \(0.730932\pi\)
\(62\) −1.05793 + 1.83239i −0.134357 + 0.232713i
\(63\) 0 0
\(64\) 4.03421 + 6.98746i 0.504277 + 0.873433i
\(65\) 9.02990 10.7614i 1.12002 1.33479i
\(66\) 0 0
\(67\) 1.82662 + 10.3593i 0.223157 + 1.26559i 0.866177 + 0.499738i \(0.166570\pi\)
−0.643019 + 0.765850i \(0.722319\pi\)
\(68\) −0.0431834 + 0.0362352i −0.00523675 + 0.00439416i
\(69\) 0 0
\(70\) 7.83942 0.587358i 0.936990 0.0702027i
\(71\) 3.83248 2.21268i 0.454832 0.262597i −0.255037 0.966931i \(-0.582088\pi\)
0.709869 + 0.704334i \(0.248754\pi\)
\(72\) 0 0
\(73\) 3.06138i 0.358307i 0.983821 + 0.179154i \(0.0573359\pi\)
−0.983821 + 0.179154i \(0.942664\pi\)
\(74\) 9.00855 + 1.58845i 1.04722 + 0.184654i
\(75\) 0 0
\(76\) 0.0913491 0.0161073i 0.0104785 0.00184763i
\(77\) −7.95554 5.71984i −0.906618 0.651836i
\(78\) 0 0
\(79\) −1.65307 + 9.37505i −0.185985 + 1.05478i 0.738697 + 0.674037i \(0.235441\pi\)
−0.924683 + 0.380739i \(0.875670\pi\)
\(80\) 4.18344 + 7.24593i 0.467723 + 0.810120i
\(81\) 0 0
\(82\) −13.6058 7.85533i −1.50251 0.867476i
\(83\) −11.4377 + 4.16299i −1.25545 + 0.456947i −0.882241 0.470799i \(-0.843966\pi\)
−0.373212 + 0.927746i \(0.621744\pi\)
\(84\) 0 0
\(85\) −5.23397 + 4.39182i −0.567704 + 0.476360i
\(86\) 3.58091 9.83847i 0.386140 1.06091i
\(87\) 0 0
\(88\) 1.82677 10.3601i 0.194734 1.10439i
\(89\) 2.17916 + 3.77442i 0.230991 + 0.400088i 0.958100 0.286434i \(-0.0924699\pi\)
−0.727109 + 0.686522i \(0.759137\pi\)
\(90\) 0 0
\(91\) −4.34583 17.0683i −0.455567 1.78924i
\(92\) 0.0120097 + 0.00211763i 0.00125210 + 0.000220778i
\(93\) 0 0
\(94\) 8.31397 1.46598i 0.857520 0.151204i
\(95\) 11.0718 1.95226i 1.13594 0.200298i
\(96\) 0 0
\(97\) −6.85869 1.20937i −0.696394 0.122793i −0.185765 0.982594i \(-0.559476\pi\)
−0.510629 + 0.859801i \(0.670587\pi\)
\(98\) 5.13970 8.41014i 0.519188 0.849552i
\(99\) 0 0
\(100\) 0.00476045 + 0.00824535i 0.000476045 + 0.000824535i
\(101\) −0.645643 + 3.66163i −0.0642439 + 0.364345i 0.935690 + 0.352824i \(0.114779\pi\)
−0.999934 + 0.0115214i \(0.996333\pi\)
\(102\) 0 0
\(103\) −2.12266 + 5.83195i −0.209152 + 0.574639i −0.999265 0.0383208i \(-0.987799\pi\)
0.790114 + 0.612960i \(0.210021\pi\)
\(104\) 14.4859 12.1551i 1.42046 1.19191i
\(105\) 0 0
\(106\) −1.17084 + 0.426152i −0.113722 + 0.0413915i
\(107\) −2.47461 1.42872i −0.239230 0.138119i 0.375593 0.926785i \(-0.377439\pi\)
−0.614823 + 0.788665i \(0.710772\pi\)
\(108\) 0 0
\(109\) 2.81692 + 4.87905i 0.269812 + 0.467328i 0.968813 0.247792i \(-0.0797051\pi\)
−0.699001 + 0.715121i \(0.746372\pi\)
\(110\) 1.91084 10.8369i 0.182191 1.03326i
\(111\) 0 0
\(112\) 10.4379 + 1.04464i 0.986292 + 0.0987093i
\(113\) −9.04367 + 1.59464i −0.850757 + 0.150011i −0.581992 0.813194i \(-0.697727\pi\)
−0.268765 + 0.963206i \(0.586615\pi\)
\(114\) 0 0
\(115\) 1.45561 + 0.256664i 0.135737 + 0.0239340i
\(116\) 0.0764013i 0.00709368i
\(117\) 0 0
\(118\) −7.60258 + 4.38935i −0.699874 + 0.404073i
\(119\) 0.640023 + 8.54234i 0.0586708 + 0.783075i
\(120\) 0 0
\(121\) −2.08004 + 1.74536i −0.189095 + 0.158669i
\(122\) 1.81843 + 10.3128i 0.164633 + 0.933680i
\(123\) 0 0
\(124\) 0.0168173 0.0200421i 0.00151024 0.00179984i
\(125\) 5.85261 + 10.1370i 0.523474 + 0.906683i
\(126\) 0 0
\(127\) −0.958294 + 1.65981i −0.0850349 + 0.147285i −0.905406 0.424547i \(-0.860433\pi\)
0.820371 + 0.571831i \(0.193767\pi\)
\(128\) 3.81822 + 10.4905i 0.337486 + 0.927235i
\(129\) 0 0
\(130\) 15.1525 12.7145i 1.32897 1.11513i
\(131\) 1.51205 + 8.57526i 0.132108 + 0.749224i 0.976830 + 0.214018i \(0.0686550\pi\)
−0.844721 + 0.535206i \(0.820234\pi\)
\(132\) 0 0
\(133\) 6.11604 12.6996i 0.530328 1.10119i
\(134\) 14.8114i 1.27951i
\(135\) 0 0
\(136\) −7.96498 + 4.59858i −0.682991 + 0.394325i
\(137\) 4.48477 5.34474i 0.383160 0.456632i −0.539649 0.841890i \(-0.681443\pi\)
0.922809 + 0.385258i \(0.125888\pi\)
\(138\) 0 0
\(139\) −6.76177 8.05836i −0.573526 0.683501i 0.398825 0.917027i \(-0.369418\pi\)
−0.972351 + 0.233526i \(0.924974\pi\)
\(140\) −0.0967249 0.00968035i −0.00817475 0.000818139i
\(141\) 0 0
\(142\) 5.85533 2.13117i 0.491368 0.178843i
\(143\) −24.6538 −2.06165
\(144\) 0 0
\(145\) 9.26009i 0.769009i
\(146\) −0.748521 + 4.24507i −0.0619480 + 0.351325i
\(147\) 0 0
\(148\) −0.106290 0.0386864i −0.00873699 0.00318000i
\(149\) 7.15261 + 8.52415i 0.585965 + 0.698326i 0.974825 0.222971i \(-0.0715756\pi\)
−0.388860 + 0.921297i \(0.627131\pi\)
\(150\) 0 0
\(151\) 18.9758 6.90663i 1.54423 0.562054i 0.577175 0.816621i \(-0.304155\pi\)
0.967055 + 0.254567i \(0.0819330\pi\)
\(152\) 15.1337 1.22750
\(153\) 0 0
\(154\) −9.63305 9.87659i −0.776253 0.795878i
\(155\) 2.03832 2.42917i 0.163722 0.195116i
\(156\) 0 0
\(157\) −3.14481 3.74783i −0.250983 0.299110i 0.625812 0.779974i \(-0.284768\pi\)
−0.876795 + 0.480864i \(0.840323\pi\)
\(158\) −4.58448 + 12.5958i −0.364722 + 1.00207i
\(159\) 0 0
\(160\) −0.0710834 0.195300i −0.00561963 0.0154398i
\(161\) 1.32663 1.29391i 0.104553 0.101975i
\(162\) 0 0
\(163\) −4.68621 + 8.11676i −0.367053 + 0.635754i −0.989103 0.147223i \(-0.952966\pi\)
0.622051 + 0.782977i \(0.286300\pi\)
\(164\) 0.148817 + 0.124872i 0.0116206 + 0.00975086i
\(165\) 0 0
\(166\) −16.8780 + 2.97605i −1.30999 + 0.230986i
\(167\) −1.49566 8.48231i −0.115738 0.656381i −0.986382 0.164468i \(-0.947409\pi\)
0.870645 0.491912i \(-0.163702\pi\)
\(168\) 0 0
\(169\) −23.9896 20.1296i −1.84535 1.54843i
\(170\) −8.33152 + 4.81021i −0.638999 + 0.368926i
\(171\) 0 0
\(172\) −0.0647314 + 0.112118i −0.00493572 + 0.00854892i
\(173\) −6.49113 5.44671i −0.493512 0.414106i 0.361771 0.932267i \(-0.382172\pi\)
−0.855283 + 0.518161i \(0.826617\pi\)
\(174\) 0 0
\(175\) 1.43961 + 0.144078i 0.108824 + 0.0108912i
\(176\) 5.02208 13.7981i 0.378554 1.04007i
\(177\) 0 0
\(178\) 2.09888 + 5.76663i 0.157318 + 0.432227i
\(179\) 4.18791 + 2.41789i 0.313019 + 0.180722i 0.648277 0.761405i \(-0.275490\pi\)
−0.335258 + 0.942126i \(0.608823\pi\)
\(180\) 0 0
\(181\) 3.95269 + 2.28209i 0.293801 + 0.169626i 0.639655 0.768662i \(-0.279077\pi\)
−0.345854 + 0.938288i \(0.612411\pi\)
\(182\) −1.85289 24.7304i −0.137345 1.83314i
\(183\) 0 0
\(184\) 1.86964 + 0.680492i 0.137831 + 0.0501665i
\(185\) −12.8827 4.68892i −0.947156 0.344737i
\(186\) 0 0
\(187\) 11.8086 + 2.08217i 0.863528 + 0.152263i
\(188\) −0.104390 −0.00761344
\(189\) 0 0
\(190\) 15.8301 1.14844
\(191\) 10.1847 + 1.79584i 0.736940 + 0.129942i 0.529505 0.848307i \(-0.322378\pi\)
0.207434 + 0.978249i \(0.433489\pi\)
\(192\) 0 0
\(193\) −9.77771 3.55879i −0.703815 0.256168i −0.0347759 0.999395i \(-0.511072\pi\)
−0.669039 + 0.743228i \(0.733294\pi\)
\(194\) −9.21492 3.35396i −0.661593 0.240800i
\(195\) 0 0
\(196\) −0.0806464 + 0.0913776i −0.00576046 + 0.00652697i
\(197\) −12.2795 7.08959i −0.874880 0.505112i −0.00591309 0.999983i \(-0.501882\pi\)
−0.868967 + 0.494870i \(0.835216\pi\)
\(198\) 0 0
\(199\) 17.4224 + 10.0588i 1.23504 + 0.713050i 0.968076 0.250657i \(-0.0806466\pi\)
0.266963 + 0.963707i \(0.413980\pi\)
\(200\) 0.531277 + 1.45967i 0.0375670 + 0.103214i
\(201\) 0 0
\(202\) −1.79057 + 4.91954i −0.125984 + 0.346138i
\(203\) 9.42645 + 6.77738i 0.661607 + 0.475679i
\(204\) 0 0
\(205\) 18.0371 + 15.1349i 1.25976 + 1.05707i
\(206\) −4.36933 + 7.56790i −0.304425 + 0.527280i
\(207\) 0 0
\(208\) 22.8582 13.1972i 1.58493 0.915058i
\(209\) −15.1144 12.6825i −1.04548 0.877264i
\(210\) 0 0
\(211\) 0.582787 + 3.30515i 0.0401207 + 0.227536i 0.998275 0.0587176i \(-0.0187011\pi\)
−0.958154 + 0.286254i \(0.907590\pi\)
\(212\) 0.0151729 0.00267538i 0.00104208 0.000183746i
\(213\) 0 0
\(214\) −3.08210 2.58619i −0.210688 0.176788i
\(215\) −7.84567 + 13.5891i −0.535070 + 0.926768i
\(216\) 0 0
\(217\) −0.980985 3.85283i −0.0665936 0.261547i
\(218\) 2.71314 + 7.45430i 0.183757 + 0.504869i
\(219\) 0 0
\(220\) −0.0465380 + 0.127862i −0.00313759 + 0.00862047i
\(221\) 13.8545 + 16.5112i 0.931956 + 1.11066i
\(222\) 0 0
\(223\) −6.45098 + 7.68798i −0.431990 + 0.514825i −0.937495 0.347998i \(-0.886862\pi\)
0.505506 + 0.862823i \(0.331306\pi\)
\(224\) −0.250834 0.0705780i −0.0167595 0.00471569i
\(225\) 0 0
\(226\) −12.9303 −0.860113
\(227\) 16.6785 6.07047i 1.10699 0.402911i 0.277102 0.960841i \(-0.410626\pi\)
0.829889 + 0.557929i \(0.188404\pi\)
\(228\) 0 0
\(229\) −8.39720 10.0074i −0.554903 0.661307i 0.413557 0.910478i \(-0.364286\pi\)
−0.968459 + 0.249171i \(0.919842\pi\)
\(230\) 1.95568 + 0.711808i 0.128953 + 0.0469352i
\(231\) 0 0
\(232\) −2.16452 + 12.2756i −0.142108 + 0.805934i
\(233\) 18.9719i 1.24289i −0.783457 0.621446i \(-0.786545\pi\)
0.783457 0.621446i \(-0.213455\pi\)
\(234\) 0 0
\(235\) −12.6525 −0.825355
\(236\) 0.102004 0.0371266i 0.00663992 0.00241674i
\(237\) 0 0
\(238\) −1.20115 + 12.0017i −0.0778589 + 0.777958i
\(239\) 13.6545 + 16.2728i 0.883236 + 1.05260i 0.998244 + 0.0592349i \(0.0188661\pi\)
−0.115008 + 0.993365i \(0.536689\pi\)
\(240\) 0 0
\(241\) −7.57437 + 9.02679i −0.487908 + 0.581466i −0.952684 0.303962i \(-0.901690\pi\)
0.464776 + 0.885428i \(0.346135\pi\)
\(242\) −3.31104 + 1.91163i −0.212842 + 0.122884i
\(243\) 0 0
\(244\) 0.129488i 0.00828962i
\(245\) −9.77462 + 11.0753i −0.624477 + 0.707573i
\(246\) 0 0
\(247\) −6.15863 34.9274i −0.391865 2.22237i
\(248\) 3.26990 2.74377i 0.207639 0.174230i
\(249\) 0 0
\(250\) 5.63700 + 15.4875i 0.356515 + 0.979517i
\(251\) 13.6923 23.7157i 0.864248 1.49692i −0.00354445 0.999994i \(-0.501128\pi\)
0.867792 0.496927i \(-0.165538\pi\)
\(252\) 0 0
\(253\) −1.29698 2.24643i −0.0815404 0.141232i
\(254\) −1.73465 + 2.06728i −0.108842 + 0.129713i
\(255\) 0 0
\(256\) −0.0725551 0.411480i −0.00453469 0.0257175i
\(257\) −12.2349 + 10.2663i −0.763190 + 0.640392i −0.938955 0.344040i \(-0.888204\pi\)
0.175765 + 0.984432i \(0.443760\pi\)
\(258\) 0 0
\(259\) −14.2019 + 9.68236i −0.882463 + 0.601633i
\(260\) −0.211819 + 0.122294i −0.0131365 + 0.00758434i
\(261\) 0 0
\(262\) 12.2606i 0.757463i
\(263\) −28.4125 5.00989i −1.75199 0.308923i −0.796653 0.604437i \(-0.793398\pi\)
−0.955338 + 0.295514i \(0.904509\pi\)
\(264\) 0 0
\(265\) 1.83900 0.324266i 0.112969 0.0199195i
\(266\) 11.5859 16.1145i 0.710378 0.988043i
\(267\) 0 0
\(268\) 0.0318030 0.180364i 0.00194268 0.0110175i
\(269\) 4.08105 + 7.06859i 0.248826 + 0.430979i 0.963200 0.268784i \(-0.0866219\pi\)
−0.714374 + 0.699764i \(0.753289\pi\)
\(270\) 0 0
\(271\) 10.1461 + 5.85783i 0.616329 + 0.355838i 0.775438 0.631423i \(-0.217529\pi\)
−0.159109 + 0.987261i \(0.550862\pi\)
\(272\) −12.0631 + 4.39061i −0.731432 + 0.266220i
\(273\) 0 0
\(274\) 7.52564 6.31476i 0.454640 0.381488i
\(275\) 0.692649 1.90304i 0.0417683 0.114757i
\(276\) 0 0
\(277\) −1.65265 + 9.37262i −0.0992979 + 0.563146i 0.894047 + 0.447972i \(0.147854\pi\)
−0.993345 + 0.115174i \(0.963257\pi\)
\(278\) −7.40592 12.8274i −0.444178 0.769339i
\(279\) 0 0
\(280\) −15.2668 4.29568i −0.912367 0.256716i
\(281\) −20.5328 3.62048i −1.22488 0.215980i −0.476457 0.879198i \(-0.658079\pi\)
−0.748426 + 0.663218i \(0.769190\pi\)
\(282\) 0 0
\(283\) 1.45014 0.255698i 0.0862017 0.0151997i −0.130381 0.991464i \(-0.541620\pi\)
0.216583 + 0.976264i \(0.430509\pi\)
\(284\) −0.0758787 + 0.0133795i −0.00450258 + 0.000793925i
\(285\) 0 0
\(286\) −34.1863 6.02796i −2.02148 0.356441i
\(287\) 28.6080 7.28400i 1.68868 0.429961i
\(288\) 0 0
\(289\) 3.25849 + 5.64387i 0.191676 + 0.331992i
\(290\) −2.26413 + 12.8405i −0.132954 + 0.754022i
\(291\) 0 0
\(292\) 0.0182301 0.0500867i 0.00106683 0.00293110i
\(293\) −4.11874 + 3.45603i −0.240619 + 0.201904i −0.755120 0.655586i \(-0.772422\pi\)
0.514501 + 0.857490i \(0.327977\pi\)
\(294\) 0 0
\(295\) 12.3633 4.49987i 0.719818 0.261992i
\(296\) −15.9819 9.22716i −0.928930 0.536318i
\(297\) 0 0
\(298\) 7.83400 + 13.5689i 0.453811 + 0.786024i
\(299\) 0.809676 4.59190i 0.0468248 0.265557i
\(300\) 0 0
\(301\) 8.09104 + 17.9323i 0.466360 + 1.03360i
\(302\) 28.0016 4.93743i 1.61131 0.284117i
\(303\) 0 0
\(304\) 20.8024 + 3.66803i 1.19310 + 0.210376i
\(305\) 15.6944i 0.898658i
\(306\) 0 0
\(307\) −6.76941 + 3.90832i −0.386351 + 0.223060i −0.680578 0.732676i \(-0.738271\pi\)
0.294227 + 0.955736i \(0.404938\pi\)
\(308\) 0.0960984 + 0.140955i 0.00547571 + 0.00803167i
\(309\) 0 0
\(310\) 3.42038 2.87004i 0.194265 0.163007i
\(311\) −2.15372 12.2144i −0.122126 0.692612i −0.982973 0.183749i \(-0.941177\pi\)
0.860847 0.508864i \(-0.169934\pi\)
\(312\) 0 0
\(313\) −4.55606 + 5.42970i −0.257524 + 0.306905i −0.879279 0.476307i \(-0.841975\pi\)
0.621756 + 0.783211i \(0.286420\pi\)
\(314\) −3.44439 5.96587i −0.194378 0.336673i
\(315\) 0 0
\(316\) 0.0828727 0.143540i 0.00466196 0.00807475i
\(317\) 5.78906 + 15.9053i 0.325146 + 0.893332i 0.989321 + 0.145754i \(0.0465610\pi\)
−0.664175 + 0.747578i \(0.731217\pi\)
\(318\) 0 0
\(319\) 12.4491 10.4460i 0.697015 0.584865i
\(320\) −2.95660 16.7677i −0.165279 0.937345i
\(321\) 0 0
\(322\) 2.15594 1.46984i 0.120146 0.0819111i
\(323\) 17.2495i 0.959788i
\(324\) 0 0
\(325\) 3.15261 1.82016i 0.174875 0.100964i
\(326\) −8.48274 + 10.1093i −0.469815 + 0.559904i
\(327\) 0 0
\(328\) 20.3730 + 24.2797i 1.12491 + 1.34062i
\(329\) −9.26022 + 12.8798i −0.510533 + 0.710084i
\(330\) 0 0
\(331\) −13.5894 + 4.94613i −0.746940 + 0.271864i −0.687318 0.726357i \(-0.741212\pi\)
−0.0596225 + 0.998221i \(0.518990\pi\)
\(332\) 0.211921 0.0116306
\(333\) 0 0
\(334\) 12.1277i 0.663599i
\(335\) 3.85463 21.8607i 0.210601 1.19438i
\(336\) 0 0
\(337\) −14.9144 5.42839i −0.812438 0.295703i −0.0978073 0.995205i \(-0.531183\pi\)
−0.714630 + 0.699502i \(0.753405\pi\)
\(338\) −28.3434 33.7784i −1.54168 1.83730i
\(339\) 0 0
\(340\) 0.111785 0.0406863i 0.00606238 0.00220653i
\(341\) −5.56510 −0.301367
\(342\) 0 0
\(343\) 4.12028 + 18.0561i 0.222474 + 0.974939i
\(344\) −13.5770 + 16.1804i −0.732023 + 0.872391i
\(345\) 0 0
\(346\) −7.66921 9.13981i −0.412299 0.491359i
\(347\) −1.75821 + 4.83065i −0.0943858 + 0.259323i −0.977897 0.209087i \(-0.932951\pi\)
0.883511 + 0.468410i \(0.155173\pi\)
\(348\) 0 0
\(349\) −3.81124 10.4713i −0.204011 0.560516i 0.794921 0.606713i \(-0.207512\pi\)
−0.998932 + 0.0461967i \(0.985290\pi\)
\(350\) 1.96101 + 0.551775i 0.104820 + 0.0294936i
\(351\) 0 0
\(352\) −0.182371 + 0.315875i −0.00972038 + 0.0168362i
\(353\) −2.35970 1.98003i −0.125594 0.105386i 0.577827 0.816159i \(-0.303901\pi\)
−0.703421 + 0.710773i \(0.748345\pi\)
\(354\) 0 0
\(355\) −9.19676 + 1.62164i −0.488113 + 0.0860676i
\(356\) −0.0131768 0.0747292i −0.000698368 0.00396064i
\(357\) 0 0
\(358\) 5.21599 + 4.37674i 0.275674 + 0.231318i
\(359\) −18.9719 + 10.9534i −1.00130 + 0.578099i −0.908632 0.417598i \(-0.862872\pi\)
−0.0926653 + 0.995697i \(0.529539\pi\)
\(360\) 0 0
\(361\) 4.69176 8.12637i 0.246935 0.427704i
\(362\) 4.92303 + 4.13091i 0.258749 + 0.217116i
\(363\) 0 0
\(364\) −0.0305378 + 0.305130i −0.00160062 + 0.0159932i
\(365\) 2.20955 6.07068i 0.115653 0.317754i
\(366\) 0 0
\(367\) 2.26195 + 6.21467i 0.118073 + 0.324403i 0.984624 0.174685i \(-0.0558907\pi\)
−0.866551 + 0.499088i \(0.833668\pi\)
\(368\) 2.40503 + 1.38854i 0.125371 + 0.0723829i
\(369\) 0 0
\(370\) −16.7174 9.65179i −0.869096 0.501773i
\(371\) 1.01586 2.10937i 0.0527408 0.109513i
\(372\) 0 0
\(373\) −23.1460 8.42445i −1.19845 0.436201i −0.335769 0.941944i \(-0.608996\pi\)
−0.862684 + 0.505743i \(0.831218\pi\)
\(374\) 15.8653 + 5.77449i 0.820375 + 0.298592i
\(375\) 0 0
\(376\) −16.7727 2.95748i −0.864986 0.152520i
\(377\) 29.2121 1.50450
\(378\) 0 0
\(379\) 2.06704 0.106176 0.0530882 0.998590i \(-0.483094\pi\)
0.0530882 + 0.998590i \(0.483094\pi\)
\(380\) −0.192769 0.0339905i −0.00988887 0.00174367i
\(381\) 0 0
\(382\) 13.6836 + 4.98041i 0.700112 + 0.254820i
\(383\) −6.49822 2.36516i −0.332044 0.120854i 0.170618 0.985337i \(-0.445424\pi\)
−0.502662 + 0.864483i \(0.667646\pi\)
\(384\) 0 0
\(385\) 11.6475 + 17.0843i 0.593609 + 0.870695i
\(386\) −12.6881 7.32550i −0.645810 0.372858i
\(387\) 0 0
\(388\) 0.105012 + 0.0606288i 0.00533118 + 0.00307796i
\(389\) 4.62127 + 12.6968i 0.234308 + 0.643755i 1.00000 0.000547677i \(0.000174331\pi\)
−0.765692 + 0.643207i \(0.777603\pi\)
\(390\) 0 0
\(391\) −0.775631 + 2.13103i −0.0392254 + 0.107771i
\(392\) −15.5465 + 12.3971i −0.785217 + 0.626149i
\(393\) 0 0
\(394\) −15.2940 12.8332i −0.770501 0.646527i
\(395\) 10.0445 17.3975i 0.505392 0.875364i
\(396\) 0 0
\(397\) 18.6484 10.7666i 0.935934 0.540362i 0.0472507 0.998883i \(-0.484954\pi\)
0.888683 + 0.458521i \(0.151621\pi\)
\(398\) 21.6994 + 18.2079i 1.08769 + 0.912681i
\(399\) 0 0
\(400\) 0.376494 + 2.13521i 0.0188247 + 0.106760i
\(401\) −26.0547 + 4.59414i −1.30111 + 0.229420i −0.780920 0.624631i \(-0.785249\pi\)
−0.520188 + 0.854052i \(0.674138\pi\)
\(402\) 0 0
\(403\) −7.66311 6.43011i −0.381727 0.320307i
\(404\) 0.0323677 0.0560625i 0.00161035 0.00278921i
\(405\) 0 0
\(406\) 11.4141 + 11.7027i 0.566473 + 0.580794i
\(407\) 8.22890 + 22.6087i 0.407891 + 1.12067i
\(408\) 0 0
\(409\) −8.57817 + 23.5683i −0.424163 + 1.16538i 0.525140 + 0.851016i \(0.324013\pi\)
−0.949303 + 0.314362i \(0.898209\pi\)
\(410\) 21.3106 + 25.3970i 1.05246 + 1.25427i
\(411\) 0 0
\(412\) 0.0694568 0.0827754i 0.00342189 0.00407805i
\(413\) 4.46788 15.8788i 0.219850 0.781345i
\(414\) 0 0
\(415\) 25.6855 1.26085
\(416\) −0.616097 + 0.224241i −0.0302066 + 0.0109943i
\(417\) 0 0
\(418\) −17.8575 21.2817i −0.873437 1.04092i
\(419\) 22.3814 + 8.14616i 1.09340 + 0.397966i 0.824880 0.565307i \(-0.191242\pi\)
0.268522 + 0.963273i \(0.413465\pi\)
\(420\) 0 0
\(421\) −1.34235 + 7.61285i −0.0654222 + 0.371027i 0.934466 + 0.356053i \(0.115878\pi\)
−0.999888 + 0.0149744i \(0.995233\pi\)
\(422\) 4.72559i 0.230038i
\(423\) 0 0
\(424\) 2.51366 0.122074
\(425\) −1.66375 + 0.605555i −0.0807037 + 0.0293737i
\(426\) 0 0
\(427\) −15.9763 11.4866i −0.773149 0.555875i
\(428\) 0.0319789 + 0.0381110i 0.00154576 + 0.00184216i
\(429\) 0 0
\(430\) −14.2018 + 16.9251i −0.684872 + 0.816199i
\(431\) 4.73254 2.73233i 0.227959 0.131612i −0.381671 0.924298i \(-0.624651\pi\)
0.609630 + 0.792686i \(0.291318\pi\)
\(432\) 0 0
\(433\) 35.5423i 1.70805i −0.520229 0.854027i \(-0.674154\pi\)
0.520229 0.854027i \(-0.325846\pi\)
\(434\) −0.418253 5.58239i −0.0200768 0.267963i
\(435\) 0 0
\(436\) −0.0170331 0.0965996i −0.000815738 0.00462628i
\(437\) 2.85856 2.39862i 0.136744 0.114741i
\(438\) 0 0
\(439\) −1.38811 3.81379i −0.0662506 0.182022i 0.902150 0.431423i \(-0.141988\pi\)
−0.968400 + 0.249401i \(0.919766\pi\)
\(440\) −11.0999 + 19.2255i −0.529165 + 0.916541i
\(441\) 0 0
\(442\) 15.1744 + 26.2828i 0.721771 + 1.25014i
\(443\) −5.32766 + 6.34926i −0.253125 + 0.301662i −0.877611 0.479373i \(-0.840864\pi\)
0.624486 + 0.781036i \(0.285308\pi\)
\(444\) 0 0
\(445\) −1.59707 9.05744i −0.0757084 0.429364i
\(446\) −10.8250 + 9.08327i −0.512579 + 0.430105i
\(447\) 0 0
\(448\) −19.2329 9.26244i −0.908668 0.437609i
\(449\) −25.1276 + 14.5074i −1.18585 + 0.684648i −0.957359 0.288899i \(-0.906711\pi\)
−0.228486 + 0.973547i \(0.573377\pi\)
\(450\) 0 0
\(451\) 41.3219i 1.94577i
\(452\) 0.157458 + 0.0277641i 0.00740619 + 0.00130591i
\(453\) 0 0
\(454\) 24.6115 4.33968i 1.15508 0.203671i
\(455\) −3.70129 + 36.9828i −0.173519 + 1.73378i
\(456\) 0 0
\(457\) −1.13908 + 6.46004i −0.0532839 + 0.302188i −0.999790 0.0204982i \(-0.993475\pi\)
0.946506 + 0.322686i \(0.104586\pi\)
\(458\) −9.19715 15.9299i −0.429755 0.744357i
\(459\) 0 0
\(460\) −0.0222866 0.0128672i −0.00103912 0.000599936i
\(461\) −20.7893 + 7.56669i −0.968255 + 0.352416i −0.777263 0.629176i \(-0.783393\pi\)
−0.190992 + 0.981592i \(0.561170\pi\)
\(462\) 0 0
\(463\) 12.6417 10.6077i 0.587511 0.492980i −0.299893 0.953973i \(-0.596951\pi\)
0.887404 + 0.460993i \(0.152507\pi\)
\(464\) −5.95062 + 16.3492i −0.276251 + 0.758992i
\(465\) 0 0
\(466\) 4.63872 26.3075i 0.214884 1.21867i
\(467\) −0.713130 1.23518i −0.0329997 0.0571572i 0.849054 0.528306i \(-0.177173\pi\)
−0.882054 + 0.471149i \(0.843839\pi\)
\(468\) 0 0
\(469\) −19.4322 19.9235i −0.897298 0.919983i
\(470\) −17.5446 3.09358i −0.809271 0.142696i
\(471\) 0 0
\(472\) 17.4412 3.07535i 0.802796 0.141555i
\(473\) 27.1194 4.78188i 1.24695 0.219871i
\(474\) 0 0
\(475\) 2.86909 + 0.505897i 0.131643 + 0.0232122i
\(476\) 0.0403971 0.143571i 0.00185160 0.00658056i
\(477\) 0 0
\(478\) 14.9553 + 25.9033i 0.684038 + 1.18479i
\(479\) −4.17371 + 23.6703i −0.190702 + 1.08152i 0.727706 + 0.685889i \(0.240586\pi\)
−0.918408 + 0.395635i \(0.870525\pi\)
\(480\) 0 0
\(481\) −14.7918 + 40.6400i −0.674446 + 1.85303i
\(482\) −12.7101 + 10.6651i −0.578930 + 0.485780i
\(483\) 0 0
\(484\) 0.0444246 0.0161692i 0.00201930 0.000734965i
\(485\) 12.7278 + 7.34842i 0.577941 + 0.333674i
\(486\) 0 0
\(487\) 17.7620 + 30.7647i 0.804874 + 1.39408i 0.916376 + 0.400319i \(0.131101\pi\)
−0.111501 + 0.993764i \(0.535566\pi\)
\(488\) 3.66852 20.8052i 0.166066 0.941808i
\(489\) 0 0
\(490\) −16.2620 + 12.9676i −0.734640 + 0.585818i
\(491\) 30.5498 5.38675i 1.37869 0.243101i 0.565334 0.824862i \(-0.308747\pi\)
0.813360 + 0.581761i \(0.197636\pi\)
\(492\) 0 0
\(493\) −13.9919 2.46714i −0.630162 0.111115i
\(494\) 49.9379i 2.24681i
\(495\) 0 0
\(496\) 5.15977 2.97899i 0.231681 0.133761i
\(497\) −5.08026 + 10.5488i −0.227881 + 0.473180i
\(498\) 0 0
\(499\) 27.8976 23.4088i 1.24887 1.04792i 0.252089 0.967704i \(-0.418883\pi\)
0.996777 0.0802188i \(-0.0255619\pi\)
\(500\) −0.0353891 0.200701i −0.00158265 0.00897564i
\(501\) 0 0
\(502\) 24.7850 29.5376i 1.10621 1.31833i
\(503\) −9.30116 16.1101i −0.414718 0.718313i 0.580681 0.814131i \(-0.302787\pi\)
−0.995399 + 0.0958185i \(0.969453\pi\)
\(504\) 0 0
\(505\) 3.92308 6.79497i 0.174575 0.302372i
\(506\) −1.24920 3.43214i −0.0555336 0.152577i
\(507\) 0 0
\(508\) 0.0255624 0.0214494i 0.00113415 0.000951665i
\(509\) −0.776316 4.40271i −0.0344096 0.195147i 0.962757 0.270367i \(-0.0871450\pi\)
−0.997167 + 0.0752205i \(0.976034\pi\)
\(510\) 0 0
\(511\) −4.56259 6.69232i −0.201837 0.296051i
\(512\) 22.9158i 1.01274i
\(513\) 0 0
\(514\) −19.4757 + 11.2443i −0.859034 + 0.495964i
\(515\) 8.41841 10.0327i 0.370959 0.442092i
\(516\) 0 0
\(517\) 14.2729 + 17.0097i 0.627719 + 0.748087i
\(518\) −22.0605 + 9.95365i −0.969283 + 0.437338i
\(519\) 0 0
\(520\) −37.4983 + 13.6483i −1.64441 + 0.598516i
\(521\) 34.6679 1.51883 0.759415 0.650607i \(-0.225485\pi\)
0.759415 + 0.650607i \(0.225485\pi\)
\(522\) 0 0
\(523\) 25.7209i 1.12470i −0.826901 0.562348i \(-0.809898\pi\)
0.826901 0.562348i \(-0.190102\pi\)
\(524\) 0.0263260 0.149302i 0.00115006 0.00652231i
\(525\) 0 0
\(526\) −38.1734 13.8940i −1.66444 0.605806i
\(527\) 3.12738 + 3.72707i 0.136231 + 0.162354i
\(528\) 0 0
\(529\) −21.1519 + 7.69867i −0.919649 + 0.334725i
\(530\) 2.62934 0.114211
\(531\) 0 0
\(532\) −0.175687 + 0.171355i −0.00761702 + 0.00742919i
\(533\) 47.7448 56.9001i 2.06806 2.46462i
\(534\) 0 0
\(535\) 3.87595 + 4.61918i 0.167572 + 0.199704i
\(536\) 10.2198 28.0786i 0.441426 1.21281i
\(537\) 0 0
\(538\) 3.93070 + 10.7995i 0.169465 + 0.465600i
\(539\) 25.9158 + 0.647128i 1.11627 + 0.0278738i
\(540\) 0 0
\(541\) 13.1658 22.8039i 0.566044 0.980416i −0.430908 0.902396i \(-0.641807\pi\)
0.996952 0.0780204i \(-0.0248599\pi\)
\(542\) 12.6368 + 10.6035i 0.542797 + 0.455461i
\(543\) 0 0
\(544\) 0.314034 0.0553727i 0.0134641 0.00237408i
\(545\) −2.06447 11.7082i −0.0884323 0.501524i
\(546\) 0 0
\(547\) 13.7395 + 11.5288i 0.587459 + 0.492937i 0.887387 0.461025i \(-0.152518\pi\)
−0.299928 + 0.953962i \(0.596963\pi\)
\(548\) −0.105202 + 0.0607383i −0.00449400 + 0.00259461i
\(549\) 0 0
\(550\) 1.42576 2.46950i 0.0607948 0.105300i
\(551\) 17.9089 + 15.0273i 0.762944 + 0.640186i
\(552\) 0 0
\(553\) −10.3586 22.9580i −0.440492 0.976273i
\(554\) −4.58329 + 12.5925i −0.194725 + 0.535004i
\(555\) 0 0
\(556\) 0.0626418 + 0.172107i 0.00265660 + 0.00729896i
\(557\) −0.993267 0.573463i −0.0420861 0.0242984i 0.478809 0.877919i \(-0.341069\pi\)
−0.520895 + 0.853621i \(0.674402\pi\)
\(558\) 0 0
\(559\) 42.8684 + 24.7501i 1.81314 + 1.04682i
\(560\) −19.9443 9.60507i −0.842801 0.405888i
\(561\) 0 0
\(562\) −27.5866 10.0407i −1.16367 0.423542i
\(563\) 8.48848 + 3.08955i 0.357747 + 0.130209i 0.514640 0.857406i \(-0.327926\pi\)
−0.156893 + 0.987616i \(0.550148\pi\)
\(564\) 0 0
\(565\) 19.0844 + 3.36510i 0.802888 + 0.141571i
\(566\) 2.07336 0.0871497
\(567\) 0 0
\(568\) −12.5707 −0.527455
\(569\) 42.2332 + 7.44685i 1.77051 + 0.312188i 0.961334 0.275384i \(-0.0888049\pi\)
0.809172 + 0.587572i \(0.199916\pi\)
\(570\) 0 0
\(571\) 31.1144 + 11.3247i 1.30210 + 0.473925i 0.897680 0.440648i \(-0.145251\pi\)
0.404419 + 0.914574i \(0.367474\pi\)
\(572\) 0.403356 + 0.146810i 0.0168652 + 0.00613842i
\(573\) 0 0
\(574\) 41.4503 3.10561i 1.73010 0.129625i
\(575\) 0.331703 + 0.191509i 0.0138330 + 0.00798648i
\(576\) 0 0
\(577\) 36.2292 + 20.9170i 1.50824 + 0.870784i 0.999954 + 0.00959765i \(0.00305507\pi\)
0.508289 + 0.861187i \(0.330278\pi\)
\(578\) 3.13844 + 8.62281i 0.130542 + 0.358661i
\(579\) 0 0
\(580\) 0.0551425 0.151503i 0.00228967 0.00629081i
\(581\) 18.7990 26.1469i 0.779913 1.08476i
\(582\) 0 0
\(583\) −2.51046 2.10653i −0.103973 0.0872434i
\(584\) 4.34808 7.53110i 0.179925 0.311639i
\(585\) 0 0
\(586\) −6.55628 + 3.78527i −0.270838 + 0.156368i
\(587\) 10.1800 + 8.54200i 0.420172 + 0.352566i 0.828228 0.560391i \(-0.189349\pi\)
−0.408057 + 0.912957i \(0.633793\pi\)
\(588\) 0 0
\(589\) −1.39019 7.88415i −0.0572817 0.324861i
\(590\) 18.2438 3.21688i 0.751087 0.132437i
\(591\) 0 0
\(592\) −19.7320 16.5571i −0.810980 0.680493i
\(593\) 6.07625 10.5244i 0.249522 0.432184i −0.713872 0.700277i \(-0.753060\pi\)
0.963393 + 0.268093i \(0.0863933\pi\)
\(594\) 0 0
\(595\) 4.89626 17.4013i 0.200727 0.713383i
\(596\) −0.0662626 0.182055i −0.00271422 0.00745726i
\(597\) 0 0
\(598\) 2.24548 6.16941i 0.0918245 0.252286i
\(599\) −19.6946 23.4711i −0.804700 0.959004i 0.195062 0.980791i \(-0.437509\pi\)
−0.999763 + 0.0217865i \(0.993065\pi\)
\(600\) 0 0
\(601\) −0.739101 + 0.880827i −0.0301486 + 0.0359297i −0.780908 0.624646i \(-0.785243\pi\)
0.750759 + 0.660576i \(0.229688\pi\)
\(602\) 6.83493 + 26.8442i 0.278571 + 1.09409i
\(603\) 0 0
\(604\) −0.351588 −0.0143059
\(605\) 5.38441 1.95976i 0.218907 0.0796758i
\(606\) 0 0
\(607\) 1.93858 + 2.31031i 0.0786845 + 0.0937725i 0.803950 0.594696i \(-0.202728\pi\)
−0.725266 + 0.688469i \(0.758283\pi\)
\(608\) −0.493061 0.179460i −0.0199963 0.00727805i
\(609\) 0 0
\(610\) 3.83735 21.7627i 0.155370 0.881145i
\(611\) 39.9137i 1.61473i
\(612\) 0 0
\(613\) −40.0911 −1.61927 −0.809633 0.586937i \(-0.800334\pi\)
−0.809633 + 0.586937i \(0.800334\pi\)
\(614\) −10.3424 + 3.76433i −0.417386 + 0.151916i
\(615\) 0 0
\(616\) 11.4470 + 25.3703i 0.461213 + 1.02220i
\(617\) −6.57249 7.83278i −0.264598 0.315336i 0.617344 0.786693i \(-0.288209\pi\)
−0.881942 + 0.471357i \(0.843764\pi\)
\(618\) 0 0
\(619\) 25.0122 29.8084i 1.00533 1.19810i 0.0252085 0.999682i \(-0.491975\pi\)
0.980117 0.198419i \(-0.0635805\pi\)
\(620\) −0.0478139 + 0.0276054i −0.00192025 + 0.00110866i
\(621\) 0 0
\(622\) 17.4637i 0.700229i
\(623\) −10.3890 5.00330i −0.416228 0.200453i
\(624\) 0 0
\(625\) −3.81449 21.6331i −0.152580 0.865322i
\(626\) −7.64526 + 6.41513i −0.305566 + 0.256400i
\(627\) 0 0
\(628\) 0.0291338 + 0.0800445i 0.00116257 + 0.00319412i
\(629\) 10.5172 18.2163i 0.419349 0.726333i
\(630\) 0 0
\(631\) 5.94429 + 10.2958i 0.236639 + 0.409870i 0.959748 0.280864i \(-0.0906210\pi\)
−0.723109 + 0.690734i \(0.757288\pi\)
\(632\) 17.3820 20.7151i 0.691420 0.824002i
\(633\) 0 0
\(634\) 4.13850 + 23.4706i 0.164361 + 0.932137i
\(635\) 3.09825 2.59974i 0.122950 0.103168i
\(636\) 0 0
\(637\) 34.9383 + 30.8352i 1.38430 + 1.22173i
\(638\) 19.8167 11.4412i 0.784550 0.452960i
\(639\) 0 0
\(640\) 23.5583i 0.931222i
\(641\) −49.2008 8.67542i −1.94331 0.342659i −0.999940 0.0109243i \(-0.996523\pi\)
−0.943373 0.331734i \(-0.892366\pi\)
\(642\) 0 0
\(643\) 7.32572 1.29172i 0.288898 0.0509406i −0.0273209 0.999627i \(-0.508698\pi\)
0.316219 + 0.948686i \(0.397586\pi\)
\(644\) −0.0294098 + 0.0132696i −0.00115891 + 0.000522896i
\(645\) 0 0
\(646\) −4.21758 + 23.9191i −0.165938 + 0.941083i
\(647\) −9.06934 15.7086i −0.356553 0.617567i 0.630830 0.775921i \(-0.282715\pi\)
−0.987382 + 0.158354i \(0.949381\pi\)
\(648\) 0 0
\(649\) −19.9962 11.5448i −0.784919 0.453173i
\(650\) 4.81662 1.75310i 0.188923 0.0687624i
\(651\) 0 0
\(652\) 0.125004 0.104891i 0.00489555 0.00410786i
\(653\) 7.59970 20.8800i 0.297399 0.817097i −0.697533 0.716552i \(-0.745719\pi\)
0.994933 0.100545i \(-0.0320587\pi\)
\(654\) 0 0
\(655\) 3.19081 18.0960i 0.124675 0.707068i
\(656\) 22.1196 + 38.3123i 0.863625 + 1.49584i
\(657\) 0 0
\(658\) −15.9899 + 15.5956i −0.623350 + 0.607979i
\(659\) −21.2896 3.75393i −0.829324 0.146232i −0.257157 0.966370i \(-0.582786\pi\)
−0.572167 + 0.820137i \(0.693897\pi\)
\(660\) 0 0
\(661\) 4.72263 0.832727i 0.183689 0.0323893i −0.0810468 0.996710i \(-0.525826\pi\)
0.264736 + 0.964321i \(0.414715\pi\)
\(662\) −20.0531 + 3.53590i −0.779386 + 0.137427i
\(663\) 0 0
\(664\) 34.0499 + 6.00391i 1.32139 + 0.232997i
\(665\) −21.2939 + 20.7688i −0.825743 + 0.805381i
\(666\) 0 0
\(667\) 1.53678 + 2.66178i 0.0595043 + 0.103065i
\(668\) −0.0260407 + 0.147684i −0.00100754 + 0.00571407i
\(669\) 0 0
\(670\) 10.6901 29.3707i 0.412993 1.13469i
\(671\) −21.0992 + 17.7044i −0.814527 + 0.683469i
\(672\) 0 0
\(673\) −41.8330 + 15.2260i −1.61255 + 0.586918i −0.981941 0.189186i \(-0.939415\pi\)
−0.630604 + 0.776105i \(0.717193\pi\)
\(674\) −19.3538 11.1739i −0.745480 0.430403i
\(675\) 0 0
\(676\) 0.272620 + 0.472192i 0.0104854 + 0.0181612i
\(677\) 6.96679 39.5107i 0.267756 1.51852i −0.493316 0.869850i \(-0.664215\pi\)
0.761072 0.648668i \(-0.224673\pi\)
\(678\) 0 0
\(679\) 16.7958 7.57824i 0.644564 0.290826i
\(680\) 19.1135 3.37022i 0.732968 0.129242i
\(681\) 0 0
\(682\) −7.71686 1.36069i −0.295494 0.0521035i
\(683\) 33.0102i 1.26310i 0.775335 + 0.631550i \(0.217581\pi\)
−0.775335 + 0.631550i \(0.782419\pi\)
\(684\) 0 0
\(685\) −12.7508 + 7.36168i −0.487183 + 0.281275i
\(686\) 1.29860 + 26.0450i 0.0495808 + 0.994402i
\(687\) 0 0
\(688\) −22.5844 + 18.9506i −0.861023 + 0.722484i
\(689\) −1.02293 5.80135i −0.0389707 0.221014i
\(690\) 0 0
\(691\) −1.88171 + 2.24253i −0.0715836 + 0.0853100i −0.800648 0.599135i \(-0.795511\pi\)
0.729064 + 0.684445i \(0.239956\pi\)
\(692\) 0.0737660 + 0.127766i 0.00280416 + 0.00485695i
\(693\) 0 0
\(694\) −3.61915 + 6.26854i −0.137381 + 0.237951i
\(695\) 7.59239 + 20.8599i 0.287996 + 0.791262i
\(696\) 0 0
\(697\) −27.6742 + 23.2214i −1.04823 + 0.879574i
\(698\) −2.72459 15.4519i −0.103127 0.584864i
\(699\) 0 0
\(700\) −0.0226952 0.0109299i −0.000857797 0.000413110i
\(701\) 6.39386i 0.241493i 0.992683 + 0.120746i \(0.0385288\pi\)
−0.992683 + 0.120746i \(0.961471\pi\)
\(702\) 0 0
\(703\) −29.9744 + 17.3058i −1.13051 + 0.652699i
\(704\) −19.2070 + 22.8900i −0.723890 + 0.862699i
\(705\) 0 0
\(706\) −2.78796 3.32257i −0.104926 0.125046i
\(707\) −4.04577 8.96673i −0.152157 0.337229i
\(708\) 0 0
\(709\) 33.6905 12.2623i 1.26527 0.460521i 0.379737 0.925094i \(-0.376014\pi\)
0.885535 + 0.464573i \(0.153792\pi\)
\(710\) −13.1492 −0.493481
\(711\) 0 0
\(712\) 12.3803i 0.463970i
\(713\) 0.182768 1.03653i 0.00684472 0.0388184i
\(714\) 0 0
\(715\) 48.8882 + 17.7938i 1.82831 + 0.665452i
\(716\) −0.0541195 0.0644971i −0.00202254 0.00241037i
\(717\) 0 0
\(718\) −28.9856 + 10.5499i −1.08173 + 0.393718i
\(719\) 35.6795 1.33062 0.665311 0.746566i \(-0.268299\pi\)
0.665311 + 0.746566i \(0.268299\pi\)
\(720\) 0 0
\(721\) −4.05154 15.9125i −0.150887 0.592611i
\(722\) 8.49278 10.1213i 0.316069 0.376676i
\(723\) 0 0
\(724\) −0.0510798 0.0608745i −0.00189836 0.00226238i
\(725\) −0.820714 + 2.25489i −0.0304805 + 0.0837446i
\(726\) 0 0
\(727\) 0.773622 + 2.12551i 0.0286921 + 0.0788308i 0.953212 0.302304i \(-0.0977557\pi\)
−0.924520 + 0.381135i \(0.875533\pi\)
\(728\) −13.5512 + 48.1610i −0.502242 + 1.78497i
\(729\) 0 0
\(730\) 4.54818 7.87768i 0.168336 0.291566i
\(731\) −18.4426 15.4752i −0.682125 0.572371i
\(732\) 0 0
\(733\) 15.8797 2.80002i 0.586530 0.103421i 0.127495 0.991839i \(-0.459306\pi\)
0.459035 + 0.888418i \(0.348195\pi\)
\(734\) 1.61703 + 9.17065i 0.0596858 + 0.338495i
\(735\) 0 0
\(736\) −0.0528441 0.0443414i −0.00194786 0.00163445i
\(737\) −33.7374 + 19.4783i −1.24273 + 0.717492i
\(738\) 0 0
\(739\) −12.2994 + 21.3033i −0.452442 + 0.783653i −0.998537 0.0540705i \(-0.982780\pi\)
0.546095 + 0.837723i \(0.316114\pi\)
\(740\) 0.182850 + 0.153429i 0.00672170 + 0.00564018i
\(741\) 0 0
\(742\) 1.92439 2.67658i 0.0706467 0.0982602i
\(743\) −8.41237 + 23.1128i −0.308620 + 0.847926i 0.684307 + 0.729194i \(0.260105\pi\)
−0.992926 + 0.118732i \(0.962117\pi\)
\(744\) 0 0
\(745\) −8.03125 22.0657i −0.294242 0.808424i
\(746\) −30.0356 17.3411i −1.09968 0.634902i
\(747\) 0 0
\(748\) −0.180799 0.104384i −0.00661066 0.00381667i
\(749\) 7.53893 0.564844i 0.275467 0.0206389i
\(750\) 0 0
\(751\) 34.3971 + 12.5195i 1.25517 + 0.456843i 0.882144 0.470979i \(-0.156099\pi\)
0.373022 + 0.927822i \(0.378322\pi\)
\(752\) −22.3386 8.13059i −0.814605 0.296492i
\(753\) 0 0
\(754\) 40.5070 + 7.14247i 1.47518 + 0.260114i
\(755\) −42.6137 −1.55087
\(756\) 0 0
\(757\) −38.6682 −1.40542 −0.702709 0.711477i \(-0.748027\pi\)
−0.702709 + 0.711477i \(0.748027\pi\)
\(758\) 2.86626 + 0.505399i 0.104107 + 0.0183569i
\(759\) 0 0
\(760\) −30.0099 10.9227i −1.08857 0.396208i
\(761\) −45.3555 16.5080i −1.64413 0.598416i −0.656380 0.754431i \(-0.727913\pi\)
−0.987755 + 0.156015i \(0.950135\pi\)
\(762\) 0 0
\(763\) −13.4295 6.46757i −0.486181 0.234142i
\(764\) −0.155936 0.0900299i −0.00564158 0.00325717i
\(765\) 0 0
\(766\) −8.43249 4.86850i −0.304678 0.175906i
\(767\) −14.1954 39.0014i −0.512565 1.40826i
\(768\) 0 0
\(769\) 16.2750 44.7151i 0.586891 1.61247i −0.189264 0.981926i \(-0.560610\pi\)
0.776155 0.630543i \(-0.217168\pi\)
\(770\) 11.9738 + 26.5378i 0.431506 + 0.956356i
\(771\) 0 0
\(772\) 0.138779 + 0.116450i 0.00499477 + 0.00419111i
\(773\) −1.79467 + 3.10845i −0.0645496 + 0.111803i −0.896494 0.443056i \(-0.853894\pi\)
0.831944 + 0.554859i \(0.187228\pi\)
\(774\) 0 0
\(775\) 0.711639 0.410865i 0.0255628 0.0147587i
\(776\) 15.1549 + 12.7165i 0.544031 + 0.456496i
\(777\) 0 0
\(778\) 3.30367 + 18.7360i 0.118442 + 0.671719i
\(779\) 58.5413 10.3224i 2.09746 0.369839i
\(780\) 0 0
\(781\) 12.5547 + 10.5346i 0.449242 + 0.376959i
\(782\) −1.59658 + 2.76535i −0.0570935 + 0.0988888i
\(783\) 0 0
\(784\) −24.3747 + 13.2727i −0.870525 + 0.474027i
\(785\) 3.53112 + 9.70167i 0.126031 + 0.346267i
\(786\) 0 0
\(787\) 10.6009 29.1257i 0.377881 1.03822i −0.594352 0.804205i \(-0.702591\pi\)
0.972233 0.234014i \(-0.0751863\pi\)
\(788\) 0.158686 + 0.189114i 0.00565294 + 0.00673692i
\(789\) 0 0
\(790\) 18.1819 21.6684i 0.646885 0.770927i
\(791\) 17.3933 16.9644i 0.618434 0.603184i
\(792\) 0 0
\(793\) −49.5098 −1.75814
\(794\) 28.4913 10.3700i 1.01112 0.368017i
\(795\) 0 0
\(796\) −0.225146 0.268318i −0.00798007 0.00951028i
\(797\) 18.1049 + 6.58966i 0.641310 + 0.233418i 0.642147 0.766582i \(-0.278044\pi\)
−0.000836476 1.00000i \(0.500266\pi\)
\(798\) 0 0
\(799\) 3.37096 19.1177i 0.119256 0.676335i
\(800\) 0.0538568i 0.00190413i
\(801\) 0 0
\(802\) −37.2521 −1.31542
\(803\) −10.6538 + 3.87768i −0.375965 + 0.136840i
\(804\) 0 0
\(805\) −3.56456 + 1.60832i −0.125634 + 0.0566859i
\(806\) −9.05389 10.7900i −0.318910 0.380062i
\(807\) 0 0
\(808\) 6.78892 8.09072i 0.238833 0.284630i
\(809\) −10.9220 + 6.30585i −0.383999 + 0.221702i −0.679557 0.733623i \(-0.737828\pi\)
0.295558 + 0.955325i \(0.404494\pi\)
\(810\) 0 0
\(811\) 43.6085i 1.53130i 0.643256 + 0.765652i \(0.277583\pi\)
−0.643256 + 0.765652i \(0.722417\pi\)
\(812\) −0.113866 0.167017i −0.00399592 0.00586114i
\(813\) 0 0
\(814\) 5.88270 + 33.3624i 0.206188 + 1.16935i
\(815\) 15.1510 12.7132i 0.530715 0.445323i
\(816\) 0 0
\(817\) 13.5491 + 37.2258i 0.474023 + 1.30237i
\(818\) −17.6575 + 30.5837i −0.617380 + 1.06933i
\(819\) 0 0
\(820\) −0.204975 0.355028i −0.00715805 0.0123981i
\(821\) −17.6656 + 21.0530i −0.616532 + 0.734755i −0.980470 0.196669i \(-0.936988\pi\)
0.363938 + 0.931423i \(0.381432\pi\)
\(822\) 0 0
\(823\) −0.890725 5.05155i −0.0310487 0.176086i 0.965340 0.260996i \(-0.0840509\pi\)
−0.996389 + 0.0849098i \(0.972940\pi\)
\(824\) 13.5049 11.3320i 0.470467 0.394769i
\(825\) 0 0
\(826\) 10.0778 20.9260i 0.350653 0.728108i
\(827\) −22.7209 + 13.1179i −0.790082 + 0.456154i −0.839991 0.542600i \(-0.817440\pi\)
0.0499094 + 0.998754i \(0.484107\pi\)
\(828\) 0 0
\(829\) 15.8622i 0.550916i −0.961313 0.275458i \(-0.911171\pi\)
0.961313 0.275458i \(-0.0888295\pi\)
\(830\) 35.6169 + 6.28021i 1.23628 + 0.217989i
\(831\) 0 0
\(832\) −52.8958 + 9.32696i −1.83383 + 0.323354i
\(833\) −14.1304 17.7201i −0.489588 0.613964i
\(834\) 0 0
\(835\) −3.15622 + 17.8998i −0.109225 + 0.619448i
\(836\) 0.171761 + 0.297499i 0.00594049 + 0.0102892i
\(837\) 0 0
\(838\) 29.0435 + 16.7682i 1.00329 + 0.579249i
\(839\) −43.7933 + 15.9395i −1.51191 + 0.550291i −0.959113 0.283023i \(-0.908663\pi\)
−0.552800 + 0.833314i \(0.686440\pi\)
\(840\) 0 0
\(841\) 7.46447 6.26343i 0.257395 0.215980i
\(842\) −3.72275 + 10.2282i −0.128294 + 0.352486i
\(843\) 0 0
\(844\) 0.0101468 0.0575454i 0.000349268 0.00198079i
\(845\) 33.0425 + 57.2312i 1.13670 + 1.96881i
\(846\) 0 0
\(847\) 1.94583 6.91547i 0.0668596 0.237618i
\(848\) 3.45523 + 0.609251i 0.118653 + 0.0209218i
\(849\) 0 0
\(850\) −2.45510 + 0.432901i −0.0842094 + 0.0148484i
\(851\) −4.48125 + 0.790165i −0.153615 + 0.0270865i
\(852\) 0 0
\(853\) 33.3113 + 5.87368i 1.14056 + 0.201111i 0.711850 0.702332i \(-0.247858\pi\)
0.428708 + 0.903443i \(0.358969\pi\)
\(854\) −19.3451 19.8342i −0.661976 0.678712i
\(855\) 0 0
\(856\) 4.05842 + 7.02939i 0.138714 + 0.240260i
\(857\) 7.64328 43.3472i 0.261089 1.48071i −0.518855 0.854862i \(-0.673641\pi\)
0.779944 0.625849i \(-0.215247\pi\)
\(858\) 0 0
\(859\) −15.9018 + 43.6898i −0.542562 + 1.49068i 0.300990 + 0.953627i \(0.402683\pi\)
−0.843551 + 0.537048i \(0.819539\pi\)
\(860\) 0.209283 0.175609i 0.00713648 0.00598822i
\(861\) 0 0
\(862\) 7.23046 2.63167i 0.246271 0.0896351i
\(863\) −6.24515 3.60564i −0.212587 0.122737i 0.389926 0.920846i \(-0.372501\pi\)
−0.602513 + 0.798109i \(0.705834\pi\)
\(864\) 0 0
\(865\) 8.94069 + 15.4857i 0.303992 + 0.526530i
\(866\) 8.69024 49.2848i 0.295306 1.67477i
\(867\) 0 0
\(868\) −0.00689330 + 0.0688770i −0.000233974 + 0.00233784i
\(869\) −34.7197 + 6.12203i −1.17779 + 0.207676i
\(870\) 0 0
\(871\) −68.9621 12.1599i −2.33669 0.412022i
\(872\) 16.0035i 0.541947i
\(873\) 0 0
\(874\) 4.55031 2.62712i 0.153916 0.0888637i
\(875\) −27.9020 13.4374i −0.943259 0.454268i
\(876\) 0 0
\(877\) −34.5295 + 28.9737i −1.16598 + 0.978372i −0.999970 0.00775269i \(-0.997532\pi\)
−0.166008 + 0.986124i \(0.553088\pi\)
\(878\) −0.992333 5.62780i −0.0334896 0.189929i
\(879\) 0 0
\(880\) −19.9175 + 23.7367i −0.671417 + 0.800164i
\(881\) 17.2527 + 29.8826i 0.581259 + 1.00677i 0.995330 + 0.0965261i \(0.0307731\pi\)
−0.414071 + 0.910245i \(0.635894\pi\)
\(882\) 0 0
\(883\) −19.2076 + 33.2686i −0.646388 + 1.11958i 0.337591 + 0.941293i \(0.390388\pi\)
−0.983979 + 0.178284i \(0.942945\pi\)
\(884\) −0.128350 0.352638i −0.00431687 0.0118605i
\(885\) 0 0
\(886\) −8.94004 + 7.50158i −0.300346 + 0.252021i
\(887\) 4.68652 + 26.5786i 0.157358 + 0.892422i 0.956598 + 0.291410i \(0.0941244\pi\)
−0.799240 + 0.601012i \(0.794764\pi\)
\(888\) 0 0
\(889\) −0.378862 5.05664i −0.0127066 0.169594i
\(890\) 12.9500i 0.434085i
\(891\) 0 0
\(892\) 0.151324 0.0873671i 0.00506671 0.00292527i
\(893\) −20.5325 + 24.4697i −0.687093 + 0.818846i
\(894\) 0 0
\(895\) −6.55946 7.81726i −0.219259 0.261302i
\(896\) −23.9815 17.2421i −0.801165 0.576018i
\(897\) 0 0
\(898\) −38.3904 + 13.9730i −1.28110 + 0.466284i
\(899\) 6.59404 0.219923
\(900\) 0 0
\(901\) 2.86510i 0.0954503i
\(902\) 10.1034 57.2992i 0.336406 1.90785i
\(903\) 0 0
\(904\) 24.5126 + 8.92187i 0.815278 + 0.296737i
\(905\) −6.19104 7.37819i −0.205797 0.245259i
\(906\) 0 0
\(907\) 34.2090 12.4511i 1.13589 0.413431i 0.295464 0.955354i \(-0.404526\pi\)
0.840428 + 0.541923i \(0.182304\pi\)
\(908\) −0.309023 −0.0102553
\(909\) 0 0
\(910\) −14.1749 + 50.3774i −0.469892 + 1.66999i
\(911\) −17.9098 + 21.3441i −0.593378 + 0.707160i −0.976251 0.216640i \(-0.930490\pi\)
0.382873 + 0.923801i \(0.374935\pi\)
\(912\) 0 0
\(913\) −28.9750 34.5311i −0.958933 1.14281i
\(914\) −3.15902 + 8.67933i −0.104491 + 0.287087i
\(915\) 0 0
\(916\) 0.0777926 + 0.213733i 0.00257034 + 0.00706195i
\(917\) −16.0857 16.4924i −0.531197 0.544627i
\(918\) 0 0
\(919\) 24.7371 42.8459i 0.816001 1.41336i −0.0926055 0.995703i \(-0.529520\pi\)
0.908607 0.417653i \(-0.137147\pi\)
\(920\) −3.21632 2.69881i −0.106039 0.0889772i
\(921\) 0 0
\(922\) −30.6776 + 5.40930i −1.01031 + 0.178146i
\(923\) 5.11565 + 29.0123i 0.168384 + 0.954950i
\(924\) 0 0
\(925\) −2.72145 2.28357i −0.0894807 0.0750832i
\(926\) 20.1233 11.6182i 0.661293 0.381798i
\(927\) 0 0
\(928\) 0.216089 0.374278i 0.00709348 0.0122863i
\(929\) 23.8911 + 20.0470i 0.783840 + 0.657720i 0.944213 0.329337i \(-0.106825\pi\)
−0.160372 + 0.987057i \(0.551270\pi\)
\(930\) 0 0
\(931\) 5.55711 + 36.8770i 0.182127 + 1.20859i
\(932\) −0.112975 + 0.310396i −0.00370062 + 0.0101674i
\(933\) 0 0
\(934\) −0.686858 1.88713i −0.0224747 0.0617486i
\(935\) −21.9134 12.6517i −0.716646 0.413756i
\(936\) 0 0
\(937\) −15.9634 9.21646i −0.521501 0.301089i 0.216048 0.976383i \(-0.430683\pi\)
−0.737548 + 0.675294i \(0.764017\pi\)
\(938\) −22.0744 32.3783i −0.720754 1.05719i
\(939\) 0 0
\(940\) 0.207005 + 0.0753435i 0.00675175 + 0.00245743i
\(941\) 21.6113 + 7.86586i 0.704507 + 0.256420i 0.669334 0.742961i \(-0.266579\pi\)
0.0351733 + 0.999381i \(0.488802\pi\)
\(942\) 0 0
\(943\) 7.69644 + 1.35709i 0.250630 + 0.0441929i
\(944\) 24.7197 0.804558
\(945\) 0 0
\(946\) 38.7744 1.26066
\(947\) −17.9325 3.16199i −0.582728 0.102751i −0.125490 0.992095i \(-0.540050\pi\)
−0.457238 + 0.889344i \(0.651161\pi\)
\(948\) 0 0
\(949\) −19.1507 6.97027i −0.621657 0.226265i
\(950\) 3.85473 + 1.40301i 0.125064 + 0.0455196i
\(951\) 0 0
\(952\) 10.5582 21.9235i 0.342194 0.710544i
\(953\) 20.4233 + 11.7914i 0.661576 + 0.381961i 0.792877 0.609381i \(-0.208582\pi\)
−0.131301 + 0.991343i \(0.541915\pi\)
\(954\) 0 0
\(955\) −18.9000 10.9119i −0.611590 0.353102i
\(956\) −0.126497 0.347547i −0.00409120 0.0112405i
\(957\) 0 0
\(958\) −11.5750 + 31.8020i −0.373971 + 1.02748i
\(959\) −1.83827 + 18.3678i −0.0593610 + 0.593128i
\(960\) 0 0
\(961\) 22.0176 + 18.4749i 0.710245 + 0.595966i
\(962\) −30.4477 + 52.7370i −0.981674 + 1.70031i
\(963\) 0 0
\(964\) 0.177676 0.102581i 0.00572256 0.00330392i
\(965\) 16.8205 + 14.1141i 0.541472 + 0.454349i
\(966\) 0 0
\(967\) −6.40078 36.3006i −0.205835 1.16735i −0.896120 0.443811i \(-0.853626\pi\)
0.690285 0.723537i \(-0.257485\pi\)
\(968\) 7.59592 1.33936i 0.244142 0.0430488i
\(969\) 0 0
\(970\) 15.8524 + 13.3017i 0.508989 + 0.427092i
\(971\) −6.28287 + 10.8822i −0.201627 + 0.349228i −0.949053 0.315117i \(-0.897956\pi\)
0.747426 + 0.664345i \(0.231289\pi\)
\(972\) 0 0
\(973\) 26.7915 + 7.53842i 0.858895 + 0.241671i
\(974\) 17.1077 + 47.0029i 0.548165 + 1.50607i
\(975\) 0 0
\(976\) 10.0854 27.7093i 0.322825 0.886953i
\(977\) −10.4107 12.4070i −0.333069 0.396936i 0.573354 0.819308i \(-0.305642\pi\)
−0.906423 + 0.422372i \(0.861198\pi\)
\(978\) 0 0
\(979\) −10.3750 + 12.3645i −0.331588 + 0.395171i
\(980\) 0.225872 0.122994i 0.00721523 0.00392891i
\(981\) 0 0
\(982\) 43.6791 1.39385
\(983\) 1.13238 0.412151i 0.0361172 0.0131456i −0.323898 0.946092i \(-0.604994\pi\)
0.360016 + 0.932946i \(0.382771\pi\)
\(984\) 0 0
\(985\) 19.2332 + 22.9213i 0.612822 + 0.730333i
\(986\) −18.7986 6.84215i −0.598671 0.217898i
\(987\) 0 0
\(988\) −0.107227 + 0.608114i −0.00341134 + 0.0193467i
\(989\) 5.20818i 0.165610i
\(990\) 0 0
\(991\) −53.5562 −1.70127 −0.850635 0.525757i \(-0.823782\pi\)
−0.850635 + 0.525757i \(0.823782\pi\)
\(992\) −0.139071 + 0.0506179i −0.00441552 + 0.00160712i
\(993\) 0 0
\(994\) −9.62380 + 13.3854i −0.305248 + 0.424560i
\(995\) −27.2884 32.5211i −0.865101 1.03099i
\(996\) 0 0
\(997\) −1.75036 + 2.08600i −0.0554344 + 0.0660641i −0.793049 0.609158i \(-0.791508\pi\)
0.737615 + 0.675222i \(0.235952\pi\)
\(998\) 44.4078 25.6388i 1.40570 0.811584i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.bd.a.467.16 132
3.2 odd 2 189.2.bd.a.47.7 yes 132
7.3 odd 6 567.2.ba.a.143.7 132
21.17 even 6 189.2.ba.a.101.16 132
27.4 even 9 189.2.ba.a.131.16 yes 132
27.23 odd 18 567.2.ba.a.341.7 132
189.31 odd 18 189.2.bd.a.185.7 yes 132
189.185 even 18 inner 567.2.bd.a.17.16 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.ba.a.101.16 132 21.17 even 6
189.2.ba.a.131.16 yes 132 27.4 even 9
189.2.bd.a.47.7 yes 132 3.2 odd 2
189.2.bd.a.185.7 yes 132 189.31 odd 18
567.2.ba.a.143.7 132 7.3 odd 6
567.2.ba.a.341.7 132 27.23 odd 18
567.2.bd.a.17.16 132 189.185 even 18 inner
567.2.bd.a.467.16 132 1.1 even 1 trivial