Properties

Label 567.2.ba.a.530.13
Level $567$
Weight $2$
Character 567.530
Analytic conductor $4.528$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(143,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([7, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.143");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.ba (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 530.13
Character \(\chi\) \(=\) 567.530
Dual form 567.2.ba.a.521.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.408566 - 0.0720413i) q^{2} +(-1.71765 + 0.625173i) q^{4} +(-0.0312679 + 0.177329i) q^{5} +(1.82229 - 1.91814i) q^{7} +(-1.37531 + 0.794036i) q^{8} +0.0747032i q^{10} +(-1.56303 + 0.275605i) q^{11} +(3.21910 - 3.83638i) q^{13} +(0.606342 - 0.914967i) q^{14} +(2.29578 - 1.92639i) q^{16} +7.76129 q^{17} +4.34679i q^{19} +(-0.0571540 - 0.324137i) q^{20} +(-0.618747 + 0.225206i) q^{22} +(1.56305 - 1.86277i) q^{23} +(4.66800 + 1.69901i) q^{25} +(1.03884 - 1.79932i) q^{26} +(-1.93089 + 4.43393i) q^{28} +(-2.81590 - 3.35586i) q^{29} +(0.459948 + 1.26370i) q^{31} +(2.84078 - 3.38551i) q^{32} +(3.17100 - 0.559134i) q^{34} +(0.283162 + 0.383121i) q^{35} +(2.09041 + 3.62070i) q^{37} +(0.313148 + 1.77595i) q^{38} +(-0.0978025 - 0.268710i) q^{40} +(-8.48927 - 7.12335i) q^{41} +(-0.714703 - 0.260131i) q^{43} +(2.51244 - 1.45056i) q^{44} +(0.504413 - 0.873669i) q^{46} +(8.67893 + 3.15887i) q^{47} +(-0.358507 - 6.99081i) q^{49} +(2.02959 + 0.357871i) q^{50} +(-3.13089 + 8.60205i) q^{52} +(8.42703 - 4.86535i) q^{53} -0.285788i q^{55} +(-0.983146 + 4.08500i) q^{56} +(-1.39224 - 1.16823i) q^{58} +(-1.51017 - 1.26718i) q^{59} +(-0.916897 + 2.51916i) q^{61} +(0.278957 + 0.483169i) q^{62} +(-2.08017 + 3.60297i) q^{64} +(0.579646 + 0.690796i) q^{65} +(-0.722307 + 4.09641i) q^{67} +(-13.3312 + 4.85215i) q^{68} +(0.143291 + 0.136131i) q^{70} +(-5.04844 - 2.91472i) q^{71} +(-7.42228 - 4.28526i) q^{73} +(1.11491 + 1.32870i) q^{74} +(-2.71749 - 7.46625i) q^{76} +(-2.31965 + 3.50034i) q^{77} +(-0.884454 - 5.01599i) q^{79} +(0.269820 + 0.467342i) q^{80} +(-3.98161 - 2.29878i) q^{82} +(-10.1615 + 8.52653i) q^{83} +(-0.242679 + 1.37630i) q^{85} +(-0.310744 - 0.0547926i) q^{86} +(1.93081 - 1.62014i) q^{88} -8.19131 q^{89} +(-1.49256 - 13.1657i) q^{91} +(-1.52022 + 4.17676i) q^{92} +(3.77349 + 0.665368i) q^{94} +(-0.770811 - 0.135915i) q^{95} +(1.63818 - 4.50085i) q^{97} +(-0.650101 - 2.83038i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q + 3 q^{2} - 3 q^{4} + 9 q^{5} - 6 q^{7} + 18 q^{8} + 9 q^{11} - 3 q^{14} + 3 q^{16} + 18 q^{17} - 18 q^{20} - 12 q^{22} + 6 q^{23} - 3 q^{25} - 12 q^{28} - 6 q^{29} - 9 q^{31} - 3 q^{32} - 18 q^{34}+ \cdots - 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.408566 0.0720413i 0.288900 0.0509409i −0.0273200 0.999627i \(-0.508697\pi\)
0.316220 + 0.948686i \(0.397586\pi\)
\(3\) 0 0
\(4\) −1.71765 + 0.625173i −0.858824 + 0.312586i
\(5\) −0.0312679 + 0.177329i −0.0139834 + 0.0793039i −0.991001 0.133855i \(-0.957264\pi\)
0.977017 + 0.213159i \(0.0683753\pi\)
\(6\) 0 0
\(7\) 1.82229 1.91814i 0.688761 0.724988i
\(8\) −1.37531 + 0.794036i −0.486246 + 0.280734i
\(9\) 0 0
\(10\) 0.0747032i 0.0236232i
\(11\) −1.56303 + 0.275605i −0.471272 + 0.0830979i −0.404240 0.914653i \(-0.632464\pi\)
−0.0670317 + 0.997751i \(0.521353\pi\)
\(12\) 0 0
\(13\) 3.21910 3.83638i 0.892819 1.06402i −0.104761 0.994497i \(-0.533408\pi\)
0.997580 0.0695228i \(-0.0221477\pi\)
\(14\) 0.606342 0.914967i 0.162052 0.244535i
\(15\) 0 0
\(16\) 2.29578 1.92639i 0.573944 0.481597i
\(17\) 7.76129 1.88239 0.941195 0.337864i \(-0.109704\pi\)
0.941195 + 0.337864i \(0.109704\pi\)
\(18\) 0 0
\(19\) 4.34679i 0.997221i 0.866826 + 0.498611i \(0.166156\pi\)
−0.866826 + 0.498611i \(0.833844\pi\)
\(20\) −0.0571540 0.324137i −0.0127800 0.0724791i
\(21\) 0 0
\(22\) −0.618747 + 0.225206i −0.131917 + 0.0480140i
\(23\) 1.56305 1.86277i 0.325918 0.388414i −0.578059 0.815995i \(-0.696190\pi\)
0.903977 + 0.427581i \(0.140634\pi\)
\(24\) 0 0
\(25\) 4.66800 + 1.69901i 0.933599 + 0.339802i
\(26\) 1.03884 1.79932i 0.203733 0.352877i
\(27\) 0 0
\(28\) −1.93089 + 4.43393i −0.364904 + 0.837935i
\(29\) −2.81590 3.35586i −0.522899 0.623167i 0.438365 0.898797i \(-0.355558\pi\)
−0.961264 + 0.275630i \(0.911113\pi\)
\(30\) 0 0
\(31\) 0.459948 + 1.26370i 0.0826090 + 0.226966i 0.974119 0.226034i \(-0.0725759\pi\)
−0.891510 + 0.453000i \(0.850354\pi\)
\(32\) 2.84078 3.38551i 0.502184 0.598480i
\(33\) 0 0
\(34\) 3.17100 0.559134i 0.543823 0.0958906i
\(35\) 0.283162 + 0.383121i 0.0478631 + 0.0647593i
\(36\) 0 0
\(37\) 2.09041 + 3.62070i 0.343662 + 0.595240i 0.985110 0.171927i \(-0.0549992\pi\)
−0.641448 + 0.767167i \(0.721666\pi\)
\(38\) 0.313148 + 1.77595i 0.0507993 + 0.288097i
\(39\) 0 0
\(40\) −0.0978025 0.268710i −0.0154639 0.0424868i
\(41\) −8.48927 7.12335i −1.32580 1.11248i −0.985039 0.172331i \(-0.944870\pi\)
−0.340763 0.940149i \(-0.610685\pi\)
\(42\) 0 0
\(43\) −0.714703 0.260131i −0.108991 0.0396696i 0.286949 0.957946i \(-0.407359\pi\)
−0.395940 + 0.918276i \(0.629581\pi\)
\(44\) 2.51244 1.45056i 0.378764 0.218680i
\(45\) 0 0
\(46\) 0.504413 0.873669i 0.0743716 0.128815i
\(47\) 8.67893 + 3.15887i 1.26595 + 0.460769i 0.885762 0.464139i \(-0.153636\pi\)
0.380190 + 0.924908i \(0.375859\pi\)
\(48\) 0 0
\(49\) −0.358507 6.99081i −0.0512153 0.998688i
\(50\) 2.02959 + 0.357871i 0.287027 + 0.0506106i
\(51\) 0 0
\(52\) −3.13089 + 8.60205i −0.434176 + 1.19289i
\(53\) 8.42703 4.86535i 1.15754 0.668307i 0.206828 0.978377i \(-0.433686\pi\)
0.950714 + 0.310071i \(0.100353\pi\)
\(54\) 0 0
\(55\) 0.285788i 0.0385357i
\(56\) −0.983146 + 4.08500i −0.131378 + 0.545881i
\(57\) 0 0
\(58\) −1.39224 1.16823i −0.182810 0.153396i
\(59\) −1.51017 1.26718i −0.196608 0.164973i 0.539169 0.842197i \(-0.318738\pi\)
−0.735777 + 0.677224i \(0.763183\pi\)
\(60\) 0 0
\(61\) −0.916897 + 2.51916i −0.117397 + 0.322545i −0.984449 0.175673i \(-0.943790\pi\)
0.867052 + 0.498218i \(0.166012\pi\)
\(62\) 0.278957 + 0.483169i 0.0354276 + 0.0613625i
\(63\) 0 0
\(64\) −2.08017 + 3.60297i −0.260022 + 0.450371i
\(65\) 0.579646 + 0.690796i 0.0718963 + 0.0856827i
\(66\) 0 0
\(67\) −0.722307 + 4.09641i −0.0882438 + 0.500456i 0.908366 + 0.418177i \(0.137331\pi\)
−0.996609 + 0.0822786i \(0.973780\pi\)
\(68\) −13.3312 + 4.85215i −1.61664 + 0.588410i
\(69\) 0 0
\(70\) 0.143291 + 0.136131i 0.0171266 + 0.0162708i
\(71\) −5.04844 2.91472i −0.599139 0.345913i 0.169564 0.985519i \(-0.445764\pi\)
−0.768703 + 0.639606i \(0.779097\pi\)
\(72\) 0 0
\(73\) −7.42228 4.28526i −0.868712 0.501551i −0.00179209 0.999998i \(-0.500570\pi\)
−0.866920 + 0.498447i \(0.833904\pi\)
\(74\) 1.11491 + 1.32870i 0.129606 + 0.154458i
\(75\) 0 0
\(76\) −2.71749 7.46625i −0.311718 0.856438i
\(77\) −2.31965 + 3.50034i −0.264349 + 0.398901i
\(78\) 0 0
\(79\) −0.884454 5.01599i −0.0995088 0.564343i −0.993272 0.115804i \(-0.963056\pi\)
0.893763 0.448539i \(-0.148055\pi\)
\(80\) 0.269820 + 0.467342i 0.0301668 + 0.0522504i
\(81\) 0 0
\(82\) −3.98161 2.29878i −0.439695 0.253858i
\(83\) −10.1615 + 8.52653i −1.11537 + 0.935909i −0.998361 0.0572219i \(-0.981776\pi\)
−0.117011 + 0.993131i \(0.537331\pi\)
\(84\) 0 0
\(85\) −0.242679 + 1.37630i −0.0263222 + 0.149281i
\(86\) −0.310744 0.0547926i −0.0335084 0.00590843i
\(87\) 0 0
\(88\) 1.93081 1.62014i 0.205825 0.172708i
\(89\) −8.19131 −0.868278 −0.434139 0.900846i \(-0.642947\pi\)
−0.434139 + 0.900846i \(0.642947\pi\)
\(90\) 0 0
\(91\) −1.49256 13.1657i −0.156463 1.38014i
\(92\) −1.52022 + 4.17676i −0.158493 + 0.435457i
\(93\) 0 0
\(94\) 3.77349 + 0.665368i 0.389206 + 0.0686275i
\(95\) −0.770811 0.135915i −0.0790835 0.0139446i
\(96\) 0 0
\(97\) 1.63818 4.50085i 0.166332 0.456993i −0.828323 0.560251i \(-0.810705\pi\)
0.994655 + 0.103258i \(0.0329269\pi\)
\(98\) −0.650101 2.83038i −0.0656701 0.285912i
\(99\) 0 0
\(100\) −9.08015 −0.908015
\(101\) −9.59097 + 8.04778i −0.954337 + 0.800784i −0.980023 0.198886i \(-0.936268\pi\)
0.0256856 + 0.999670i \(0.491823\pi\)
\(102\) 0 0
\(103\) 2.76125 + 0.486882i 0.272074 + 0.0479739i 0.308020 0.951380i \(-0.400334\pi\)
−0.0359467 + 0.999354i \(0.511445\pi\)
\(104\) −1.38104 + 7.83229i −0.135423 + 0.768020i
\(105\) 0 0
\(106\) 3.09250 2.59491i 0.300370 0.252040i
\(107\) 6.82463 + 3.94020i 0.659762 + 0.380913i 0.792186 0.610280i \(-0.208943\pi\)
−0.132425 + 0.991193i \(0.542276\pi\)
\(108\) 0 0
\(109\) 8.69846 + 15.0662i 0.833161 + 1.44308i 0.895519 + 0.445024i \(0.146805\pi\)
−0.0623578 + 0.998054i \(0.519862\pi\)
\(110\) −0.0205886 0.116764i −0.00196304 0.0111330i
\(111\) 0 0
\(112\) 0.488502 7.91406i 0.0461591 0.747808i
\(113\) −1.02719 2.82219i −0.0966304 0.265490i 0.881954 0.471335i \(-0.156228\pi\)
−0.978585 + 0.205845i \(0.934006\pi\)
\(114\) 0 0
\(115\) 0.281450 + 0.335419i 0.0262453 + 0.0312779i
\(116\) 6.93471 + 4.00376i 0.643872 + 0.371740i
\(117\) 0 0
\(118\) −0.708295 0.408934i −0.0652038 0.0376455i
\(119\) 14.1433 14.8872i 1.29652 1.36471i
\(120\) 0 0
\(121\) −7.96951 + 2.90066i −0.724501 + 0.263697i
\(122\) −0.193130 + 1.09530i −0.0174852 + 0.0991635i
\(123\) 0 0
\(124\) −1.58006 1.88304i −0.141893 0.169102i
\(125\) −0.897403 + 1.55435i −0.0802662 + 0.139025i
\(126\) 0 0
\(127\) 5.25357 + 9.09945i 0.466179 + 0.807446i 0.999254 0.0386222i \(-0.0122969\pi\)
−0.533075 + 0.846068i \(0.678964\pi\)
\(128\) −3.61343 + 9.92780i −0.319385 + 0.877502i
\(129\) 0 0
\(130\) 0.286590 + 0.240477i 0.0251356 + 0.0210913i
\(131\) 11.1700 + 9.37272i 0.975925 + 0.818898i 0.983470 0.181073i \(-0.0579571\pi\)
−0.00754465 + 0.999972i \(0.502402\pi\)
\(132\) 0 0
\(133\) 8.33774 + 7.92111i 0.722973 + 0.686848i
\(134\) 1.72569i 0.149077i
\(135\) 0 0
\(136\) −10.6742 + 6.16274i −0.915304 + 0.528451i
\(137\) 2.17300 5.97027i 0.185652 0.510075i −0.811595 0.584220i \(-0.801401\pi\)
0.997247 + 0.0741452i \(0.0236228\pi\)
\(138\) 0 0
\(139\) −15.1483 2.67106i −1.28487 0.226556i −0.510821 0.859687i \(-0.670658\pi\)
−0.774045 + 0.633131i \(0.781769\pi\)
\(140\) −0.725890 0.481042i −0.0613489 0.0406555i
\(141\) 0 0
\(142\) −2.27260 0.827159i −0.190713 0.0694137i
\(143\) −3.97424 + 6.88358i −0.332343 + 0.575634i
\(144\) 0 0
\(145\) 0.683138 0.394410i 0.0567315 0.0327539i
\(146\) −3.34121 1.21610i −0.276521 0.100645i
\(147\) 0 0
\(148\) −5.85416 4.91223i −0.481209 0.403783i
\(149\) −5.96220 16.3810i −0.488442 1.34198i −0.902090 0.431547i \(-0.857968\pi\)
0.413648 0.910437i \(-0.364254\pi\)
\(150\) 0 0
\(151\) 0.399188 + 2.26391i 0.0324854 + 0.184234i 0.996733 0.0807699i \(-0.0257379\pi\)
−0.964247 + 0.265004i \(0.914627\pi\)
\(152\) −3.45150 5.97818i −0.279954 0.484894i
\(153\) 0 0
\(154\) −0.695563 + 1.59723i −0.0560500 + 0.128709i
\(155\) −0.238471 + 0.0420489i −0.0191545 + 0.00337745i
\(156\) 0 0
\(157\) −3.60935 + 4.30145i −0.288057 + 0.343293i −0.890595 0.454797i \(-0.849712\pi\)
0.602538 + 0.798090i \(0.294156\pi\)
\(158\) −0.722716 1.98565i −0.0574962 0.157970i
\(159\) 0 0
\(160\) 0.511524 + 0.609611i 0.0404395 + 0.0481940i
\(161\) −0.724718 6.39265i −0.0571157 0.503811i
\(162\) 0 0
\(163\) 9.58450 16.6008i 0.750716 1.30028i −0.196760 0.980452i \(-0.563042\pi\)
0.947476 0.319827i \(-0.103625\pi\)
\(164\) 19.0349 + 6.92814i 1.48638 + 0.540997i
\(165\) 0 0
\(166\) −3.53740 + 4.21571i −0.274555 + 0.327202i
\(167\) 8.84469 3.21920i 0.684422 0.249109i 0.0236772 0.999720i \(-0.492463\pi\)
0.660745 + 0.750610i \(0.270240\pi\)
\(168\) 0 0
\(169\) −2.09775 11.8969i −0.161365 0.915147i
\(170\) 0.579794i 0.0444681i
\(171\) 0 0
\(172\) 1.39024 0.106005
\(173\) −4.11126 + 3.44976i −0.312573 + 0.262280i −0.785555 0.618792i \(-0.787622\pi\)
0.472981 + 0.881072i \(0.343178\pi\)
\(174\) 0 0
\(175\) 11.7654 5.85777i 0.889380 0.442805i
\(176\) −3.05745 + 3.64373i −0.230464 + 0.274656i
\(177\) 0 0
\(178\) −3.34670 + 0.590113i −0.250846 + 0.0442308i
\(179\) 14.8693i 1.11138i 0.831389 + 0.555691i \(0.187546\pi\)
−0.831389 + 0.555691i \(0.812454\pi\)
\(180\) 0 0
\(181\) −5.48950 + 3.16937i −0.408031 + 0.235577i −0.689944 0.723863i \(-0.742365\pi\)
0.281912 + 0.959440i \(0.409031\pi\)
\(182\) −1.55828 5.27153i −0.115508 0.390752i
\(183\) 0 0
\(184\) −0.670572 + 3.80300i −0.0494352 + 0.280361i
\(185\) −0.707418 + 0.257479i −0.0520104 + 0.0189302i
\(186\) 0 0
\(187\) −12.1311 + 2.13905i −0.887117 + 0.156423i
\(188\) −16.8822 −1.23126
\(189\) 0 0
\(190\) −0.324719 −0.0235576
\(191\) −16.6883 + 2.94260i −1.20752 + 0.212919i −0.740947 0.671563i \(-0.765623\pi\)
−0.466575 + 0.884482i \(0.654512\pi\)
\(192\) 0 0
\(193\) 11.5156 4.19135i 0.828915 0.301700i 0.107501 0.994205i \(-0.465715\pi\)
0.721413 + 0.692505i \(0.243493\pi\)
\(194\) 0.345057 1.95691i 0.0247736 0.140498i
\(195\) 0 0
\(196\) 4.98626 + 11.7836i 0.356161 + 0.841688i
\(197\) 11.7644 6.79216i 0.838176 0.483921i −0.0184676 0.999829i \(-0.505879\pi\)
0.856644 + 0.515908i \(0.172545\pi\)
\(198\) 0 0
\(199\) 7.03966i 0.499028i 0.968371 + 0.249514i \(0.0802709\pi\)
−0.968371 + 0.249514i \(0.919729\pi\)
\(200\) −7.76902 + 1.36989i −0.549352 + 0.0968657i
\(201\) 0 0
\(202\) −3.33878 + 3.97900i −0.234915 + 0.279961i
\(203\) −11.5684 0.714068i −0.811941 0.0501177i
\(204\) 0 0
\(205\) 1.52862 1.28266i 0.106763 0.0895850i
\(206\) 1.16323 0.0810459
\(207\) 0 0
\(208\) 15.0087i 1.04067i
\(209\) −1.19799 6.79417i −0.0828670 0.469962i
\(210\) 0 0
\(211\) −12.4387 + 4.52733i −0.856318 + 0.311674i −0.732613 0.680645i \(-0.761700\pi\)
−0.123704 + 0.992319i \(0.539477\pi\)
\(212\) −11.4330 + 13.6253i −0.785221 + 0.935790i
\(213\) 0 0
\(214\) 3.07217 + 1.11818i 0.210009 + 0.0764371i
\(215\) 0.0684760 0.118604i 0.00467002 0.00808871i
\(216\) 0 0
\(217\) 3.26210 + 1.42058i 0.221446 + 0.0964352i
\(218\) 4.63928 + 5.52888i 0.314212 + 0.374463i
\(219\) 0 0
\(220\) 0.178667 + 0.490884i 0.0120457 + 0.0330954i
\(221\) 24.9844 29.7753i 1.68063 2.00290i
\(222\) 0 0
\(223\) −12.9495 + 2.28334i −0.867162 + 0.152904i −0.589494 0.807773i \(-0.700673\pi\)
−0.277668 + 0.960677i \(0.589562\pi\)
\(224\) −1.31715 11.6184i −0.0880056 0.776288i
\(225\) 0 0
\(226\) −0.622992 1.07905i −0.0414408 0.0717776i
\(227\) 1.26546 + 7.17680i 0.0839918 + 0.476341i 0.997570 + 0.0696770i \(0.0221969\pi\)
−0.913578 + 0.406664i \(0.866692\pi\)
\(228\) 0 0
\(229\) 1.41178 + 3.87883i 0.0932930 + 0.256321i 0.977559 0.210664i \(-0.0675626\pi\)
−0.884265 + 0.466985i \(0.845340\pi\)
\(230\) 0.139155 + 0.116765i 0.00917560 + 0.00769924i
\(231\) 0 0
\(232\) 6.53740 + 2.37942i 0.429202 + 0.156217i
\(233\) 12.6906 7.32691i 0.831388 0.480002i −0.0229398 0.999737i \(-0.507303\pi\)
0.854328 + 0.519735i \(0.173969\pi\)
\(234\) 0 0
\(235\) −0.831531 + 1.44025i −0.0542431 + 0.0939518i
\(236\) 3.38615 + 1.23246i 0.220420 + 0.0802262i
\(237\) 0 0
\(238\) 4.70600 7.10133i 0.305045 0.460311i
\(239\) 22.4643 + 3.96107i 1.45310 + 0.256220i 0.843773 0.536701i \(-0.180330\pi\)
0.609324 + 0.792921i \(0.291441\pi\)
\(240\) 0 0
\(241\) 0.269437 0.740271i 0.0173559 0.0476851i −0.930712 0.365753i \(-0.880812\pi\)
0.948068 + 0.318068i \(0.103034\pi\)
\(242\) −3.04711 + 1.75925i −0.195875 + 0.113089i
\(243\) 0 0
\(244\) 4.90024i 0.313706i
\(245\) 1.25088 + 0.155014i 0.0799160 + 0.00990349i
\(246\) 0 0
\(247\) 16.6759 + 13.9928i 1.06106 + 0.890338i
\(248\) −1.63599 1.37276i −0.103885 0.0871703i
\(249\) 0 0
\(250\) −0.254672 + 0.699705i −0.0161069 + 0.0442532i
\(251\) 5.78209 + 10.0149i 0.364962 + 0.632133i 0.988770 0.149444i \(-0.0477485\pi\)
−0.623808 + 0.781578i \(0.714415\pi\)
\(252\) 0 0
\(253\) −1.92971 + 3.34235i −0.121320 + 0.210132i
\(254\) 2.80197 + 3.33926i 0.175811 + 0.209524i
\(255\) 0 0
\(256\) 0.683760 3.87780i 0.0427350 0.242362i
\(257\) −9.55906 + 3.47921i −0.596278 + 0.217027i −0.622488 0.782629i \(-0.713878\pi\)
0.0262107 + 0.999656i \(0.491656\pi\)
\(258\) 0 0
\(259\) 10.7544 + 2.58827i 0.668243 + 0.160828i
\(260\) −1.42750 0.824165i −0.0885295 0.0511125i
\(261\) 0 0
\(262\) 5.23890 + 3.02468i 0.323660 + 0.186865i
\(263\) −11.0604 13.1813i −0.682014 0.812793i 0.308351 0.951273i \(-0.400223\pi\)
−0.990365 + 0.138480i \(0.955778\pi\)
\(264\) 0 0
\(265\) 0.599271 + 1.64648i 0.0368129 + 0.101143i
\(266\) 3.97717 + 2.63564i 0.243856 + 0.161601i
\(267\) 0 0
\(268\) −1.32029 7.48775i −0.0806497 0.457387i
\(269\) 5.09560 + 8.82584i 0.310684 + 0.538121i 0.978511 0.206196i \(-0.0661085\pi\)
−0.667826 + 0.744317i \(0.732775\pi\)
\(270\) 0 0
\(271\) −6.85061 3.95520i −0.416145 0.240261i 0.277282 0.960789i \(-0.410566\pi\)
−0.693426 + 0.720527i \(0.743900\pi\)
\(272\) 17.8182 14.9512i 1.08039 0.906552i
\(273\) 0 0
\(274\) 0.457709 2.59580i 0.0276512 0.156818i
\(275\) −7.76448 1.36909i −0.468216 0.0825591i
\(276\) 0 0
\(277\) 10.5255 8.83194i 0.632416 0.530660i −0.269263 0.963067i \(-0.586780\pi\)
0.901679 + 0.432407i \(0.142336\pi\)
\(278\) −6.38153 −0.382739
\(279\) 0 0
\(280\) −0.693648 0.302069i −0.0414534 0.0180521i
\(281\) −0.953112 + 2.61865i −0.0568579 + 0.156216i −0.964870 0.262729i \(-0.915378\pi\)
0.908012 + 0.418944i \(0.137600\pi\)
\(282\) 0 0
\(283\) −16.1660 2.85051i −0.960972 0.169445i −0.328908 0.944362i \(-0.606681\pi\)
−0.632063 + 0.774917i \(0.717792\pi\)
\(284\) 10.4936 + 1.85031i 0.622683 + 0.109796i
\(285\) 0 0
\(286\) −1.12784 + 3.09871i −0.0666905 + 0.183231i
\(287\) −29.1335 + 3.30279i −1.71970 + 0.194957i
\(288\) 0 0
\(289\) 43.2377 2.54339
\(290\) 0.250693 0.210357i 0.0147212 0.0123526i
\(291\) 0 0
\(292\) 15.4279 + 2.72035i 0.902849 + 0.159197i
\(293\) 0.270460 1.53385i 0.0158004 0.0896087i −0.975888 0.218273i \(-0.929958\pi\)
0.991688 + 0.128664i \(0.0410689\pi\)
\(294\) 0 0
\(295\) 0.271928 0.228175i 0.0158323 0.0132849i
\(296\) −5.74994 3.31973i −0.334208 0.192955i
\(297\) 0 0
\(298\) −3.61606 6.26320i −0.209473 0.362818i
\(299\) −2.11467 11.9929i −0.122295 0.693567i
\(300\) 0 0
\(301\) −1.80136 + 0.896866i −0.103829 + 0.0516945i
\(302\) 0.326189 + 0.896198i 0.0187701 + 0.0515704i
\(303\) 0 0
\(304\) 8.37359 + 9.97926i 0.480258 + 0.572350i
\(305\) −0.418050 0.241361i −0.0239375 0.0138203i
\(306\) 0 0
\(307\) 1.41615 + 0.817613i 0.0808238 + 0.0466637i 0.539867 0.841750i \(-0.318474\pi\)
−0.459043 + 0.888414i \(0.651808\pi\)
\(308\) 1.79603 7.46254i 0.102338 0.425218i
\(309\) 0 0
\(310\) −0.0944022 + 0.0343596i −0.00536168 + 0.00195149i
\(311\) −2.06271 + 11.6982i −0.116965 + 0.663344i 0.868793 + 0.495176i \(0.164896\pi\)
−0.985758 + 0.168168i \(0.946215\pi\)
\(312\) 0 0
\(313\) −1.19230 1.42093i −0.0673929 0.0803157i 0.731295 0.682062i \(-0.238916\pi\)
−0.798688 + 0.601746i \(0.794472\pi\)
\(314\) −1.16478 + 2.01745i −0.0657321 + 0.113851i
\(315\) 0 0
\(316\) 4.65504 + 8.06276i 0.261866 + 0.453566i
\(317\) 7.22432 19.8487i 0.405758 1.11481i −0.553640 0.832756i \(-0.686762\pi\)
0.959398 0.282055i \(-0.0910162\pi\)
\(318\) 0 0
\(319\) 5.32623 + 4.46924i 0.298212 + 0.250229i
\(320\) −0.573867 0.481532i −0.0320802 0.0269184i
\(321\) 0 0
\(322\) −0.756630 2.55961i −0.0421653 0.142642i
\(323\) 33.7367i 1.87716i
\(324\) 0 0
\(325\) 21.5448 12.4389i 1.19509 0.689986i
\(326\) 2.71996 7.47303i 0.150645 0.413893i
\(327\) 0 0
\(328\) 17.3316 + 3.05602i 0.956976 + 0.168741i
\(329\) 21.8747 10.8910i 1.20599 0.600440i
\(330\) 0 0
\(331\) −23.4181 8.52351i −1.28718 0.468494i −0.394378 0.918948i \(-0.629040\pi\)
−0.892800 + 0.450454i \(0.851262\pi\)
\(332\) 12.1234 20.9983i 0.665357 1.15243i
\(333\) 0 0
\(334\) 3.38173 1.95244i 0.185040 0.106833i
\(335\) −0.703826 0.256172i −0.0384541 0.0139962i
\(336\) 0 0
\(337\) 4.61488 + 3.87234i 0.251388 + 0.210940i 0.759770 0.650192i \(-0.225312\pi\)
−0.508382 + 0.861132i \(0.669756\pi\)
\(338\) −1.71414 4.70955i −0.0932368 0.256166i
\(339\) 0 0
\(340\) −0.443589 2.51572i −0.0240570 0.136434i
\(341\) −1.06719 1.84843i −0.0577918 0.100098i
\(342\) 0 0
\(343\) −14.0627 12.0516i −0.759312 0.650727i
\(344\) 1.18949 0.209740i 0.0641331 0.0113084i
\(345\) 0 0
\(346\) −1.43120 + 1.70563i −0.0769416 + 0.0916955i
\(347\) 11.1036 + 30.5068i 0.596071 + 1.63769i 0.759028 + 0.651057i \(0.225674\pi\)
−0.162958 + 0.986633i \(0.552103\pi\)
\(348\) 0 0
\(349\) −6.71581 8.00359i −0.359489 0.428422i 0.555740 0.831356i \(-0.312435\pi\)
−0.915229 + 0.402934i \(0.867990\pi\)
\(350\) 4.38494 3.24088i 0.234385 0.173232i
\(351\) 0 0
\(352\) −3.50717 + 6.07460i −0.186933 + 0.323777i
\(353\) −4.68991 1.70699i −0.249618 0.0908537i 0.214181 0.976794i \(-0.431292\pi\)
−0.463799 + 0.885940i \(0.653514\pi\)
\(354\) 0 0
\(355\) 0.674717 0.804097i 0.0358103 0.0426770i
\(356\) 14.0698 5.12099i 0.745698 0.271412i
\(357\) 0 0
\(358\) 1.07120 + 6.07508i 0.0566148 + 0.321078i
\(359\) 16.1906i 0.854506i −0.904132 0.427253i \(-0.859481\pi\)
0.904132 0.427253i \(-0.140519\pi\)
\(360\) 0 0
\(361\) 0.105445 0.00554976
\(362\) −2.01450 + 1.69037i −0.105880 + 0.0888437i
\(363\) 0 0
\(364\) 10.7945 + 21.6809i 0.565787 + 1.13639i
\(365\) 0.991979 1.18219i 0.0519225 0.0618789i
\(366\) 0 0
\(367\) −11.3391 + 1.99938i −0.591895 + 0.104367i −0.461569 0.887104i \(-0.652713\pi\)
−0.130326 + 0.991471i \(0.541602\pi\)
\(368\) 7.28754i 0.379889i
\(369\) 0 0
\(370\) −0.270478 + 0.156161i −0.0140615 + 0.00811841i
\(371\) 6.02409 25.0303i 0.312755 1.29951i
\(372\) 0 0
\(373\) −5.79313 + 32.8545i −0.299957 + 1.70114i 0.346386 + 0.938092i \(0.387409\pi\)
−0.646343 + 0.763047i \(0.723702\pi\)
\(374\) −4.80228 + 1.74789i −0.248320 + 0.0903811i
\(375\) 0 0
\(376\) −14.4445 + 2.54695i −0.744917 + 0.131349i
\(377\) −21.9390 −1.12992
\(378\) 0 0
\(379\) −12.4601 −0.640032 −0.320016 0.947412i \(-0.603688\pi\)
−0.320016 + 0.947412i \(0.603688\pi\)
\(380\) 1.40895 0.248436i 0.0722777 0.0127445i
\(381\) 0 0
\(382\) −6.60629 + 2.40449i −0.338007 + 0.123024i
\(383\) −5.05101 + 28.6457i −0.258094 + 1.46373i 0.529908 + 0.848055i \(0.322226\pi\)
−0.788003 + 0.615672i \(0.788885\pi\)
\(384\) 0 0
\(385\) −0.548181 0.520790i −0.0279379 0.0265419i
\(386\) 4.40296 2.54205i 0.224105 0.129387i
\(387\) 0 0
\(388\) 8.75503i 0.444469i
\(389\) −10.6003 + 1.86913i −0.537459 + 0.0947685i −0.435788 0.900050i \(-0.643530\pi\)
−0.101671 + 0.994818i \(0.532419\pi\)
\(390\) 0 0
\(391\) 12.1313 14.4575i 0.613505 0.731147i
\(392\) 6.04401 + 9.32987i 0.305269 + 0.471230i
\(393\) 0 0
\(394\) 4.31721 3.62257i 0.217498 0.182502i
\(395\) 0.917134 0.0461460
\(396\) 0 0
\(397\) 39.1821i 1.96650i −0.182275 0.983248i \(-0.558346\pi\)
0.182275 0.983248i \(-0.441654\pi\)
\(398\) 0.507146 + 2.87617i 0.0254209 + 0.144169i
\(399\) 0 0
\(400\) 13.9896 5.09181i 0.699482 0.254590i
\(401\) −6.65975 + 7.93679i −0.332572 + 0.396344i −0.906254 0.422734i \(-0.861070\pi\)
0.573681 + 0.819079i \(0.305515\pi\)
\(402\) 0 0
\(403\) 6.32864 + 2.30344i 0.315252 + 0.114742i
\(404\) 11.4427 19.8193i 0.569294 0.986045i
\(405\) 0 0
\(406\) −4.77790 + 0.541657i −0.237123 + 0.0268820i
\(407\) −4.26527 5.08315i −0.211421 0.251962i
\(408\) 0 0
\(409\) 8.09126 + 22.2306i 0.400087 + 1.09923i 0.962241 + 0.272198i \(0.0877506\pi\)
−0.562154 + 0.827033i \(0.690027\pi\)
\(410\) 0.532137 0.634176i 0.0262804 0.0313197i
\(411\) 0 0
\(412\) −5.04723 + 0.889964i −0.248659 + 0.0438454i
\(413\) −5.18261 + 0.587538i −0.255019 + 0.0289109i
\(414\) 0 0
\(415\) −1.19427 2.06854i −0.0586245 0.101541i
\(416\) −3.84334 21.7966i −0.188435 1.06867i
\(417\) 0 0
\(418\) −0.978921 2.68956i −0.0478806 0.131551i
\(419\) −0.297747 0.249839i −0.0145459 0.0122054i 0.635486 0.772113i \(-0.280800\pi\)
−0.650032 + 0.759907i \(0.725244\pi\)
\(420\) 0 0
\(421\) −29.2829 10.6581i −1.42716 0.519444i −0.491044 0.871135i \(-0.663385\pi\)
−0.936116 + 0.351691i \(0.885607\pi\)
\(422\) −4.75590 + 2.74582i −0.231513 + 0.133664i
\(423\) 0 0
\(424\) −7.72652 + 13.3827i −0.375233 + 0.649922i
\(425\) 36.2297 + 13.1865i 1.75740 + 0.639640i
\(426\) 0 0
\(427\) 3.16123 + 6.34937i 0.152983 + 0.307268i
\(428\) −14.1856 2.50131i −0.685688 0.120905i
\(429\) 0 0
\(430\) 0.0194326 0.0533907i 0.000937124 0.00257473i
\(431\) −20.9763 + 12.1107i −1.01039 + 0.583352i −0.911307 0.411727i \(-0.864926\pi\)
−0.0990874 + 0.995079i \(0.531592\pi\)
\(432\) 0 0
\(433\) 10.0296i 0.481991i −0.970526 0.240995i \(-0.922526\pi\)
0.970526 0.240995i \(-0.0774739\pi\)
\(434\) 1.43513 + 0.345395i 0.0688882 + 0.0165795i
\(435\) 0 0
\(436\) −24.3599 20.4403i −1.16663 0.978915i
\(437\) 8.09706 + 6.79424i 0.387335 + 0.325013i
\(438\) 0 0
\(439\) −14.0388 + 38.5712i −0.670034 + 1.84090i −0.145834 + 0.989309i \(0.546587\pi\)
−0.524200 + 0.851595i \(0.675636\pi\)
\(440\) 0.226926 + 0.393048i 0.0108183 + 0.0187378i
\(441\) 0 0
\(442\) 8.06274 13.9651i 0.383506 0.664251i
\(443\) 22.4132 + 26.7110i 1.06488 + 1.26908i 0.961609 + 0.274424i \(0.0884872\pi\)
0.103273 + 0.994653i \(0.467068\pi\)
\(444\) 0 0
\(445\) 0.256125 1.45256i 0.0121415 0.0688578i
\(446\) −5.12623 + 1.86580i −0.242734 + 0.0883480i
\(447\) 0 0
\(448\) 3.12030 + 10.5557i 0.147420 + 0.498711i
\(449\) −0.655683 0.378559i −0.0309436 0.0178653i 0.484448 0.874820i \(-0.339020\pi\)
−0.515392 + 0.856955i \(0.672354\pi\)
\(450\) 0 0
\(451\) 15.2322 + 8.79433i 0.717258 + 0.414109i
\(452\) 3.52872 + 4.20536i 0.165977 + 0.197804i
\(453\) 0 0
\(454\) 1.03405 + 2.84103i 0.0485305 + 0.133336i
\(455\) 2.38133 + 0.146989i 0.111638 + 0.00689096i
\(456\) 0 0
\(457\) −5.45161 30.9176i −0.255015 1.44626i −0.796033 0.605253i \(-0.793072\pi\)
0.541018 0.841011i \(-0.318039\pi\)
\(458\) 0.856242 + 1.48305i 0.0400096 + 0.0692986i
\(459\) 0 0
\(460\) −0.693126 0.400177i −0.0323172 0.0186583i
\(461\) 8.35408 7.00990i 0.389088 0.326484i −0.427170 0.904171i \(-0.640489\pi\)
0.816258 + 0.577688i \(0.196045\pi\)
\(462\) 0 0
\(463\) 1.23596 7.00945i 0.0574397 0.325757i −0.942525 0.334135i \(-0.891556\pi\)
0.999965 + 0.00837823i \(0.00266690\pi\)
\(464\) −12.9294 2.27979i −0.600230 0.105837i
\(465\) 0 0
\(466\) 4.65711 3.90778i 0.215736 0.181024i
\(467\) −13.2274 −0.612090 −0.306045 0.952017i \(-0.599006\pi\)
−0.306045 + 0.952017i \(0.599006\pi\)
\(468\) 0 0
\(469\) 6.54122 + 8.85033i 0.302045 + 0.408670i
\(470\) −0.235978 + 0.648344i −0.0108849 + 0.0299059i
\(471\) 0 0
\(472\) 3.08314 + 0.543641i 0.141913 + 0.0250231i
\(473\) 1.18880 + 0.209617i 0.0546610 + 0.00963820i
\(474\) 0 0
\(475\) −7.38524 + 20.2908i −0.338858 + 0.931005i
\(476\) −14.9862 + 34.4131i −0.686891 + 1.57732i
\(477\) 0 0
\(478\) 9.46353 0.432852
\(479\) −1.52575 + 1.28025i −0.0697132 + 0.0584963i −0.676978 0.736003i \(-0.736711\pi\)
0.607265 + 0.794499i \(0.292267\pi\)
\(480\) 0 0
\(481\) 20.6197 + 3.63580i 0.940175 + 0.165778i
\(482\) 0.0567527 0.321861i 0.00258501 0.0146603i
\(483\) 0 0
\(484\) 11.8754 9.96464i 0.539791 0.452938i
\(485\) 0.746909 + 0.431228i 0.0339154 + 0.0195811i
\(486\) 0 0
\(487\) −7.16028 12.4020i −0.324463 0.561987i 0.656940 0.753943i \(-0.271850\pi\)
−0.981404 + 0.191956i \(0.938517\pi\)
\(488\) −0.739281 4.19267i −0.0334657 0.189793i
\(489\) 0 0
\(490\) 0.522236 0.0267816i 0.0235922 0.00120987i
\(491\) −9.11592 25.0458i −0.411396 1.13030i −0.956449 0.291899i \(-0.905713\pi\)
0.545053 0.838401i \(-0.316509\pi\)
\(492\) 0 0
\(493\) −21.8550 26.0458i −0.984300 1.17304i
\(494\) 7.82128 + 4.51562i 0.351896 + 0.203167i
\(495\) 0 0
\(496\) 3.49030 + 2.01513i 0.156719 + 0.0904819i
\(497\) −14.7906 + 4.37214i −0.663447 + 0.196117i
\(498\) 0 0
\(499\) −20.0327 + 7.29129i −0.896785 + 0.326403i −0.748964 0.662611i \(-0.769448\pi\)
−0.147821 + 0.989014i \(0.547226\pi\)
\(500\) 0.569687 3.23086i 0.0254772 0.144488i
\(501\) 0 0
\(502\) 3.08385 + 3.67519i 0.137639 + 0.164032i
\(503\) 6.74300 11.6792i 0.300655 0.520751i −0.675629 0.737242i \(-0.736128\pi\)
0.976285 + 0.216491i \(0.0694612\pi\)
\(504\) 0 0
\(505\) −1.12721 1.95239i −0.0501604 0.0868803i
\(506\) −0.547626 + 1.50459i −0.0243450 + 0.0668872i
\(507\) 0 0
\(508\) −14.7125 12.3453i −0.652763 0.547733i
\(509\) 6.79910 + 5.70512i 0.301365 + 0.252875i 0.780912 0.624641i \(-0.214755\pi\)
−0.479547 + 0.877516i \(0.659199\pi\)
\(510\) 0 0
\(511\) −21.7453 + 6.42797i −0.961954 + 0.284357i
\(512\) 22.7635i 1.00601i
\(513\) 0 0
\(514\) −3.65486 + 2.11014i −0.161209 + 0.0930741i
\(515\) −0.172677 + 0.474425i −0.00760904 + 0.0209057i
\(516\) 0 0
\(517\) −14.4360 2.54546i −0.634897 0.111949i
\(518\) 4.58033 + 0.282725i 0.201248 + 0.0124222i
\(519\) 0 0
\(520\) −1.34571 0.489798i −0.0590133 0.0214791i
\(521\) −21.3144 + 36.9177i −0.933802 + 1.61739i −0.157046 + 0.987591i \(0.550197\pi\)
−0.776756 + 0.629802i \(0.783136\pi\)
\(522\) 0 0
\(523\) −19.7089 + 11.3789i −0.861809 + 0.497565i −0.864617 0.502431i \(-0.832439\pi\)
0.00280898 + 0.999996i \(0.499106\pi\)
\(524\) −25.0457 9.11587i −1.09412 0.398229i
\(525\) 0 0
\(526\) −5.46851 4.58862i −0.238438 0.200074i
\(527\) 3.56979 + 9.80791i 0.155502 + 0.427239i
\(528\) 0 0
\(529\) 2.96712 + 16.8274i 0.129005 + 0.731625i
\(530\) 0.363457 + 0.629526i 0.0157876 + 0.0273449i
\(531\) 0 0
\(532\) −19.2734 8.39316i −0.835606 0.363890i
\(533\) −54.6557 + 9.63728i −2.36740 + 0.417437i
\(534\) 0 0
\(535\) −0.912103 + 1.08700i −0.0394336 + 0.0469952i
\(536\) −2.25930 6.20737i −0.0975867 0.268117i
\(537\) 0 0
\(538\) 2.71772 + 3.23885i 0.117169 + 0.139637i
\(539\) 2.48706 + 10.8281i 0.107125 + 0.466397i
\(540\) 0 0
\(541\) −1.69482 + 2.93552i −0.0728660 + 0.126208i −0.900156 0.435567i \(-0.856548\pi\)
0.827290 + 0.561775i \(0.189881\pi\)
\(542\) −3.08387 1.12244i −0.132463 0.0482127i
\(543\) 0 0
\(544\) 22.0482 26.2760i 0.945307 1.12657i
\(545\) −2.94365 + 1.07140i −0.126092 + 0.0458938i
\(546\) 0 0
\(547\) −0.794100 4.50356i −0.0339532 0.192558i 0.963113 0.269096i \(-0.0867247\pi\)
−0.997067 + 0.0765371i \(0.975614\pi\)
\(548\) 11.6133i 0.496097i
\(549\) 0 0
\(550\) −3.27094 −0.139473
\(551\) 14.5872 12.2401i 0.621435 0.521446i
\(552\) 0 0
\(553\) −11.2331 7.44408i −0.477679 0.316555i
\(554\) 3.66410 4.36671i 0.155673 0.185524i
\(555\) 0 0
\(556\) 27.6894 4.88239i 1.17429 0.207059i
\(557\) 28.3433i 1.20094i 0.799646 + 0.600472i \(0.205021\pi\)
−0.799646 + 0.600472i \(0.794979\pi\)
\(558\) 0 0
\(559\) −3.29867 + 1.90449i −0.139519 + 0.0805511i
\(560\) 1.38812 + 0.334081i 0.0586586 + 0.0141175i
\(561\) 0 0
\(562\) −0.200758 + 1.13856i −0.00846848 + 0.0480271i
\(563\) −4.56240 + 1.66058i −0.192282 + 0.0699851i −0.436367 0.899769i \(-0.643735\pi\)
0.244084 + 0.969754i \(0.421513\pi\)
\(564\) 0 0
\(565\) 0.532575 0.0939073i 0.0224056 0.00395071i
\(566\) −6.81026 −0.286257
\(567\) 0 0
\(568\) 9.25755 0.388438
\(569\) −24.0084 + 4.23332i −1.00648 + 0.177470i −0.652506 0.757784i \(-0.726282\pi\)
−0.353978 + 0.935254i \(0.615171\pi\)
\(570\) 0 0
\(571\) 6.78414 2.46923i 0.283908 0.103334i −0.196141 0.980576i \(-0.562841\pi\)
0.480049 + 0.877242i \(0.340619\pi\)
\(572\) 2.52292 14.3082i 0.105488 0.598254i
\(573\) 0 0
\(574\) −11.6650 + 3.44822i −0.486889 + 0.143926i
\(575\) 10.4612 6.03976i 0.436261 0.251875i
\(576\) 0 0
\(577\) 26.1510i 1.08868i −0.838864 0.544340i \(-0.816780\pi\)
0.838864 0.544340i \(-0.183220\pi\)
\(578\) 17.6655 3.11490i 0.734786 0.129563i
\(579\) 0 0
\(580\) −0.926816 + 1.10454i −0.0384839 + 0.0458634i
\(581\) −2.16220 + 35.0290i −0.0897030 + 1.45325i
\(582\) 0 0
\(583\) −11.8308 + 9.92722i −0.489982 + 0.411143i
\(584\) 13.6106 0.563210
\(585\) 0 0
\(586\) 0.646165i 0.0266928i
\(587\) 3.34943 + 18.9956i 0.138246 + 0.784031i 0.972544 + 0.232718i \(0.0747619\pi\)
−0.834298 + 0.551313i \(0.814127\pi\)
\(588\) 0 0
\(589\) −5.49302 + 1.99929i −0.226336 + 0.0823795i
\(590\) 0.0946628 0.112815i 0.00389720 0.00464451i
\(591\) 0 0
\(592\) 11.7740 + 4.28539i 0.483908 + 0.176128i
\(593\) 19.5311 33.8289i 0.802047 1.38919i −0.116219 0.993224i \(-0.537078\pi\)
0.918266 0.395963i \(-0.129589\pi\)
\(594\) 0 0
\(595\) 2.19770 + 2.97351i 0.0900971 + 0.121902i
\(596\) 20.4819 + 24.4094i 0.838972 + 0.999848i
\(597\) 0 0
\(598\) −1.72797 4.74755i −0.0706618 0.194142i
\(599\) −5.53430 + 6.59552i −0.226125 + 0.269486i −0.867164 0.498023i \(-0.834059\pi\)
0.641038 + 0.767509i \(0.278504\pi\)
\(600\) 0 0
\(601\) 41.3305 7.28768i 1.68591 0.297271i 0.753168 0.657828i \(-0.228525\pi\)
0.932737 + 0.360557i \(0.117413\pi\)
\(602\) −0.671366 + 0.496202i −0.0273628 + 0.0202237i
\(603\) 0 0
\(604\) −2.10100 3.63903i −0.0854883 0.148070i
\(605\) −0.265182 1.50392i −0.0107812 0.0611431i
\(606\) 0 0
\(607\) 15.1581 + 41.6466i 0.615249 + 1.69038i 0.718323 + 0.695710i \(0.244910\pi\)
−0.103073 + 0.994674i \(0.532868\pi\)
\(608\) 14.7161 + 12.3483i 0.596817 + 0.500789i
\(609\) 0 0
\(610\) −0.188189 0.0684952i −0.00761955 0.00277329i
\(611\) 40.0570 23.1269i 1.62053 0.935615i
\(612\) 0 0
\(613\) −22.3176 + 38.6553i −0.901401 + 1.56127i −0.0757236 + 0.997129i \(0.524127\pi\)
−0.825677 + 0.564143i \(0.809207\pi\)
\(614\) 0.637493 + 0.232028i 0.0257271 + 0.00936390i
\(615\) 0 0
\(616\) 0.410843 6.65594i 0.0165534 0.268176i
\(617\) −26.5556 4.68248i −1.06909 0.188509i −0.388703 0.921363i \(-0.627077\pi\)
−0.680386 + 0.732854i \(0.738188\pi\)
\(618\) 0 0
\(619\) 13.2165 36.3120i 0.531215 1.45950i −0.326411 0.945228i \(-0.605839\pi\)
0.857626 0.514274i \(-0.171939\pi\)
\(620\) 0.383322 0.221311i 0.0153946 0.00888807i
\(621\) 0 0
\(622\) 4.92809i 0.197599i
\(623\) −14.9270 + 15.7121i −0.598036 + 0.629491i
\(624\) 0 0
\(625\) 18.7794 + 15.7577i 0.751174 + 0.630310i
\(626\) −0.589500 0.494650i −0.0235612 0.0197702i
\(627\) 0 0
\(628\) 3.51044 9.64485i 0.140082 0.384871i
\(629\) 16.2243 + 28.1013i 0.646906 + 1.12047i
\(630\) 0 0
\(631\) −5.01811 + 8.69163i −0.199768 + 0.346008i −0.948453 0.316917i \(-0.897352\pi\)
0.748685 + 0.662926i \(0.230686\pi\)
\(632\) 5.19927 + 6.19625i 0.206816 + 0.246474i
\(633\) 0 0
\(634\) 1.52169 8.62995i 0.0604341 0.342739i
\(635\) −1.77786 + 0.647090i −0.0705524 + 0.0256790i
\(636\) 0 0
\(637\) −27.9735 21.1288i −1.10835 0.837153i
\(638\) 2.49809 + 1.44227i 0.0989002 + 0.0571001i
\(639\) 0 0
\(640\) −1.64750 0.951186i −0.0651233 0.0375989i
\(641\) −20.4966 24.4269i −0.809567 0.964804i 0.190290 0.981728i \(-0.439057\pi\)
−0.999857 + 0.0169239i \(0.994613\pi\)
\(642\) 0 0
\(643\) −4.12226 11.3258i −0.162566 0.446646i 0.831487 0.555544i \(-0.187490\pi\)
−0.994053 + 0.108898i \(0.965268\pi\)
\(644\) 5.24132 + 10.5273i 0.206537 + 0.414832i
\(645\) 0 0
\(646\) 2.43043 + 13.7837i 0.0956242 + 0.542312i
\(647\) −21.3692 37.0126i −0.840111 1.45512i −0.889800 0.456351i \(-0.849156\pi\)
0.0496886 0.998765i \(-0.484177\pi\)
\(648\) 0 0
\(649\) 2.70969 + 1.56444i 0.106365 + 0.0614096i
\(650\) 7.90637 6.63424i 0.310114 0.260216i
\(651\) 0 0
\(652\) −6.08441 + 34.5064i −0.238284 + 1.35137i
\(653\) −14.0027 2.46906i −0.547970 0.0966218i −0.107192 0.994238i \(-0.534186\pi\)
−0.440777 + 0.897616i \(0.645297\pi\)
\(654\) 0 0
\(655\) −2.01132 + 1.68769i −0.0785886 + 0.0659437i
\(656\) −33.2118 −1.29670
\(657\) 0 0
\(658\) 8.15267 6.02558i 0.317824 0.234902i
\(659\) −0.747205 + 2.05293i −0.0291070 + 0.0799707i −0.953395 0.301725i \(-0.902438\pi\)
0.924288 + 0.381696i \(0.124660\pi\)
\(660\) 0 0
\(661\) −19.1020 3.36819i −0.742980 0.131007i −0.210670 0.977557i \(-0.567565\pi\)
−0.532310 + 0.846550i \(0.678676\pi\)
\(662\) −10.1819 1.79535i −0.395731 0.0697781i
\(663\) 0 0
\(664\) 7.20488 19.7952i 0.279604 0.768204i
\(665\) −1.66535 + 1.23085i −0.0645793 + 0.0477301i
\(666\) 0 0
\(667\) −10.6526 −0.412469
\(668\) −13.1795 + 11.0589i −0.509930 + 0.427882i
\(669\) 0 0
\(670\) −0.306015 0.0539587i −0.0118224 0.00208460i
\(671\) 0.738849 4.19022i 0.0285229 0.161762i
\(672\) 0 0
\(673\) −8.85877 + 7.43339i −0.341480 + 0.286536i −0.797358 0.603506i \(-0.793770\pi\)
0.455878 + 0.890042i \(0.349325\pi\)
\(674\) 2.16445 + 1.24965i 0.0833716 + 0.0481346i
\(675\) 0 0
\(676\) 11.0408 + 19.1233i 0.424647 + 0.735510i
\(677\) 2.04862 + 11.6183i 0.0787348 + 0.446527i 0.998534 + 0.0541367i \(0.0172407\pi\)
−0.919799 + 0.392390i \(0.871648\pi\)
\(678\) 0 0
\(679\) −5.64802 11.3441i −0.216751 0.435347i
\(680\) −0.759073 2.08554i −0.0291091 0.0799767i
\(681\) 0 0
\(682\) −0.569183 0.678326i −0.0217951 0.0259744i
\(683\) −20.5498 11.8644i −0.786317 0.453980i 0.0523472 0.998629i \(-0.483330\pi\)
−0.838664 + 0.544648i \(0.816663\pi\)
\(684\) 0 0
\(685\) 0.990756 + 0.572013i 0.0378549 + 0.0218555i
\(686\) −6.61374 3.91080i −0.252514 0.149315i
\(687\) 0 0
\(688\) −2.14191 + 0.779592i −0.0816596 + 0.0297217i
\(689\) 8.46217 47.9913i 0.322383 1.82832i
\(690\) 0 0
\(691\) −4.08371 4.86678i −0.155352 0.185141i 0.682755 0.730648i \(-0.260782\pi\)
−0.838107 + 0.545507i \(0.816337\pi\)
\(692\) 4.90500 8.49571i 0.186460 0.322959i
\(693\) 0 0
\(694\) 6.73429 + 11.6641i 0.255630 + 0.442765i
\(695\) 0.947313 2.60272i 0.0359336 0.0987268i
\(696\) 0 0
\(697\) −65.8877 55.2864i −2.49568 2.09412i
\(698\) −3.32044 2.78618i −0.125681 0.105459i
\(699\) 0 0
\(700\) −16.5467 + 17.4170i −0.625406 + 0.658300i
\(701\) 30.6664i 1.15825i 0.815238 + 0.579126i \(0.196606\pi\)
−0.815238 + 0.579126i \(0.803394\pi\)
\(702\) 0 0
\(703\) −15.7384 + 9.08659i −0.593586 + 0.342707i
\(704\) 2.25838 6.20485i 0.0851160 0.233854i
\(705\) 0 0
\(706\) −2.03911 0.359550i −0.0767430 0.0135319i
\(707\) −2.04079 + 33.0622i −0.0767518 + 1.24343i
\(708\) 0 0
\(709\) 13.9023 + 5.06001i 0.522111 + 0.190033i 0.589612 0.807686i \(-0.299281\pi\)
−0.0675015 + 0.997719i \(0.521503\pi\)
\(710\) 0.217739 0.377134i 0.00817159 0.0141536i
\(711\) 0 0
\(712\) 11.2656 6.50420i 0.422196 0.243755i
\(713\) 3.07289 + 1.11844i 0.115081 + 0.0418860i
\(714\) 0 0
\(715\) −1.09639 0.919982i −0.0410027 0.0344054i
\(716\) −9.29587 25.5402i −0.347403 0.954481i
\(717\) 0 0
\(718\) −1.16639 6.61492i −0.0435293 0.246867i
\(719\) 4.89820 + 8.48393i 0.182672 + 0.316397i 0.942790 0.333388i \(-0.108192\pi\)
−0.760118 + 0.649786i \(0.774859\pi\)
\(720\) 0 0
\(721\) 5.96570 4.40921i 0.222174 0.164208i
\(722\) 0.0430815 0.00759643i 0.00160333 0.000282710i
\(723\) 0 0
\(724\) 7.44763 8.87574i 0.276789 0.329864i
\(725\) −7.44296 20.4494i −0.276425 0.759470i
\(726\) 0 0
\(727\) 29.0898 + 34.6679i 1.07888 + 1.28576i 0.956009 + 0.293339i \(0.0947663\pi\)
0.122873 + 0.992422i \(0.460789\pi\)
\(728\) 12.5068 + 16.9218i 0.463531 + 0.627162i
\(729\) 0 0
\(730\) 0.320122 0.554468i 0.0118483 0.0205218i
\(731\) −5.54702 2.01895i −0.205164 0.0746736i
\(732\) 0 0
\(733\) −15.4136 + 18.3692i −0.569315 + 0.678483i −0.971490 0.237079i \(-0.923810\pi\)
0.402175 + 0.915563i \(0.368254\pi\)
\(734\) −4.48873 + 1.63376i −0.165682 + 0.0603033i
\(735\) 0 0
\(736\) −1.86615 10.5834i −0.0687871 0.390111i
\(737\) 6.60188i 0.243184i
\(738\) 0 0
\(739\) −22.3128 −0.820790 −0.410395 0.911908i \(-0.634609\pi\)
−0.410395 + 0.911908i \(0.634609\pi\)
\(740\) 1.05413 0.884518i 0.0387505 0.0325155i
\(741\) 0 0
\(742\) 0.658029 10.6605i 0.0241570 0.391360i
\(743\) 28.1973 33.6043i 1.03446 1.23282i 0.0624085 0.998051i \(-0.480122\pi\)
0.972051 0.234770i \(-0.0754337\pi\)
\(744\) 0 0
\(745\) 3.09125 0.545071i 0.113255 0.0199699i
\(746\) 13.8406i 0.506739i
\(747\) 0 0
\(748\) 19.4998 11.2582i 0.712982 0.411641i
\(749\) 19.9943 5.91038i 0.730576 0.215961i
\(750\) 0 0
\(751\) −3.23209 + 18.3301i −0.117941 + 0.668875i 0.867311 + 0.497766i \(0.165846\pi\)
−0.985252 + 0.171109i \(0.945265\pi\)
\(752\) 26.0101 9.46690i 0.948491 0.345222i
\(753\) 0 0
\(754\) −8.96354 + 1.58051i −0.326433 + 0.0575589i
\(755\) −0.413938 −0.0150647
\(756\) 0 0
\(757\) 26.2705 0.954819 0.477410 0.878681i \(-0.341576\pi\)
0.477410 + 0.878681i \(0.341576\pi\)
\(758\) −5.09078 + 0.897641i −0.184905 + 0.0326038i
\(759\) 0 0
\(760\) 1.16803 0.425126i 0.0423687 0.0154210i
\(761\) −2.11972 + 12.0216i −0.0768399 + 0.435781i 0.921981 + 0.387235i \(0.126570\pi\)
−0.998821 + 0.0485459i \(0.984541\pi\)
\(762\) 0 0
\(763\) 44.7501 + 10.7701i 1.62006 + 0.389904i
\(764\) 26.8250 15.4874i 0.970494 0.560315i
\(765\) 0 0
\(766\) 12.0676i 0.436018i
\(767\) −9.72280 + 1.71439i −0.351070 + 0.0619031i
\(768\) 0 0
\(769\) 5.10850 6.08807i 0.184217 0.219541i −0.666030 0.745925i \(-0.732008\pi\)
0.850247 + 0.526383i \(0.176452\pi\)
\(770\) −0.261487 0.173285i −0.00942333 0.00624478i
\(771\) 0 0
\(772\) −17.1595 + 14.3985i −0.617585 + 0.518215i
\(773\) −7.78940 −0.280165 −0.140083 0.990140i \(-0.544737\pi\)
−0.140083 + 0.990140i \(0.544737\pi\)
\(774\) 0 0
\(775\) 6.68038i 0.239966i
\(776\) 1.32084 + 7.49084i 0.0474153 + 0.268906i
\(777\) 0 0
\(778\) −4.19629 + 1.52733i −0.150444 + 0.0547573i
\(779\) 30.9637 36.9011i 1.10939 1.32212i
\(780\) 0 0
\(781\) 8.69418 + 3.16442i 0.311102 + 0.113232i
\(782\) 3.91490 6.78080i 0.139996 0.242481i
\(783\) 0 0
\(784\) −14.2901 15.3587i −0.510359 0.548526i
\(785\) −0.649915 0.774539i −0.0231965 0.0276445i
\(786\) 0 0
\(787\) −8.13240 22.3436i −0.289889 0.796463i −0.996081 0.0884429i \(-0.971811\pi\)
0.706193 0.708020i \(-0.250411\pi\)
\(788\) −15.9608 + 19.0213i −0.568579 + 0.677606i
\(789\) 0 0
\(790\) 0.374710 0.0660715i 0.0133316 0.00235072i
\(791\) −7.28521 3.17256i −0.259032 0.112803i
\(792\) 0 0
\(793\) 6.71285 + 11.6270i 0.238380 + 0.412887i
\(794\) −2.82273 16.0085i −0.100175 0.568121i
\(795\) 0 0
\(796\) −4.40101 12.0917i −0.155989 0.428578i
\(797\) 10.6111 + 8.90378i 0.375865 + 0.315388i 0.811077 0.584940i \(-0.198882\pi\)
−0.435212 + 0.900328i \(0.643326\pi\)
\(798\) 0 0
\(799\) 67.3597 + 24.5169i 2.38302 + 0.867347i
\(800\) 19.0128 10.9770i 0.672204 0.388097i
\(801\) 0 0
\(802\) −2.14918 + 3.72248i −0.0758900 + 0.131445i
\(803\) 12.7823 + 4.65238i 0.451077 + 0.164179i
\(804\) 0 0
\(805\) 1.15626 + 0.0713712i 0.0407529 + 0.00251551i
\(806\) 2.75161 + 0.485183i 0.0969214 + 0.0170899i
\(807\) 0 0
\(808\) 6.80033 18.6838i 0.239235 0.657292i
\(809\) 28.3326 16.3578i 0.996122 0.575111i 0.0890233 0.996030i \(-0.471625\pi\)
0.907099 + 0.420918i \(0.138292\pi\)
\(810\) 0 0
\(811\) 47.6172i 1.67207i 0.548679 + 0.836033i \(0.315131\pi\)
−0.548679 + 0.836033i \(0.684869\pi\)
\(812\) 20.3168 6.00572i 0.712981 0.210760i
\(813\) 0 0
\(814\) −2.10884 1.76953i −0.0739149 0.0620219i
\(815\) 2.64412 + 2.21868i 0.0926196 + 0.0777171i
\(816\) 0 0
\(817\) 1.13073 3.10666i 0.0395593 0.108688i
\(818\) 4.90734 + 8.49976i 0.171581 + 0.297187i
\(819\) 0 0
\(820\) −1.82374 + 3.15881i −0.0636878 + 0.110311i
\(821\) 31.4248 + 37.4506i 1.09673 + 1.30703i 0.948040 + 0.318150i \(0.103062\pi\)
0.148691 + 0.988884i \(0.452494\pi\)
\(822\) 0 0
\(823\) 3.43354 19.4726i 0.119686 0.678771i −0.864637 0.502396i \(-0.832452\pi\)
0.984323 0.176375i \(-0.0564371\pi\)
\(824\) −4.18417 + 1.52291i −0.145762 + 0.0530532i
\(825\) 0 0
\(826\) −2.07511 + 0.613410i −0.0722024 + 0.0213433i
\(827\) −33.5168 19.3510i −1.16549 0.672899i −0.212880 0.977078i \(-0.568284\pi\)
−0.952615 + 0.304180i \(0.901618\pi\)
\(828\) 0 0
\(829\) 11.1500 + 6.43746i 0.387256 + 0.223582i 0.680970 0.732311i \(-0.261558\pi\)
−0.293715 + 0.955893i \(0.594892\pi\)
\(830\) −0.636960 0.759099i −0.0221092 0.0263487i
\(831\) 0 0
\(832\) 7.12605 + 19.5787i 0.247051 + 0.678768i
\(833\) −2.78248 54.2577i −0.0964072 1.87992i
\(834\) 0 0
\(835\) 0.294303 + 1.66908i 0.0101848 + 0.0577608i
\(836\) 6.30526 + 10.9210i 0.218072 + 0.377712i
\(837\) 0 0
\(838\) −0.139648 0.0806258i −0.00482406 0.00278517i
\(839\) −10.7228 + 8.99751i −0.370193 + 0.310628i −0.808838 0.588032i \(-0.799903\pi\)
0.438645 + 0.898660i \(0.355459\pi\)
\(840\) 0 0
\(841\) 1.70331 9.65992i 0.0587347 0.333101i
\(842\) −12.7318 2.24496i −0.438768 0.0773666i
\(843\) 0 0
\(844\) 18.5350 15.5527i 0.638001 0.535347i
\(845\) 2.17526 0.0748312
\(846\) 0 0
\(847\) −8.95889 + 20.5725i −0.307831 + 0.706879i
\(848\) 9.97405 27.4035i 0.342510 0.941039i
\(849\) 0 0
\(850\) 15.7522 + 2.77754i 0.540296 + 0.0952688i
\(851\) 10.0120 + 1.76538i 0.343205 + 0.0605164i
\(852\) 0 0
\(853\) 1.21924 3.34982i 0.0417458 0.114696i −0.917068 0.398730i \(-0.869451\pi\)
0.958814 + 0.284035i \(0.0916731\pi\)
\(854\) 1.74899 + 2.36640i 0.0598492 + 0.0809766i
\(855\) 0 0
\(856\) −12.5146 −0.427741
\(857\) 22.6428 18.9996i 0.773464 0.649013i −0.168130 0.985765i \(-0.553773\pi\)
0.941593 + 0.336752i \(0.109328\pi\)
\(858\) 0 0
\(859\) 26.8449 + 4.73347i 0.915935 + 0.161504i 0.611697 0.791092i \(-0.290487\pi\)
0.304238 + 0.952596i \(0.401598\pi\)
\(860\) −0.0434697 + 0.246529i −0.00148231 + 0.00840657i
\(861\) 0 0
\(862\) −7.69776 + 6.45919i −0.262187 + 0.220001i
\(863\) 23.1530 + 13.3674i 0.788136 + 0.455031i 0.839306 0.543659i \(-0.182962\pi\)
−0.0511699 + 0.998690i \(0.516295\pi\)
\(864\) 0 0
\(865\) −0.483191 0.836911i −0.0164290 0.0284558i
\(866\) −0.722544 4.09775i −0.0245530 0.139247i
\(867\) 0 0
\(868\) −6.49125 0.400678i −0.220327 0.0135999i
\(869\) 2.76486 + 7.59639i 0.0937914 + 0.257690i
\(870\) 0 0
\(871\) 13.3902 + 15.9578i 0.453709 + 0.540710i
\(872\) −23.9262 13.8138i −0.810242 0.467793i
\(873\) 0 0
\(874\) 3.79765 + 2.19258i 0.128458 + 0.0741650i
\(875\) 1.34612 + 4.55382i 0.0455073 + 0.153947i
\(876\) 0 0
\(877\) 39.7412 14.4646i 1.34196 0.488435i 0.431533 0.902097i \(-0.357973\pi\)
0.910430 + 0.413662i \(0.135751\pi\)
\(878\) −2.95705 + 16.7703i −0.0997957 + 0.565970i
\(879\) 0 0
\(880\) −0.550539 0.656106i −0.0185587 0.0221173i
\(881\) 24.9251 43.1715i 0.839747 1.45448i −0.0503592 0.998731i \(-0.516037\pi\)
0.890106 0.455753i \(-0.150630\pi\)
\(882\) 0 0
\(883\) −19.7615 34.2280i −0.665028 1.15186i −0.979278 0.202522i \(-0.935086\pi\)
0.314249 0.949340i \(-0.398247\pi\)
\(884\) −24.2997 + 66.7630i −0.817289 + 2.24548i
\(885\) 0 0
\(886\) 11.0816 + 9.29854i 0.372293 + 0.312391i
\(887\) −28.4361 23.8607i −0.954791 0.801165i 0.0253071 0.999680i \(-0.491944\pi\)
−0.980098 + 0.198515i \(0.936388\pi\)
\(888\) 0 0
\(889\) 27.0275 + 6.50478i 0.906475 + 0.218163i
\(890\) 0.611918i 0.0205115i
\(891\) 0 0
\(892\) 20.8152 12.0176i 0.696944 0.402381i
\(893\) −13.7309 + 37.7255i −0.459489 + 1.26243i
\(894\) 0 0
\(895\) −2.63675 0.464930i −0.0881369 0.0155409i
\(896\) 12.4582 + 25.0224i 0.416199 + 0.835940i
\(897\) 0 0
\(898\) −0.295162 0.107430i −0.00984968 0.00358499i
\(899\) 2.94562 5.10196i 0.0982418 0.170160i
\(900\) 0 0
\(901\) 65.4046 37.7614i 2.17894 1.25801i
\(902\) 6.85694 + 2.49572i 0.228311 + 0.0830984i
\(903\) 0 0
\(904\) 3.65363 + 3.06576i 0.121518 + 0.101966i
\(905\) −0.390375 1.07255i −0.0129765 0.0356527i
\(906\) 0 0
\(907\) −5.56403 31.5552i −0.184751 1.04777i −0.926275 0.376847i \(-0.877008\pi\)
0.741525 0.670926i \(-0.234103\pi\)
\(908\) −6.66036 11.5361i −0.221032 0.382838i
\(909\) 0 0
\(910\) 0.983519 0.111499i 0.0326034 0.00369615i
\(911\) 17.5085 3.08722i 0.580082 0.102284i 0.124095 0.992270i \(-0.460397\pi\)
0.455988 + 0.889986i \(0.349286\pi\)
\(912\) 0 0
\(913\) 13.5328 16.1278i 0.447872 0.533753i
\(914\) −4.45469 12.2392i −0.147348 0.404835i
\(915\) 0 0
\(916\) −4.84988 5.77987i −0.160245 0.190972i
\(917\) 38.3331 4.34572i 1.26587 0.143508i
\(918\) 0 0
\(919\) 10.1037 17.5002i 0.333292 0.577279i −0.649863 0.760051i \(-0.725174\pi\)
0.983155 + 0.182773i \(0.0585072\pi\)
\(920\) −0.653415 0.237823i −0.0215424 0.00784081i
\(921\) 0 0
\(922\) 2.90819 3.46585i 0.0957762 0.114142i
\(923\) −27.4334 + 9.98494i −0.902981 + 0.328658i
\(924\) 0 0
\(925\) 3.60643 + 20.4531i 0.118579 + 0.672493i
\(926\) 2.95287i 0.0970373i
\(927\) 0 0
\(928\) −19.3607 −0.635545
\(929\) 5.15862 4.32860i 0.169249 0.142017i −0.554229 0.832364i \(-0.686987\pi\)
0.723478 + 0.690348i \(0.242542\pi\)
\(930\) 0 0
\(931\) 30.3876 1.55835i 0.995913 0.0510730i
\(932\) −17.2174 + 20.5189i −0.563974 + 0.672118i
\(933\) 0 0
\(934\) −5.40427 + 0.952918i −0.176833 + 0.0311804i
\(935\) 2.21809i 0.0725392i
\(936\) 0 0
\(937\) −37.6538 + 21.7394i −1.23009 + 0.710196i −0.967050 0.254588i \(-0.918060\pi\)
−0.263045 + 0.964784i \(0.584727\pi\)
\(938\) 3.31011 + 3.14471i 0.108079 + 0.102678i
\(939\) 0 0
\(940\) 0.527870 2.99370i 0.0172172 0.0976438i
\(941\) −11.5099 + 4.18926i −0.375212 + 0.136566i −0.522741 0.852492i \(-0.675090\pi\)
0.147529 + 0.989058i \(0.452868\pi\)
\(942\) 0 0
\(943\) −26.5383 + 4.67942i −0.864206 + 0.152383i
\(944\) −5.90810 −0.192292
\(945\) 0 0
\(946\) 0.500804 0.0162825
\(947\) 13.5396 2.38739i 0.439977 0.0775798i 0.0507283 0.998712i \(-0.483846\pi\)
0.389249 + 0.921133i \(0.372735\pi\)
\(948\) 0 0
\(949\) −40.3330 + 14.6800i −1.30926 + 0.476533i
\(950\) −1.55559 + 8.82217i −0.0504699 + 0.286229i
\(951\) 0 0
\(952\) −7.63048 + 31.7049i −0.247305 + 1.02756i
\(953\) 41.3778 23.8895i 1.34036 0.773857i 0.353499 0.935435i \(-0.384992\pi\)
0.986860 + 0.161578i \(0.0516584\pi\)
\(954\) 0 0
\(955\) 3.05132i 0.0987385i
\(956\) −41.0622 + 7.24037i −1.32805 + 0.234170i
\(957\) 0 0
\(958\) −0.531138 + 0.632986i −0.0171603 + 0.0204508i
\(959\) −7.49196 15.0477i −0.241928 0.485915i
\(960\) 0 0
\(961\) 22.3620 18.7639i 0.721355 0.605289i
\(962\) 8.68643 0.280062
\(963\) 0 0
\(964\) 1.43997i 0.0463783i
\(965\) 0.383178 + 2.17311i 0.0123349 + 0.0699550i
\(966\) 0 0
\(967\) 42.4888 15.4647i 1.36635 0.497310i 0.448336 0.893865i \(-0.352017\pi\)
0.918011 + 0.396555i \(0.129795\pi\)
\(968\) 8.65731 10.3174i 0.278257 0.331613i
\(969\) 0 0
\(970\) 0.336228 + 0.122377i 0.0107956 + 0.00392929i
\(971\) 7.07273 12.2503i 0.226975 0.393132i −0.729935 0.683516i \(-0.760450\pi\)
0.956910 + 0.290384i \(0.0937832\pi\)
\(972\) 0 0
\(973\) −32.7282 + 24.1892i −1.04922 + 0.775469i
\(974\) −3.81890 4.55119i −0.122366 0.145830i
\(975\) 0 0
\(976\) 2.74787 + 7.54972i 0.0879573 + 0.241661i
\(977\) −23.6226 + 28.1523i −0.755753 + 0.900672i −0.997572 0.0696497i \(-0.977812\pi\)
0.241818 + 0.970322i \(0.422256\pi\)
\(978\) 0 0
\(979\) 12.8033 2.25756i 0.409195 0.0721521i
\(980\) −2.24549 + 0.515758i −0.0717295 + 0.0164753i
\(981\) 0 0
\(982\) −5.52879 9.57614i −0.176431 0.305587i
\(983\) −1.70439 9.66609i −0.0543617 0.308300i 0.945488 0.325658i \(-0.105586\pi\)
−0.999849 + 0.0173575i \(0.994475\pi\)
\(984\) 0 0
\(985\) 0.836600 + 2.29854i 0.0266563 + 0.0732375i
\(986\) −10.8056 9.06697i −0.344120 0.288751i
\(987\) 0 0
\(988\) −37.3913 13.6093i −1.18957 0.432970i
\(989\) −1.60168 + 0.924730i −0.0509305 + 0.0294047i
\(990\) 0 0
\(991\) 15.3744 26.6292i 0.488384 0.845905i −0.511527 0.859267i \(-0.670920\pi\)
0.999911 + 0.0133618i \(0.00425333\pi\)
\(992\) 5.58487 + 2.03273i 0.177320 + 0.0645392i
\(993\) 0 0
\(994\) −5.72795 + 2.85184i −0.181680 + 0.0904548i
\(995\) −1.24834 0.220115i −0.0395749 0.00697812i
\(996\) 0 0
\(997\) −14.3109 + 39.3189i −0.453231 + 1.24524i 0.477206 + 0.878791i \(0.341650\pi\)
−0.930437 + 0.366451i \(0.880573\pi\)
\(998\) −7.65940 + 4.42216i −0.242454 + 0.139981i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.ba.a.530.13 132
3.2 odd 2 189.2.ba.a.5.10 132
7.3 odd 6 567.2.bd.a.206.10 132
21.17 even 6 189.2.bd.a.59.13 yes 132
27.11 odd 18 567.2.bd.a.278.10 132
27.16 even 9 189.2.bd.a.173.13 yes 132
189.38 even 18 inner 567.2.ba.a.521.13 132
189.178 odd 18 189.2.ba.a.38.10 yes 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.ba.a.5.10 132 3.2 odd 2
189.2.ba.a.38.10 yes 132 189.178 odd 18
189.2.bd.a.59.13 yes 132 21.17 even 6
189.2.bd.a.173.13 yes 132 27.16 even 9
567.2.ba.a.521.13 132 189.38 even 18 inner
567.2.ba.a.530.13 132 1.1 even 1 trivial
567.2.bd.a.206.10 132 7.3 odd 6
567.2.bd.a.278.10 132 27.11 odd 18