Properties

Label 567.2.bd.a.278.14
Level $567$
Weight $2$
Character 567.278
Analytic conductor $4.528$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(17,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([11, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.bd (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 278.14
Character \(\chi\) \(=\) 567.278
Dual form 567.2.bd.a.206.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.170792 + 0.469247i) q^{2} +(1.34107 - 1.12529i) q^{4} +(0.000430671 - 0.000361376i) q^{5} +(1.75023 + 1.98411i) q^{7} +(1.62200 + 0.936464i) q^{8} +(0.000243130 + 0.000140371i) q^{10} +(-3.04392 + 3.62761i) q^{11} +(1.77003 + 2.10944i) q^{13} +(-0.632115 + 1.16016i) q^{14} +(0.445582 - 2.52702i) q^{16} +(0.400086 - 0.692969i) q^{17} +(4.50743 - 2.60237i) q^{19} +(0.000170906 - 0.000969257i) q^{20} +(-2.22212 - 0.808787i) q^{22} +(-0.542669 + 1.49097i) q^{23} +(-0.868241 + 4.92404i) q^{25} +(-0.687542 + 1.19086i) q^{26} +(4.57987 + 0.691318i) q^{28} +(5.40692 - 6.44372i) q^{29} +(-5.19122 - 6.18666i) q^{31} +(4.95085 - 0.872968i) q^{32} +(0.393506 + 0.0693856i) q^{34} +(0.00147078 + 0.000222010i) q^{35} +2.05581 q^{37} +(1.99099 + 1.67064i) q^{38} +(0.00103696 - 0.000182845i) q^{40} +(5.20305 - 4.36588i) q^{41} +(-6.39715 + 2.32837i) q^{43} +8.29015i q^{44} -0.792318 q^{46} +(5.68085 + 4.76680i) q^{47} +(-0.873412 + 6.94530i) q^{49} +(-2.45888 + 0.433567i) q^{50} +(4.74745 + 0.837104i) q^{52} +(-9.11266 + 5.26120i) q^{53} +0.00266231i q^{55} +(0.980823 + 4.85726i) q^{56} +(3.94716 + 1.43665i) q^{58} +(-2.29410 - 13.0105i) q^{59} +(-2.33638 + 2.78438i) q^{61} +(2.01645 - 3.49260i) q^{62} +(-1.31080 - 2.27037i) q^{64} +(0.00152460 + 0.000268828i) q^{65} +(-1.99848 - 0.727386i) q^{67} +(-0.243248 - 1.37953i) q^{68} +(0.000147020 + 0.000728078i) q^{70} +(-7.56979 + 4.37042i) q^{71} -7.18246i q^{73} +(0.351116 + 0.964683i) q^{74} +(3.11635 - 8.56210i) q^{76} +(-12.5251 + 0.309645i) q^{77} +(-2.42128 + 0.881273i) q^{79} +(-0.000721305 - 0.00124934i) q^{80} +(2.93732 + 1.69586i) q^{82} +(-1.47761 - 1.23986i) q^{83} +(-7.81169e-5 - 0.000443023i) q^{85} +(-2.18517 - 2.60418i) q^{86} +(-8.33438 + 3.03347i) q^{88} +(1.61790 + 2.80229i) q^{89} +(-1.08741 + 7.20394i) q^{91} +(0.950016 + 2.61015i) q^{92} +(-1.26656 + 3.47986i) q^{94} +(0.00100079 - 0.00274964i) q^{95} +(0.614218 + 1.68755i) q^{97} +(-3.40823 + 0.776355i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q + 3 q^{2} - 3 q^{4} + 9 q^{5} - 6 q^{7} + 18 q^{8} - 9 q^{10} - 9 q^{11} + 42 q^{14} - 15 q^{16} + 9 q^{17} - 9 q^{19} + 18 q^{20} - 12 q^{22} - 30 q^{23} - 3 q^{25} - 12 q^{28} - 6 q^{29} - 9 q^{31}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.170792 + 0.469247i 0.120768 + 0.331808i 0.985316 0.170744i \(-0.0546169\pi\)
−0.864547 + 0.502551i \(0.832395\pi\)
\(3\) 0 0
\(4\) 1.34107 1.12529i 0.670533 0.562644i
\(5\) 0.000430671 0 0.000361376i 0.000192602 0 0.000161612i −0.642691 0.766125i \(-0.722182\pi\)
0.642884 + 0.765964i \(0.277738\pi\)
\(6\) 0 0
\(7\) 1.75023 + 1.98411i 0.661524 + 0.749924i
\(8\) 1.62200 + 0.936464i 0.573465 + 0.331090i
\(9\) 0 0
\(10\) 0.000243130 0 0.000140371i 7.68844e−5 0 4.43892e-5i
\(11\) −3.04392 + 3.62761i −0.917778 + 1.09376i 0.0775286 + 0.996990i \(0.475297\pi\)
−0.995306 + 0.0967748i \(0.969147\pi\)
\(12\) 0 0
\(13\) 1.77003 + 2.10944i 0.490918 + 0.585053i 0.953451 0.301549i \(-0.0975036\pi\)
−0.462533 + 0.886602i \(0.653059\pi\)
\(14\) −0.632115 + 1.16016i −0.168940 + 0.310066i
\(15\) 0 0
\(16\) 0.445582 2.52702i 0.111395 0.631755i
\(17\) 0.400086 0.692969i 0.0970351 0.168070i −0.813421 0.581675i \(-0.802397\pi\)
0.910456 + 0.413606i \(0.135731\pi\)
\(18\) 0 0
\(19\) 4.50743 2.60237i 1.03408 0.597024i 0.115926 0.993258i \(-0.463016\pi\)
0.918150 + 0.396234i \(0.129683\pi\)
\(20\) 0.000170906 0 0.000969257i 3.82158e−5 0 0.000216732i
\(21\) 0 0
\(22\) −2.22212 0.808787i −0.473758 0.172434i
\(23\) −0.542669 + 1.49097i −0.113154 + 0.310889i −0.983324 0.181864i \(-0.941787\pi\)
0.870169 + 0.492753i \(0.164009\pi\)
\(24\) 0 0
\(25\) −0.868241 + 4.92404i −0.173648 + 0.984808i
\(26\) −0.687542 + 1.19086i −0.134838 + 0.233546i
\(27\) 0 0
\(28\) 4.57987 + 0.691318i 0.865514 + 0.130647i
\(29\) 5.40692 6.44372i 1.00404 1.19657i 0.0236057 0.999721i \(-0.492485\pi\)
0.980434 0.196847i \(-0.0630702\pi\)
\(30\) 0 0
\(31\) −5.19122 6.18666i −0.932371 1.11116i −0.993591 0.113032i \(-0.963944\pi\)
0.0612205 0.998124i \(-0.480501\pi\)
\(32\) 4.95085 0.872968i 0.875194 0.154320i
\(33\) 0 0
\(34\) 0.393506 + 0.0693856i 0.0674856 + 0.0118995i
\(35\) 0.00147078 0.000222010i 0.000248608 3.75266e-5i
\(36\) 0 0
\(37\) 2.05581 0.337973 0.168986 0.985618i \(-0.445951\pi\)
0.168986 + 0.985618i \(0.445951\pi\)
\(38\) 1.99099 + 1.67064i 0.322981 + 0.271013i
\(39\) 0 0
\(40\) 0.00103696 0.000182845i 0.000163959 2.89103e-5i
\(41\) 5.20305 4.36588i 0.812580 0.681836i −0.138642 0.990343i \(-0.544274\pi\)
0.951222 + 0.308507i \(0.0998292\pi\)
\(42\) 0 0
\(43\) −6.39715 + 2.32837i −0.975556 + 0.355073i −0.780111 0.625641i \(-0.784837\pi\)
−0.195445 + 0.980715i \(0.562615\pi\)
\(44\) 8.29015i 1.24979i
\(45\) 0 0
\(46\) −0.792318 −0.116821
\(47\) 5.68085 + 4.76680i 0.828638 + 0.695310i 0.954978 0.296677i \(-0.0958786\pi\)
−0.126340 + 0.991987i \(0.540323\pi\)
\(48\) 0 0
\(49\) −0.873412 + 6.94530i −0.124773 + 0.992185i
\(50\) −2.45888 + 0.433567i −0.347738 + 0.0613156i
\(51\) 0 0
\(52\) 4.74745 + 0.837104i 0.658353 + 0.116085i
\(53\) −9.11266 + 5.26120i −1.25172 + 0.722681i −0.971451 0.237241i \(-0.923757\pi\)
−0.280269 + 0.959921i \(0.590424\pi\)
\(54\) 0 0
\(55\) 0.00266231i 0.000358985i
\(56\) 0.980823 + 4.85726i 0.131068 + 0.649079i
\(57\) 0 0
\(58\) 3.94716 + 1.43665i 0.518287 + 0.188641i
\(59\) −2.29410 13.0105i −0.298666 1.69382i −0.651917 0.758291i \(-0.726035\pi\)
0.353251 0.935529i \(-0.385076\pi\)
\(60\) 0 0
\(61\) −2.33638 + 2.78438i −0.299142 + 0.356504i −0.894588 0.446892i \(-0.852531\pi\)
0.595446 + 0.803395i \(0.296975\pi\)
\(62\) 2.01645 3.49260i 0.256090 0.443560i
\(63\) 0 0
\(64\) −1.31080 2.27037i −0.163850 0.283797i
\(65\) 0.00152460 0.000268828i 0.000189103 3.33440e-5i
\(66\) 0 0
\(67\) −1.99848 0.727386i −0.244153 0.0888644i 0.217045 0.976162i \(-0.430358\pi\)
−0.461198 + 0.887297i \(0.652580\pi\)
\(68\) −0.243248 1.37953i −0.0294982 0.167292i
\(69\) 0 0
\(70\) 0.000147020 0 0.000728078i 1.75723e−5 0 8.70220e-5i
\(71\) −7.56979 + 4.37042i −0.898369 + 0.518673i −0.876671 0.481091i \(-0.840241\pi\)
−0.0216981 + 0.999765i \(0.506907\pi\)
\(72\) 0 0
\(73\) 7.18246i 0.840644i −0.907375 0.420322i \(-0.861917\pi\)
0.907375 0.420322i \(-0.138083\pi\)
\(74\) 0.351116 + 0.964683i 0.0408164 + 0.112142i
\(75\) 0 0
\(76\) 3.11635 8.56210i 0.357470 0.982140i
\(77\) −12.5251 + 0.309645i −1.42737 + 0.0352873i
\(78\) 0 0
\(79\) −2.42128 + 0.881273i −0.272415 + 0.0991510i −0.474616 0.880193i \(-0.657413\pi\)
0.202201 + 0.979344i \(0.435191\pi\)
\(80\) −0.000721305 0.00124934i −8.06443e−5 0.000139680i
\(81\) 0 0
\(82\) 2.93732 + 1.69586i 0.324373 + 0.187277i
\(83\) −1.47761 1.23986i −0.162188 0.136092i 0.558082 0.829786i \(-0.311538\pi\)
−0.720270 + 0.693694i \(0.755982\pi\)
\(84\) 0 0
\(85\) −7.81169e−5 0 0.000443023i −8.47297e−6 0 4.80526e-5i
\(86\) −2.18517 2.60418i −0.235632 0.280816i
\(87\) 0 0
\(88\) −8.33438 + 3.03347i −0.888448 + 0.323369i
\(89\) 1.61790 + 2.80229i 0.171498 + 0.297043i 0.938944 0.344071i \(-0.111806\pi\)
−0.767446 + 0.641114i \(0.778473\pi\)
\(90\) 0 0
\(91\) −1.08741 + 7.20394i −0.113992 + 0.755178i
\(92\) 0.950016 + 2.61015i 0.0990461 + 0.272127i
\(93\) 0 0
\(94\) −1.26656 + 3.47986i −0.130636 + 0.358920i
\(95\) 0.00100079 0.00274964i 0.000102679 0.000282107i
\(96\) 0 0
\(97\) 0.614218 + 1.68755i 0.0623644 + 0.171345i 0.966961 0.254923i \(-0.0820502\pi\)
−0.904597 + 0.426268i \(0.859828\pi\)
\(98\) −3.40823 + 0.776355i −0.344284 + 0.0784237i
\(99\) 0 0
\(100\) 4.37659 + 7.58048i 0.437659 + 0.758048i
\(101\) 4.00251 1.45679i 0.398265 0.144957i −0.135120 0.990829i \(-0.543142\pi\)
0.533385 + 0.845873i \(0.320920\pi\)
\(102\) 0 0
\(103\) −10.3365 12.3186i −1.01849 1.21379i −0.976689 0.214660i \(-0.931136\pi\)
−0.0417981 0.999126i \(-0.513309\pi\)
\(104\) 0.895580 + 5.07909i 0.0878189 + 0.498046i
\(105\) 0 0
\(106\) −4.02517 3.37752i −0.390959 0.328054i
\(107\) 3.48765 + 2.01360i 0.337164 + 0.194662i 0.659017 0.752128i \(-0.270972\pi\)
−0.321853 + 0.946790i \(0.604306\pi\)
\(108\) 0 0
\(109\) 0.587845 + 1.01818i 0.0563054 + 0.0975238i 0.892804 0.450445i \(-0.148735\pi\)
−0.836499 + 0.547969i \(0.815401\pi\)
\(110\) −0.00124928 0.000454701i −0.000119114 4.33540e-5i
\(111\) 0 0
\(112\) 5.79376 3.53877i 0.547459 0.334383i
\(113\) 5.04317 13.8560i 0.474422 1.30346i −0.439745 0.898123i \(-0.644931\pi\)
0.914166 0.405340i \(-0.132847\pi\)
\(114\) 0 0
\(115\) 0.000305089 0 0.000838225i 2.84497e−5 0 7.81649e-5i
\(116\) 14.7258i 1.36726i
\(117\) 0 0
\(118\) 5.71332 3.29858i 0.525953 0.303659i
\(119\) 2.07517 0.419037i 0.190231 0.0384131i
\(120\) 0 0
\(121\) −1.98393 11.2514i −0.180358 1.02286i
\(122\) −1.70560 0.620787i −0.154418 0.0562034i
\(123\) 0 0
\(124\) −13.9235 2.45510i −1.25037 0.220474i
\(125\) 0.00281100 + 0.00486880i 0.000251424 + 0.000435479i
\(126\) 0 0
\(127\) −3.46785 + 6.00649i −0.307722 + 0.532990i −0.977864 0.209243i \(-0.932900\pi\)
0.670142 + 0.742233i \(0.266233\pi\)
\(128\) 7.30436 8.70500i 0.645621 0.769421i
\(129\) 0 0
\(130\) 0.000134243 0 0.000761329i 1.17739e−5 0 6.67729e-5i
\(131\) −10.3810 3.77837i −0.906990 0.330117i −0.153940 0.988080i \(-0.549196\pi\)
−0.753050 + 0.657963i \(0.771418\pi\)
\(132\) 0 0
\(133\) 13.0524 + 4.38852i 1.13179 + 0.380533i
\(134\) 1.06201i 0.0917438i
\(135\) 0 0
\(136\) 1.29788 0.749332i 0.111292 0.0642547i
\(137\) −9.89957 1.74556i −0.845777 0.149133i −0.266065 0.963955i \(-0.585724\pi\)
−0.579712 + 0.814822i \(0.696835\pi\)
\(138\) 0 0
\(139\) −0.409252 + 0.0721623i −0.0347123 + 0.00612072i −0.190977 0.981594i \(-0.561166\pi\)
0.156265 + 0.987715i \(0.450055\pi\)
\(140\) 0.00222224 0.00135732i 0.000187814 0.000114715i
\(141\) 0 0
\(142\) −3.34367 2.80567i −0.280594 0.235447i
\(143\) −13.0401 −1.09046
\(144\) 0 0
\(145\) 0.00472905i 0.000392726i
\(146\) 3.37035 1.22671i 0.278932 0.101523i
\(147\) 0 0
\(148\) 2.75697 2.31338i 0.226622 0.190158i
\(149\) 0.907098 0.159946i 0.0743124 0.0131033i −0.136368 0.990658i \(-0.543543\pi\)
0.210681 + 0.977555i \(0.432432\pi\)
\(150\) 0 0
\(151\) −0.922118 0.773749i −0.0750409 0.0629668i 0.604496 0.796608i \(-0.293375\pi\)
−0.679537 + 0.733642i \(0.737819\pi\)
\(152\) 9.74809 0.790674
\(153\) 0 0
\(154\) −2.28450 5.82451i −0.184090 0.469352i
\(155\) −0.00447142 0.000788431i −0.000359153 6.33283e-5i
\(156\) 0 0
\(157\) −11.3485 + 2.00104i −0.905706 + 0.159700i −0.607053 0.794661i \(-0.707648\pi\)
−0.298653 + 0.954362i \(0.596537\pi\)
\(158\) −0.827070 0.985664i −0.0657982 0.0784152i
\(159\) 0 0
\(160\) 0.00181672 0.00216508i 0.000143624 0.000171164i
\(161\) −3.90805 + 1.53282i −0.307997 + 0.120803i
\(162\) 0 0
\(163\) −3.42292 + 5.92867i −0.268104 + 0.464369i −0.968372 0.249510i \(-0.919730\pi\)
0.700268 + 0.713880i \(0.253064\pi\)
\(164\) 2.06477 11.7099i 0.161231 0.914387i
\(165\) 0 0
\(166\) 0.329437 0.905120i 0.0255693 0.0702510i
\(167\) 4.35768 + 1.58606i 0.337207 + 0.122733i 0.505073 0.863076i \(-0.331465\pi\)
−0.167866 + 0.985810i \(0.553688\pi\)
\(168\) 0 0
\(169\) 0.940696 5.33495i 0.0723613 0.410381i
\(170\) 0.000194546 0 0.000112321i 1.49210e−5 0 8.61462e-6i
\(171\) 0 0
\(172\) −5.95891 + 10.3211i −0.454363 + 0.786979i
\(173\) 4.17814 23.6954i 0.317658 1.80153i −0.239256 0.970956i \(-0.576904\pi\)
0.556914 0.830570i \(-0.311985\pi\)
\(174\) 0 0
\(175\) −11.2895 + 6.89550i −0.853404 + 0.521250i
\(176\) 7.81072 + 9.30846i 0.588755 + 0.701651i
\(177\) 0 0
\(178\) −1.03864 + 1.23781i −0.0778496 + 0.0927776i
\(179\) −21.3630 12.3339i −1.59674 0.921880i −0.992109 0.125377i \(-0.959986\pi\)
−0.604634 0.796503i \(-0.706681\pi\)
\(180\) 0 0
\(181\) −7.78429 4.49426i −0.578601 0.334056i 0.181976 0.983303i \(-0.441751\pi\)
−0.760577 + 0.649247i \(0.775084\pi\)
\(182\) −3.56615 + 0.720110i −0.264341 + 0.0533781i
\(183\) 0 0
\(184\) −2.27645 + 1.91017i −0.167822 + 0.140820i
\(185\) 0.000885377 0 0.000742919i 6.50942e−5 0 5.46205e-5i
\(186\) 0 0
\(187\) 1.29599 + 3.56070i 0.0947721 + 0.260384i
\(188\) 12.9824 0.946841
\(189\) 0 0
\(190\) 0.00146119 0.000106006
\(191\) 7.13465 + 19.6023i 0.516245 + 1.41837i 0.874627 + 0.484796i \(0.161106\pi\)
−0.358382 + 0.933575i \(0.616672\pi\)
\(192\) 0 0
\(193\) −14.0017 + 11.7489i −1.00787 + 0.845701i −0.988055 0.154103i \(-0.950751\pi\)
−0.0198124 + 0.999804i \(0.506307\pi\)
\(194\) −0.686975 + 0.576440i −0.0493219 + 0.0413860i
\(195\) 0 0
\(196\) 6.64415 + 10.2969i 0.474582 + 0.735496i
\(197\) 8.92564 + 5.15322i 0.635925 + 0.367152i 0.783043 0.621967i \(-0.213666\pi\)
−0.147118 + 0.989119i \(0.547000\pi\)
\(198\) 0 0
\(199\) −9.67594 5.58641i −0.685909 0.396010i 0.116168 0.993230i \(-0.462939\pi\)
−0.802078 + 0.597220i \(0.796272\pi\)
\(200\) −6.01947 + 7.17373i −0.425641 + 0.507259i
\(201\) 0 0
\(202\) 1.36719 + 1.62936i 0.0961955 + 0.114641i
\(203\) 22.2484 0.550022i 1.56153 0.0386040i
\(204\) 0 0
\(205\) 0.000663080 0.00376051i 4.63115e−5 0.000262646i
\(206\) 4.01507 6.95430i 0.279743 0.484529i
\(207\) 0 0
\(208\) 6.11929 3.53297i 0.424297 0.244968i
\(209\) −4.27991 + 24.2726i −0.296048 + 1.67897i
\(210\) 0 0
\(211\) 22.3190 + 8.12346i 1.53651 + 0.559242i 0.965204 0.261498i \(-0.0842165\pi\)
0.571302 + 0.820740i \(0.306439\pi\)
\(212\) −6.30032 + 17.3100i −0.432707 + 1.18885i
\(213\) 0 0
\(214\) −0.349212 + 1.98048i −0.0238716 + 0.135383i
\(215\) −0.00191365 + 0.00331454i −0.000130510 + 0.000226050i
\(216\) 0 0
\(217\) 3.18921 21.1280i 0.216498 1.43426i
\(218\) −0.377378 + 0.449742i −0.0255593 + 0.0304603i
\(219\) 0 0
\(220\) 0.00299586 + 0.00357033i 0.000201981 + 0.000240711i
\(221\) 2.16994 0.382619i 0.145966 0.0257378i
\(222\) 0 0
\(223\) 23.8004 + 4.19666i 1.59380 + 0.281029i 0.898924 0.438105i \(-0.144350\pi\)
0.694871 + 0.719134i \(0.255461\pi\)
\(224\) 10.3972 + 8.29515i 0.694690 + 0.554243i
\(225\) 0 0
\(226\) 7.36322 0.489794
\(227\) 3.27753 + 2.75018i 0.217537 + 0.182536i 0.745044 0.667015i \(-0.232428\pi\)
−0.527506 + 0.849551i \(0.676873\pi\)
\(228\) 0 0
\(229\) 12.7575 2.24949i 0.843037 0.148650i 0.264581 0.964364i \(-0.414766\pi\)
0.578456 + 0.815713i \(0.303655\pi\)
\(230\) −0.000341228 0 0.000286324i −2.24999e−5 0 1.88797e-5i
\(231\) 0 0
\(232\) 14.8044 5.38834i 0.971953 0.353762i
\(233\) 11.2048i 0.734052i −0.930211 0.367026i \(-0.880376\pi\)
0.930211 0.367026i \(-0.119624\pi\)
\(234\) 0 0
\(235\) 0.00416919 0.000271968
\(236\) −17.7171 14.8664i −1.15328 0.967719i
\(237\) 0 0
\(238\) 0.551055 + 0.902200i 0.0357196 + 0.0584810i
\(239\) −12.3508 + 2.17779i −0.798909 + 0.140869i −0.558177 0.829722i \(-0.688499\pi\)
−0.240733 + 0.970591i \(0.577388\pi\)
\(240\) 0 0
\(241\) −19.7697 3.48594i −1.27348 0.224549i −0.504271 0.863546i \(-0.668239\pi\)
−0.769209 + 0.638997i \(0.779350\pi\)
\(242\) 4.94087 2.85261i 0.317611 0.183373i
\(243\) 0 0
\(244\) 6.36314i 0.407358i
\(245\) 0.00213371 + 0.00330677i 0.000136318 + 0.000211262i
\(246\) 0 0
\(247\) 13.4678 + 4.90189i 0.856937 + 0.311900i
\(248\) −2.62660 14.8962i −0.166789 0.945908i
\(249\) 0 0
\(250\) −0.00180458 + 0.00215061i −0.000114131 + 0.000136016i
\(251\) −11.2730 + 19.5255i −0.711547 + 1.23244i 0.252729 + 0.967537i \(0.418672\pi\)
−0.964276 + 0.264899i \(0.914661\pi\)
\(252\) 0 0
\(253\) −3.75681 6.50699i −0.236189 0.409091i
\(254\) −3.41081 0.601418i −0.214013 0.0377363i
\(255\) 0 0
\(256\) 0.405328 + 0.147528i 0.0253330 + 0.00922047i
\(257\) 5.10311 + 28.9412i 0.318323 + 1.80530i 0.552950 + 0.833214i \(0.313502\pi\)
−0.234627 + 0.972085i \(0.575387\pi\)
\(258\) 0 0
\(259\) 3.59813 + 4.07896i 0.223577 + 0.253454i
\(260\) 0.00234710 0.00135510i 0.000145561 8.40396e-5i
\(261\) 0 0
\(262\) 5.51656i 0.340814i
\(263\) 5.73330 + 15.7521i 0.353531 + 0.971318i 0.981227 + 0.192859i \(0.0617760\pi\)
−0.627696 + 0.778459i \(0.716002\pi\)
\(264\) 0 0
\(265\) −0.00202329 + 0.00555894i −0.000124290 + 0.000341483i
\(266\) 0.169947 + 6.87434i 0.0104201 + 0.421493i
\(267\) 0 0
\(268\) −3.49861 + 1.27339i −0.213711 + 0.0777846i
\(269\) −4.71711 8.17027i −0.287607 0.498150i 0.685631 0.727949i \(-0.259526\pi\)
−0.973238 + 0.229799i \(0.926193\pi\)
\(270\) 0 0
\(271\) −3.40065 1.96337i −0.206575 0.119266i 0.393144 0.919477i \(-0.371388\pi\)
−0.599719 + 0.800211i \(0.704721\pi\)
\(272\) −1.57288 1.31980i −0.0953696 0.0800246i
\(273\) 0 0
\(274\) −0.871668 4.94347i −0.0526594 0.298646i
\(275\) −15.2196 18.1380i −0.917778 1.09376i
\(276\) 0 0
\(277\) 21.5582 7.84655i 1.29531 0.471454i 0.399843 0.916584i \(-0.369065\pi\)
0.895466 + 0.445130i \(0.146843\pi\)
\(278\) −0.103759 0.179716i −0.00622305 0.0107786i
\(279\) 0 0
\(280\) 0.00217771 + 0.00173744i 0.000130143 + 0.000103832i
\(281\) −0.608889 1.67291i −0.0363233 0.0997974i 0.920205 0.391436i \(-0.128022\pi\)
−0.956528 + 0.291639i \(0.905799\pi\)
\(282\) 0 0
\(283\) −1.52431 + 4.18800i −0.0906106 + 0.248951i −0.976717 0.214531i \(-0.931178\pi\)
0.886107 + 0.463482i \(0.153400\pi\)
\(284\) −5.23361 + 14.3792i −0.310557 + 0.853249i
\(285\) 0 0
\(286\) −2.22714 6.11901i −0.131693 0.361825i
\(287\) 17.7689 + 2.68217i 1.04887 + 0.158323i
\(288\) 0 0
\(289\) 8.17986 + 14.1679i 0.481168 + 0.833408i
\(290\) 0.00221909 0.000807684i 0.000130310 4.74289e-5i
\(291\) 0 0
\(292\) −8.08234 9.63216i −0.472983 0.563679i
\(293\) 1.23196 + 6.98681i 0.0719721 + 0.408174i 0.999415 + 0.0342085i \(0.0108910\pi\)
−0.927443 + 0.373965i \(0.877998\pi\)
\(294\) 0 0
\(295\) −0.00568967 0.00477420i −0.000331265 0.000277965i
\(296\) 3.33453 + 1.92519i 0.193815 + 0.111899i
\(297\) 0 0
\(298\) 0.229979 + 0.398336i 0.0133223 + 0.0230750i
\(299\) −4.10565 + 1.49434i −0.237436 + 0.0864197i
\(300\) 0 0
\(301\) −15.8162 8.61749i −0.911632 0.496704i
\(302\) 0.205589 0.564852i 0.0118303 0.0325036i
\(303\) 0 0
\(304\) −4.56780 12.5499i −0.261981 0.719788i
\(305\) 0.00204346i 0.000117008i
\(306\) 0 0
\(307\) 6.20672 3.58345i 0.354236 0.204518i −0.312313 0.949979i \(-0.601104\pi\)
0.666549 + 0.745461i \(0.267771\pi\)
\(308\) −16.4486 + 14.5096i −0.937246 + 0.826764i
\(309\) 0 0
\(310\) −0.000393713 0.00223286i −2.23614e−5 0.000126818i
\(311\) 21.8466 + 7.95150i 1.23881 + 0.450888i 0.876605 0.481212i \(-0.159803\pi\)
0.362201 + 0.932100i \(0.382025\pi\)
\(312\) 0 0
\(313\) 23.5238 + 4.14788i 1.32964 + 0.234452i 0.792930 0.609313i \(-0.208555\pi\)
0.536713 + 0.843765i \(0.319666\pi\)
\(314\) −2.87721 4.98347i −0.162370 0.281234i
\(315\) 0 0
\(316\) −2.25541 + 3.90648i −0.126877 + 0.219757i
\(317\) 18.4623 22.0025i 1.03695 1.23579i 0.0656685 0.997841i \(-0.479082\pi\)
0.971279 0.237944i \(-0.0764735\pi\)
\(318\) 0 0
\(319\) 6.91702 + 39.2284i 0.387279 + 2.19637i
\(320\) −0.00138498 0.000504092i −7.74228e−5 2.81796e-5i
\(321\) 0 0
\(322\) −1.38674 1.57205i −0.0772798 0.0876068i
\(323\) 4.16468i 0.231729i
\(324\) 0 0
\(325\) −11.9238 + 6.88420i −0.661412 + 0.381866i
\(326\) −3.36662 0.593626i −0.186460 0.0328779i
\(327\) 0 0
\(328\) 12.5279 2.20900i 0.691735 0.121972i
\(329\) 0.484906 + 19.6144i 0.0267337 + 1.08138i
\(330\) 0 0
\(331\) −19.9199 16.7148i −1.09490 0.918726i −0.0978240 0.995204i \(-0.531188\pi\)
−0.997071 + 0.0764775i \(0.975633\pi\)
\(332\) −3.37676 −0.185324
\(333\) 0 0
\(334\) 2.31571i 0.126710i
\(335\) −0.00112355 0.000408937i −6.13858e−5 2.23426e-5i
\(336\) 0 0
\(337\) 5.30836 4.45424i 0.289165 0.242638i −0.486653 0.873596i \(-0.661782\pi\)
0.775817 + 0.630958i \(0.217338\pi\)
\(338\) 2.66408 0.469749i 0.144907 0.0255510i
\(339\) 0 0
\(340\) −0.000603288 0 0.000506219i −3.27179e−5 0 2.74536e-5i
\(341\) 38.2444 2.07105
\(342\) 0 0
\(343\) −15.3089 + 10.4229i −0.826604 + 0.562783i
\(344\) −12.5566 2.21407i −0.677008 0.119375i
\(345\) 0 0
\(346\) 11.8326 2.08640i 0.636124 0.112166i
\(347\) 1.01656 + 1.21149i 0.0545718 + 0.0650361i 0.792640 0.609690i \(-0.208706\pi\)
−0.738068 + 0.674726i \(0.764262\pi\)
\(348\) 0 0
\(349\) 11.3433 13.5184i 0.607194 0.723626i −0.371618 0.928386i \(-0.621197\pi\)
0.978812 + 0.204760i \(0.0656414\pi\)
\(350\) −5.16384 4.11986i −0.276019 0.220216i
\(351\) 0 0
\(352\) −11.9032 + 20.6170i −0.634444 + 1.09889i
\(353\) 0.472599 2.68024i 0.0251539 0.142655i −0.969644 0.244520i \(-0.921370\pi\)
0.994798 + 0.101865i \(0.0324809\pi\)
\(354\) 0 0
\(355\) −0.00168072 + 0.00461775i −8.92035e−5 + 0.000245085i
\(356\) 5.32310 + 1.93745i 0.282124 + 0.102685i
\(357\) 0 0
\(358\) 2.13903 12.1311i 0.113051 0.641146i
\(359\) −19.8115 + 11.4382i −1.04561 + 0.603683i −0.921417 0.388575i \(-0.872968\pi\)
−0.124193 + 0.992258i \(0.539634\pi\)
\(360\) 0 0
\(361\) 4.04462 7.00549i 0.212875 0.368710i
\(362\) 0.779425 4.42034i 0.0409657 0.232328i
\(363\) 0 0
\(364\) 6.64821 + 10.8846i 0.348461 + 0.570509i
\(365\) −0.00259557 0.00309328i −0.000135858 0.000161910i
\(366\) 0 0
\(367\) 4.74994 5.66075i 0.247945 0.295489i −0.627690 0.778464i \(-0.715999\pi\)
0.875634 + 0.482975i \(0.160444\pi\)
\(368\) 3.52591 + 2.03569i 0.183801 + 0.106117i
\(369\) 0 0
\(370\) 0.000499828 0 0.000288576i 2.59848e−5 0 1.50023e-5i
\(371\) −26.3880 8.87226i −1.37000 0.460625i
\(372\) 0 0
\(373\) 24.8147 20.8220i 1.28486 1.07812i 0.292302 0.956326i \(-0.405579\pi\)
0.992555 0.121797i \(-0.0388658\pi\)
\(374\) −1.44950 + 1.21628i −0.0749521 + 0.0628923i
\(375\) 0 0
\(376\) 4.75042 + 13.0517i 0.244984 + 0.673089i
\(377\) 23.1631 1.19296
\(378\) 0 0
\(379\) −6.72815 −0.345602 −0.172801 0.984957i \(-0.555282\pi\)
−0.172801 + 0.984957i \(0.555282\pi\)
\(380\) −0.00175201 0.00481362i −8.98764e−5 0.000246933i
\(381\) 0 0
\(382\) −7.97978 + 6.69583i −0.408281 + 0.342588i
\(383\) 0.217502 0.182506i 0.0111138 0.00932560i −0.637214 0.770687i \(-0.719913\pi\)
0.648328 + 0.761361i \(0.275469\pi\)
\(384\) 0 0
\(385\) −0.00528232 + 0.00465964i −0.000269212 + 0.000237477i
\(386\) −7.90450 4.56367i −0.402329 0.232285i
\(387\) 0 0
\(388\) 2.72269 + 1.57194i 0.138223 + 0.0798033i
\(389\) −0.478715 + 0.570510i −0.0242718 + 0.0289260i −0.778044 0.628210i \(-0.783788\pi\)
0.753772 + 0.657136i \(0.228232\pi\)
\(390\) 0 0
\(391\) 0.816083 + 0.972570i 0.0412711 + 0.0491850i
\(392\) −7.92070 + 10.4474i −0.400056 + 0.527672i
\(393\) 0 0
\(394\) −0.893706 + 5.06846i −0.0450243 + 0.255345i
\(395\) −0.000724303 0.00125453i −3.64437e−5 6.31223e-5i
\(396\) 0 0
\(397\) 14.4875 8.36439i 0.727109 0.419797i −0.0902545 0.995919i \(-0.528768\pi\)
0.817364 + 0.576122i \(0.195435\pi\)
\(398\) 0.968833 5.49452i 0.0485632 0.275416i
\(399\) 0 0
\(400\) 12.0563 + 4.38812i 0.602814 + 0.219406i
\(401\) 6.32052 17.3655i 0.315632 0.867191i −0.675861 0.737029i \(-0.736228\pi\)
0.991493 0.130162i \(-0.0415498\pi\)
\(402\) 0 0
\(403\) 3.86176 21.9011i 0.192368 1.09097i
\(404\) 3.72832 6.45763i 0.185491 0.321279i
\(405\) 0 0
\(406\) 4.05795 + 10.3461i 0.201393 + 0.513467i
\(407\) −6.25772 + 7.45767i −0.310184 + 0.369663i
\(408\) 0 0
\(409\) 11.4565 + 13.6534i 0.566489 + 0.675116i 0.970906 0.239459i \(-0.0769701\pi\)
−0.404417 + 0.914575i \(0.632526\pi\)
\(410\) 0.00187786 0.000331117i 9.27409e−5 1.63527e-5i
\(411\) 0 0
\(412\) −27.7239 4.88847i −1.36586 0.240838i
\(413\) 21.7991 27.3230i 1.07266 1.34448i
\(414\) 0 0
\(415\) −0.00108442 −5.32319e−5
\(416\) 10.6046 + 8.89834i 0.519934 + 0.436277i
\(417\) 0 0
\(418\) −12.1208 + 2.13723i −0.592849 + 0.104535i
\(419\) 0.812929 0.682129i 0.0397142 0.0333242i −0.622715 0.782449i \(-0.713970\pi\)
0.662429 + 0.749125i \(0.269526\pi\)
\(420\) 0 0
\(421\) −14.4175 + 5.24755i −0.702667 + 0.255750i −0.668549 0.743668i \(-0.733084\pi\)
−0.0341181 + 0.999418i \(0.510862\pi\)
\(422\) 11.8606i 0.577364i
\(423\) 0 0
\(424\) −19.7077 −0.957090
\(425\) 3.06484 + 2.57170i 0.148666 + 0.124746i
\(426\) 0 0
\(427\) −9.61372 + 0.237669i −0.465241 + 0.0115016i
\(428\) 6.94305 1.22425i 0.335605 0.0591762i
\(429\) 0 0
\(430\) −0.00188217 0.000331878i −9.07665e−5 1.60046e-5i
\(431\) −3.29736 + 1.90373i −0.158828 + 0.0916996i −0.577308 0.816527i \(-0.695897\pi\)
0.418479 + 0.908226i \(0.362563\pi\)
\(432\) 0 0
\(433\) 29.5261i 1.41893i −0.704739 0.709467i \(-0.748936\pi\)
0.704739 0.709467i \(-0.251064\pi\)
\(434\) 10.4590 2.11197i 0.502046 0.101378i
\(435\) 0 0
\(436\) 1.93408 + 0.703949i 0.0926258 + 0.0337130i
\(437\) 1.43401 + 8.13267i 0.0685980 + 0.389038i
\(438\) 0 0
\(439\) −10.6109 + 12.6456i −0.506432 + 0.603543i −0.957317 0.289040i \(-0.906664\pi\)
0.450885 + 0.892582i \(0.351109\pi\)
\(440\) −0.00249315 + 0.00431827i −0.000118856 + 0.000205865i
\(441\) 0 0
\(442\) 0.550152 + 0.952891i 0.0261681 + 0.0453244i
\(443\) 27.5106 + 4.85086i 1.30707 + 0.230471i 0.783435 0.621474i \(-0.213466\pi\)
0.523632 + 0.851945i \(0.324577\pi\)
\(444\) 0 0
\(445\) 0.00170947 0.000622194i 8.10364e−5 2.94948e-5i
\(446\) 2.09565 + 11.8850i 0.0992321 + 0.562773i
\(447\) 0 0
\(448\) 2.21048 6.57444i 0.104435 0.310613i
\(449\) −20.1252 + 11.6193i −0.949765 + 0.548347i −0.893008 0.450041i \(-0.851409\pi\)
−0.0567572 + 0.998388i \(0.518076\pi\)
\(450\) 0 0
\(451\) 32.1640i 1.51455i
\(452\) −8.82876 24.2568i −0.415270 1.14094i
\(453\) 0 0
\(454\) −0.730736 + 2.00768i −0.0342952 + 0.0942252i
\(455\) 0.00213501 + 0.00349549i 0.000100091 + 0.000163871i
\(456\) 0 0
\(457\) −17.0320 + 6.19915i −0.796724 + 0.289984i −0.708128 0.706084i \(-0.750460\pi\)
−0.0885960 + 0.996068i \(0.528238\pi\)
\(458\) 3.23444 + 5.60221i 0.151135 + 0.261774i
\(459\) 0 0
\(460\) 0.00135239 0.000780802i 6.30555e−5 3.64051e-5i
\(461\) −0.780576 0.654981i −0.0363550 0.0305055i 0.624429 0.781081i \(-0.285332\pi\)
−0.660784 + 0.750576i \(0.729776\pi\)
\(462\) 0 0
\(463\) 5.96496 + 33.8290i 0.277215 + 1.57216i 0.731837 + 0.681480i \(0.238663\pi\)
−0.454621 + 0.890685i \(0.650225\pi\)
\(464\) −13.8742 16.5346i −0.644093 0.767600i
\(465\) 0 0
\(466\) 5.25783 1.91369i 0.243564 0.0886502i
\(467\) 0.712541 + 1.23416i 0.0329724 + 0.0571100i 0.882041 0.471173i \(-0.156169\pi\)
−0.849068 + 0.528283i \(0.822836\pi\)
\(468\) 0 0
\(469\) −2.05457 5.23830i −0.0948713 0.241882i
\(470\) 0.000712064 0.00195638i 3.28451e−5 9.02410e-5i
\(471\) 0 0
\(472\) 8.46280 23.2514i 0.389532 1.07023i
\(473\) 11.0260 30.2937i 0.506977 1.39291i
\(474\) 0 0
\(475\) 8.90062 + 24.4542i 0.408388 + 1.12204i
\(476\) 2.31140 2.89712i 0.105943 0.132789i
\(477\) 0 0
\(478\) −3.13135 5.42365i −0.143224 0.248072i
\(479\) −33.6340 + 12.2418i −1.53678 + 0.559341i −0.965270 0.261256i \(-0.915863\pi\)
−0.571507 + 0.820597i \(0.693641\pi\)
\(480\) 0 0
\(481\) 3.63884 + 4.33660i 0.165917 + 0.197732i
\(482\) −1.74075 9.87226i −0.0792888 0.449669i
\(483\) 0 0
\(484\) −15.3217 12.8564i −0.696441 0.584383i
\(485\) 0.000874365 0 0.000504815i 3.97029e−5 0 2.29225e-5i
\(486\) 0 0
\(487\) −17.4657 30.2515i −0.791446 1.37082i −0.925071 0.379793i \(-0.875995\pi\)
0.133625 0.991032i \(-0.457338\pi\)
\(488\) −6.39708 + 2.32835i −0.289582 + 0.105399i
\(489\) 0 0
\(490\) −0.00118727 + 0.00156601i −5.36354e−5 + 7.07450e-5i
\(491\) 3.72269 10.2280i 0.168003 0.461584i −0.826909 0.562336i \(-0.809903\pi\)
0.994912 + 0.100752i \(0.0321249\pi\)
\(492\) 0 0
\(493\) −2.30206 6.32487i −0.103680 0.284858i
\(494\) 7.15694i 0.322006i
\(495\) 0 0
\(496\) −17.9469 + 10.3617i −0.805841 + 0.465252i
\(497\) −21.9203 7.37009i −0.983258 0.330594i
\(498\) 0 0
\(499\) 1.10201 + 6.24980i 0.0493326 + 0.279779i 0.999488 0.0319977i \(-0.0101869\pi\)
−0.950155 + 0.311777i \(0.899076\pi\)
\(500\) 0.00924854 + 0.00336619i 0.000413607 + 0.000150541i
\(501\) 0 0
\(502\) −11.0876 1.95505i −0.494864 0.0872579i
\(503\) −6.72425 11.6468i −0.299820 0.519303i 0.676275 0.736649i \(-0.263593\pi\)
−0.976095 + 0.217346i \(0.930260\pi\)
\(504\) 0 0
\(505\) 0.00119731 0.00207381i 5.32798e−5 9.22833e-5i
\(506\) 2.41176 2.87422i 0.107216 0.127775i
\(507\) 0 0
\(508\) 2.10842 + 11.9574i 0.0935459 + 0.530525i
\(509\) −16.2407 5.91114i −0.719857 0.262007i −0.0439919 0.999032i \(-0.514008\pi\)
−0.675865 + 0.737025i \(0.736230\pi\)
\(510\) 0 0
\(511\) 14.2508 12.5709i 0.630419 0.556106i
\(512\) 22.5118i 0.994888i
\(513\) 0 0
\(514\) −12.7090 + 7.33754i −0.560570 + 0.323645i
\(515\) −0.00890327 0.00156989i −0.000392325 6.91775e-5i
\(516\) 0 0
\(517\) −34.5842 + 6.09812i −1.52101 + 0.268195i
\(518\) −1.29951 + 2.38507i −0.0570971 + 0.104794i
\(519\) 0 0
\(520\) 0.00222116 + 0.00186377i 9.74043e−5 + 8.17319e-5i
\(521\) 28.5570 1.25111 0.625553 0.780182i \(-0.284874\pi\)
0.625553 + 0.780182i \(0.284874\pi\)
\(522\) 0 0
\(523\) 15.1785i 0.663708i −0.943331 0.331854i \(-0.892326\pi\)
0.943331 0.331854i \(-0.107674\pi\)
\(524\) −18.1733 + 6.61455i −0.793905 + 0.288958i
\(525\) 0 0
\(526\) −6.41244 + 5.38068i −0.279596 + 0.234609i
\(527\) −6.36410 + 1.12216i −0.277224 + 0.0488822i
\(528\) 0 0
\(529\) 15.6905 + 13.1659i 0.682196 + 0.572431i
\(530\) −0.00295408 −0.000128317
\(531\) 0 0
\(532\) 22.4425 8.80243i 0.973006 0.381634i
\(533\) 18.4191 + 3.24779i 0.797821 + 0.140677i
\(534\) 0 0
\(535\) 0.00222969 0.000393155i 9.63981e−5 1.69976e-5i
\(536\) −2.56036 3.05132i −0.110591 0.131797i
\(537\) 0 0
\(538\) 3.02823 3.60891i 0.130556 0.155591i
\(539\) −22.5362 24.3094i −0.970703 1.04708i
\(540\) 0 0
\(541\) 8.84080 15.3127i 0.380096 0.658345i −0.610980 0.791646i \(-0.709224\pi\)
0.991076 + 0.133301i \(0.0425577\pi\)
\(542\) 0.340501 1.93108i 0.0146258 0.0829468i
\(543\) 0 0
\(544\) 1.37582 3.78005i 0.0589880 0.162068i
\(545\) 0.000621113 0 0.000226067i 2.66055e−5 0 9.68363e-6i
\(546\) 0 0
\(547\) −1.23750 + 7.01822i −0.0529117 + 0.300077i −0.999767 0.0215823i \(-0.993130\pi\)
0.946855 + 0.321660i \(0.104241\pi\)
\(548\) −15.2402 + 8.79895i −0.651030 + 0.375873i
\(549\) 0 0
\(550\) 5.91184 10.2396i 0.252082 0.436618i
\(551\) 7.60241 43.1154i 0.323873 1.83678i
\(552\) 0 0
\(553\) −5.98633 3.26166i −0.254565 0.138700i
\(554\) 7.36395 + 8.77601i 0.312864 + 0.372857i
\(555\) 0 0
\(556\) −0.467631 + 0.557301i −0.0198320 + 0.0236348i
\(557\) 6.62385 + 3.82428i 0.280662 + 0.162040i 0.633723 0.773560i \(-0.281526\pi\)
−0.353061 + 0.935600i \(0.614859\pi\)
\(558\) 0 0
\(559\) −16.2347 9.37312i −0.686655 0.396441i
\(560\) 0.00121638 0.00361777i 5.14014e−5 0.000152879i
\(561\) 0 0
\(562\) 0.681015 0.571439i 0.0287269 0.0241047i
\(563\) −27.7146 + 23.2553i −1.16803 + 0.980095i −0.999984 0.00568387i \(-0.998191\pi\)
−0.168048 + 0.985779i \(0.553746\pi\)
\(564\) 0 0
\(565\) −0.00283527 0.00778985i −0.000119281 0.000327722i
\(566\) −2.22555 −0.0935467
\(567\) 0 0
\(568\) −16.3710 −0.686910
\(569\) −1.82595 5.01676i −0.0765478 0.210313i 0.895516 0.445029i \(-0.146806\pi\)
−0.972064 + 0.234715i \(0.924584\pi\)
\(570\) 0 0
\(571\) 28.4696 23.8889i 1.19142 0.999718i 0.191584 0.981476i \(-0.438638\pi\)
0.999834 0.0182416i \(-0.00580681\pi\)
\(572\) −17.4876 + 14.6738i −0.731192 + 0.613543i
\(573\) 0 0
\(574\) 1.77619 + 8.79611i 0.0741368 + 0.367143i
\(575\) −6.87043 3.96664i −0.286517 0.165421i
\(576\) 0 0
\(577\) 21.9589 + 12.6780i 0.914161 + 0.527791i 0.881768 0.471684i \(-0.156354\pi\)
0.0323932 + 0.999475i \(0.489687\pi\)
\(578\) −5.25121 + 6.25815i −0.218422 + 0.260305i
\(579\) 0 0
\(580\) −0.00532154 0.00634197i −0.000220965 0.000263336i
\(581\) −0.126125 5.10177i −0.00523256 0.211657i
\(582\) 0 0
\(583\) 8.65269 49.0718i 0.358358 2.03235i
\(584\) 6.72612 11.6500i 0.278329 0.482080i
\(585\) 0 0
\(586\) −3.06813 + 1.77139i −0.126743 + 0.0731754i
\(587\) 2.85469 16.1897i 0.117826 0.668222i −0.867487 0.497460i \(-0.834266\pi\)
0.985312 0.170762i \(-0.0546229\pi\)
\(588\) 0 0
\(589\) −39.4990 14.3765i −1.62753 0.592372i
\(590\) 0.00126853 0.00348526i 5.22246e−5 0.000143486i
\(591\) 0 0
\(592\) 0.916031 5.19507i 0.0376486 0.213516i
\(593\) −15.3209 + 26.5365i −0.629153 + 1.08973i 0.358569 + 0.933503i \(0.383265\pi\)
−0.987722 + 0.156222i \(0.950068\pi\)
\(594\) 0 0
\(595\) 0.000742286 0 0.000930384i 3.04307e−5 0 3.81420e-5i
\(596\) 1.03649 1.23524i 0.0424564 0.0505976i
\(597\) 0 0
\(598\) −1.40243 1.67135i −0.0573495 0.0683465i
\(599\) 19.2428 3.39302i 0.786239 0.138635i 0.233906 0.972259i \(-0.424849\pi\)
0.552332 + 0.833624i \(0.313738\pi\)
\(600\) 0 0
\(601\) 20.6262 + 3.63695i 0.841360 + 0.148354i 0.577688 0.816258i \(-0.303955\pi\)
0.263672 + 0.964612i \(0.415066\pi\)
\(602\) 1.34245 8.89352i 0.0547142 0.362473i
\(603\) 0 0
\(604\) −2.10731 −0.0857453
\(605\) −0.00492042 0.00412872i −0.000200043 0.000167856i
\(606\) 0 0
\(607\) −26.5691 + 4.68485i −1.07841 + 0.190152i −0.684511 0.729003i \(-0.739984\pi\)
−0.393896 + 0.919155i \(0.628873\pi\)
\(608\) 20.0438 16.8188i 0.812884 0.682091i
\(609\) 0 0
\(610\) −0.000958889 0 0.000349007i −3.88243e−5 0 1.41309e-5i
\(611\) 20.4208i 0.826138i
\(612\) 0 0
\(613\) −26.9051 −1.08669 −0.543343 0.839511i \(-0.682842\pi\)
−0.543343 + 0.839511i \(0.682842\pi\)
\(614\) 2.74158 + 2.30046i 0.110641 + 0.0928390i
\(615\) 0 0
\(616\) −20.6058 11.2271i −0.830231 0.452353i
\(617\) 22.1664 3.90853i 0.892386 0.157352i 0.291390 0.956604i \(-0.405882\pi\)
0.600995 + 0.799253i \(0.294771\pi\)
\(618\) 0 0
\(619\) 10.5751 + 1.86467i 0.425047 + 0.0749473i 0.382080 0.924129i \(-0.375208\pi\)
0.0429671 + 0.999076i \(0.486319\pi\)
\(620\) −0.00688367 + 0.00397429i −0.000276455 + 0.000159611i
\(621\) 0 0
\(622\) 11.6095i 0.465499i
\(623\) −2.72837 + 8.11476i −0.109310 + 0.325111i
\(624\) 0 0
\(625\) −23.4923 8.55050i −0.939692 0.342020i
\(626\) 2.07130 + 11.7469i 0.0827856 + 0.469500i
\(627\) 0 0
\(628\) −12.9673 + 15.4538i −0.517451 + 0.616674i
\(629\) 0.822500 1.42461i 0.0327952 0.0568030i
\(630\) 0 0
\(631\) −0.130873 0.226679i −0.00520998 0.00902394i 0.863409 0.504505i \(-0.168325\pi\)
−0.868619 + 0.495481i \(0.834992\pi\)
\(632\) −4.75260 0.838012i −0.189048 0.0333343i
\(633\) 0 0
\(634\) 13.4779 + 4.90554i 0.535274 + 0.194824i
\(635\) 0.000677099 0.00384002i 2.68698e−5 0.000152386i
\(636\) 0 0
\(637\) −16.1967 + 10.4510i −0.641735 + 0.414083i
\(638\) −17.2264 + 9.94569i −0.682001 + 0.393754i
\(639\) 0 0
\(640\) 0.00638861i 0.000252532i
\(641\) 17.0992 + 46.9798i 0.675379 + 1.85559i 0.486753 + 0.873540i \(0.338181\pi\)
0.188626 + 0.982049i \(0.439596\pi\)
\(642\) 0 0
\(643\) −5.42130 + 14.8949i −0.213795 + 0.587397i −0.999514 0.0311869i \(-0.990071\pi\)
0.785718 + 0.618584i \(0.212294\pi\)
\(644\) −3.51609 + 6.45329i −0.138553 + 0.254295i
\(645\) 0 0
\(646\) 1.95427 0.711295i 0.0768896 0.0279855i
\(647\) 7.51759 + 13.0208i 0.295547 + 0.511902i 0.975112 0.221713i \(-0.0711648\pi\)
−0.679565 + 0.733615i \(0.737831\pi\)
\(648\) 0 0
\(649\) 54.1799 + 31.2808i 2.12675 + 1.22788i
\(650\) −5.26688 4.41943i −0.206584 0.173344i
\(651\) 0 0
\(652\) 2.08110 + 11.8025i 0.0815022 + 0.462222i
\(653\) 9.89082 + 11.7874i 0.387058 + 0.461277i 0.924029 0.382323i \(-0.124876\pi\)
−0.536971 + 0.843601i \(0.680432\pi\)
\(654\) 0 0
\(655\) −0.00583619 + 0.00212420i −0.000228039 + 8.29994e-5i
\(656\) −8.71428 15.0936i −0.340236 0.589305i
\(657\) 0 0
\(658\) −9.12121 + 3.57753i −0.355582 + 0.139467i
\(659\) 5.58157 + 15.3352i 0.217427 + 0.597376i 0.999672 0.0255942i \(-0.00814779\pi\)
−0.782245 + 0.622971i \(0.785926\pi\)
\(660\) 0 0
\(661\) 10.2996 28.2979i 0.400608 1.10066i −0.561377 0.827560i \(-0.689728\pi\)
0.961985 0.273102i \(-0.0880496\pi\)
\(662\) 4.44120 12.2021i 0.172612 0.474248i
\(663\) 0 0
\(664\) −1.23560 3.39478i −0.0479505 0.131743i
\(665\) 0.00720720 0.00282682i 0.000279483 0.000109619i
\(666\) 0 0
\(667\) 6.67323 + 11.5584i 0.258388 + 0.447542i
\(668\) 7.62871 2.77662i 0.295164 0.107431i
\(669\) 0 0
\(670\) −0.000383785 0 0.000457377i −1.48269e−5 0 1.76700e-5i
\(671\) −2.98890 16.9509i −0.115385 0.654383i
\(672\) 0 0
\(673\) 8.51271 + 7.14301i 0.328141 + 0.275343i 0.791942 0.610597i \(-0.209070\pi\)
−0.463801 + 0.885939i \(0.653515\pi\)
\(674\) 2.99677 + 1.73018i 0.115431 + 0.0666442i
\(675\) 0 0
\(676\) −4.74182 8.21308i −0.182378 0.315888i
\(677\) −29.2132 + 10.6327i −1.12276 + 0.408650i −0.835657 0.549251i \(-0.814913\pi\)
−0.287099 + 0.957901i \(0.592691\pi\)
\(678\) 0 0
\(679\) −2.27327 + 4.17227i −0.0872401 + 0.160117i
\(680\) 0.000288169 0 0.000791738i 1.10508e−5 0 3.03618e-5i
\(681\) 0 0
\(682\) 6.53185 + 17.9461i 0.250117 + 0.687192i
\(683\) 20.0528i 0.767298i −0.923479 0.383649i \(-0.874667\pi\)
0.923479 0.383649i \(-0.125333\pi\)
\(684\) 0 0
\(685\) −0.00489426 + 0.00282570i −0.000187000 + 0.000107965i
\(686\) −7.50556 5.40353i −0.286564 0.206308i
\(687\) 0 0
\(688\) 3.03339 + 17.2032i 0.115647 + 0.655866i
\(689\) −27.2279 9.91013i −1.03730 0.377546i
\(690\) 0 0
\(691\) −5.23641 0.923321i −0.199203 0.0351248i 0.0731565 0.997320i \(-0.476693\pi\)
−0.272359 + 0.962196i \(0.587804\pi\)
\(692\) −21.0610 36.4787i −0.800618 1.38671i
\(693\) 0 0
\(694\) −0.394867 + 0.683930i −0.0149890 + 0.0259616i
\(695\) −0.000150175 0 0.000178972i −5.69648e−6 0 6.78880e-6i
\(696\) 0 0
\(697\) −0.943752 5.35228i −0.0357472 0.202732i
\(698\) 8.28084 + 3.01398i 0.313435 + 0.114081i
\(699\) 0 0
\(700\) −7.38050 + 21.9512i −0.278957 + 0.829678i
\(701\) 16.0144i 0.604857i −0.953172 0.302428i \(-0.902203\pi\)
0.953172 0.302428i \(-0.0977973\pi\)
\(702\) 0 0
\(703\) 9.26641 5.34997i 0.349489 0.201778i
\(704\) 12.2260 + 2.15577i 0.460785 + 0.0812488i
\(705\) 0 0
\(706\) 1.33841 0.235998i 0.0503718 0.00888192i
\(707\) 9.89575 + 5.39171i 0.372168 + 0.202776i
\(708\) 0 0
\(709\) 0.187155 + 0.157041i 0.00702874 + 0.00589781i 0.646295 0.763087i \(-0.276317\pi\)
−0.639266 + 0.768985i \(0.720762\pi\)
\(710\) −0.00245392 −9.20940e−5
\(711\) 0 0
\(712\) 6.06044i 0.227125i
\(713\) 12.0412 4.38265i 0.450948 0.164132i
\(714\) 0 0
\(715\) −0.00561597 + 0.00471236i −0.000210025 + 0.000176232i
\(716\) −42.5283 + 7.49890i −1.58936 + 0.280247i
\(717\) 0 0
\(718\) −8.75097 7.34294i −0.326583 0.274036i
\(719\) 35.2732 1.31547 0.657734 0.753250i \(-0.271515\pi\)
0.657734 + 0.753250i \(0.271515\pi\)
\(720\) 0 0
\(721\) 6.35021 42.0691i 0.236494 1.56674i
\(722\) 3.97810 + 0.701446i 0.148049 + 0.0261051i
\(723\) 0 0
\(724\) −15.4966 + 2.73246i −0.575926 + 0.101551i
\(725\) 27.0346 + 32.2186i 1.00404 + 1.19657i
\(726\) 0 0
\(727\) −28.8861 + 34.4251i −1.07133 + 1.27676i −0.112229 + 0.993682i \(0.535799\pi\)
−0.959098 + 0.283075i \(0.908645\pi\)
\(728\) −8.51002 + 10.6665i −0.315402 + 0.395326i
\(729\) 0 0
\(730\) 0.00100821 0.00174627i 3.73155e−5 6.46324e-5i
\(731\) −0.945920 + 5.36458i −0.0349861 + 0.198416i
\(732\) 0 0
\(733\) 14.9455 41.0625i 0.552025 1.51668i −0.278915 0.960316i \(-0.589975\pi\)
0.830941 0.556361i \(-0.187803\pi\)
\(734\) 3.46755 + 1.26208i 0.127989 + 0.0465843i
\(735\) 0 0
\(736\) −1.38510 + 7.85530i −0.0510555 + 0.289550i
\(737\) 8.72188 5.03558i 0.321275 0.185488i
\(738\) 0 0
\(739\) −17.7049 + 30.6658i −0.651286 + 1.12806i 0.331526 + 0.943446i \(0.392437\pi\)
−0.982811 + 0.184613i \(0.940897\pi\)
\(740\) 0.000351350 0.00199261i 1.29159e−5 7.32497e-5i
\(741\) 0 0
\(742\) −0.343580 13.8978i −0.0126132 0.510205i
\(743\) −14.2073 16.9316i −0.521216 0.621161i 0.439652 0.898168i \(-0.355102\pi\)
−0.960868 + 0.277007i \(0.910657\pi\)
\(744\) 0 0
\(745\) 0.000332860 0 0.000396687i 1.21951e−5 0 1.45335e-5i
\(746\) 14.0088 + 8.08800i 0.512900 + 0.296123i
\(747\) 0 0
\(748\) 5.74482 + 3.31677i 0.210051 + 0.121273i
\(749\) 2.10898 + 10.4441i 0.0770603 + 0.381621i
\(750\) 0 0
\(751\) 32.1560 26.9821i 1.17339 0.984589i 0.173388 0.984854i \(-0.444529\pi\)
1.00000 0.000264372i \(8.41522e-5\pi\)
\(752\) 14.5771 12.2316i 0.531572 0.446042i
\(753\) 0 0
\(754\) 3.95607 + 10.8692i 0.144071 + 0.395833i
\(755\) −0.000676743 0 −2.46292e−5 0
\(756\) 0 0
\(757\) 7.91633 0.287724 0.143862 0.989598i \(-0.454048\pi\)
0.143862 + 0.989598i \(0.454048\pi\)
\(758\) −1.14912 3.15717i −0.0417377 0.114673i
\(759\) 0 0
\(760\) 0.00419822 0.00352272i 0.000152285 0.000127783i
\(761\) −25.3022 + 21.2310i −0.917202 + 0.769624i −0.973476 0.228791i \(-0.926523\pi\)
0.0562731 + 0.998415i \(0.482078\pi\)
\(762\) 0 0
\(763\) −0.991318 + 2.94839i −0.0358881 + 0.106739i
\(764\) 31.6262 + 18.2594i 1.14420 + 0.660602i
\(765\) 0 0
\(766\) 0.122788 + 0.0708916i 0.00443651 + 0.00256142i
\(767\) 23.3842 27.8682i 0.844354 1.00626i
\(768\) 0 0
\(769\) 19.7511 + 23.5384i 0.712241 + 0.848816i 0.993852 0.110713i \(-0.0353133\pi\)
−0.281611 + 0.959529i \(0.590869\pi\)
\(770\) −0.00308870 0.00168288i −0.000111309 6.06469e-5i
\(771\) 0 0
\(772\) −5.55641 + 31.5120i −0.199980 + 1.13414i
\(773\) −15.7630 + 27.3023i −0.566956 + 0.981997i 0.429909 + 0.902872i \(0.358546\pi\)
−0.996865 + 0.0791245i \(0.974788\pi\)
\(774\) 0 0
\(775\) 34.9706 20.1903i 1.25618 0.725256i
\(776\) −0.584066 + 3.31240i −0.0209668 + 0.118908i
\(777\) 0 0
\(778\) −0.349471 0.127197i −0.0125291 0.00456023i
\(779\) 12.0908 33.2192i 0.433197 1.19020i
\(780\) 0 0
\(781\) 7.18770 40.7635i 0.257196 1.45863i
\(782\) −0.316995 + 0.549052i −0.0113357 + 0.0196341i
\(783\) 0 0
\(784\) 17.1617 + 5.30183i 0.612919 + 0.189351i
\(785\) −0.00416432 + 0.00496285i −0.000148631 + 0.000177132i
\(786\) 0 0
\(787\) 30.6724 + 36.5539i 1.09335 + 1.30301i 0.949625 + 0.313388i \(0.101464\pi\)
0.143726 + 0.989618i \(0.454092\pi\)
\(788\) 17.7687 3.13310i 0.632984 0.111612i
\(789\) 0 0
\(790\) −0.000712390 0 0.000125614i −2.53457e−5 0 4.46913e-6i
\(791\) 36.3186 14.2449i 1.29134 0.506491i
\(792\) 0 0
\(793\) −10.0089 −0.355428
\(794\) 6.39933 + 5.36967i 0.227104 + 0.190563i
\(795\) 0 0
\(796\) −19.2624 + 3.39648i −0.682737 + 0.120385i
\(797\) −29.5128 + 24.7642i −1.04540 + 0.877192i −0.992602 0.121413i \(-0.961257\pi\)
−0.0527949 + 0.998605i \(0.516813\pi\)
\(798\) 0 0
\(799\) 5.57608 2.02953i 0.197267 0.0717995i
\(800\) 25.1361i 0.888696i
\(801\) 0 0
\(802\) 9.22821 0.325859
\(803\) 26.0552 + 21.8629i 0.919467 + 0.771524i
\(804\) 0 0
\(805\) −0.00112916 + 0.00207242i −3.97976e−5 + 7.30430e-5i
\(806\) 10.9366 1.92842i 0.385226 0.0679257i
\(807\) 0 0
\(808\) 7.85632 + 1.38528i 0.276384 + 0.0487340i
\(809\) −36.7753 + 21.2322i −1.29295 + 0.746486i −0.979176 0.203011i \(-0.934927\pi\)
−0.313775 + 0.949497i \(0.601594\pi\)
\(810\) 0 0
\(811\) 22.9043i 0.804277i 0.915579 + 0.402139i \(0.131733\pi\)
−0.915579 + 0.402139i \(0.868267\pi\)
\(812\) 29.2176 25.7735i 1.02534 0.904472i
\(813\) 0 0
\(814\) −4.56826 1.66271i −0.160117 0.0582780i
\(815\) 0.000668326 0.00379027i 2.34104e−5 0.000132767i
\(816\) 0 0
\(817\) −22.7754 + 27.1427i −0.796812 + 0.949603i
\(818\) −4.45012 + 7.70784i −0.155595 + 0.269498i
\(819\) 0 0
\(820\) −0.00334243 0.00578925i −0.000116723 0.000202169i
\(821\) 2.02629 + 0.357290i 0.0707180 + 0.0124695i 0.208895 0.977938i \(-0.433013\pi\)
−0.138177 + 0.990408i \(0.544124\pi\)
\(822\) 0 0
\(823\) −3.04598 1.10865i −0.106176 0.0386450i 0.288386 0.957514i \(-0.406881\pi\)
−0.394562 + 0.918869i \(0.629104\pi\)
\(824\) −5.22995 29.6605i −0.182194 1.03327i
\(825\) 0 0
\(826\) 16.5444 + 5.56260i 0.575652 + 0.193547i
\(827\) −47.0423 + 27.1599i −1.63582 + 0.944441i −0.653569 + 0.756867i \(0.726729\pi\)
−0.982251 + 0.187574i \(0.939938\pi\)
\(828\) 0 0
\(829\) 8.47998i 0.294522i 0.989098 + 0.147261i \(0.0470457\pi\)
−0.989098 + 0.147261i \(0.952954\pi\)
\(830\) −0.000185210 0 0.000508859i −6.42872e−6 0 1.76628e-5i
\(831\) 0 0
\(832\) 2.46906 6.78368i 0.0855992 0.235182i
\(833\) 4.46344 + 3.38396i 0.154649 + 0.117247i
\(834\) 0 0
\(835\) 0.00244989 0.000891687i 8.47819e−5 3.08581e-5i
\(836\) 21.5740 + 37.3673i 0.746153 + 1.29237i
\(837\) 0 0
\(838\) 0.458929 + 0.264963i 0.0158534 + 0.00915299i
\(839\) −11.5622 9.70185i −0.399172 0.334945i 0.421002 0.907060i \(-0.361679\pi\)
−0.820173 + 0.572115i \(0.806123\pi\)
\(840\) 0 0
\(841\) −7.25090 41.1219i −0.250031 1.41800i
\(842\) −4.92480 5.86915i −0.169720 0.202264i
\(843\) 0 0
\(844\) 39.0725 14.2212i 1.34493 0.489515i
\(845\) −0.00152279 0.00263755i −5.23856e−5 9.07346e-5i
\(846\) 0 0
\(847\) 18.8518 23.6289i 0.647756 0.811899i
\(848\) 9.23471 + 25.3722i 0.317121 + 0.871284i
\(849\) 0 0
\(850\) −0.683315 + 1.87739i −0.0234375 + 0.0643940i
\(851\) −1.11562 + 3.06515i −0.0382431 + 0.105072i
\(852\) 0 0
\(853\) −5.23344 14.3788i −0.179190 0.492319i 0.817283 0.576236i \(-0.195479\pi\)
−0.996473 + 0.0839170i \(0.973257\pi\)
\(854\) −1.75347 4.47062i −0.0600026 0.152982i
\(855\) 0 0
\(856\) 3.77132 + 6.53212i 0.128901 + 0.223263i
\(857\) 16.4933 6.00308i 0.563401 0.205061i −0.0445895 0.999005i \(-0.514198\pi\)
0.607991 + 0.793944i \(0.291976\pi\)
\(858\) 0 0
\(859\) −10.1924 12.1469i −0.347761 0.414446i 0.563604 0.826045i \(-0.309415\pi\)
−0.911365 + 0.411600i \(0.864970\pi\)
\(860\) 0.00116348 + 0.00659842i 3.96743e−5 + 0.000225004i
\(861\) 0 0
\(862\) −1.45649 1.22214i −0.0496081 0.0416261i
\(863\) −1.76440 1.01868i −0.0600610 0.0346762i 0.469669 0.882843i \(-0.344373\pi\)
−0.529730 + 0.848166i \(0.677707\pi\)
\(864\) 0 0
\(865\) −0.00676353 0.0117148i −0.000229967 0.000398315i
\(866\) 13.8550 5.04282i 0.470813 0.171362i
\(867\) 0 0
\(868\) −19.4982 31.9229i −0.661811 1.08353i
\(869\) 4.17328 11.4660i 0.141569 0.388957i
\(870\) 0 0
\(871\) −2.00299 5.50316i −0.0678686 0.186468i
\(872\) 2.20198i 0.0745686i
\(873\) 0 0
\(874\) −3.57132 + 2.06190i −0.120802 + 0.0697448i
\(875\) −0.00474036 + 0.0140989i −0.000160253 + 0.000476628i
\(876\) 0 0
\(877\) −3.15820 17.9111i −0.106645 0.604814i −0.990551 0.137148i \(-0.956206\pi\)
0.883906 0.467665i \(-0.154905\pi\)
\(878\) −7.74619 2.81938i −0.261421 0.0951495i
\(879\) 0 0
\(880\) 0.00672770 + 0.00118627i 0.000226791 + 3.99893e-5i
\(881\) −13.3725 23.1618i −0.450530 0.780341i 0.547889 0.836551i \(-0.315432\pi\)
−0.998419 + 0.0562101i \(0.982098\pi\)
\(882\) 0 0
\(883\) 10.5208 18.2226i 0.354054 0.613240i −0.632901 0.774232i \(-0.718136\pi\)
0.986956 + 0.160992i \(0.0514694\pi\)
\(884\) 2.47948 2.95493i 0.0833939 0.0993849i
\(885\) 0 0
\(886\) 2.42234 + 13.7378i 0.0813800 + 0.461529i
\(887\) 20.9254 + 7.61624i 0.702608 + 0.255728i 0.668524 0.743691i \(-0.266926\pi\)
0.0340838 + 0.999419i \(0.489149\pi\)
\(888\) 0 0
\(889\) −17.9871 + 3.63212i −0.603267 + 0.121817i
\(890\) 0 0.000908428i 0 3.04506e-5i
\(891\) 0 0
\(892\) 36.6404 21.1543i 1.22681 0.708300i
\(893\) 38.0110 + 6.70237i 1.27199 + 0.224286i
\(894\) 0 0
\(895\) −0.0136576 + 0.00240820i −0.000456523 + 8.04973e-5i
\(896\) 30.0560 0.743041i 1.00410 0.0248233i
\(897\) 0 0
\(898\) −8.88953 7.45920i −0.296647 0.248917i
\(899\) −67.9336 −2.26571
\(900\) 0 0
\(901\) 8.41972i 0.280502i
\(902\) −15.0929 + 5.49336i −0.502538 + 0.182909i
\(903\) 0 0
\(904\) 21.1557 17.7517i 0.703627 0.590414i
\(905\) −0.00497658 0.000877506i −0.000165427 2.91693e-5i
\(906\) 0 0
\(907\) 2.75474 + 2.31150i 0.0914695 + 0.0767520i 0.687376 0.726302i \(-0.258763\pi\)
−0.595906 + 0.803054i \(0.703207\pi\)
\(908\) 7.49013 0.248569
\(909\) 0 0
\(910\) −0.00127561 + 0.00159885i −4.22860e−5 + 5.30014e-5i
\(911\) 51.8774 + 9.14738i 1.71877 + 0.303066i 0.944189 0.329403i \(-0.106848\pi\)
0.774585 + 0.632470i \(0.217959\pi\)
\(912\) 0 0
\(913\) 8.99544 1.58614i 0.297706 0.0524935i
\(914\) −5.81787 6.93347i −0.192438 0.229339i
\(915\) 0 0
\(916\) 14.5773 17.3725i 0.481647 0.574005i
\(917\) −10.6724 27.2100i −0.352432 0.898555i
\(918\) 0 0
\(919\) −27.2723 + 47.2370i −0.899629 + 1.55820i −0.0716603 + 0.997429i \(0.522830\pi\)
−0.827969 + 0.560774i \(0.810504\pi\)
\(920\) −0.000290112 0.00164531i −9.56472e−6 5.42442e-5i
\(921\) 0 0
\(922\) 0.174032 0.478149i 0.00573144 0.0157470i
\(923\) −22.6179 8.23224i −0.744477 0.270968i
\(924\) 0 0
\(925\) −1.78494 + 10.1229i −0.0586884 + 0.332838i
\(926\) −14.8554 + 8.57676i −0.488178 + 0.281850i
\(927\) 0 0
\(928\) 21.1437 36.6219i 0.694075 1.20217i
\(929\) −7.27715 + 41.2707i −0.238755 + 1.35405i 0.595803 + 0.803130i \(0.296834\pi\)
−0.834559 + 0.550919i \(0.814277\pi\)
\(930\) 0 0
\(931\) 14.1374 + 33.5784i 0.463333 + 1.10049i
\(932\) −12.6086 15.0264i −0.413010 0.492206i
\(933\) 0 0
\(934\) −0.457428 + 0.545142i −0.0149675 + 0.0178376i
\(935\) 0.00184490 + 0.00106515i 6.03345e−5 + 3.48342e-5i
\(936\) 0 0
\(937\) 24.5420 + 14.1693i 0.801751 + 0.462891i 0.844083 0.536212i \(-0.180145\pi\)
−0.0423320 + 0.999104i \(0.513479\pi\)
\(938\) 2.10715 1.85876i 0.0688009 0.0606907i
\(939\) 0 0
\(940\) 0.00559115 0.00469153i 0.000182363 0.000153021i
\(941\) 12.4382 10.4369i 0.405473 0.340232i −0.417132 0.908846i \(-0.636965\pi\)
0.822604 + 0.568614i \(0.192520\pi\)
\(942\) 0 0
\(943\) 3.68586 + 10.1268i 0.120028 + 0.329775i
\(944\) −33.8999 −1.10335
\(945\) 0 0
\(946\) 16.0984 0.523405
\(947\) 3.35614 + 9.22091i 0.109060 + 0.299639i 0.982202 0.187825i \(-0.0601439\pi\)
−0.873143 + 0.487465i \(0.837922\pi\)
\(948\) 0 0
\(949\) 15.1510 12.7132i 0.491822 0.412687i
\(950\) −9.95493 + 8.35318i −0.322981 + 0.271013i
\(951\) 0 0
\(952\) 3.75835 + 1.26364i 0.121809 + 0.0409549i
\(953\) 34.8176 + 20.1019i 1.12785 + 0.651166i 0.943394 0.331675i \(-0.107614\pi\)
0.184458 + 0.982840i \(0.440947\pi\)
\(954\) 0 0
\(955\) 0.0101565 + 0.00586384i 0.000328656 + 0.000189749i
\(956\) −14.1126 + 16.8188i −0.456436 + 0.543959i
\(957\) 0 0
\(958\) −11.4888 13.6919i −0.371188 0.442364i
\(959\) −13.8631 22.6970i −0.447663 0.732924i
\(960\) 0 0
\(961\) −5.94285 + 33.7036i −0.191705 + 1.08721i
\(962\) −1.41345 + 2.44818i −0.0455716 + 0.0789323i
\(963\) 0 0
\(964\) −30.4352 + 17.5718i −0.980251 + 0.565948i
\(965\) −0.00178439 + 0.0101198i −5.74415e−5 + 0.000325767i
\(966\) 0 0
\(967\) −6.39685 2.32826i −0.205709 0.0748719i 0.237111 0.971483i \(-0.423800\pi\)
−0.442820 + 0.896611i \(0.646022\pi\)
\(968\) 7.31862 20.1078i 0.235229 0.646288i
\(969\) 0 0
\(970\) −8.75485e−5 0 0.000496512i −2.81101e−6 0 1.59420e-5i
\(971\) −14.6415 + 25.3599i −0.469869 + 0.813836i −0.999406 0.0344500i \(-0.989032\pi\)
0.529538 + 0.848286i \(0.322365\pi\)
\(972\) 0 0
\(973\) −0.859463 0.685703i −0.0275531 0.0219826i
\(974\) 11.2124 13.3624i 0.359269 0.428160i
\(975\) 0 0
\(976\) 5.99515 + 7.14474i 0.191900 + 0.228698i
\(977\) −7.70964 + 1.35942i −0.246653 + 0.0434916i −0.295608 0.955309i \(-0.595522\pi\)
0.0489546 + 0.998801i \(0.484411\pi\)
\(978\) 0 0
\(979\) −15.0904 2.66085i −0.482291 0.0850410i
\(980\) 0.00658251 + 0.00203356i 0.000210270 + 6.49595e-5i
\(981\) 0 0
\(982\) 5.43528 0.173447
\(983\) −4.61869 3.87554i −0.147313 0.123611i 0.566153 0.824300i \(-0.308431\pi\)
−0.713466 + 0.700690i \(0.752876\pi\)
\(984\) 0 0
\(985\) 0.00570626 0.00100617i 0.000181817 3.20592e-5i
\(986\) 2.57475 2.16048i 0.0819969 0.0688036i
\(987\) 0 0
\(988\) 23.5773 8.58143i 0.750093 0.273012i
\(989\) 10.8015i 0.343468i
\(990\) 0 0
\(991\) 22.6935 0.720884 0.360442 0.932782i \(-0.382626\pi\)
0.360442 + 0.932782i \(0.382626\pi\)
\(992\) −31.1017 26.0974i −0.987480 0.828594i
\(993\) 0 0
\(994\) −0.285409 11.5448i −0.00905261 0.366178i
\(995\) −0.00618594 + 0.00109075i −0.000196107 + 3.45790e-5i
\(996\) 0 0
\(997\) 9.60364 + 1.69338i 0.304150 + 0.0536299i 0.323640 0.946180i \(-0.395093\pi\)
−0.0194901 + 0.999810i \(0.506204\pi\)
\(998\) −2.74449 + 1.58453i −0.0868752 + 0.0501574i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.bd.a.278.14 132
3.2 odd 2 189.2.bd.a.173.9 yes 132
7.3 odd 6 567.2.ba.a.521.9 132
21.17 even 6 189.2.ba.a.38.14 yes 132
27.5 odd 18 567.2.ba.a.530.9 132
27.22 even 9 189.2.ba.a.5.14 132
189.59 even 18 inner 567.2.bd.a.206.14 132
189.157 odd 18 189.2.bd.a.59.9 yes 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.ba.a.5.14 132 27.22 even 9
189.2.ba.a.38.14 yes 132 21.17 even 6
189.2.bd.a.59.9 yes 132 189.157 odd 18
189.2.bd.a.173.9 yes 132 3.2 odd 2
567.2.ba.a.521.9 132 7.3 odd 6
567.2.ba.a.530.9 132 27.5 odd 18
567.2.bd.a.206.14 132 189.59 even 18 inner
567.2.bd.a.278.14 132 1.1 even 1 trivial