Properties

Label 567.2.bd.a.206.14
Level $567$
Weight $2$
Character 567.206
Analytic conductor $4.528$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(17,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([11, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.bd (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 206.14
Character \(\chi\) \(=\) 567.206
Dual form 567.2.bd.a.278.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.170792 - 0.469247i) q^{2} +(1.34107 + 1.12529i) q^{4} +(0.000430671 + 0.000361376i) q^{5} +(1.75023 - 1.98411i) q^{7} +(1.62200 - 0.936464i) q^{8} +(0.000243130 - 0.000140371i) q^{10} +(-3.04392 - 3.62761i) q^{11} +(1.77003 - 2.10944i) q^{13} +(-0.632115 - 1.16016i) q^{14} +(0.445582 + 2.52702i) q^{16} +(0.400086 + 0.692969i) q^{17} +(4.50743 + 2.60237i) q^{19} +(0.000170906 + 0.000969257i) q^{20} +(-2.22212 + 0.808787i) q^{22} +(-0.542669 - 1.49097i) q^{23} +(-0.868241 - 4.92404i) q^{25} +(-0.687542 - 1.19086i) q^{26} +(4.57987 - 0.691318i) q^{28} +(5.40692 + 6.44372i) q^{29} +(-5.19122 + 6.18666i) q^{31} +(4.95085 + 0.872968i) q^{32} +(0.393506 - 0.0693856i) q^{34} +(0.00147078 - 0.000222010i) q^{35} +2.05581 q^{37} +(1.99099 - 1.67064i) q^{38} +(0.00103696 + 0.000182845i) q^{40} +(5.20305 + 4.36588i) q^{41} +(-6.39715 - 2.32837i) q^{43} -8.29015i q^{44} -0.792318 q^{46} +(5.68085 - 4.76680i) q^{47} +(-0.873412 - 6.94530i) q^{49} +(-2.45888 - 0.433567i) q^{50} +(4.74745 - 0.837104i) q^{52} +(-9.11266 - 5.26120i) q^{53} -0.00266231i q^{55} +(0.980823 - 4.85726i) q^{56} +(3.94716 - 1.43665i) q^{58} +(-2.29410 + 13.0105i) q^{59} +(-2.33638 - 2.78438i) q^{61} +(2.01645 + 3.49260i) q^{62} +(-1.31080 + 2.27037i) q^{64} +(0.00152460 - 0.000268828i) q^{65} +(-1.99848 + 0.727386i) q^{67} +(-0.243248 + 1.37953i) q^{68} +(0.000147020 - 0.000728078i) q^{70} +(-7.56979 - 4.37042i) q^{71} +7.18246i q^{73} +(0.351116 - 0.964683i) q^{74} +(3.11635 + 8.56210i) q^{76} +(-12.5251 - 0.309645i) q^{77} +(-2.42128 - 0.881273i) q^{79} +(-0.000721305 + 0.00124934i) q^{80} +(2.93732 - 1.69586i) q^{82} +(-1.47761 + 1.23986i) q^{83} +(-7.81169e-5 + 0.000443023i) q^{85} +(-2.18517 + 2.60418i) q^{86} +(-8.33438 - 3.03347i) q^{88} +(1.61790 - 2.80229i) q^{89} +(-1.08741 - 7.20394i) q^{91} +(0.950016 - 2.61015i) q^{92} +(-1.26656 - 3.47986i) q^{94} +(0.00100079 + 0.00274964i) q^{95} +(0.614218 - 1.68755i) q^{97} +(-3.40823 - 0.776355i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q + 3 q^{2} - 3 q^{4} + 9 q^{5} - 6 q^{7} + 18 q^{8} - 9 q^{10} - 9 q^{11} + 42 q^{14} - 15 q^{16} + 9 q^{17} - 9 q^{19} + 18 q^{20} - 12 q^{22} - 30 q^{23} - 3 q^{25} - 12 q^{28} - 6 q^{29} - 9 q^{31}+ \cdots + 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.170792 0.469247i 0.120768 0.331808i −0.864547 0.502551i \(-0.832395\pi\)
0.985316 + 0.170744i \(0.0546169\pi\)
\(3\) 0 0
\(4\) 1.34107 + 1.12529i 0.670533 + 0.562644i
\(5\) 0.000430671 0 0.000361376i 0.000192602 0 0.000161612i 0.642884 0.765964i \(-0.277738\pi\)
−0.642691 + 0.766125i \(0.722182\pi\)
\(6\) 0 0
\(7\) 1.75023 1.98411i 0.661524 0.749924i
\(8\) 1.62200 0.936464i 0.573465 0.331090i
\(9\) 0 0
\(10\) 0.000243130 0 0.000140371i 7.68844e−5 0 4.43892e-5i
\(11\) −3.04392 3.62761i −0.917778 1.09376i −0.995306 0.0967748i \(-0.969147\pi\)
0.0775286 0.996990i \(-0.475297\pi\)
\(12\) 0 0
\(13\) 1.77003 2.10944i 0.490918 0.585053i −0.462533 0.886602i \(-0.653059\pi\)
0.953451 + 0.301549i \(0.0975036\pi\)
\(14\) −0.632115 1.16016i −0.168940 0.310066i
\(15\) 0 0
\(16\) 0.445582 + 2.52702i 0.111395 + 0.631755i
\(17\) 0.400086 + 0.692969i 0.0970351 + 0.168070i 0.910456 0.413606i \(-0.135731\pi\)
−0.813421 + 0.581675i \(0.802397\pi\)
\(18\) 0 0
\(19\) 4.50743 + 2.60237i 1.03408 + 0.597024i 0.918150 0.396234i \(-0.129683\pi\)
0.115926 + 0.993258i \(0.463016\pi\)
\(20\) 0.000170906 0 0.000969257i 3.82158e−5 0 0.000216732i
\(21\) 0 0
\(22\) −2.22212 + 0.808787i −0.473758 + 0.172434i
\(23\) −0.542669 1.49097i −0.113154 0.310889i 0.870169 0.492753i \(-0.164009\pi\)
−0.983324 + 0.181864i \(0.941787\pi\)
\(24\) 0 0
\(25\) −0.868241 4.92404i −0.173648 0.984808i
\(26\) −0.687542 1.19086i −0.134838 0.233546i
\(27\) 0 0
\(28\) 4.57987 0.691318i 0.865514 0.130647i
\(29\) 5.40692 + 6.44372i 1.00404 + 1.19657i 0.980434 + 0.196847i \(0.0630702\pi\)
0.0236057 + 0.999721i \(0.492485\pi\)
\(30\) 0 0
\(31\) −5.19122 + 6.18666i −0.932371 + 1.11116i 0.0612205 + 0.998124i \(0.480501\pi\)
−0.993591 + 0.113032i \(0.963944\pi\)
\(32\) 4.95085 + 0.872968i 0.875194 + 0.154320i
\(33\) 0 0
\(34\) 0.393506 0.0693856i 0.0674856 0.0118995i
\(35\) 0.00147078 0.000222010i 0.000248608 3.75266e-5i
\(36\) 0 0
\(37\) 2.05581 0.337973 0.168986 0.985618i \(-0.445951\pi\)
0.168986 + 0.985618i \(0.445951\pi\)
\(38\) 1.99099 1.67064i 0.322981 0.271013i
\(39\) 0 0
\(40\) 0.00103696 0.000182845i 0.000163959 2.89103e-5i
\(41\) 5.20305 + 4.36588i 0.812580 + 0.681836i 0.951222 0.308507i \(-0.0998292\pi\)
−0.138642 + 0.990343i \(0.544274\pi\)
\(42\) 0 0
\(43\) −6.39715 2.32837i −0.975556 0.355073i −0.195445 0.980715i \(-0.562615\pi\)
−0.780111 + 0.625641i \(0.784837\pi\)
\(44\) 8.29015i 1.24979i
\(45\) 0 0
\(46\) −0.792318 −0.116821
\(47\) 5.68085 4.76680i 0.828638 0.695310i −0.126340 0.991987i \(-0.540323\pi\)
0.954978 + 0.296677i \(0.0958786\pi\)
\(48\) 0 0
\(49\) −0.873412 6.94530i −0.124773 0.992185i
\(50\) −2.45888 0.433567i −0.347738 0.0613156i
\(51\) 0 0
\(52\) 4.74745 0.837104i 0.658353 0.116085i
\(53\) −9.11266 5.26120i −1.25172 0.722681i −0.280269 0.959921i \(-0.590424\pi\)
−0.971451 + 0.237241i \(0.923757\pi\)
\(54\) 0 0
\(55\) 0.00266231i 0.000358985i
\(56\) 0.980823 4.85726i 0.131068 0.649079i
\(57\) 0 0
\(58\) 3.94716 1.43665i 0.518287 0.188641i
\(59\) −2.29410 + 13.0105i −0.298666 + 1.69382i 0.353251 + 0.935529i \(0.385076\pi\)
−0.651917 + 0.758291i \(0.726035\pi\)
\(60\) 0 0
\(61\) −2.33638 2.78438i −0.299142 0.356504i 0.595446 0.803395i \(-0.296975\pi\)
−0.894588 + 0.446892i \(0.852531\pi\)
\(62\) 2.01645 + 3.49260i 0.256090 + 0.443560i
\(63\) 0 0
\(64\) −1.31080 + 2.27037i −0.163850 + 0.283797i
\(65\) 0.00152460 0.000268828i 0.000189103 3.33440e-5i
\(66\) 0 0
\(67\) −1.99848 + 0.727386i −0.244153 + 0.0888644i −0.461198 0.887297i \(-0.652580\pi\)
0.217045 + 0.976162i \(0.430358\pi\)
\(68\) −0.243248 + 1.37953i −0.0294982 + 0.167292i
\(69\) 0 0
\(70\) 0.000147020 0 0.000728078i 1.75723e−5 0 8.70220e-5i
\(71\) −7.56979 4.37042i −0.898369 0.518673i −0.0216981 0.999765i \(-0.506907\pi\)
−0.876671 + 0.481091i \(0.840241\pi\)
\(72\) 0 0
\(73\) 7.18246i 0.840644i 0.907375 + 0.420322i \(0.138083\pi\)
−0.907375 + 0.420322i \(0.861917\pi\)
\(74\) 0.351116 0.964683i 0.0408164 0.112142i
\(75\) 0 0
\(76\) 3.11635 + 8.56210i 0.357470 + 0.982140i
\(77\) −12.5251 0.309645i −1.42737 0.0352873i
\(78\) 0 0
\(79\) −2.42128 0.881273i −0.272415 0.0991510i 0.202201 0.979344i \(-0.435191\pi\)
−0.474616 + 0.880193i \(0.657413\pi\)
\(80\) −0.000721305 0.00124934i −8.06443e−5 0.000139680i
\(81\) 0 0
\(82\) 2.93732 1.69586i 0.324373 0.187277i
\(83\) −1.47761 + 1.23986i −0.162188 + 0.136092i −0.720270 0.693694i \(-0.755982\pi\)
0.558082 + 0.829786i \(0.311538\pi\)
\(84\) 0 0
\(85\) −7.81169e−5 0 0.000443023i −8.47297e−6 0 4.80526e-5i
\(86\) −2.18517 + 2.60418i −0.235632 + 0.280816i
\(87\) 0 0
\(88\) −8.33438 3.03347i −0.888448 0.323369i
\(89\) 1.61790 2.80229i 0.171498 0.297043i −0.767446 0.641114i \(-0.778473\pi\)
0.938944 + 0.344071i \(0.111806\pi\)
\(90\) 0 0
\(91\) −1.08741 7.20394i −0.113992 0.755178i
\(92\) 0.950016 2.61015i 0.0990461 0.272127i
\(93\) 0 0
\(94\) −1.26656 3.47986i −0.130636 0.358920i
\(95\) 0.00100079 + 0.00274964i 0.000102679 + 0.000282107i
\(96\) 0 0
\(97\) 0.614218 1.68755i 0.0623644 0.171345i −0.904597 0.426268i \(-0.859828\pi\)
0.966961 + 0.254923i \(0.0820502\pi\)
\(98\) −3.40823 0.776355i −0.344284 0.0784237i
\(99\) 0 0
\(100\) 4.37659 7.58048i 0.437659 0.758048i
\(101\) 4.00251 + 1.45679i 0.398265 + 0.144957i 0.533385 0.845873i \(-0.320920\pi\)
−0.135120 + 0.990829i \(0.543142\pi\)
\(102\) 0 0
\(103\) −10.3365 + 12.3186i −1.01849 + 1.21379i −0.0417981 + 0.999126i \(0.513309\pi\)
−0.976689 + 0.214660i \(0.931136\pi\)
\(104\) 0.895580 5.07909i 0.0878189 0.498046i
\(105\) 0 0
\(106\) −4.02517 + 3.37752i −0.390959 + 0.328054i
\(107\) 3.48765 2.01360i 0.337164 0.194662i −0.321853 0.946790i \(-0.604306\pi\)
0.659017 + 0.752128i \(0.270972\pi\)
\(108\) 0 0
\(109\) 0.587845 1.01818i 0.0563054 0.0975238i −0.836499 0.547969i \(-0.815401\pi\)
0.892804 + 0.450445i \(0.148735\pi\)
\(110\) −0.00124928 0.000454701i −0.000119114 4.33540e-5i
\(111\) 0 0
\(112\) 5.79376 + 3.53877i 0.547459 + 0.334383i
\(113\) 5.04317 + 13.8560i 0.474422 + 1.30346i 0.914166 + 0.405340i \(0.132847\pi\)
−0.439745 + 0.898123i \(0.644931\pi\)
\(114\) 0 0
\(115\) 0.000305089 0 0.000838225i 2.84497e−5 0 7.81649e-5i
\(116\) 14.7258i 1.36726i
\(117\) 0 0
\(118\) 5.71332 + 3.29858i 0.525953 + 0.303659i
\(119\) 2.07517 + 0.419037i 0.190231 + 0.0384131i
\(120\) 0 0
\(121\) −1.98393 + 11.2514i −0.180358 + 1.02286i
\(122\) −1.70560 + 0.620787i −0.154418 + 0.0562034i
\(123\) 0 0
\(124\) −13.9235 + 2.45510i −1.25037 + 0.220474i
\(125\) 0.00281100 0.00486880i 0.000251424 0.000435479i
\(126\) 0 0
\(127\) −3.46785 6.00649i −0.307722 0.532990i 0.670142 0.742233i \(-0.266233\pi\)
−0.977864 + 0.209243i \(0.932900\pi\)
\(128\) 7.30436 + 8.70500i 0.645621 + 0.769421i
\(129\) 0 0
\(130\) 0.000134243 0 0.000761329i 1.17739e−5 0 6.67729e-5i
\(131\) −10.3810 + 3.77837i −0.906990 + 0.330117i −0.753050 0.657963i \(-0.771418\pi\)
−0.153940 + 0.988080i \(0.549196\pi\)
\(132\) 0 0
\(133\) 13.0524 4.38852i 1.13179 0.380533i
\(134\) 1.06201i 0.0917438i
\(135\) 0 0
\(136\) 1.29788 + 0.749332i 0.111292 + 0.0642547i
\(137\) −9.89957 + 1.74556i −0.845777 + 0.149133i −0.579712 0.814822i \(-0.696835\pi\)
−0.266065 + 0.963955i \(0.585724\pi\)
\(138\) 0 0
\(139\) −0.409252 0.0721623i −0.0347123 0.00612072i 0.156265 0.987715i \(-0.450055\pi\)
−0.190977 + 0.981594i \(0.561166\pi\)
\(140\) 0.00222224 + 0.00135732i 0.000187814 + 0.000114715i
\(141\) 0 0
\(142\) −3.34367 + 2.80567i −0.280594 + 0.235447i
\(143\) −13.0401 −1.09046
\(144\) 0 0
\(145\) 0.00472905i 0.000392726i
\(146\) 3.37035 + 1.22671i 0.278932 + 0.101523i
\(147\) 0 0
\(148\) 2.75697 + 2.31338i 0.226622 + 0.190158i
\(149\) 0.907098 + 0.159946i 0.0743124 + 0.0131033i 0.210681 0.977555i \(-0.432432\pi\)
−0.136368 + 0.990658i \(0.543543\pi\)
\(150\) 0 0
\(151\) −0.922118 + 0.773749i −0.0750409 + 0.0629668i −0.679537 0.733642i \(-0.737819\pi\)
0.604496 + 0.796608i \(0.293375\pi\)
\(152\) 9.74809 0.790674
\(153\) 0 0
\(154\) −2.28450 + 5.82451i −0.184090 + 0.469352i
\(155\) −0.00447142 0.000788431i −0.000359153 6.33283e-5i
\(156\) 0 0
\(157\) −11.3485 2.00104i −0.905706 0.159700i −0.298653 0.954362i \(-0.596537\pi\)
−0.607053 + 0.794661i \(0.707648\pi\)
\(158\) −0.827070 + 0.985664i −0.0657982 + 0.0784152i
\(159\) 0 0
\(160\) 0.00181672 + 0.00216508i 0.000143624 + 0.000171164i
\(161\) −3.90805 1.53282i −0.307997 0.120803i
\(162\) 0 0
\(163\) −3.42292 5.92867i −0.268104 0.464369i 0.700268 0.713880i \(-0.253064\pi\)
−0.968372 + 0.249510i \(0.919730\pi\)
\(164\) 2.06477 + 11.7099i 0.161231 + 0.914387i
\(165\) 0 0
\(166\) 0.329437 + 0.905120i 0.0255693 + 0.0702510i
\(167\) 4.35768 1.58606i 0.337207 0.122733i −0.167866 0.985810i \(-0.553688\pi\)
0.505073 + 0.863076i \(0.331465\pi\)
\(168\) 0 0
\(169\) 0.940696 + 5.33495i 0.0723613 + 0.410381i
\(170\) 0.000194546 0 0.000112321i 1.49210e−5 0 8.61462e-6i
\(171\) 0 0
\(172\) −5.95891 10.3211i −0.454363 0.786979i
\(173\) 4.17814 + 23.6954i 0.317658 + 1.80153i 0.556914 + 0.830570i \(0.311985\pi\)
−0.239256 + 0.970956i \(0.576904\pi\)
\(174\) 0 0
\(175\) −11.2895 6.89550i −0.853404 0.521250i
\(176\) 7.81072 9.30846i 0.588755 0.701651i
\(177\) 0 0
\(178\) −1.03864 1.23781i −0.0778496 0.0927776i
\(179\) −21.3630 + 12.3339i −1.59674 + 0.921880i −0.604634 + 0.796503i \(0.706681\pi\)
−0.992109 + 0.125377i \(0.959986\pi\)
\(180\) 0 0
\(181\) −7.78429 + 4.49426i −0.578601 + 0.334056i −0.760577 0.649247i \(-0.775084\pi\)
0.181976 + 0.983303i \(0.441751\pi\)
\(182\) −3.56615 0.720110i −0.264341 0.0533781i
\(183\) 0 0
\(184\) −2.27645 1.91017i −0.167822 0.140820i
\(185\) 0.000885377 0 0.000742919i 6.50942e−5 0 5.46205e-5i
\(186\) 0 0
\(187\) 1.29599 3.56070i 0.0947721 0.260384i
\(188\) 12.9824 0.946841
\(189\) 0 0
\(190\) 0.00146119 0.000106006
\(191\) 7.13465 19.6023i 0.516245 1.41837i −0.358382 0.933575i \(-0.616672\pi\)
0.874627 0.484796i \(-0.161106\pi\)
\(192\) 0 0
\(193\) −14.0017 11.7489i −1.00787 0.845701i −0.0198124 0.999804i \(-0.506307\pi\)
−0.988055 + 0.154103i \(0.950751\pi\)
\(194\) −0.686975 0.576440i −0.0493219 0.0413860i
\(195\) 0 0
\(196\) 6.64415 10.2969i 0.474582 0.735496i
\(197\) 8.92564 5.15322i 0.635925 0.367152i −0.147118 0.989119i \(-0.547000\pi\)
0.783043 + 0.621967i \(0.213666\pi\)
\(198\) 0 0
\(199\) −9.67594 + 5.58641i −0.685909 + 0.396010i −0.802078 0.597220i \(-0.796272\pi\)
0.116168 + 0.993230i \(0.462939\pi\)
\(200\) −6.01947 7.17373i −0.425641 0.507259i
\(201\) 0 0
\(202\) 1.36719 1.62936i 0.0961955 0.114641i
\(203\) 22.2484 + 0.550022i 1.56153 + 0.0386040i
\(204\) 0 0
\(205\) 0.000663080 0.00376051i 4.63115e−5 0.000262646i
\(206\) 4.01507 + 6.95430i 0.279743 + 0.484529i
\(207\) 0 0
\(208\) 6.11929 + 3.53297i 0.424297 + 0.244968i
\(209\) −4.27991 24.2726i −0.296048 1.67897i
\(210\) 0 0
\(211\) 22.3190 8.12346i 1.53651 0.559242i 0.571302 0.820740i \(-0.306439\pi\)
0.965204 + 0.261498i \(0.0842165\pi\)
\(212\) −6.30032 17.3100i −0.432707 1.18885i
\(213\) 0 0
\(214\) −0.349212 1.98048i −0.0238716 0.135383i
\(215\) −0.00191365 0.00331454i −0.000130510 0.000226050i
\(216\) 0 0
\(217\) 3.18921 + 21.1280i 0.216498 + 1.43426i
\(218\) −0.377378 0.449742i −0.0255593 0.0304603i
\(219\) 0 0
\(220\) 0.00299586 0.00357033i 0.000201981 0.000240711i
\(221\) 2.16994 + 0.382619i 0.145966 + 0.0257378i
\(222\) 0 0
\(223\) 23.8004 4.19666i 1.59380 0.281029i 0.694871 0.719134i \(-0.255461\pi\)
0.898924 + 0.438105i \(0.144350\pi\)
\(224\) 10.3972 8.29515i 0.694690 0.554243i
\(225\) 0 0
\(226\) 7.36322 0.489794
\(227\) 3.27753 2.75018i 0.217537 0.182536i −0.527506 0.849551i \(-0.676873\pi\)
0.745044 + 0.667015i \(0.232428\pi\)
\(228\) 0 0
\(229\) 12.7575 + 2.24949i 0.843037 + 0.148650i 0.578456 0.815713i \(-0.303655\pi\)
0.264581 + 0.964364i \(0.414766\pi\)
\(230\) −0.000341228 0 0.000286324i −2.24999e−5 0 1.88797e-5i
\(231\) 0 0
\(232\) 14.8044 + 5.38834i 0.971953 + 0.353762i
\(233\) 11.2048i 0.734052i 0.930211 + 0.367026i \(0.119624\pi\)
−0.930211 + 0.367026i \(0.880376\pi\)
\(234\) 0 0
\(235\) 0.00416919 0.000271968
\(236\) −17.7171 + 14.8664i −1.15328 + 0.967719i
\(237\) 0 0
\(238\) 0.551055 0.902200i 0.0357196 0.0584810i
\(239\) −12.3508 2.17779i −0.798909 0.140869i −0.240733 0.970591i \(-0.577388\pi\)
−0.558177 + 0.829722i \(0.688499\pi\)
\(240\) 0 0
\(241\) −19.7697 + 3.48594i −1.27348 + 0.224549i −0.769209 0.638997i \(-0.779350\pi\)
−0.504271 + 0.863546i \(0.668239\pi\)
\(242\) 4.94087 + 2.85261i 0.317611 + 0.183373i
\(243\) 0 0
\(244\) 6.36314i 0.407358i
\(245\) 0.00213371 0.00330677i 0.000136318 0.000211262i
\(246\) 0 0
\(247\) 13.4678 4.90189i 0.856937 0.311900i
\(248\) −2.62660 + 14.8962i −0.166789 + 0.945908i
\(249\) 0 0
\(250\) −0.00180458 0.00215061i −0.000114131 0.000136016i
\(251\) −11.2730 19.5255i −0.711547 1.23244i −0.964276 0.264899i \(-0.914661\pi\)
0.252729 0.967537i \(-0.418672\pi\)
\(252\) 0 0
\(253\) −3.75681 + 6.50699i −0.236189 + 0.409091i
\(254\) −3.41081 + 0.601418i −0.214013 + 0.0377363i
\(255\) 0 0
\(256\) 0.405328 0.147528i 0.0253330 0.00922047i
\(257\) 5.10311 28.9412i 0.318323 1.80530i −0.234627 0.972085i \(-0.575387\pi\)
0.552950 0.833214i \(-0.313502\pi\)
\(258\) 0 0
\(259\) 3.59813 4.07896i 0.223577 0.253454i
\(260\) 0.00234710 + 0.00135510i 0.000145561 + 8.40396e-5i
\(261\) 0 0
\(262\) 5.51656i 0.340814i
\(263\) 5.73330 15.7521i 0.353531 0.971318i −0.627696 0.778459i \(-0.716002\pi\)
0.981227 0.192859i \(-0.0617760\pi\)
\(264\) 0 0
\(265\) −0.00202329 0.00555894i −0.000124290 0.000341483i
\(266\) 0.169947 6.87434i 0.0104201 0.421493i
\(267\) 0 0
\(268\) −3.49861 1.27339i −0.213711 0.0777846i
\(269\) −4.71711 + 8.17027i −0.287607 + 0.498150i −0.973238 0.229799i \(-0.926193\pi\)
0.685631 + 0.727949i \(0.259526\pi\)
\(270\) 0 0
\(271\) −3.40065 + 1.96337i −0.206575 + 0.119266i −0.599719 0.800211i \(-0.704721\pi\)
0.393144 + 0.919477i \(0.371388\pi\)
\(272\) −1.57288 + 1.31980i −0.0953696 + 0.0800246i
\(273\) 0 0
\(274\) −0.871668 + 4.94347i −0.0526594 + 0.298646i
\(275\) −15.2196 + 18.1380i −0.917778 + 1.09376i
\(276\) 0 0
\(277\) 21.5582 + 7.84655i 1.29531 + 0.471454i 0.895466 0.445130i \(-0.146843\pi\)
0.399843 + 0.916584i \(0.369065\pi\)
\(278\) −0.103759 + 0.179716i −0.00622305 + 0.0107786i
\(279\) 0 0
\(280\) 0.00217771 0.00173744i 0.000130143 0.000103832i
\(281\) −0.608889 + 1.67291i −0.0363233 + 0.0997974i −0.956528 0.291639i \(-0.905799\pi\)
0.920205 + 0.391436i \(0.128022\pi\)
\(282\) 0 0
\(283\) −1.52431 4.18800i −0.0906106 0.248951i 0.886107 0.463482i \(-0.153400\pi\)
−0.976717 + 0.214531i \(0.931178\pi\)
\(284\) −5.23361 14.3792i −0.310557 0.853249i
\(285\) 0 0
\(286\) −2.22714 + 6.11901i −0.131693 + 0.361825i
\(287\) 17.7689 2.68217i 1.04887 0.158323i
\(288\) 0 0
\(289\) 8.17986 14.1679i 0.481168 0.833408i
\(290\) 0.00221909 0.000807684i 0.000130310 4.74289e-5i
\(291\) 0 0
\(292\) −8.08234 + 9.63216i −0.472983 + 0.563679i
\(293\) 1.23196 6.98681i 0.0719721 0.408174i −0.927443 0.373965i \(-0.877998\pi\)
0.999415 0.0342085i \(-0.0108910\pi\)
\(294\) 0 0
\(295\) −0.00568967 + 0.00477420i −0.000331265 + 0.000277965i
\(296\) 3.33453 1.92519i 0.193815 0.111899i
\(297\) 0 0
\(298\) 0.229979 0.398336i 0.0133223 0.0230750i
\(299\) −4.10565 1.49434i −0.237436 0.0864197i
\(300\) 0 0
\(301\) −15.8162 + 8.61749i −0.911632 + 0.496704i
\(302\) 0.205589 + 0.564852i 0.0118303 + 0.0325036i
\(303\) 0 0
\(304\) −4.56780 + 12.5499i −0.261981 + 0.719788i
\(305\) 0.00204346i 0.000117008i
\(306\) 0 0
\(307\) 6.20672 + 3.58345i 0.354236 + 0.204518i 0.666549 0.745461i \(-0.267771\pi\)
−0.312313 + 0.949979i \(0.601104\pi\)
\(308\) −16.4486 14.5096i −0.937246 0.826764i
\(309\) 0 0
\(310\) −0.000393713 0.00223286i −2.23614e−5 0.000126818i
\(311\) 21.8466 7.95150i 1.23881 0.450888i 0.362201 0.932100i \(-0.382025\pi\)
0.876605 + 0.481212i \(0.159803\pi\)
\(312\) 0 0
\(313\) 23.5238 4.14788i 1.32964 0.234452i 0.536713 0.843765i \(-0.319666\pi\)
0.792930 + 0.609313i \(0.208555\pi\)
\(314\) −2.87721 + 4.98347i −0.162370 + 0.281234i
\(315\) 0 0
\(316\) −2.25541 3.90648i −0.126877 0.219757i
\(317\) 18.4623 + 22.0025i 1.03695 + 1.23579i 0.971279 + 0.237944i \(0.0764735\pi\)
0.0656685 + 0.997841i \(0.479082\pi\)
\(318\) 0 0
\(319\) 6.91702 39.2284i 0.387279 2.19637i
\(320\) −0.00138498 0.000504092i −7.74228e−5 2.81796e-5i
\(321\) 0 0
\(322\) −1.38674 + 1.57205i −0.0772798 + 0.0876068i
\(323\) 4.16468i 0.231729i
\(324\) 0 0
\(325\) −11.9238 6.88420i −0.661412 0.381866i
\(326\) −3.36662 + 0.593626i −0.186460 + 0.0328779i
\(327\) 0 0
\(328\) 12.5279 + 2.20900i 0.691735 + 0.121972i
\(329\) 0.484906 19.6144i 0.0267337 1.08138i
\(330\) 0 0
\(331\) −19.9199 + 16.7148i −1.09490 + 0.918726i −0.997071 0.0764775i \(-0.975633\pi\)
−0.0978240 + 0.995204i \(0.531188\pi\)
\(332\) −3.37676 −0.185324
\(333\) 0 0
\(334\) 2.31571i 0.126710i
\(335\) −0.00112355 0.000408937i −6.13858e−5 2.23426e-5i
\(336\) 0 0
\(337\) 5.30836 + 4.45424i 0.289165 + 0.242638i 0.775817 0.630958i \(-0.217338\pi\)
−0.486653 + 0.873596i \(0.661782\pi\)
\(338\) 2.66408 + 0.469749i 0.144907 + 0.0255510i
\(339\) 0 0
\(340\) −0.000603288 0 0.000506219i −3.27179e−5 0 2.74536e-5i
\(341\) 38.2444 2.07105
\(342\) 0 0
\(343\) −15.3089 10.4229i −0.826604 0.562783i
\(344\) −12.5566 + 2.21407i −0.677008 + 0.119375i
\(345\) 0 0
\(346\) 11.8326 + 2.08640i 0.636124 + 0.112166i
\(347\) 1.01656 1.21149i 0.0545718 0.0650361i −0.738068 0.674726i \(-0.764262\pi\)
0.792640 + 0.609690i \(0.208706\pi\)
\(348\) 0 0
\(349\) 11.3433 + 13.5184i 0.607194 + 0.723626i 0.978812 0.204760i \(-0.0656414\pi\)
−0.371618 + 0.928386i \(0.621197\pi\)
\(350\) −5.16384 + 4.11986i −0.276019 + 0.220216i
\(351\) 0 0
\(352\) −11.9032 20.6170i −0.634444 1.09889i
\(353\) 0.472599 + 2.68024i 0.0251539 + 0.142655i 0.994798 0.101865i \(-0.0324809\pi\)
−0.969644 + 0.244520i \(0.921370\pi\)
\(354\) 0 0
\(355\) −0.00168072 0.00461775i −8.92035e−5 0.000245085i
\(356\) 5.32310 1.93745i 0.282124 0.102685i
\(357\) 0 0
\(358\) 2.13903 + 12.1311i 0.113051 + 0.641146i
\(359\) −19.8115 11.4382i −1.04561 0.603683i −0.124193 0.992258i \(-0.539634\pi\)
−0.921417 + 0.388575i \(0.872968\pi\)
\(360\) 0 0
\(361\) 4.04462 + 7.00549i 0.212875 + 0.368710i
\(362\) 0.779425 + 4.42034i 0.0409657 + 0.232328i
\(363\) 0 0
\(364\) 6.64821 10.8846i 0.348461 0.570509i
\(365\) −0.00259557 + 0.00309328i −0.000135858 + 0.000161910i
\(366\) 0 0
\(367\) 4.74994 + 5.66075i 0.247945 + 0.295489i 0.875634 0.482975i \(-0.160444\pi\)
−0.627690 + 0.778464i \(0.715999\pi\)
\(368\) 3.52591 2.03569i 0.183801 0.106117i
\(369\) 0 0
\(370\) 0.000499828 0 0.000288576i 2.59848e−5 0 1.50023e-5i
\(371\) −26.3880 + 8.87226i −1.37000 + 0.460625i
\(372\) 0 0
\(373\) 24.8147 + 20.8220i 1.28486 + 1.07812i 0.992555 + 0.121797i \(0.0388658\pi\)
0.292302 + 0.956326i \(0.405579\pi\)
\(374\) −1.44950 1.21628i −0.0749521 0.0628923i
\(375\) 0 0
\(376\) 4.75042 13.0517i 0.244984 0.673089i
\(377\) 23.1631 1.19296
\(378\) 0 0
\(379\) −6.72815 −0.345602 −0.172801 0.984957i \(-0.555282\pi\)
−0.172801 + 0.984957i \(0.555282\pi\)
\(380\) −0.00175201 + 0.00481362i −8.98764e−5 + 0.000246933i
\(381\) 0 0
\(382\) −7.97978 6.69583i −0.408281 0.342588i
\(383\) 0.217502 + 0.182506i 0.0111138 + 0.00932560i 0.648328 0.761361i \(-0.275469\pi\)
−0.637214 + 0.770687i \(0.719913\pi\)
\(384\) 0 0
\(385\) −0.00528232 0.00465964i −0.000269212 0.000237477i
\(386\) −7.90450 + 4.56367i −0.402329 + 0.232285i
\(387\) 0 0
\(388\) 2.72269 1.57194i 0.138223 0.0798033i
\(389\) −0.478715 0.570510i −0.0242718 0.0289260i 0.753772 0.657136i \(-0.228232\pi\)
−0.778044 + 0.628210i \(0.783788\pi\)
\(390\) 0 0
\(391\) 0.816083 0.972570i 0.0412711 0.0491850i
\(392\) −7.92070 10.4474i −0.400056 0.527672i
\(393\) 0 0
\(394\) −0.893706 5.06846i −0.0450243 0.255345i
\(395\) −0.000724303 0.00125453i −3.64437e−5 6.31223e-5i
\(396\) 0 0
\(397\) 14.4875 + 8.36439i 0.727109 + 0.419797i 0.817364 0.576122i \(-0.195435\pi\)
−0.0902545 + 0.995919i \(0.528768\pi\)
\(398\) 0.968833 + 5.49452i 0.0485632 + 0.275416i
\(399\) 0 0
\(400\) 12.0563 4.38812i 0.602814 0.219406i
\(401\) 6.32052 + 17.3655i 0.315632 + 0.867191i 0.991493 + 0.130162i \(0.0415498\pi\)
−0.675861 + 0.737029i \(0.736228\pi\)
\(402\) 0 0
\(403\) 3.86176 + 21.9011i 0.192368 + 1.09097i
\(404\) 3.72832 + 6.45763i 0.185491 + 0.321279i
\(405\) 0 0
\(406\) 4.05795 10.3461i 0.201393 0.513467i
\(407\) −6.25772 7.45767i −0.310184 0.369663i
\(408\) 0 0
\(409\) 11.4565 13.6534i 0.566489 0.675116i −0.404417 0.914575i \(-0.632526\pi\)
0.970906 + 0.239459i \(0.0769701\pi\)
\(410\) 0.00187786 0.000331117i 9.27409e−5 1.63527e-5i
\(411\) 0 0
\(412\) −27.7239 + 4.88847i −1.36586 + 0.240838i
\(413\) 21.7991 + 27.3230i 1.07266 + 1.34448i
\(414\) 0 0
\(415\) −0.00108442 −5.32319e−5
\(416\) 10.6046 8.89834i 0.519934 0.436277i
\(417\) 0 0
\(418\) −12.1208 2.13723i −0.592849 0.104535i
\(419\) 0.812929 + 0.682129i 0.0397142 + 0.0333242i 0.662429 0.749125i \(-0.269526\pi\)
−0.622715 + 0.782449i \(0.713970\pi\)
\(420\) 0 0
\(421\) −14.4175 5.24755i −0.702667 0.255750i −0.0341181 0.999418i \(-0.510862\pi\)
−0.668549 + 0.743668i \(0.733084\pi\)
\(422\) 11.8606i 0.577364i
\(423\) 0 0
\(424\) −19.7077 −0.957090
\(425\) 3.06484 2.57170i 0.148666 0.124746i
\(426\) 0 0
\(427\) −9.61372 0.237669i −0.465241 0.0115016i
\(428\) 6.94305 + 1.22425i 0.335605 + 0.0591762i
\(429\) 0 0
\(430\) −0.00188217 0.000331878i −9.07665e−5 1.60046e-5i
\(431\) −3.29736 1.90373i −0.158828 0.0916996i 0.418479 0.908226i \(-0.362563\pi\)
−0.577308 + 0.816527i \(0.695897\pi\)
\(432\) 0 0
\(433\) 29.5261i 1.41893i 0.704739 + 0.709467i \(0.251064\pi\)
−0.704739 + 0.709467i \(0.748936\pi\)
\(434\) 10.4590 + 2.11197i 0.502046 + 0.101378i
\(435\) 0 0
\(436\) 1.93408 0.703949i 0.0926258 0.0337130i
\(437\) 1.43401 8.13267i 0.0685980 0.389038i
\(438\) 0 0
\(439\) −10.6109 12.6456i −0.506432 0.603543i 0.450885 0.892582i \(-0.351109\pi\)
−0.957317 + 0.289040i \(0.906664\pi\)
\(440\) −0.00249315 0.00431827i −0.000118856 0.000205865i
\(441\) 0 0
\(442\) 0.550152 0.952891i 0.0261681 0.0453244i
\(443\) 27.5106 4.85086i 1.30707 0.230471i 0.523632 0.851945i \(-0.324577\pi\)
0.783435 + 0.621474i \(0.213466\pi\)
\(444\) 0 0
\(445\) 0.00170947 0.000622194i 8.10364e−5 2.94948e-5i
\(446\) 2.09565 11.8850i 0.0992321 0.562773i
\(447\) 0 0
\(448\) 2.21048 + 6.57444i 0.104435 + 0.310613i
\(449\) −20.1252 11.6193i −0.949765 0.548347i −0.0567572 0.998388i \(-0.518076\pi\)
−0.893008 + 0.450041i \(0.851409\pi\)
\(450\) 0 0
\(451\) 32.1640i 1.51455i
\(452\) −8.82876 + 24.2568i −0.415270 + 1.14094i
\(453\) 0 0
\(454\) −0.730736 2.00768i −0.0342952 0.0942252i
\(455\) 0.00213501 0.00349549i 0.000100091 0.000163871i
\(456\) 0 0
\(457\) −17.0320 6.19915i −0.796724 0.289984i −0.0885960 0.996068i \(-0.528238\pi\)
−0.708128 + 0.706084i \(0.750460\pi\)
\(458\) 3.23444 5.60221i 0.151135 0.261774i
\(459\) 0 0
\(460\) 0.00135239 0.000780802i 6.30555e−5 3.64051e-5i
\(461\) −0.780576 + 0.654981i −0.0363550 + 0.0305055i −0.660784 0.750576i \(-0.729776\pi\)
0.624429 + 0.781081i \(0.285332\pi\)
\(462\) 0 0
\(463\) 5.96496 33.8290i 0.277215 1.57216i −0.454621 0.890685i \(-0.650225\pi\)
0.731837 0.681480i \(-0.238663\pi\)
\(464\) −13.8742 + 16.5346i −0.644093 + 0.767600i
\(465\) 0 0
\(466\) 5.25783 + 1.91369i 0.243564 + 0.0886502i
\(467\) 0.712541 1.23416i 0.0329724 0.0571100i −0.849068 0.528283i \(-0.822836\pi\)
0.882041 + 0.471173i \(0.156169\pi\)
\(468\) 0 0
\(469\) −2.05457 + 5.23830i −0.0948713 + 0.241882i
\(470\) 0.000712064 0.00195638i 3.28451e−5 9.02410e-5i
\(471\) 0 0
\(472\) 8.46280 + 23.2514i 0.389532 + 1.07023i
\(473\) 11.0260 + 30.2937i 0.506977 + 1.39291i
\(474\) 0 0
\(475\) 8.90062 24.4542i 0.408388 1.12204i
\(476\) 2.31140 + 2.89712i 0.105943 + 0.132789i
\(477\) 0 0
\(478\) −3.13135 + 5.42365i −0.143224 + 0.248072i
\(479\) −33.6340 12.2418i −1.53678 0.559341i −0.571507 0.820597i \(-0.693641\pi\)
−0.965270 + 0.261256i \(0.915863\pi\)
\(480\) 0 0
\(481\) 3.63884 4.33660i 0.165917 0.197732i
\(482\) −1.74075 + 9.87226i −0.0792888 + 0.449669i
\(483\) 0 0
\(484\) −15.3217 + 12.8564i −0.696441 + 0.584383i
\(485\) 0.000874365 0 0.000504815i 3.97029e−5 0 2.29225e-5i
\(486\) 0 0
\(487\) −17.4657 + 30.2515i −0.791446 + 1.37082i 0.133625 + 0.991032i \(0.457338\pi\)
−0.925071 + 0.379793i \(0.875995\pi\)
\(488\) −6.39708 2.32835i −0.289582 0.105399i
\(489\) 0 0
\(490\) −0.00118727 0.00156601i −5.36354e−5 7.07450e-5i
\(491\) 3.72269 + 10.2280i 0.168003 + 0.461584i 0.994912 0.100752i \(-0.0321249\pi\)
−0.826909 + 0.562336i \(0.809903\pi\)
\(492\) 0 0
\(493\) −2.30206 + 6.32487i −0.103680 + 0.284858i
\(494\) 7.15694i 0.322006i
\(495\) 0 0
\(496\) −17.9469 10.3617i −0.805841 0.465252i
\(497\) −21.9203 + 7.37009i −0.983258 + 0.330594i
\(498\) 0 0
\(499\) 1.10201 6.24980i 0.0493326 0.279779i −0.950155 0.311777i \(-0.899076\pi\)
0.999488 + 0.0319977i \(0.0101869\pi\)
\(500\) 0.00924854 0.00336619i 0.000413607 0.000150541i
\(501\) 0 0
\(502\) −11.0876 + 1.95505i −0.494864 + 0.0872579i
\(503\) −6.72425 + 11.6468i −0.299820 + 0.519303i −0.976095 0.217346i \(-0.930260\pi\)
0.676275 + 0.736649i \(0.263593\pi\)
\(504\) 0 0
\(505\) 0.00119731 + 0.00207381i 5.32798e−5 + 9.22833e-5i
\(506\) 2.41176 + 2.87422i 0.107216 + 0.127775i
\(507\) 0 0
\(508\) 2.10842 11.9574i 0.0935459 0.530525i
\(509\) −16.2407 + 5.91114i −0.719857 + 0.262007i −0.675865 0.737025i \(-0.736230\pi\)
−0.0439919 + 0.999032i \(0.514008\pi\)
\(510\) 0 0
\(511\) 14.2508 + 12.5709i 0.630419 + 0.556106i
\(512\) 22.5118i 0.994888i
\(513\) 0 0
\(514\) −12.7090 7.33754i −0.560570 0.323645i
\(515\) −0.00890327 + 0.00156989i −0.000392325 + 6.91775e-5i
\(516\) 0 0
\(517\) −34.5842 6.09812i −1.52101 0.268195i
\(518\) −1.29951 2.38507i −0.0570971 0.104794i
\(519\) 0 0
\(520\) 0.00222116 0.00186377i 9.74043e−5 8.17319e-5i
\(521\) 28.5570 1.25111 0.625553 0.780182i \(-0.284874\pi\)
0.625553 + 0.780182i \(0.284874\pi\)
\(522\) 0 0
\(523\) 15.1785i 0.663708i 0.943331 + 0.331854i \(0.107674\pi\)
−0.943331 + 0.331854i \(0.892326\pi\)
\(524\) −18.1733 6.61455i −0.793905 0.288958i
\(525\) 0 0
\(526\) −6.41244 5.38068i −0.279596 0.234609i
\(527\) −6.36410 1.12216i −0.277224 0.0488822i
\(528\) 0 0
\(529\) 15.6905 13.1659i 0.682196 0.572431i
\(530\) −0.00295408 −0.000128317
\(531\) 0 0
\(532\) 22.4425 + 8.80243i 0.973006 + 0.381634i
\(533\) 18.4191 3.24779i 0.797821 0.140677i
\(534\) 0 0
\(535\) 0.00222969 0.000393155i 9.63981e−5 1.69976e-5i
\(536\) −2.56036 + 3.05132i −0.110591 + 0.131797i
\(537\) 0 0
\(538\) 3.02823 + 3.60891i 0.130556 + 0.155591i
\(539\) −22.5362 + 24.3094i −0.970703 + 1.04708i
\(540\) 0 0
\(541\) 8.84080 + 15.3127i 0.380096 + 0.658345i 0.991076 0.133301i \(-0.0425577\pi\)
−0.610980 + 0.791646i \(0.709224\pi\)
\(542\) 0.340501 + 1.93108i 0.0146258 + 0.0829468i
\(543\) 0 0
\(544\) 1.37582 + 3.78005i 0.0589880 + 0.162068i
\(545\) 0.000621113 0 0.000226067i 2.66055e−5 0 9.68363e-6i
\(546\) 0 0
\(547\) −1.23750 7.01822i −0.0529117 0.300077i 0.946855 0.321660i \(-0.104241\pi\)
−0.999767 + 0.0215823i \(0.993130\pi\)
\(548\) −15.2402 8.79895i −0.651030 0.375873i
\(549\) 0 0
\(550\) 5.91184 + 10.2396i 0.252082 + 0.436618i
\(551\) 7.60241 + 43.1154i 0.323873 + 1.83678i
\(552\) 0 0
\(553\) −5.98633 + 3.26166i −0.254565 + 0.138700i
\(554\) 7.36395 8.77601i 0.312864 0.372857i
\(555\) 0 0
\(556\) −0.467631 0.557301i −0.0198320 0.0236348i
\(557\) 6.62385 3.82428i 0.280662 0.162040i −0.353061 0.935600i \(-0.614859\pi\)
0.633723 + 0.773560i \(0.281526\pi\)
\(558\) 0 0
\(559\) −16.2347 + 9.37312i −0.686655 + 0.396441i
\(560\) 0.00121638 + 0.00361777i 5.14014e−5 + 0.000152879i
\(561\) 0 0
\(562\) 0.681015 + 0.571439i 0.0287269 + 0.0241047i
\(563\) −27.7146 23.2553i −1.16803 0.980095i −0.168048 0.985779i \(-0.553746\pi\)
−0.999984 + 0.00568387i \(0.998191\pi\)
\(564\) 0 0
\(565\) −0.00283527 + 0.00778985i −0.000119281 + 0.000327722i
\(566\) −2.22555 −0.0935467
\(567\) 0 0
\(568\) −16.3710 −0.686910
\(569\) −1.82595 + 5.01676i −0.0765478 + 0.210313i −0.972064 0.234715i \(-0.924584\pi\)
0.895516 + 0.445029i \(0.146806\pi\)
\(570\) 0 0
\(571\) 28.4696 + 23.8889i 1.19142 + 0.999718i 0.999834 + 0.0182416i \(0.00580681\pi\)
0.191584 + 0.981476i \(0.438638\pi\)
\(572\) −17.4876 14.6738i −0.731192 0.613543i
\(573\) 0 0
\(574\) 1.77619 8.79611i 0.0741368 0.367143i
\(575\) −6.87043 + 3.96664i −0.286517 + 0.165421i
\(576\) 0 0
\(577\) 21.9589 12.6780i 0.914161 0.527791i 0.0323932 0.999475i \(-0.489687\pi\)
0.881768 + 0.471684i \(0.156354\pi\)
\(578\) −5.25121 6.25815i −0.218422 0.260305i
\(579\) 0 0
\(580\) −0.00532154 + 0.00634197i −0.000220965 + 0.000263336i
\(581\) −0.126125 + 5.10177i −0.00523256 + 0.211657i
\(582\) 0 0
\(583\) 8.65269 + 49.0718i 0.358358 + 2.03235i
\(584\) 6.72612 + 11.6500i 0.278329 + 0.482080i
\(585\) 0 0
\(586\) −3.06813 1.77139i −0.126743 0.0731754i
\(587\) 2.85469 + 16.1897i 0.117826 + 0.668222i 0.985312 + 0.170762i \(0.0546229\pi\)
−0.867487 + 0.497460i \(0.834266\pi\)
\(588\) 0 0
\(589\) −39.4990 + 14.3765i −1.62753 + 0.592372i
\(590\) 0.00126853 + 0.00348526i 5.22246e−5 + 0.000143486i
\(591\) 0 0
\(592\) 0.916031 + 5.19507i 0.0376486 + 0.213516i
\(593\) −15.3209 26.5365i −0.629153 1.08973i −0.987722 0.156222i \(-0.950068\pi\)
0.358569 0.933503i \(-0.383265\pi\)
\(594\) 0 0
\(595\) 0.000742286 0 0.000930384i 3.04307e−5 0 3.81420e-5i
\(596\) 1.03649 + 1.23524i 0.0424564 + 0.0505976i
\(597\) 0 0
\(598\) −1.40243 + 1.67135i −0.0573495 + 0.0683465i
\(599\) 19.2428 + 3.39302i 0.786239 + 0.138635i 0.552332 0.833624i \(-0.313738\pi\)
0.233906 + 0.972259i \(0.424849\pi\)
\(600\) 0 0
\(601\) 20.6262 3.63695i 0.841360 0.148354i 0.263672 0.964612i \(-0.415066\pi\)
0.577688 + 0.816258i \(0.303955\pi\)
\(602\) 1.34245 + 8.89352i 0.0547142 + 0.362473i
\(603\) 0 0
\(604\) −2.10731 −0.0857453
\(605\) −0.00492042 + 0.00412872i −0.000200043 + 0.000167856i
\(606\) 0 0
\(607\) −26.5691 4.68485i −1.07841 0.190152i −0.393896 0.919155i \(-0.628873\pi\)
−0.684511 + 0.729003i \(0.739984\pi\)
\(608\) 20.0438 + 16.8188i 0.812884 + 0.682091i
\(609\) 0 0
\(610\) −0.000958889 0 0.000349007i −3.88243e−5 0 1.41309e-5i
\(611\) 20.4208i 0.826138i
\(612\) 0 0
\(613\) −26.9051 −1.08669 −0.543343 0.839511i \(-0.682842\pi\)
−0.543343 + 0.839511i \(0.682842\pi\)
\(614\) 2.74158 2.30046i 0.110641 0.0928390i
\(615\) 0 0
\(616\) −20.6058 + 11.2271i −0.830231 + 0.452353i
\(617\) 22.1664 + 3.90853i 0.892386 + 0.157352i 0.600995 0.799253i \(-0.294771\pi\)
0.291390 + 0.956604i \(0.405882\pi\)
\(618\) 0 0
\(619\) 10.5751 1.86467i 0.425047 0.0749473i 0.0429671 0.999076i \(-0.486319\pi\)
0.382080 + 0.924129i \(0.375208\pi\)
\(620\) −0.00688367 0.00397429i −0.000276455 0.000159611i
\(621\) 0 0
\(622\) 11.6095i 0.465499i
\(623\) −2.72837 8.11476i −0.109310 0.325111i
\(624\) 0 0
\(625\) −23.4923 + 8.55050i −0.939692 + 0.342020i
\(626\) 2.07130 11.7469i 0.0827856 0.469500i
\(627\) 0 0
\(628\) −12.9673 15.4538i −0.517451 0.616674i
\(629\) 0.822500 + 1.42461i 0.0327952 + 0.0568030i
\(630\) 0 0
\(631\) −0.130873 + 0.226679i −0.00520998 + 0.00902394i −0.868619 0.495481i \(-0.834992\pi\)
0.863409 + 0.504505i \(0.168325\pi\)
\(632\) −4.75260 + 0.838012i −0.189048 + 0.0333343i
\(633\) 0 0
\(634\) 13.4779 4.90554i 0.535274 0.194824i
\(635\) 0.000677099 0.00384002i 2.68698e−5 0.000152386i
\(636\) 0 0
\(637\) −16.1967 10.4510i −0.641735 0.414083i
\(638\) −17.2264 9.94569i −0.682001 0.393754i
\(639\) 0 0
\(640\) 0.00638861i 0.000252532i
\(641\) 17.0992 46.9798i 0.675379 1.85559i 0.188626 0.982049i \(-0.439596\pi\)
0.486753 0.873540i \(-0.338181\pi\)
\(642\) 0 0
\(643\) −5.42130 14.8949i −0.213795 0.587397i 0.785718 0.618584i \(-0.212294\pi\)
−0.999514 + 0.0311869i \(0.990071\pi\)
\(644\) −3.51609 6.45329i −0.138553 0.254295i
\(645\) 0 0
\(646\) 1.95427 + 0.711295i 0.0768896 + 0.0279855i
\(647\) 7.51759 13.0208i 0.295547 0.511902i −0.679565 0.733615i \(-0.737831\pi\)
0.975112 + 0.221713i \(0.0711648\pi\)
\(648\) 0 0
\(649\) 54.1799 31.2808i 2.12675 1.22788i
\(650\) −5.26688 + 4.41943i −0.206584 + 0.173344i
\(651\) 0 0
\(652\) 2.08110 11.8025i 0.0815022 0.462222i
\(653\) 9.89082 11.7874i 0.387058 0.461277i −0.536971 0.843601i \(-0.680432\pi\)
0.924029 + 0.382323i \(0.124876\pi\)
\(654\) 0 0
\(655\) −0.00583619 0.00212420i −0.000228039 8.29994e-5i
\(656\) −8.71428 + 15.0936i −0.340236 + 0.589305i
\(657\) 0 0
\(658\) −9.12121 3.57753i −0.355582 0.139467i
\(659\) 5.58157 15.3352i 0.217427 0.597376i −0.782245 0.622971i \(-0.785926\pi\)
0.999672 + 0.0255942i \(0.00814779\pi\)
\(660\) 0 0
\(661\) 10.2996 + 28.2979i 0.400608 + 1.10066i 0.961985 + 0.273102i \(0.0880496\pi\)
−0.561377 + 0.827560i \(0.689728\pi\)
\(662\) 4.44120 + 12.2021i 0.172612 + 0.474248i
\(663\) 0 0
\(664\) −1.23560 + 3.39478i −0.0479505 + 0.131743i
\(665\) 0.00720720 + 0.00282682i 0.000279483 + 0.000109619i
\(666\) 0 0
\(667\) 6.67323 11.5584i 0.258388 0.447542i
\(668\) 7.62871 + 2.77662i 0.295164 + 0.107431i
\(669\) 0 0
\(670\) −0.000383785 0 0.000457377i −1.48269e−5 0 1.76700e-5i
\(671\) −2.98890 + 16.9509i −0.115385 + 0.654383i
\(672\) 0 0
\(673\) 8.51271 7.14301i 0.328141 0.275343i −0.463801 0.885939i \(-0.653515\pi\)
0.791942 + 0.610597i \(0.209070\pi\)
\(674\) 2.99677 1.73018i 0.115431 0.0666442i
\(675\) 0 0
\(676\) −4.74182 + 8.21308i −0.182378 + 0.315888i
\(677\) −29.2132 10.6327i −1.12276 0.408650i −0.287099 0.957901i \(-0.592691\pi\)
−0.835657 + 0.549251i \(0.814913\pi\)
\(678\) 0 0
\(679\) −2.27327 4.17227i −0.0872401 0.160117i
\(680\) 0.000288169 0 0.000791738i 1.10508e−5 0 3.03618e-5i
\(681\) 0 0
\(682\) 6.53185 17.9461i 0.250117 0.687192i
\(683\) 20.0528i 0.767298i 0.923479 + 0.383649i \(0.125333\pi\)
−0.923479 + 0.383649i \(0.874667\pi\)
\(684\) 0 0
\(685\) −0.00489426 0.00282570i −0.000187000 0.000107965i
\(686\) −7.50556 + 5.40353i −0.286564 + 0.206308i
\(687\) 0 0
\(688\) 3.03339 17.2032i 0.115647 0.655866i
\(689\) −27.2279 + 9.91013i −1.03730 + 0.377546i
\(690\) 0 0
\(691\) −5.23641 + 0.923321i −0.199203 + 0.0351248i −0.272359 0.962196i \(-0.587804\pi\)
0.0731565 + 0.997320i \(0.476693\pi\)
\(692\) −21.0610 + 36.4787i −0.800618 + 1.38671i
\(693\) 0 0
\(694\) −0.394867 0.683930i −0.0149890 0.0259616i
\(695\) −0.000150175 0 0.000178972i −5.69648e−6 0 6.78880e-6i
\(696\) 0 0
\(697\) −0.943752 + 5.35228i −0.0357472 + 0.202732i
\(698\) 8.28084 3.01398i 0.313435 0.114081i
\(699\) 0 0
\(700\) −7.38050 21.9512i −0.278957 0.829678i
\(701\) 16.0144i 0.604857i 0.953172 + 0.302428i \(0.0977973\pi\)
−0.953172 + 0.302428i \(0.902203\pi\)
\(702\) 0 0
\(703\) 9.26641 + 5.34997i 0.349489 + 0.201778i
\(704\) 12.2260 2.15577i 0.460785 0.0812488i
\(705\) 0 0
\(706\) 1.33841 + 0.235998i 0.0503718 + 0.00888192i
\(707\) 9.89575 5.39171i 0.372168 0.202776i
\(708\) 0 0
\(709\) 0.187155 0.157041i 0.00702874 0.00589781i −0.639266 0.768985i \(-0.720762\pi\)
0.646295 + 0.763087i \(0.276317\pi\)
\(710\) −0.00245392 −9.20940e−5
\(711\) 0 0
\(712\) 6.06044i 0.227125i
\(713\) 12.0412 + 4.38265i 0.450948 + 0.164132i
\(714\) 0 0
\(715\) −0.00561597 0.00471236i −0.000210025 0.000176232i
\(716\) −42.5283 7.49890i −1.58936 0.280247i
\(717\) 0 0
\(718\) −8.75097 + 7.34294i −0.326583 + 0.274036i
\(719\) 35.2732 1.31547 0.657734 0.753250i \(-0.271515\pi\)
0.657734 + 0.753250i \(0.271515\pi\)
\(720\) 0 0
\(721\) 6.35021 + 42.0691i 0.236494 + 1.56674i
\(722\) 3.97810 0.701446i 0.148049 0.0261051i
\(723\) 0 0
\(724\) −15.4966 2.73246i −0.575926 0.101551i
\(725\) 27.0346 32.2186i 1.00404 1.19657i
\(726\) 0 0
\(727\) −28.8861 34.4251i −1.07133 1.27676i −0.959098 0.283075i \(-0.908645\pi\)
−0.112229 0.993682i \(-0.535799\pi\)
\(728\) −8.51002 10.6665i −0.315402 0.395326i
\(729\) 0 0
\(730\) 0.00100821 + 0.00174627i 3.73155e−5 + 6.46324e-5i
\(731\) −0.945920 5.36458i −0.0349861 0.198416i
\(732\) 0 0
\(733\) 14.9455 + 41.0625i 0.552025 + 1.51668i 0.830941 + 0.556361i \(0.187803\pi\)
−0.278915 + 0.960316i \(0.589975\pi\)
\(734\) 3.46755 1.26208i 0.127989 0.0465843i
\(735\) 0 0
\(736\) −1.38510 7.85530i −0.0510555 0.289550i
\(737\) 8.72188 + 5.03558i 0.321275 + 0.185488i
\(738\) 0 0
\(739\) −17.7049 30.6658i −0.651286 1.12806i −0.982811 0.184613i \(-0.940897\pi\)
0.331526 0.943446i \(-0.392437\pi\)
\(740\) 0.000351350 0.00199261i 1.29159e−5 7.32497e-5i
\(741\) 0 0
\(742\) −0.343580 + 13.8978i −0.0126132 + 0.510205i
\(743\) −14.2073 + 16.9316i −0.521216 + 0.621161i −0.960868 0.277007i \(-0.910657\pi\)
0.439652 + 0.898168i \(0.355102\pi\)
\(744\) 0 0
\(745\) 0.000332860 0 0.000396687i 1.21951e−5 0 1.45335e-5i
\(746\) 14.0088 8.08800i 0.512900 0.296123i
\(747\) 0 0
\(748\) 5.74482 3.31677i 0.210051 0.121273i
\(749\) 2.10898 10.4441i 0.0770603 0.381621i
\(750\) 0 0
\(751\) 32.1560 + 26.9821i 1.17339 + 0.984589i 1.00000 0.000264372i \(-8.41522e-5\pi\)
0.173388 + 0.984854i \(0.444529\pi\)
\(752\) 14.5771 + 12.2316i 0.531572 + 0.446042i
\(753\) 0 0
\(754\) 3.95607 10.8692i 0.144071 0.395833i
\(755\) −0.000676743 0 −2.46292e−5 0
\(756\) 0 0
\(757\) 7.91633 0.287724 0.143862 0.989598i \(-0.454048\pi\)
0.143862 + 0.989598i \(0.454048\pi\)
\(758\) −1.14912 + 3.15717i −0.0417377 + 0.114673i
\(759\) 0 0
\(760\) 0.00419822 + 0.00352272i 0.000152285 + 0.000127783i
\(761\) −25.3022 21.2310i −0.917202 0.769624i 0.0562731 0.998415i \(-0.482078\pi\)
−0.973476 + 0.228791i \(0.926523\pi\)
\(762\) 0 0
\(763\) −0.991318 2.94839i −0.0358881 0.106739i
\(764\) 31.6262 18.2594i 1.14420 0.660602i
\(765\) 0 0
\(766\) 0.122788 0.0708916i 0.00443651 0.00256142i
\(767\) 23.3842 + 27.8682i 0.844354 + 1.00626i
\(768\) 0 0
\(769\) 19.7511 23.5384i 0.712241 0.848816i −0.281611 0.959529i \(-0.590869\pi\)
0.993852 + 0.110713i \(0.0353133\pi\)
\(770\) −0.00308870 + 0.00168288i −0.000111309 + 6.06469e-5i
\(771\) 0 0
\(772\) −5.55641 31.5120i −0.199980 1.13414i
\(773\) −15.7630 27.3023i −0.566956 0.981997i −0.996865 0.0791245i \(-0.974788\pi\)
0.429909 0.902872i \(-0.358546\pi\)
\(774\) 0 0
\(775\) 34.9706 + 20.1903i 1.25618 + 0.725256i
\(776\) −0.584066 3.31240i −0.0209668 0.118908i
\(777\) 0 0
\(778\) −0.349471 + 0.127197i −0.0125291 + 0.00456023i
\(779\) 12.0908 + 33.2192i 0.433197 + 1.19020i
\(780\) 0 0
\(781\) 7.18770 + 40.7635i 0.257196 + 1.45863i
\(782\) −0.316995 0.549052i −0.0113357 0.0196341i
\(783\) 0 0
\(784\) 17.1617 5.30183i 0.612919 0.189351i
\(785\) −0.00416432 0.00496285i −0.000148631 0.000177132i
\(786\) 0 0
\(787\) 30.6724 36.5539i 1.09335 1.30301i 0.143726 0.989618i \(-0.454092\pi\)
0.949625 0.313388i \(-0.101464\pi\)
\(788\) 17.7687 + 3.13310i 0.632984 + 0.111612i
\(789\) 0 0
\(790\) −0.000712390 0 0.000125614i −2.53457e−5 0 4.46913e-6i
\(791\) 36.3186 + 14.2449i 1.29134 + 0.506491i
\(792\) 0 0
\(793\) −10.0089 −0.355428
\(794\) 6.39933 5.36967i 0.227104 0.190563i
\(795\) 0 0
\(796\) −19.2624 3.39648i −0.682737 0.120385i
\(797\) −29.5128 24.7642i −1.04540 0.877192i −0.0527949 0.998605i \(-0.516813\pi\)
−0.992602 + 0.121413i \(0.961257\pi\)
\(798\) 0 0
\(799\) 5.57608 + 2.02953i 0.197267 + 0.0717995i
\(800\) 25.1361i 0.888696i
\(801\) 0 0
\(802\) 9.22821 0.325859
\(803\) 26.0552 21.8629i 0.919467 0.771524i
\(804\) 0 0
\(805\) −0.00112916 0.00207242i −3.97976e−5 7.30430e-5i
\(806\) 10.9366 + 1.92842i 0.385226 + 0.0679257i
\(807\) 0 0
\(808\) 7.85632 1.38528i 0.276384 0.0487340i
\(809\) −36.7753 21.2322i −1.29295 0.746486i −0.313775 0.949497i \(-0.601594\pi\)
−0.979176 + 0.203011i \(0.934927\pi\)
\(810\) 0 0
\(811\) 22.9043i 0.804277i −0.915579 0.402139i \(-0.868267\pi\)
0.915579 0.402139i \(-0.131733\pi\)
\(812\) 29.2176 + 25.7735i 1.02534 + 0.904472i
\(813\) 0 0
\(814\) −4.56826 + 1.66271i −0.160117 + 0.0582780i
\(815\) 0.000668326 0.00379027i 2.34104e−5 0.000132767i
\(816\) 0 0
\(817\) −22.7754 27.1427i −0.796812 0.949603i
\(818\) −4.45012 7.70784i −0.155595 0.269498i
\(819\) 0 0
\(820\) −0.00334243 + 0.00578925i −0.000116723 + 0.000202169i
\(821\) 2.02629 0.357290i 0.0707180 0.0124695i −0.138177 0.990408i \(-0.544124\pi\)
0.208895 + 0.977938i \(0.433013\pi\)
\(822\) 0 0
\(823\) −3.04598 + 1.10865i −0.106176 + 0.0386450i −0.394562 0.918869i \(-0.629104\pi\)
0.288386 + 0.957514i \(0.406881\pi\)
\(824\) −5.22995 + 29.6605i −0.182194 + 1.03327i
\(825\) 0 0
\(826\) 16.5444 5.56260i 0.575652 0.193547i
\(827\) −47.0423 27.1599i −1.63582 0.944441i −0.982251 0.187574i \(-0.939938\pi\)
−0.653569 0.756867i \(-0.726729\pi\)
\(828\) 0 0
\(829\) 8.47998i 0.294522i −0.989098 0.147261i \(-0.952954\pi\)
0.989098 0.147261i \(-0.0470457\pi\)
\(830\) −0.000185210 0 0.000508859i −6.42872e−6 0 1.76628e-5i
\(831\) 0 0
\(832\) 2.46906 + 6.78368i 0.0855992 + 0.235182i
\(833\) 4.46344 3.38396i 0.154649 0.117247i
\(834\) 0 0
\(835\) 0.00244989 0.000891687i 8.47819e−5 3.08581e-5i
\(836\) 21.5740 37.3673i 0.746153 1.29237i
\(837\) 0 0
\(838\) 0.458929 0.264963i 0.0158534 0.00915299i
\(839\) −11.5622 + 9.70185i −0.399172 + 0.334945i −0.820173 0.572115i \(-0.806123\pi\)
0.421002 + 0.907060i \(0.361679\pi\)
\(840\) 0 0
\(841\) −7.25090 + 41.1219i −0.250031 + 1.41800i
\(842\) −4.92480 + 5.86915i −0.169720 + 0.202264i
\(843\) 0 0
\(844\) 39.0725 + 14.2212i 1.34493 + 0.489515i
\(845\) −0.00152279 + 0.00263755i −5.23856e−5 + 9.07346e-5i
\(846\) 0 0
\(847\) 18.8518 + 23.6289i 0.647756 + 0.811899i
\(848\) 9.23471 25.3722i 0.317121 0.871284i
\(849\) 0 0
\(850\) −0.683315 1.87739i −0.0234375 0.0643940i
\(851\) −1.11562 3.06515i −0.0382431 0.105072i
\(852\) 0 0
\(853\) −5.23344 + 14.3788i −0.179190 + 0.492319i −0.996473 0.0839170i \(-0.973257\pi\)
0.817283 + 0.576236i \(0.195479\pi\)
\(854\) −1.75347 + 4.47062i −0.0600026 + 0.152982i
\(855\) 0 0
\(856\) 3.77132 6.53212i 0.128901 0.223263i
\(857\) 16.4933 + 6.00308i 0.563401 + 0.205061i 0.607991 0.793944i \(-0.291976\pi\)
−0.0445895 + 0.999005i \(0.514198\pi\)
\(858\) 0 0
\(859\) −10.1924 + 12.1469i −0.347761 + 0.414446i −0.911365 0.411600i \(-0.864970\pi\)
0.563604 + 0.826045i \(0.309415\pi\)
\(860\) 0.00116348 0.00659842i 3.96743e−5 0.000225004i
\(861\) 0 0
\(862\) −1.45649 + 1.22214i −0.0496081 + 0.0416261i
\(863\) −1.76440 + 1.01868i −0.0600610 + 0.0346762i −0.529730 0.848166i \(-0.677707\pi\)
0.469669 + 0.882843i \(0.344373\pi\)
\(864\) 0 0
\(865\) −0.00676353 + 0.0117148i −0.000229967 + 0.000398315i
\(866\) 13.8550 + 5.04282i 0.470813 + 0.171362i
\(867\) 0 0
\(868\) −19.4982 + 31.9229i −0.661811 + 1.08353i
\(869\) 4.17328 + 11.4660i 0.141569 + 0.388957i
\(870\) 0 0
\(871\) −2.00299 + 5.50316i −0.0678686 + 0.186468i
\(872\) 2.20198i 0.0745686i
\(873\) 0 0
\(874\) −3.57132 2.06190i −0.120802 0.0697448i
\(875\) −0.00474036 0.0140989i −0.000160253 0.000476628i
\(876\) 0 0
\(877\) −3.15820 + 17.9111i −0.106645 + 0.604814i 0.883906 + 0.467665i \(0.154905\pi\)
−0.990551 + 0.137148i \(0.956206\pi\)
\(878\) −7.74619 + 2.81938i −0.261421 + 0.0951495i
\(879\) 0 0
\(880\) 0.00672770 0.00118627i 0.000226791 3.99893e-5i
\(881\) −13.3725 + 23.1618i −0.450530 + 0.780341i −0.998419 0.0562101i \(-0.982098\pi\)
0.547889 + 0.836551i \(0.315432\pi\)
\(882\) 0 0
\(883\) 10.5208 + 18.2226i 0.354054 + 0.613240i 0.986956 0.160992i \(-0.0514694\pi\)
−0.632901 + 0.774232i \(0.718136\pi\)
\(884\) 2.47948 + 2.95493i 0.0833939 + 0.0993849i
\(885\) 0 0
\(886\) 2.42234 13.7378i 0.0813800 0.461529i
\(887\) 20.9254 7.61624i 0.702608 0.255728i 0.0340838 0.999419i \(-0.489149\pi\)
0.668524 + 0.743691i \(0.266926\pi\)
\(888\) 0 0
\(889\) −17.9871 3.63212i −0.603267 0.121817i
\(890\) 0 0.000908428i 0 3.04506e-5i
\(891\) 0 0
\(892\) 36.6404 + 21.1543i 1.22681 + 0.708300i
\(893\) 38.0110 6.70237i 1.27199 0.224286i
\(894\) 0 0
\(895\) −0.0136576 0.00240820i −0.000456523 8.04973e-5i
\(896\) 30.0560 + 0.743041i 1.00410 + 0.0248233i
\(897\) 0 0
\(898\) −8.88953 + 7.45920i −0.296647 + 0.248917i
\(899\) −67.9336 −2.26571
\(900\) 0 0
\(901\) 8.41972i 0.280502i
\(902\) −15.0929 5.49336i −0.502538 0.182909i
\(903\) 0 0
\(904\) 21.1557 + 17.7517i 0.703627 + 0.590414i
\(905\) −0.00497658 0.000877506i −0.000165427 2.91693e-5i
\(906\) 0 0
\(907\) 2.75474 2.31150i 0.0914695 0.0767520i −0.595906 0.803054i \(-0.703207\pi\)
0.687376 + 0.726302i \(0.258763\pi\)
\(908\) 7.49013 0.248569
\(909\) 0 0
\(910\) −0.00127561 0.00159885i −4.22860e−5 5.30014e-5i
\(911\) 51.8774 9.14738i 1.71877 0.303066i 0.774585 0.632470i \(-0.217959\pi\)
0.944189 + 0.329403i \(0.106848\pi\)
\(912\) 0 0
\(913\) 8.99544 + 1.58614i 0.297706 + 0.0524935i
\(914\) −5.81787 + 6.93347i −0.192438 + 0.229339i
\(915\) 0 0
\(916\) 14.5773 + 17.3725i 0.481647 + 0.574005i
\(917\) −10.6724 + 27.2100i −0.352432 + 0.898555i
\(918\) 0 0
\(919\) −27.2723 47.2370i −0.899629 1.55820i −0.827969 0.560774i \(-0.810504\pi\)
−0.0716603 0.997429i \(-0.522830\pi\)
\(920\) −0.000290112 0.00164531i −9.56472e−6 5.42442e-5i
\(921\) 0 0
\(922\) 0.174032 + 0.478149i 0.00573144 + 0.0157470i
\(923\) −22.6179 + 8.23224i −0.744477 + 0.270968i
\(924\) 0 0
\(925\) −1.78494 10.1229i −0.0586884 0.332838i
\(926\) −14.8554 8.57676i −0.488178 0.281850i
\(927\) 0 0
\(928\) 21.1437 + 36.6219i 0.694075 + 1.20217i
\(929\) −7.27715 41.2707i −0.238755 1.35405i −0.834559 0.550919i \(-0.814277\pi\)
0.595803 0.803130i \(-0.296834\pi\)
\(930\) 0 0
\(931\) 14.1374 33.5784i 0.463333 1.10049i
\(932\) −12.6086 + 15.0264i −0.413010 + 0.492206i
\(933\) 0 0
\(934\) −0.457428 0.545142i −0.0149675 0.0178376i
\(935\) 0.00184490 0.00106515i 6.03345e−5 3.48342e-5i
\(936\) 0 0
\(937\) 24.5420 14.1693i 0.801751 0.462891i −0.0423320 0.999104i \(-0.513479\pi\)
0.844083 + 0.536212i \(0.180145\pi\)
\(938\) 2.10715 + 1.85876i 0.0688009 + 0.0606907i
\(939\) 0 0
\(940\) 0.00559115 + 0.00469153i 0.000182363 + 0.000153021i
\(941\) 12.4382 + 10.4369i 0.405473 + 0.340232i 0.822604 0.568614i \(-0.192520\pi\)
−0.417132 + 0.908846i \(0.636965\pi\)
\(942\) 0 0
\(943\) 3.68586 10.1268i 0.120028 0.329775i
\(944\) −33.8999 −1.10335
\(945\) 0 0
\(946\) 16.0984 0.523405
\(947\) 3.35614 9.22091i 0.109060 0.299639i −0.873143 0.487465i \(-0.837922\pi\)
0.982202 + 0.187825i \(0.0601439\pi\)
\(948\) 0 0
\(949\) 15.1510 + 12.7132i 0.491822 + 0.412687i
\(950\) −9.95493 8.35318i −0.322981 0.271013i
\(951\) 0 0
\(952\) 3.75835 1.26364i 0.121809 0.0409549i
\(953\) 34.8176 20.1019i 1.12785 0.651166i 0.184458 0.982840i \(-0.440947\pi\)
0.943394 + 0.331675i \(0.107614\pi\)
\(954\) 0 0
\(955\) 0.0101565 0.00586384i 0.000328656 0.000189749i
\(956\) −14.1126 16.8188i −0.456436 0.543959i
\(957\) 0 0
\(958\) −11.4888 + 13.6919i −0.371188 + 0.442364i
\(959\) −13.8631 + 22.6970i −0.447663 + 0.732924i
\(960\) 0 0
\(961\) −5.94285 33.7036i −0.191705 1.08721i
\(962\) −1.41345 2.44818i −0.0455716 0.0789323i
\(963\) 0 0
\(964\) −30.4352 17.5718i −0.980251 0.565948i
\(965\) −0.00178439 0.0101198i −5.74415e−5 0.000325767i
\(966\) 0 0
\(967\) −6.39685 + 2.32826i −0.205709 + 0.0748719i −0.442820 0.896611i \(-0.646022\pi\)
0.237111 + 0.971483i \(0.423800\pi\)
\(968\) 7.31862 + 20.1078i 0.235229 + 0.646288i
\(969\) 0 0
\(970\) −8.75485e−5 0 0.000496512i −2.81101e−6 0 1.59420e-5i
\(971\) −14.6415 25.3599i −0.469869 0.813836i 0.529538 0.848286i \(-0.322365\pi\)
−0.999406 + 0.0344500i \(0.989032\pi\)
\(972\) 0 0
\(973\) −0.859463 + 0.685703i −0.0275531 + 0.0219826i
\(974\) 11.2124 + 13.3624i 0.359269 + 0.428160i
\(975\) 0 0
\(976\) 5.99515 7.14474i 0.191900 0.228698i
\(977\) −7.70964 1.35942i −0.246653 0.0434916i 0.0489546 0.998801i \(-0.484411\pi\)
−0.295608 + 0.955309i \(0.595522\pi\)
\(978\) 0 0
\(979\) −15.0904 + 2.66085i −0.482291 + 0.0850410i
\(980\) 0.00658251 0.00203356i 0.000210270 6.49595e-5i
\(981\) 0 0
\(982\) 5.43528 0.173447
\(983\) −4.61869 + 3.87554i −0.147313 + 0.123611i −0.713466 0.700690i \(-0.752876\pi\)
0.566153 + 0.824300i \(0.308431\pi\)
\(984\) 0 0
\(985\) 0.00570626 + 0.00100617i 0.000181817 + 3.20592e-5i
\(986\) 2.57475 + 2.16048i 0.0819969 + 0.0688036i
\(987\) 0 0
\(988\) 23.5773 + 8.58143i 0.750093 + 0.273012i
\(989\) 10.8015i 0.343468i
\(990\) 0 0
\(991\) 22.6935 0.720884 0.360442 0.932782i \(-0.382626\pi\)
0.360442 + 0.932782i \(0.382626\pi\)
\(992\) −31.1017 + 26.0974i −0.987480 + 0.828594i
\(993\) 0 0
\(994\) −0.285409 + 11.5448i −0.00905261 + 0.366178i
\(995\) −0.00618594 0.00109075i −0.000196107 3.45790e-5i
\(996\) 0 0
\(997\) 9.60364 1.69338i 0.304150 0.0536299i −0.0194901 0.999810i \(-0.506204\pi\)
0.323640 + 0.946180i \(0.395093\pi\)
\(998\) −2.74449 1.58453i −0.0868752 0.0501574i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.bd.a.206.14 132
3.2 odd 2 189.2.bd.a.59.9 yes 132
7.5 odd 6 567.2.ba.a.530.9 132
21.5 even 6 189.2.ba.a.5.14 132
27.11 odd 18 567.2.ba.a.521.9 132
27.16 even 9 189.2.ba.a.38.14 yes 132
189.124 odd 18 189.2.bd.a.173.9 yes 132
189.173 even 18 inner 567.2.bd.a.278.14 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.ba.a.5.14 132 21.5 even 6
189.2.ba.a.38.14 yes 132 27.16 even 9
189.2.bd.a.59.9 yes 132 3.2 odd 2
189.2.bd.a.173.9 yes 132 189.124 odd 18
567.2.ba.a.521.9 132 27.11 odd 18
567.2.ba.a.530.9 132 7.5 odd 6
567.2.bd.a.206.14 132 1.1 even 1 trivial
567.2.bd.a.278.14 132 189.173 even 18 inner