Properties

Label 567.2.ba.a.521.9
Level $567$
Weight $2$
Character 567.521
Analytic conductor $4.528$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(143,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([7, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.143");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.ba (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 521.9
Character \(\chi\) \(=\) 567.521
Dual form 567.2.ba.a.530.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.491776 - 0.0867134i) q^{2} +(-1.64506 - 0.598753i) q^{4} +(-9.76251e-5 - 0.000553660i) q^{5} +(-2.32328 + 1.26584i) q^{7} +(1.62200 + 0.936464i) q^{8} +0.000280742i q^{10} +(4.66356 + 0.822312i) q^{11} +(-1.77003 - 2.10944i) q^{13} +(1.25230 - 0.421052i) q^{14} +(1.96567 + 1.64940i) q^{16} +0.800172 q^{17} -5.20473i q^{19} +(-0.000170906 + 0.000969257i) q^{20} +(-2.22212 - 0.808787i) q^{22} +(-1.01988 - 1.21545i) q^{23} +(4.69846 - 1.71010i) q^{25} +(0.687542 + 1.19086i) q^{26} +(4.57987 - 0.691318i) q^{28} +(5.40692 - 6.44372i) q^{29} +(2.76219 - 7.58906i) q^{31} +(-3.23144 - 3.85108i) q^{32} +(-0.393506 - 0.0693856i) q^{34} +(0.000927658 + 0.00116273i) q^{35} +(-1.02790 + 1.78038i) q^{37} +(-0.451320 + 2.55956i) q^{38} +(0.000360134 - 0.000989460i) q^{40} +(-5.20305 + 4.36588i) q^{41} +(-6.39715 + 2.32837i) q^{43} +(-7.17948 - 4.14508i) q^{44} +(0.396159 + 0.686167i) q^{46} +(6.96860 - 2.53636i) q^{47} +(3.79528 - 5.88182i) q^{49} +(-2.45888 + 0.433567i) q^{50} +(1.64877 + 4.52997i) q^{52} +(9.11266 + 5.26120i) q^{53} -0.00266231i q^{55} +(-4.95379 - 0.122467i) q^{56} +(-3.21775 + 2.70001i) q^{58} +(10.1204 - 8.49198i) q^{59} +(1.24316 + 3.41555i) q^{61} +(-2.01645 + 3.49260i) q^{62} +(-1.31080 - 2.27037i) q^{64} +(-0.000995113 + 0.00118593i) q^{65} +(0.369304 + 2.09442i) q^{67} +(-1.31633 - 0.479105i) q^{68} +(-0.000355376 - 0.000652243i) q^{70} +(-7.56979 + 4.37042i) q^{71} +(6.22020 - 3.59123i) q^{73} +(0.659882 - 0.786416i) q^{74} +(-3.11635 + 8.56210i) q^{76} +(-11.8757 + 3.99288i) q^{77} +(0.447434 - 2.53753i) q^{79} +(0.000721305 - 0.00124934i) q^{80} +(2.93732 - 1.69586i) q^{82} +(1.47761 + 1.23986i) q^{83} +(-7.81169e-5 - 0.000443023i) q^{85} +(3.34787 - 0.590319i) q^{86} +(6.79425 + 5.70105i) q^{88} +3.23581 q^{89} +(6.78250 + 2.66024i) q^{91} +(0.950016 + 2.61015i) q^{92} +(-3.64693 + 0.643052i) q^{94} +(-0.00288165 + 0.000508113i) q^{95} +(-0.614218 - 1.68755i) q^{97} +(-2.37646 + 2.56344i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q + 3 q^{2} - 3 q^{4} + 9 q^{5} - 6 q^{7} + 18 q^{8} + 9 q^{11} - 3 q^{14} + 3 q^{16} + 18 q^{17} - 18 q^{20} - 12 q^{22} + 6 q^{23} - 3 q^{25} - 12 q^{28} - 6 q^{29} - 9 q^{31} - 3 q^{32} - 18 q^{34}+ \cdots - 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.491776 0.0867134i −0.347738 0.0613156i −0.00294872 0.999996i \(-0.500939\pi\)
−0.344790 + 0.938680i \(0.612050\pi\)
\(3\) 0 0
\(4\) −1.64506 0.598753i −0.822530 0.299377i
\(5\) −9.76251e−5 0 0.000553660i −4.36593e−5 0 0.000247604i 0.984786 0.173772i \(-0.0555956\pi\)
−0.984830 + 0.173524i \(0.944484\pi\)
\(6\) 0 0
\(7\) −2.32328 + 1.26584i −0.878118 + 0.478444i
\(8\) 1.62200 + 0.936464i 0.573465 + 0.331090i
\(9\) 0 0
\(10\) 0 0.000280742i 0 8.87784e-5i
\(11\) 4.66356 + 0.822312i 1.40612 + 0.247936i 0.824654 0.565637i \(-0.191370\pi\)
0.581463 + 0.813573i \(0.302481\pi\)
\(12\) 0 0
\(13\) −1.77003 2.10944i −0.490918 0.585053i 0.462533 0.886602i \(-0.346941\pi\)
−0.953451 + 0.301549i \(0.902496\pi\)
\(14\) 1.25230 0.421052i 0.334691 0.112531i
\(15\) 0 0
\(16\) 1.96567 + 1.64940i 0.491418 + 0.412349i
\(17\) 0.800172 0.194070 0.0970351 0.995281i \(-0.469064\pi\)
0.0970351 + 0.995281i \(0.469064\pi\)
\(18\) 0 0
\(19\) 5.20473i 1.19405i −0.802224 0.597024i \(-0.796350\pi\)
0.802224 0.597024i \(-0.203650\pi\)
\(20\) −0.000170906 0 0.000969257i −3.82158e−5 0 0.000216732i
\(21\) 0 0
\(22\) −2.22212 0.808787i −0.473758 0.172434i
\(23\) −1.01988 1.21545i −0.212661 0.253439i 0.649160 0.760651i \(-0.275120\pi\)
−0.861821 + 0.507213i \(0.830676\pi\)
\(24\) 0 0
\(25\) 4.69846 1.71010i 0.939693 0.342020i
\(26\) 0.687542 + 1.19086i 0.134838 + 0.233546i
\(27\) 0 0
\(28\) 4.57987 0.691318i 0.865514 0.130647i
\(29\) 5.40692 6.44372i 1.00404 1.19657i 0.0236057 0.999721i \(-0.492485\pi\)
0.980434 0.196847i \(-0.0630702\pi\)
\(30\) 0 0
\(31\) 2.76219 7.58906i 0.496104 1.36304i −0.398907 0.916991i \(-0.630610\pi\)
0.895011 0.446044i \(-0.147167\pi\)
\(32\) −3.23144 3.85108i −0.571243 0.680780i
\(33\) 0 0
\(34\) −0.393506 0.0693856i −0.0674856 0.0118995i
\(35\) 0.000927658 0.00116273i 0.000156803 0.000196537i
\(36\) 0 0
\(37\) −1.02790 + 1.78038i −0.168986 + 0.292693i −0.938064 0.346463i \(-0.887383\pi\)
0.769077 + 0.639156i \(0.220716\pi\)
\(38\) −0.451320 + 2.55956i −0.0732138 + 0.415216i
\(39\) 0 0
\(40\) 0.000360134 0 0.000989460i 5.69422e−5 0 0.000156447i
\(41\) −5.20305 + 4.36588i −0.812580 + 0.681836i −0.951222 0.308507i \(-0.900171\pi\)
0.138642 + 0.990343i \(0.455726\pi\)
\(42\) 0 0
\(43\) −6.39715 + 2.32837i −0.975556 + 0.355073i −0.780111 0.625641i \(-0.784837\pi\)
−0.195445 + 0.980715i \(0.562615\pi\)
\(44\) −7.17948 4.14508i −1.08235 0.624894i
\(45\) 0 0
\(46\) 0.396159 + 0.686167i 0.0584104 + 0.101170i
\(47\) 6.96860 2.53636i 1.01647 0.369967i 0.220559 0.975374i \(-0.429212\pi\)
0.795916 + 0.605407i \(0.206990\pi\)
\(48\) 0 0
\(49\) 3.79528 5.88182i 0.542183 0.840261i
\(50\) −2.45888 + 0.433567i −0.347738 + 0.0613156i
\(51\) 0 0
\(52\) 1.64877 + 4.52997i 0.228644 + 0.628194i
\(53\) 9.11266 + 5.26120i 1.25172 + 0.722681i 0.971451 0.237241i \(-0.0762430\pi\)
0.280269 + 0.959921i \(0.409576\pi\)
\(54\) 0 0
\(55\) 0.00266231i 0.000358985i
\(56\) −4.95379 0.122467i −0.661978 0.0163653i
\(57\) 0 0
\(58\) −3.21775 + 2.70001i −0.422511 + 0.354529i
\(59\) 10.1204 8.49198i 1.31756 1.10556i 0.330740 0.943722i \(-0.392702\pi\)
0.986817 0.161840i \(-0.0517429\pi\)
\(60\) 0 0
\(61\) 1.24316 + 3.41555i 0.159170 + 0.437317i 0.993484 0.113974i \(-0.0363579\pi\)
−0.834314 + 0.551290i \(0.814136\pi\)
\(62\) −2.01645 + 3.49260i −0.256090 + 0.443560i
\(63\) 0 0
\(64\) −1.31080 2.27037i −0.163850 0.283797i
\(65\) −0.000995113 0.00118593i −0.000123429 0.000147096i
\(66\) 0 0
\(67\) 0.369304 + 2.09442i 0.0451176 + 0.255875i 0.999021 0.0442393i \(-0.0140864\pi\)
−0.953903 + 0.300114i \(0.902975\pi\)
\(68\) −1.31633 0.479105i −0.159629 0.0581001i
\(69\) 0 0
\(70\) −0.000355376 0 0.000652243i −4.24755e−5 0 7.79579e-5i
\(71\) −7.56979 + 4.37042i −0.898369 + 0.518673i −0.876671 0.481091i \(-0.840241\pi\)
−0.0216981 + 0.999765i \(0.506907\pi\)
\(72\) 0 0
\(73\) 6.22020 3.59123i 0.728019 0.420322i −0.0896781 0.995971i \(-0.528584\pi\)
0.817697 + 0.575649i \(0.195250\pi\)
\(74\) 0.659882 0.786416i 0.0767097 0.0914191i
\(75\) 0 0
\(76\) −3.11635 + 8.56210i −0.357470 + 0.982140i
\(77\) −11.8757 + 3.99288i −1.35336 + 0.455031i
\(78\) 0 0
\(79\) 0.447434 2.53753i 0.0503403 0.285494i −0.949237 0.314561i \(-0.898143\pi\)
0.999577 + 0.0290673i \(0.00925372\pi\)
\(80\) 0.000721305 0.00124934i 8.06443e−5 0.000139680i
\(81\) 0 0
\(82\) 2.93732 1.69586i 0.324373 0.187277i
\(83\) 1.47761 + 1.23986i 0.162188 + 0.136092i 0.720270 0.693694i \(-0.244018\pi\)
−0.558082 + 0.829786i \(0.688462\pi\)
\(84\) 0 0
\(85\) −7.81169e−5 0 0.000443023i −8.47297e−6 0 4.80526e-5i
\(86\) 3.34787 0.590319i 0.361010 0.0636558i
\(87\) 0 0
\(88\) 6.79425 + 5.70105i 0.724269 + 0.607734i
\(89\) 3.23581 0.342995 0.171498 0.985185i \(-0.445139\pi\)
0.171498 + 0.985185i \(0.445139\pi\)
\(90\) 0 0
\(91\) 6.78250 + 2.66024i 0.710999 + 0.278869i
\(92\) 0.950016 + 2.61015i 0.0990461 + 0.272127i
\(93\) 0 0
\(94\) −3.64693 + 0.643052i −0.376152 + 0.0663257i
\(95\) −0.00288165 0.000508113i −0.000295651 5.21313e-5i
\(96\) 0 0
\(97\) −0.614218 1.68755i −0.0623644 0.171345i 0.904597 0.426268i \(-0.140172\pi\)
−0.966961 + 0.254923i \(0.917950\pi\)
\(98\) −2.37646 + 2.56344i −0.240059 + 0.258947i
\(99\) 0 0
\(100\) −8.75318 −0.875318
\(101\) 3.26288 + 2.73788i 0.324668 + 0.272429i 0.790523 0.612432i \(-0.209809\pi\)
−0.465855 + 0.884861i \(0.654253\pi\)
\(102\) 0 0
\(103\) −15.8365 + 2.79240i −1.56041 + 0.275143i −0.886168 0.463365i \(-0.846642\pi\)
−0.674245 + 0.738508i \(0.735531\pi\)
\(104\) −0.895580 5.07909i −0.0878189 0.498046i
\(105\) 0 0
\(106\) −4.02517 3.37752i −0.390959 0.328054i
\(107\) −3.48765 + 2.01360i −0.337164 + 0.194662i −0.659017 0.752128i \(-0.729028\pi\)
0.321853 + 0.946790i \(0.395694\pi\)
\(108\) 0 0
\(109\) 0.587845 1.01818i 0.0563054 0.0975238i −0.836499 0.547969i \(-0.815401\pi\)
0.892804 + 0.450445i \(0.148735\pi\)
\(110\) −0.000230858 0.00130926i −2.20114e−5 0.000124833i
\(111\) 0 0
\(112\) −6.65469 1.34378i −0.628809 0.126975i
\(113\) 5.04317 13.8560i 0.474422 1.30346i −0.439745 0.898123i \(-0.644931\pi\)
0.914166 0.405340i \(-0.132847\pi\)
\(114\) 0 0
\(115\) −0.000573380 0 0.000683327i −5.34679e−5 0 6.37206e-5i
\(116\) −12.7529 + 7.36290i −1.18408 + 0.683628i
\(117\) 0 0
\(118\) −5.71332 + 3.29858i −0.525953 + 0.303659i
\(119\) −1.85903 + 1.01289i −0.170417 + 0.0928517i
\(120\) 0 0
\(121\) 10.7360 + 3.90758i 0.976000 + 0.355235i
\(122\) −0.315182 1.78749i −0.0285352 0.161831i
\(123\) 0 0
\(124\) −9.08794 + 10.8306i −0.816121 + 0.972616i
\(125\) −0.00281100 0.00486880i −0.000251424 0.000435479i
\(126\) 0 0
\(127\) −3.46785 + 6.00649i −0.307722 + 0.532990i −0.977864 0.209243i \(-0.932900\pi\)
0.670142 + 0.742233i \(0.266233\pi\)
\(128\) 3.88657 + 10.6783i 0.343528 + 0.943834i
\(129\) 0 0
\(130\) 0.000592209 0 0.000496922i 5.19401e−5 0 4.35829e-5i
\(131\) −8.46265 + 7.10101i −0.739385 + 0.620418i −0.932672 0.360724i \(-0.882530\pi\)
0.193287 + 0.981142i \(0.438085\pi\)
\(132\) 0 0
\(133\) 6.58838 + 12.0921i 0.571285 + 1.04851i
\(134\) 1.06201i 0.0917438i
\(135\) 0 0
\(136\) 1.29788 + 0.749332i 0.111292 + 0.0642547i
\(137\) 3.43808 + 9.44606i 0.293735 + 0.807031i 0.995512 + 0.0946343i \(0.0301682\pi\)
−0.701777 + 0.712397i \(0.747610\pi\)
\(138\) 0 0
\(139\) 0.409252 0.0721623i 0.0347123 0.00612072i −0.156265 0.987715i \(-0.549945\pi\)
0.190977 + 0.981594i \(0.438834\pi\)
\(140\) −0.000829865 0.00246820i −7.01364e−5 0.000208601i
\(141\) 0 0
\(142\) 4.10162 1.49287i 0.344200 0.125279i
\(143\) −6.52003 11.2930i −0.545232 0.944370i
\(144\) 0 0
\(145\) −0.00409548 0.00236453i −0.000340111 0.000196363i
\(146\) −3.37035 + 1.22671i −0.278932 + 0.101523i
\(147\) 0 0
\(148\) 2.75697 2.31338i 0.226622 0.190158i
\(149\) −0.315032 + 0.865543i −0.0258084 + 0.0709081i −0.951928 0.306323i \(-0.900901\pi\)
0.926119 + 0.377231i \(0.123124\pi\)
\(150\) 0 0
\(151\) −0.209027 + 1.18545i −0.0170104 + 0.0964707i −0.992131 0.125204i \(-0.960041\pi\)
0.975121 + 0.221675i \(0.0711524\pi\)
\(152\) 4.87404 8.44209i 0.395337 0.684744i
\(153\) 0 0
\(154\) 6.18642 0.933822i 0.498516 0.0752495i
\(155\) −0.00447142 0.000788431i −0.000359153 6.33283e-5i
\(156\) 0 0
\(157\) −7.40718 8.82753i −0.591157 0.704514i 0.384671 0.923054i \(-0.374315\pi\)
−0.975828 + 0.218540i \(0.929871\pi\)
\(158\) −0.440075 + 1.20910i −0.0350105 + 0.0961905i
\(159\) 0 0
\(160\) −0.00181672 + 0.00216508i −0.000143624 + 0.000171164i
\(161\) 3.90805 + 1.53282i 0.307997 + 0.120803i
\(162\) 0 0
\(163\) −3.42292 5.92867i −0.268104 0.464369i 0.700268 0.713880i \(-0.253064\pi\)
−0.968372 + 0.249510i \(0.919730\pi\)
\(164\) 11.1734 4.06679i 0.872498 0.317563i
\(165\) 0 0
\(166\) −0.619139 0.737861i −0.0480545 0.0572691i
\(167\) −4.35768 1.58606i −0.337207 0.122733i 0.167866 0.985810i \(-0.446312\pi\)
−0.505073 + 0.863076i \(0.668535\pi\)
\(168\) 0 0
\(169\) 0.940696 5.33495i 0.0723613 0.410381i
\(170\) 0 0.000224642i 0 1.72292e-5i
\(171\) 0 0
\(172\) 11.9178 0.908725
\(173\) −18.4317 15.4661i −1.40134 1.17586i −0.960501 0.278276i \(-0.910237\pi\)
−0.440838 0.897587i \(-0.645319\pi\)
\(174\) 0 0
\(175\) −8.75113 + 9.92057i −0.661524 + 0.749924i
\(176\) 7.81072 + 9.30846i 0.588755 + 0.701651i
\(177\) 0 0
\(178\) −1.59129 0.280588i −0.119273 0.0210310i
\(179\) 24.6678i 1.84376i 0.387475 + 0.921880i \(0.373347\pi\)
−0.387475 + 0.921880i \(0.626653\pi\)
\(180\) 0 0
\(181\) 7.78429 + 4.49426i 0.578601 + 0.334056i 0.760577 0.649247i \(-0.224916\pi\)
−0.181976 + 0.983303i \(0.558249\pi\)
\(182\) −3.10479 1.89638i −0.230143 0.140569i
\(183\) 0 0
\(184\) −0.516030 2.92655i −0.0380422 0.215748i
\(185\) 0.00108608 0.000395299i 7.98498e−5 2.90630e-5i
\(186\) 0 0
\(187\) 3.73165 + 0.657991i 0.272885 + 0.0481171i
\(188\) −12.9824 −0.946841
\(189\) 0 0
\(190\) 0.00146119 0.000106006
\(191\) −20.5434 3.62235i −1.48647 0.262104i −0.629308 0.777156i \(-0.716662\pi\)
−0.857159 + 0.515051i \(0.827773\pi\)
\(192\) 0 0
\(193\) 17.1757 + 6.25143i 1.23633 + 0.449988i 0.875762 0.482744i \(-0.160360\pi\)
0.360571 + 0.932732i \(0.382582\pi\)
\(194\) 0.155725 + 0.883158i 0.0111804 + 0.0634070i
\(195\) 0 0
\(196\) −9.76522 + 7.40352i −0.697516 + 0.528823i
\(197\) 8.92564 + 5.15322i 0.635925 + 0.367152i 0.783043 0.621967i \(-0.213666\pi\)
−0.147118 + 0.989119i \(0.547000\pi\)
\(198\) 0 0
\(199\) 11.1728i 0.792020i −0.918246 0.396010i \(-0.870395\pi\)
0.918246 0.396010i \(-0.129605\pi\)
\(200\) 9.22237 + 1.62615i 0.652120 + 0.114986i
\(201\) 0 0
\(202\) −1.36719 1.62936i −0.0961955 0.114641i
\(203\) −4.40506 + 21.8149i −0.309175 + 1.53111i
\(204\) 0 0
\(205\) 0.00292516 + 0.00245450i 0.000204302 + 0.000171430i
\(206\) 8.03013 0.559486
\(207\) 0 0
\(208\) 7.06595i 0.489935i
\(209\) 4.27991 24.2726i 0.296048 1.67897i
\(210\) 0 0
\(211\) 22.3190 + 8.12346i 1.53651 + 0.559242i 0.965204 0.261498i \(-0.0842165\pi\)
0.571302 + 0.820740i \(0.306439\pi\)
\(212\) −11.8407 14.1112i −0.813224 0.969163i
\(213\) 0 0
\(214\) 1.88975 0.687813i 0.129181 0.0470179i
\(215\) 0.00191365 + 0.00331454i 0.000130510 + 0.000226050i
\(216\) 0 0
\(217\) 3.18921 + 21.1280i 0.216498 + 1.43426i
\(218\) −0.377378 + 0.449742i −0.0255593 + 0.0304603i
\(219\) 0 0
\(220\) −0.00159406 + 0.00437965i −0.000107472 + 0.000295276i
\(221\) −1.41633 1.68791i −0.0952726 0.113541i
\(222\) 0 0
\(223\) −23.8004 4.19666i −1.59380 0.281029i −0.694871 0.719134i \(-0.744539\pi\)
−0.898924 + 0.438105i \(0.855650\pi\)
\(224\) 12.3824 + 4.85664i 0.827334 + 0.324498i
\(225\) 0 0
\(226\) −3.68161 + 6.37674i −0.244897 + 0.424174i
\(227\) −0.742956 + 4.21351i −0.0493117 + 0.279661i −0.999486 0.0320585i \(-0.989794\pi\)
0.950174 + 0.311719i \(0.100905\pi\)
\(228\) 0 0
\(229\) 4.43062 12.1730i 0.292784 0.804417i −0.702873 0.711315i \(-0.748100\pi\)
0.995657 0.0931013i \(-0.0296780\pi\)
\(230\) 0.000341228 0 0.000286324i 2.24999e−5 0 1.88797e-5i
\(231\) 0 0
\(232\) 14.8044 5.38834i 0.971953 0.353762i
\(233\) 9.70366 + 5.60241i 0.635708 + 0.367026i 0.782959 0.622073i \(-0.213709\pi\)
−0.147251 + 0.989099i \(0.547043\pi\)
\(234\) 0 0
\(235\) −0.00208459 0.00361062i −0.000135984 0.000235531i
\(236\) −21.7332 + 7.91023i −1.41471 + 0.514912i
\(237\) 0 0
\(238\) 1.00206 0.336914i 0.0649536 0.0218389i
\(239\) −12.3508 + 2.17779i −0.798909 + 0.140869i −0.558177 0.829722i \(-0.688499\pi\)
−0.240733 + 0.970591i \(0.577388\pi\)
\(240\) 0 0
\(241\) −6.86595 18.8641i −0.442275 1.21514i −0.937992 0.346656i \(-0.887317\pi\)
0.495717 0.868484i \(-0.334905\pi\)
\(242\) −4.94087 2.85261i −0.317611 0.183373i
\(243\) 0 0
\(244\) 6.36314i 0.407358i
\(245\) −0.00362704 0.00152708i −0.000231723 9.75615e-5i
\(246\) 0 0
\(247\) −10.9791 + 9.21254i −0.698582 + 0.586180i
\(248\) 11.5872 9.72278i 0.735786 0.617397i
\(249\) 0 0
\(250\) 0.000960194 0.00263811i 6.07280e−5 0.000166849i
\(251\) 11.2730 19.5255i 0.711547 1.23244i −0.252729 0.967537i \(-0.581328\pi\)
0.964276 0.264899i \(-0.0853386\pi\)
\(252\) 0 0
\(253\) −3.75681 6.50699i −0.236189 0.409091i
\(254\) 2.22625 2.65314i 0.139687 0.166473i
\(255\) 0 0
\(256\) −0.0749017 0.424789i −0.00468135 0.0265493i
\(257\) 27.6153 + 10.0512i 1.72260 + 0.626974i 0.998060 0.0622616i \(-0.0198313\pi\)
0.724537 + 0.689236i \(0.242054\pi\)
\(258\) 0 0
\(259\) 0.134425 5.43750i 0.00835277 0.337870i
\(260\) 0.00234710 0.00135510i 0.000145561 8.40396e-5i
\(261\) 0 0
\(262\) 4.77748 2.75828i 0.295154 0.170407i
\(263\) 10.7751 12.8412i 0.664420 0.791825i −0.323593 0.946197i \(-0.604891\pi\)
0.988013 + 0.154371i \(0.0493352\pi\)
\(264\) 0 0
\(265\) 0.00202329 0.00555894i 0.000124290 0.000341483i
\(266\) −2.19146 6.51789i −0.134367 0.399637i
\(267\) 0 0
\(268\) 0.646517 3.66658i 0.0394923 0.223972i
\(269\) 4.71711 8.17027i 0.287607 0.498150i −0.685631 0.727949i \(-0.740474\pi\)
0.973238 + 0.229799i \(0.0738069\pi\)
\(270\) 0 0
\(271\) −3.40065 + 1.96337i −0.206575 + 0.119266i −0.599719 0.800211i \(-0.704721\pi\)
0.393144 + 0.919477i \(0.371388\pi\)
\(272\) 1.57288 + 1.31980i 0.0953696 + 0.0800246i
\(273\) 0 0
\(274\) −0.871668 4.94347i −0.0526594 0.298646i
\(275\) 23.3178 4.11156i 1.40612 0.247936i
\(276\) 0 0
\(277\) −17.5744 14.7467i −1.05595 0.886043i −0.0622389 0.998061i \(-0.519824\pi\)
−0.993706 + 0.112018i \(0.964269\pi\)
\(278\) −0.207518 −0.0124461
\(279\) 0 0
\(280\) 0.000415809 0.00275467i 2.48494e−5 0.000164623i
\(281\) −0.608889 1.67291i −0.0363233 0.0997974i 0.920205 0.391436i \(-0.128022\pi\)
−0.956528 + 0.291639i \(0.905799\pi\)
\(282\) 0 0
\(283\) −4.38907 + 0.773911i −0.260903 + 0.0460042i −0.302569 0.953127i \(-0.597844\pi\)
0.0416665 + 0.999132i \(0.486733\pi\)
\(284\) 15.0696 2.65717i 0.894214 0.157674i
\(285\) 0 0
\(286\) 2.22714 + 6.11901i 0.131693 + 0.361825i
\(287\) 6.56164 16.7294i 0.387321 0.987507i
\(288\) 0 0
\(289\) −16.3597 −0.962337
\(290\) 0.00180902 + 0.00151795i 0.000106229 + 8.91371e-5i
\(291\) 0 0
\(292\) −12.3829 + 2.18343i −0.724652 + 0.127776i
\(293\) −1.23196 6.98681i −0.0719721 0.408174i −0.999415 0.0342085i \(-0.989109\pi\)
0.927443 0.373965i \(-0.122002\pi\)
\(294\) 0 0
\(295\) −0.00568967 0.00477420i −0.000331265 0.000277965i
\(296\) −3.33453 + 1.92519i −0.193815 + 0.111899i
\(297\) 0 0
\(298\) 0.229979 0.398336i 0.0133223 0.0230750i
\(299\) −0.758694 + 4.30277i −0.0438764 + 0.248836i
\(300\) 0 0
\(301\) 11.9150 13.5073i 0.686771 0.778546i
\(302\) 0.205589 0.564852i 0.0118303 0.0325036i
\(303\) 0 0
\(304\) 8.58466 10.2308i 0.492364 0.586777i
\(305\) 0.00176969 0.00102173i 0.000101332 5.85042e-5i
\(306\) 0 0
\(307\) −6.20672 + 3.58345i −0.354236 + 0.204518i −0.666549 0.745461i \(-0.732229\pi\)
0.312313 + 0.949979i \(0.398896\pi\)
\(308\) 21.9270 + 0.542076i 1.24941 + 0.0308877i
\(309\) 0 0
\(310\) 0.00213057 0.000775463i 0.000121008 4.40434e-5i
\(311\) 4.03708 + 22.8954i 0.228922 + 1.29828i 0.855044 + 0.518556i \(0.173530\pi\)
−0.626122 + 0.779725i \(0.715359\pi\)
\(312\) 0 0
\(313\) 15.3541 18.2983i 0.867863 1.03428i −0.131216 0.991354i \(-0.541888\pi\)
0.999078 0.0429247i \(-0.0136676\pi\)
\(314\) 2.87721 + 4.98347i 0.162370 + 0.281234i
\(315\) 0 0
\(316\) −2.25541 + 3.90648i −0.126877 + 0.219757i
\(317\) 9.82360 + 26.9901i 0.551748 + 1.51592i 0.831322 + 0.555791i \(0.187585\pi\)
−0.279574 + 0.960124i \(0.590193\pi\)
\(318\) 0 0
\(319\) 30.5143 25.6045i 1.70847 1.43358i
\(320\) −0.00112905 0.000947383i −6.31156e−5 5.29603e-5i
\(321\) 0 0
\(322\) −1.78897 1.09268i −0.0996954 0.0608929i
\(323\) 4.16468i 0.231729i
\(324\) 0 0
\(325\) −11.9238 6.88420i −0.661412 0.381866i
\(326\) 1.16922 + 3.21239i 0.0647569 + 0.177918i
\(327\) 0 0
\(328\) −12.5279 + 2.20900i −0.691735 + 0.121972i
\(329\) −12.9794 + 14.7138i −0.715577 + 0.811201i
\(330\) 0 0
\(331\) 24.4353 8.89374i 1.34309 0.488844i 0.432304 0.901728i \(-0.357701\pi\)
0.910784 + 0.412884i \(0.135478\pi\)
\(332\) −1.68838 2.92436i −0.0926620 0.160495i
\(333\) 0 0
\(334\) 2.00547 + 1.15786i 0.109734 + 0.0633551i
\(335\) 0.00112355 0.000408937i 6.13858e−5 2.23426e-5i
\(336\) 0 0
\(337\) 5.30836 4.45424i 0.289165 0.242638i −0.486653 0.873596i \(-0.661782\pi\)
0.775817 + 0.630958i \(0.217338\pi\)
\(338\) −0.925224 + 2.54203i −0.0503256 + 0.138268i
\(339\) 0 0
\(340\) −0.000136754 0 0.000775572i −7.41655e−6 0 4.20613e-5i
\(341\) 19.1222 33.1207i 1.03553 1.79358i
\(342\) 0 0
\(343\) −1.37203 + 18.4694i −0.0740826 + 0.997252i
\(344\) −12.5566 2.21407i −0.677008 0.119375i
\(345\) 0 0
\(346\) 7.72317 + 9.20412i 0.415200 + 0.494817i
\(347\) 0.540900 1.48611i 0.0290370 0.0797786i −0.924327 0.381601i \(-0.875373\pi\)
0.953364 + 0.301823i \(0.0975950\pi\)
\(348\) 0 0
\(349\) −11.3433 + 13.5184i −0.607194 + 0.723626i −0.978812 0.204760i \(-0.934359\pi\)
0.371618 + 0.928386i \(0.378803\pi\)
\(350\) 5.16384 4.11986i 0.276019 0.220216i
\(351\) 0 0
\(352\) −11.9032 20.6170i −0.634444 1.09889i
\(353\) 2.55746 0.930839i 0.136120 0.0495435i −0.273062 0.961996i \(-0.588036\pi\)
0.409182 + 0.912453i \(0.365814\pi\)
\(354\) 0 0
\(355\) 0.00315873 + 0.00376442i 0.000167648 + 0.000199795i
\(356\) −5.32310 1.93745i −0.282124 0.102685i
\(357\) 0 0
\(358\) 2.13903 12.1311i 0.113051 0.641146i
\(359\) 22.8763i 1.20737i −0.797224 0.603683i \(-0.793699\pi\)
0.797224 0.603683i \(-0.206301\pi\)
\(360\) 0 0
\(361\) −8.08924 −0.425750
\(362\) −3.43841 2.88517i −0.180719 0.151641i
\(363\) 0 0
\(364\) −9.56480 8.43730i −0.501332 0.442235i
\(365\) −0.00259557 0.00309328i −0.000135858 0.000161910i
\(366\) 0 0
\(367\) 7.27732 + 1.28319i 0.379873 + 0.0669819i 0.360325 0.932827i \(-0.382666\pi\)
0.0195487 + 0.999809i \(0.493777\pi\)
\(368\) 4.07137i 0.212235i
\(369\) 0 0
\(370\) −0.000499828 0 0.000288576i −2.59848e−5 0 1.50023e-5i
\(371\) −27.8311 0.688038i −1.44492 0.0357211i
\(372\) 0 0
\(373\) 5.62504 + 31.9012i 0.291254 + 1.65178i 0.682051 + 0.731304i \(0.261088\pi\)
−0.390798 + 0.920477i \(0.627801\pi\)
\(374\) −1.77808 0.647169i −0.0919424 0.0334643i
\(375\) 0 0
\(376\) 13.6783 + 2.41185i 0.705405 + 0.124382i
\(377\) −23.1631 −1.19296
\(378\) 0 0
\(379\) −6.72815 −0.345602 −0.172801 0.984957i \(-0.555282\pi\)
−0.172801 + 0.984957i \(0.555282\pi\)
\(380\) 0.00504472 0.000889521i 0.000258789 4.56315e-5i
\(381\) 0 0
\(382\) 9.78864 + 3.56278i 0.500831 + 0.182287i
\(383\) −0.0493036 0.279615i −0.00251930 0.0142876i 0.983522 0.180787i \(-0.0578646\pi\)
−0.986041 + 0.166500i \(0.946753\pi\)
\(384\) 0 0
\(385\) 0.00337006 + 0.00618529i 0.000171754 + 0.000315231i
\(386\) −7.90450 4.56367i −0.402329 0.232285i
\(387\) 0 0
\(388\) 3.14389i 0.159607i
\(389\) 0.733433 + 0.129324i 0.0371865 + 0.00655699i 0.192211 0.981354i \(-0.438434\pi\)
−0.155024 + 0.987911i \(0.549545\pi\)
\(390\) 0 0
\(391\) −0.816083 0.972570i −0.0412711 0.0491850i
\(392\) 11.6641 5.98620i 0.589124 0.302349i
\(393\) 0 0
\(394\) −3.94256 3.30820i −0.198623 0.166665i
\(395\) −0.00144861 −7.28873e−5
\(396\) 0 0
\(397\) 16.7288i 0.839593i −0.907618 0.419797i \(-0.862101\pi\)
0.907618 0.419797i \(-0.137899\pi\)
\(398\) −0.968833 + 5.49452i −0.0485632 + 0.275416i
\(399\) 0 0
\(400\) 12.0563 + 4.38812i 0.602814 + 0.219406i
\(401\) 11.8787 + 14.1565i 0.593194 + 0.706941i 0.976216 0.216798i \(-0.0695613\pi\)
−0.383023 + 0.923739i \(0.625117\pi\)
\(402\) 0 0
\(403\) −20.8978 + 7.60619i −1.04099 + 0.378891i
\(404\) −3.72832 6.45763i −0.185491 0.321279i
\(405\) 0 0
\(406\) 4.05795 10.3461i 0.201393 0.513467i
\(407\) −6.25772 + 7.45767i −0.310184 + 0.369663i
\(408\) 0 0
\(409\) −6.09589 + 16.7483i −0.301423 + 0.828152i 0.692831 + 0.721100i \(0.256363\pi\)
−0.994253 + 0.107052i \(0.965859\pi\)
\(410\) −0.00122569 0.00146072i −6.05323e−5 7.21396e-5i
\(411\) 0 0
\(412\) 27.7239 + 4.88847i 1.36586 + 0.240838i
\(413\) −12.7629 + 32.5401i −0.628021 + 1.60119i
\(414\) 0 0
\(415\) 0.000542208 0 0.000939132i 2.66159e−5 0 4.61002e-5i
\(416\) −2.40387 + 13.6330i −0.117860 + 0.668415i
\(417\) 0 0
\(418\) −4.20952 + 11.5656i −0.205894 + 0.565690i
\(419\) −0.812929 + 0.682129i −0.0397142 + 0.0333242i −0.662429 0.749125i \(-0.730474\pi\)
0.622715 + 0.782449i \(0.286030\pi\)
\(420\) 0 0
\(421\) −14.4175 + 5.24755i −0.702667 + 0.255750i −0.668549 0.743668i \(-0.733084\pi\)
−0.0341181 + 0.999418i \(0.510862\pi\)
\(422\) −10.2716 5.93029i −0.500011 0.288682i
\(423\) 0 0
\(424\) 9.85384 + 17.0674i 0.478545 + 0.828864i
\(425\) 3.75958 1.36837i 0.182366 0.0663759i
\(426\) 0 0
\(427\) −7.21177 6.36165i −0.349002 0.307862i
\(428\) 6.94305 1.22425i 0.335605 0.0591762i
\(429\) 0 0
\(430\) −0.000653672 0.00179595i −3.15229e−5 8.66084e-5i
\(431\) 3.29736 + 1.90373i 0.158828 + 0.0916996i 0.577308 0.816527i \(-0.304103\pi\)
−0.418479 + 0.908226i \(0.637437\pi\)
\(432\) 0 0
\(433\) 29.5261i 1.41893i 0.704739 + 0.709467i \(0.251064\pi\)
−0.704739 + 0.709467i \(0.748936\pi\)
\(434\) 0.263703 10.6668i 0.0126582 0.512023i
\(435\) 0 0
\(436\) −1.57668 + 1.32299i −0.0755092 + 0.0633598i
\(437\) −6.32610 + 5.30822i −0.302618 + 0.253927i
\(438\) 0 0
\(439\) 5.64596 + 15.5122i 0.269467 + 0.740355i 0.998441 + 0.0558134i \(0.0177752\pi\)
−0.728974 + 0.684541i \(0.760003\pi\)
\(440\) 0.00249315 0.00431827i 0.000118856 0.000205865i
\(441\) 0 0
\(442\) 0.550152 + 0.952891i 0.0261681 + 0.0453244i
\(443\) −17.9563 + 21.3994i −0.853127 + 1.01672i 0.146494 + 0.989212i \(0.453201\pi\)
−0.999622 + 0.0275061i \(0.991243\pi\)
\(444\) 0 0
\(445\) −0.000315896 0.00179154i −1.49749e−5 8.49270e-5i
\(446\) 11.3406 + 4.12763i 0.536992 + 0.195449i
\(447\) 0 0
\(448\) 5.91930 + 3.61545i 0.279661 + 0.170814i
\(449\) −20.1252 + 11.6193i −0.949765 + 0.548347i −0.893008 0.450041i \(-0.851409\pi\)
−0.0567572 + 0.998388i \(0.518076\pi\)
\(450\) 0 0
\(451\) −27.8549 + 16.0820i −1.31164 + 0.757273i
\(452\) −16.5926 + 19.7743i −0.780452 + 0.930107i
\(453\) 0 0
\(454\) 0.730736 2.00768i 0.0342952 0.0942252i
\(455\) 0.000810726 0.00401490i 3.80074e−5 0.000188222i
\(456\) 0 0
\(457\) 3.14739 17.8497i 0.147229 0.834976i −0.818322 0.574760i \(-0.805095\pi\)
0.965551 0.260215i \(-0.0837936\pi\)
\(458\) −3.23444 + 5.60221i −0.151135 + 0.261774i
\(459\) 0 0
\(460\) 0.00135239 0.000780802i 6.30555e−5 3.64051e-5i
\(461\) 0.780576 + 0.654981i 0.0363550 + 0.0305055i 0.660784 0.750576i \(-0.270224\pi\)
−0.624429 + 0.781081i \(0.714668\pi\)
\(462\) 0 0
\(463\) 5.96496 + 33.8290i 0.277215 + 1.57216i 0.731837 + 0.681480i \(0.238663\pi\)
−0.454621 + 0.890685i \(0.650225\pi\)
\(464\) 21.2565 3.74809i 0.986807 0.174001i
\(465\) 0 0
\(466\) −4.28622 3.59657i −0.198556 0.166608i
\(467\) 1.42508 0.0659449 0.0329724 0.999456i \(-0.489503\pi\)
0.0329724 + 0.999456i \(0.489503\pi\)
\(468\) 0 0
\(469\) −3.50921 4.39846i −0.162040 0.203102i
\(470\) 0.000712064 0.00195638i 3.28451e−5 9.02410e-5i
\(471\) 0 0
\(472\) 24.3677 4.29668i 1.12161 0.197771i
\(473\) −31.7482 + 5.59806i −1.45978 + 0.257399i
\(474\) 0 0
\(475\) −8.90062 24.4542i −0.408388 1.12204i
\(476\) 3.66468 0.553173i 0.167970 0.0253546i
\(477\) 0 0
\(478\) 6.26269 0.286449
\(479\) −27.4187 23.0070i −1.25279 1.05122i −0.996411 0.0846415i \(-0.973026\pi\)
−0.256381 0.966576i \(-0.582530\pi\)
\(480\) 0 0
\(481\) 5.57503 0.983028i 0.254200 0.0448222i
\(482\) 1.74075 + 9.87226i 0.0792888 + 0.449669i
\(483\) 0 0
\(484\) −15.3217 12.8564i −0.696441 0.584383i
\(485\) −0.000874365 0 0.000504815i −3.97029e−5 0 2.29225e-5i
\(486\) 0 0
\(487\) −17.4657 + 30.2515i −0.791446 + 1.37082i 0.133625 + 0.991032i \(0.457338\pi\)
−0.925071 + 0.379793i \(0.875995\pi\)
\(488\) −1.18213 + 6.70421i −0.0535127 + 0.303485i
\(489\) 0 0
\(490\) 0.00165128 + 0.00106549i 7.45970e−5 + 4.81341e-5i
\(491\) 3.72269 10.2280i 0.168003 0.461584i −0.826909 0.562336i \(-0.809903\pi\)
0.994912 + 0.100752i \(0.0321249\pi\)
\(492\) 0 0
\(493\) 4.32647 5.15608i 0.194854 0.232218i
\(494\) 6.19810 3.57847i 0.278866 0.161003i
\(495\) 0 0
\(496\) 17.9469 10.3617i 0.805841 0.465252i
\(497\) 12.0545 19.7359i 0.540718 0.885276i
\(498\) 0 0
\(499\) −5.96349 2.17053i −0.266962 0.0971663i 0.205071 0.978747i \(-0.434258\pi\)
−0.472033 + 0.881581i \(0.656480\pi\)
\(500\) 0.00170906 + 0.00969257i 7.64316e−5 + 0.000433465i
\(501\) 0 0
\(502\) −7.23693 + 8.62463i −0.323000 + 0.384936i
\(503\) 6.72425 + 11.6468i 0.299820 + 0.519303i 0.976095 0.217346i \(-0.0697401\pi\)
−0.676275 + 0.736649i \(0.736407\pi\)
\(504\) 0 0
\(505\) 0.00119731 0.00207381i 5.32798e−5 9.22833e-5i
\(506\) 1.28327 + 3.52575i 0.0570482 + 0.156739i
\(507\) 0 0
\(508\) 9.30123 7.80466i 0.412675 0.346276i
\(509\) −13.2396 + 11.1093i −0.586833 + 0.492411i −0.887183 0.461418i \(-0.847341\pi\)
0.300350 + 0.953829i \(0.402896\pi\)
\(510\) 0 0
\(511\) −9.90533 + 16.2172i −0.438186 + 0.717409i
\(512\) 22.5118i 0.994888i
\(513\) 0 0
\(514\) −12.7090 7.33754i −0.560570 0.323645i
\(515\) 0.00309207 + 0.00849540i 0.000136253 + 0.000374352i
\(516\) 0 0
\(517\) 34.5842 6.09812i 1.52101 0.268195i
\(518\) −0.537611 + 2.66237i −0.0236213 + 0.116978i
\(519\) 0 0
\(520\) −0.00272466 0.000991693i −0.000119484 4.34886e-5i
\(521\) 14.2785 + 24.7311i 0.625553 + 1.08349i 0.988434 + 0.151653i \(0.0484597\pi\)
−0.362881 + 0.931835i \(0.618207\pi\)
\(522\) 0 0
\(523\) −13.1449 7.58924i −0.574788 0.331854i 0.184271 0.982875i \(-0.441008\pi\)
−0.759059 + 0.651021i \(0.774341\pi\)
\(524\) 18.1733 6.61455i 0.793905 0.288958i
\(525\) 0 0
\(526\) −6.41244 + 5.38068i −0.279596 + 0.234609i
\(527\) 2.21023 6.07255i 0.0962790 0.264525i
\(528\) 0 0
\(529\) 3.55675 20.1713i 0.154641 0.877015i
\(530\) −0.00147704 + 0.00255831i −6.41585e−5 + 0.000111126i
\(531\) 0 0
\(532\) −3.59812 23.8370i −0.155998 1.03346i
\(533\) 18.4191 + 3.24779i 0.797821 + 0.140677i
\(534\) 0 0
\(535\) 0.00145533 + 0.00173439i 6.29194e−5 + 7.49844e-5i
\(536\) −1.36234 + 3.74300i −0.0588442 + 0.161673i
\(537\) 0 0
\(538\) −3.02823 + 3.60891i −0.130556 + 0.155591i
\(539\) 22.5362 24.3094i 0.970703 1.04708i
\(540\) 0 0
\(541\) 8.84080 + 15.3127i 0.380096 + 0.658345i 0.991076 0.133301i \(-0.0425577\pi\)
−0.610980 + 0.791646i \(0.709224\pi\)
\(542\) 1.84261 0.670655i 0.0791469 0.0288071i
\(543\) 0 0
\(544\) −2.58570 3.08152i −0.110861 0.132119i
\(545\) −0.000621113 0 0.000226067i −2.66055e−5 0 9.68363e-6i
\(546\) 0 0
\(547\) −1.23750 + 7.01822i −0.0529117 + 0.300077i −0.999767 0.0215823i \(-0.993130\pi\)
0.946855 + 0.321660i \(0.104241\pi\)
\(548\) 17.5979i 0.751745i
\(549\) 0 0
\(550\) −11.8237 −0.504163
\(551\) −33.5378 28.1416i −1.42876 1.19887i
\(552\) 0 0
\(553\) 2.17260 + 6.46177i 0.0923882 + 0.274782i
\(554\) 7.36395 + 8.77601i 0.312864 + 0.372857i
\(555\) 0 0
\(556\) −0.716453 0.126330i −0.0303844 0.00535758i
\(557\) 7.64857i 0.324080i −0.986784 0.162040i \(-0.948193\pi\)
0.986784 0.162040i \(-0.0518074\pi\)
\(558\) 0 0
\(559\) 16.2347 + 9.37312i 0.686655 + 0.396441i
\(560\) −9.43293e−5 0.00381562i −3.98614e−6 0.000161239i
\(561\) 0 0
\(562\) 0.154374 + 0.875496i 0.00651185 + 0.0369306i
\(563\) −33.9970 12.3739i −1.43280 0.521498i −0.495070 0.868853i \(-0.664857\pi\)
−0.937733 + 0.347356i \(0.887080\pi\)
\(564\) 0 0
\(565\) −0.00816385 0.00143951i −0.000343456 6.05605e-5i
\(566\) 2.22555 0.0935467
\(567\) 0 0
\(568\) −16.3710 −0.686910
\(569\) 5.25761 + 0.927059i 0.220411 + 0.0388643i 0.282763 0.959190i \(-0.408749\pi\)
−0.0623521 + 0.998054i \(0.519860\pi\)
\(570\) 0 0
\(571\) −34.9232 12.7110i −1.46149 0.531939i −0.515715 0.856760i \(-0.672473\pi\)
−0.945775 + 0.324822i \(0.894696\pi\)
\(572\) 3.96411 + 22.4816i 0.165748 + 0.940003i
\(573\) 0 0
\(574\) −4.67752 + 7.65815i −0.195236 + 0.319645i
\(575\) −6.87043 3.96664i −0.286517 0.165421i
\(576\) 0 0
\(577\) 25.3559i 1.05558i 0.849374 + 0.527791i \(0.176980\pi\)
−0.849374 + 0.527791i \(0.823020\pi\)
\(578\) 8.04532 + 1.41861i 0.334641 + 0.0590063i
\(579\) 0 0
\(580\) 0.00532154 + 0.00634197i 0.000220965 + 0.000263336i
\(581\) −5.00236 1.01012i −0.207533 0.0419069i
\(582\) 0 0
\(583\) 38.1711 + 32.0294i 1.58089 + 1.32652i
\(584\) 13.4522 0.556658
\(585\) 0 0
\(586\) 3.54278i 0.146351i
\(587\) −2.85469 + 16.1897i −0.117826 + 0.668222i 0.867487 + 0.497460i \(0.165734\pi\)
−0.985312 + 0.170762i \(0.945377\pi\)
\(588\) 0 0
\(589\) −39.4990 14.3765i −1.62753 0.592372i
\(590\) 0.00238406 + 0.00284121i 9.81501e−5 + 0.000116971i
\(591\) 0 0
\(592\) −4.95708 + 1.80423i −0.203735 + 0.0741533i
\(593\) 15.3209 + 26.5365i 0.629153 + 1.08973i 0.987722 + 0.156222i \(0.0499315\pi\)
−0.358569 + 0.933503i \(0.616735\pi\)
\(594\) 0 0
\(595\) 0.000742286 0 0.000930384i 3.04307e−5 0 3.81420e-5i
\(596\) 1.03649 1.23524i 0.0424564 0.0505976i
\(597\) 0 0
\(598\) 0.746216 2.05021i 0.0305150 0.0838393i
\(599\) −12.5598 14.9682i −0.513181 0.611585i 0.445773 0.895146i \(-0.352929\pi\)
−0.958954 + 0.283561i \(0.908484\pi\)
\(600\) 0 0
\(601\) −20.6262 3.63695i −0.841360 0.148354i −0.263672 0.964612i \(-0.584934\pi\)
−0.577688 + 0.816258i \(0.696045\pi\)
\(602\) −7.03079 + 5.60936i −0.286554 + 0.228620i
\(603\) 0 0
\(604\) 1.05366 1.82498i 0.0428726 0.0742576i
\(605\) 0.00111537 0.00632557i 4.53462e−5 0.000257171i
\(606\) 0 0
\(607\) −9.22736 + 25.3520i −0.374527 + 1.02900i 0.599063 + 0.800702i \(0.295540\pi\)
−0.973590 + 0.228302i \(0.926683\pi\)
\(608\) −20.0438 + 16.8188i −0.812884 + 0.682091i
\(609\) 0 0
\(610\) −0.000958889 0 0.000349007i −3.88243e−5 0 1.41309e-5i
\(611\) −17.6849 10.2104i −0.715456 0.413069i
\(612\) 0 0
\(613\) 13.4525 + 23.3005i 0.543343 + 0.941097i 0.998709 + 0.0507931i \(0.0161749\pi\)
−0.455366 + 0.890304i \(0.650492\pi\)
\(614\) 3.36305 1.22405i 0.135722 0.0493986i
\(615\) 0 0
\(616\) −23.0016 4.64469i −0.926761 0.187140i
\(617\) 22.1664 3.90853i 0.892386 0.157352i 0.291390 0.956604i \(-0.405882\pi\)
0.600995 + 0.799253i \(0.294771\pi\)
\(618\) 0 0
\(619\) 3.67268 + 10.0906i 0.147617 + 0.405575i 0.991359 0.131173i \(-0.0418745\pi\)
−0.843742 + 0.536749i \(0.819652\pi\)
\(620\) 0.00688367 + 0.00397429i 0.000276455 + 0.000159611i
\(621\) 0 0
\(622\) 11.6095i 0.465499i
\(623\) −7.51770 + 4.09603i −0.301190 + 0.164104i
\(624\) 0 0
\(625\) 19.1511 16.0697i 0.766044 0.642787i
\(626\) −9.13746 + 7.66724i −0.365207 + 0.306445i
\(627\) 0 0
\(628\) 6.89975 + 18.9569i 0.275330 + 0.756463i
\(629\) −0.822500 + 1.42461i −0.0327952 + 0.0568030i
\(630\) 0 0
\(631\) −0.130873 0.226679i −0.00520998 0.00902394i 0.863409 0.504505i \(-0.168325\pi\)
−0.868619 + 0.495481i \(0.834992\pi\)
\(632\) 3.10204 3.69687i 0.123393 0.147054i
\(633\) 0 0
\(634\) −2.49061 14.1249i −0.0989146 0.560973i
\(635\) 0.00366410 + 0.00133362i 0.000145405 + 5.29233e-5i
\(636\) 0 0
\(637\) −19.1251 + 2.40510i −0.757765 + 0.0952934i
\(638\) −17.2264 + 9.94569i −0.682001 + 0.393754i
\(639\) 0 0
\(640\) 0.00553270 0.00319431i 0.000218699 0.000126266i
\(641\) 32.1360 38.2982i 1.26930 1.51269i 0.513131 0.858310i \(-0.328485\pi\)
0.756166 0.654380i \(-0.227070\pi\)
\(642\) 0 0
\(643\) 5.42130 14.8949i 0.213795 0.587397i −0.785718 0.618584i \(-0.787706\pi\)
0.999514 + 0.0311869i \(0.00992871\pi\)
\(644\) −5.51120 4.86154i −0.217172 0.191571i
\(645\) 0 0
\(646\) −0.361134 + 2.04809i −0.0142086 + 0.0805811i
\(647\) −7.51759 + 13.0208i −0.295547 + 0.511902i −0.975112 0.221713i \(-0.928835\pi\)
0.679565 + 0.733615i \(0.262169\pi\)
\(648\) 0 0
\(649\) 54.1799 31.2808i 2.12675 1.22788i
\(650\) 5.26688 + 4.41943i 0.206584 + 0.173344i
\(651\) 0 0
\(652\) 2.08110 + 11.8025i 0.0815022 + 0.462222i
\(653\) −15.1536 + 2.67199i −0.593007 + 0.104563i −0.462094 0.886831i \(-0.652902\pi\)
−0.130912 + 0.991394i \(0.541791\pi\)
\(654\) 0 0
\(655\) 0.00475771 + 0.00399219i 0.000185899 + 0.000155988i
\(656\) −17.4286 −0.680471
\(657\) 0 0
\(658\) 7.65884 6.11043i 0.298573 0.238209i
\(659\) 5.58157 + 15.3352i 0.217427 + 0.597376i 0.999672 0.0255942i \(-0.00814779\pi\)
−0.782245 + 0.622971i \(0.785926\pi\)
\(660\) 0 0
\(661\) 29.6565 5.22925i 1.15351 0.203394i 0.436000 0.899947i \(-0.356395\pi\)
0.717506 + 0.696553i \(0.245284\pi\)
\(662\) −12.7879 + 2.25486i −0.497017 + 0.0876375i
\(663\) 0 0
\(664\) 1.23560 + 3.39478i 0.0479505 + 0.131743i
\(665\) 0.00605170 0.00482821i 0.000234675 0.000187230i
\(666\) 0 0
\(667\) −13.3465 −0.516777
\(668\) 6.21898 + 5.21834i 0.240620 + 0.201904i
\(669\) 0 0
\(670\) −0.000587993 0 0.000103679i −2.27162e−5 0 4.00547e-6i
\(671\) 2.98890 + 16.9509i 0.115385 + 0.654383i
\(672\) 0 0
\(673\) 8.51271 + 7.14301i 0.328141 + 0.275343i 0.791942 0.610597i \(-0.209070\pi\)
−0.463801 + 0.885939i \(0.653515\pi\)
\(674\) −2.99677 + 1.73018i −0.115431 + 0.0666442i
\(675\) 0 0
\(676\) −4.74182 + 8.21308i −0.182378 + 0.315888i
\(677\) −5.39839 + 30.6158i −0.207477 + 1.17666i 0.686017 + 0.727585i \(0.259357\pi\)
−0.893494 + 0.449075i \(0.851754\pi\)
\(678\) 0 0
\(679\) 3.56318 + 3.14315i 0.136742 + 0.120623i
\(680\) 0.000288169 0 0.000791738i 1.10508e−5 0 3.03618e-5i
\(681\) 0 0
\(682\) −12.2759 + 14.6298i −0.470067 + 0.560204i
\(683\) −17.3662 + 10.0264i −0.664500 + 0.383649i −0.793989 0.607932i \(-0.791999\pi\)
0.129490 + 0.991581i \(0.458666\pi\)
\(684\) 0 0
\(685\) 0.00489426 0.00282570i 0.000187000 0.000107965i
\(686\) 2.27627 8.96382i 0.0869085 0.342240i
\(687\) 0 0
\(688\) −16.4151 5.97461i −0.625820 0.227780i
\(689\) −5.03151 28.5351i −0.191685 1.08710i
\(690\) 0 0
\(691\) −3.41783 + 4.07321i −0.130020 + 0.154952i −0.827127 0.562016i \(-0.810026\pi\)
0.697106 + 0.716968i \(0.254471\pi\)
\(692\) 21.0610 + 36.4787i 0.800618 + 1.38671i
\(693\) 0 0
\(694\) −0.394867 + 0.683930i −0.0149890 + 0.0259616i
\(695\) −7.99067e−5 0 0.000219542i −3.03103e−6 0 8.32769e-6i
\(696\) 0 0
\(697\) −4.16334 + 3.49346i −0.157698 + 0.132324i
\(698\) 6.75060 5.66443i 0.255514 0.214402i
\(699\) 0 0
\(700\) 20.3361 11.0802i 0.768633 0.418791i
\(701\) 16.0144i 0.604857i −0.953172 0.302428i \(-0.902203\pi\)
0.953172 0.302428i \(-0.0977973\pi\)
\(702\) 0 0
\(703\) 9.26641 + 5.34997i 0.349489 + 0.201778i
\(704\) −4.24605 11.6659i −0.160029 0.439676i
\(705\) 0 0
\(706\) −1.33841 + 0.235998i −0.0503718 + 0.00888192i
\(707\) −11.0463 2.23057i −0.415439 0.0838893i
\(708\) 0 0
\(709\) −0.229579 + 0.0835600i −0.00862202 + 0.00313816i −0.346328 0.938114i \(-0.612571\pi\)
0.337706 + 0.941252i \(0.390349\pi\)
\(710\) −0.00122696 0.00212516i −4.60470e−5 7.97558e-5i
\(711\) 0 0
\(712\) 5.24849 + 3.03022i 0.196696 + 0.113562i
\(713\) −12.0412 + 4.38265i −0.450948 + 0.164132i
\(714\) 0 0
\(715\) −0.00561597 + 0.00471236i −0.000210025 + 0.000176232i
\(716\) 14.7699 40.5801i 0.551979 1.51655i
\(717\) 0 0
\(718\) −1.98368 + 11.2500i −0.0740305 + 0.419848i
\(719\) 17.6366 30.5475i 0.657734 1.13923i −0.323467 0.946239i \(-0.604848\pi\)
0.981201 0.192989i \(-0.0618182\pi\)
\(720\) 0 0
\(721\) 33.2578 26.5340i 1.23859 0.988178i
\(722\) 3.97810 + 0.701446i 0.148049 + 0.0261051i
\(723\) 0 0
\(724\) −10.1147 12.0542i −0.375909 0.447991i
\(725\) 14.3848 39.5219i 0.534238 1.46781i
\(726\) 0 0
\(727\) 28.8861 34.4251i 1.07133 1.27676i 0.112229 0.993682i \(-0.464201\pi\)
0.959098 0.283075i \(-0.0913546\pi\)
\(728\) 8.51002 + 10.6665i 0.315402 + 0.395326i
\(729\) 0 0
\(730\) 0.00100821 + 0.00174627i 3.73155e−5 + 6.46324e-5i
\(731\) −5.11882 + 1.86310i −0.189326 + 0.0689092i
\(732\) 0 0
\(733\) −28.0884 33.4744i −1.03747 1.23641i −0.971115 0.238610i \(-0.923308\pi\)
−0.0663525 0.997796i \(-0.521136\pi\)
\(734\) −3.46755 1.26208i −0.127989 0.0465843i
\(735\) 0 0
\(736\) −1.38510 + 7.85530i −0.0510555 + 0.289550i
\(737\) 10.0712i 0.370976i
\(738\) 0 0
\(739\) 35.4098 1.30257 0.651286 0.758833i \(-0.274230\pi\)
0.651286 + 0.758833i \(0.274230\pi\)
\(740\) −0.00154997 0.00130058i −5.69781e−5 4.78103e-5i
\(741\) 0 0
\(742\) 13.6270 + 2.75169i 0.500264 + 0.101018i
\(743\) −14.2073 16.9316i −0.521216 0.621161i 0.439652 0.898168i \(-0.355102\pi\)
−0.960868 + 0.277007i \(0.910657\pi\)
\(744\) 0 0
\(745\) 0.000509971 0 8.99217e-5i 1.86839e−5 0 3.29448e-6i
\(746\) 16.1760i 0.592246i
\(747\) 0 0
\(748\) −5.74482 3.31677i −0.210051 0.121273i
\(749\) 5.55390 9.09297i 0.202935 0.332250i
\(750\) 0 0
\(751\) 7.28917 + 41.3389i 0.265985 + 1.50848i 0.766214 + 0.642585i \(0.222138\pi\)
−0.500229 + 0.865893i \(0.666751\pi\)
\(752\) 17.8815 + 6.50832i 0.652070 + 0.237334i
\(753\) 0 0
\(754\) 11.3910 + 2.00855i 0.414837 + 0.0731470i
\(755\) 0.000676743 0 2.46292e−5 0
\(756\) 0 0
\(757\) 7.91633 0.287724 0.143862 0.989598i \(-0.454048\pi\)
0.143862 + 0.989598i \(0.454048\pi\)
\(758\) 3.30875 + 0.583421i 0.120179 + 0.0211908i
\(759\) 0 0
\(760\) −0.00514988 0.00187440i −0.000186806 6.79917e-5i
\(761\) 5.73553 + 32.5278i 0.207913 + 1.17913i 0.892790 + 0.450474i \(0.148745\pi\)
−0.684877 + 0.728659i \(0.740144\pi\)
\(762\) 0 0
\(763\) −0.0768760 + 3.10964i −0.00278310 + 0.112576i
\(764\) 31.6262 + 18.2594i 1.14420 + 0.660602i
\(765\) 0 0
\(766\) 0.141783i 0.00512283i
\(767\) −35.8267 6.31721i −1.29363 0.228101i
\(768\) 0 0
\(769\) −19.7511 23.5384i −0.712241 0.848816i 0.281611 0.959529i \(-0.409131\pi\)
−0.993852 + 0.110713i \(0.964687\pi\)
\(770\) −0.00112097 0.00333401i −4.03969e−5 0.000120149i
\(771\) 0 0
\(772\) −24.5120 20.5680i −0.882205 0.740258i
\(773\) −31.5260 −1.13391 −0.566956 0.823748i \(-0.691879\pi\)
−0.566956 + 0.823748i \(0.691879\pi\)
\(774\) 0 0
\(775\) 40.3805i 1.45051i
\(776\) 0.584066 3.31240i 0.0209668 0.118908i
\(777\) 0 0
\(778\) −0.349471 0.127197i −0.0125291 0.00456023i
\(779\) 22.7232 + 27.0805i 0.814145 + 0.970260i
\(780\) 0 0
\(781\) −38.8960 + 14.1570i −1.39181 + 0.506577i
\(782\) 0.316995 + 0.549052i 0.0113357 + 0.0196341i
\(783\) 0 0
\(784\) 17.1617 5.30183i 0.612919 0.189351i
\(785\) −0.00416432 + 0.00496285i −0.000148631 + 0.000177132i
\(786\) 0 0
\(787\) −16.3204 + 44.8400i −0.581760 + 1.59837i 0.203411 + 0.979093i \(0.434797\pi\)
−0.785171 + 0.619279i \(0.787425\pi\)
\(788\) −11.5977 13.8216i −0.413151 0.492374i
\(789\) 0 0
\(790\) 0.000712390 0 0.000125614i 2.53457e−5 0 4.46913e-6i
\(791\) 5.82282 + 38.5753i 0.207036 + 1.37158i
\(792\) 0 0
\(793\) 5.00447 8.66800i 0.177714 0.307810i
\(794\) −1.45061 + 8.22681i −0.0514802 + 0.291959i
\(795\) 0 0
\(796\) −6.68976 + 18.3800i −0.237112 + 0.651460i
\(797\) 29.5128 24.7642i 1.04540 0.877192i 0.0527949 0.998605i \(-0.483187\pi\)
0.992602 + 0.121413i \(0.0387426\pi\)
\(798\) 0 0
\(799\) 5.57608 2.02953i 0.197267 0.0717995i
\(800\) −21.7685 12.5681i −0.769633 0.444348i
\(801\) 0 0
\(802\) −4.61410 7.99186i −0.162930 0.282202i
\(803\) 31.9614 11.6330i 1.12789 0.410519i
\(804\) 0 0
\(805\) 0.000467137 0.00231337i 1.64644e−5 8.15356e-5i
\(806\) 10.9366 1.92842i 0.385226 0.0679257i
\(807\) 0 0
\(808\) 2.72847 + 7.49641i 0.0959873 + 0.263723i
\(809\) 36.7753 + 21.2322i 1.29295 + 0.746486i 0.979176 0.203011i \(-0.0650728\pi\)
0.313775 + 0.949497i \(0.398406\pi\)
\(810\) 0 0
\(811\) 22.9043i 0.804277i −0.915579 0.402139i \(-0.868267\pi\)
0.915579 0.402139i \(-0.131733\pi\)
\(812\) 20.3083 33.2493i 0.712683 1.16682i
\(813\) 0 0
\(814\) 3.72408 3.12487i 0.130529 0.109527i
\(815\) −0.00294830 + 0.00247392i −0.000103275 + 8.66577e-5i
\(816\) 0 0
\(817\) 12.1186 + 33.2955i 0.423975 + 1.16486i
\(818\) 4.45012 7.70784i 0.155595 0.269498i
\(819\) 0 0
\(820\) −0.00334243 0.00578925i −0.000116723 0.000202169i
\(821\) −1.32257 + 1.57617i −0.0461579 + 0.0550089i −0.788629 0.614869i \(-0.789209\pi\)
0.742472 + 0.669878i \(0.233653\pi\)
\(822\) 0 0
\(823\) 0.562875 + 3.19222i 0.0196206 + 0.111274i 0.993045 0.117734i \(-0.0375630\pi\)
−0.973425 + 0.229008i \(0.926452\pi\)
\(824\) −28.3018 10.3010i −0.985939 0.358852i
\(825\) 0 0
\(826\) 9.09815 14.8957i 0.316565 0.518288i
\(827\) −47.0423 + 27.1599i −1.63582 + 0.944441i −0.653569 + 0.756867i \(0.726729\pi\)
−0.982251 + 0.187574i \(0.939938\pi\)
\(828\) 0 0
\(829\) −7.34388 + 4.23999i −0.255063 + 0.147261i −0.622081 0.782953i \(-0.713712\pi\)
0.367017 + 0.930214i \(0.380379\pi\)
\(830\) −0.000348080 0 0.000414826i −1.20820e−5 0 1.43988e-5i
\(831\) 0 0
\(832\) −2.46906 + 6.78368i −0.0855992 + 0.235182i
\(833\) 3.03688 4.70647i 0.105221 0.163070i
\(834\) 0 0
\(835\) −0.000452721 0.00256751i −1.56671e−5 8.88523e-5i
\(836\) −21.5740 + 37.3673i −0.746153 + 1.29237i
\(837\) 0 0
\(838\) 0.458929 0.264963i 0.0158534 0.00915299i
\(839\) 11.5622 + 9.70185i 0.399172 + 0.334945i 0.820173 0.572115i \(-0.193877\pi\)
−0.421002 + 0.907060i \(0.638321\pi\)
\(840\) 0 0
\(841\) −7.25090 41.1219i −0.250031 1.41800i
\(842\) 7.54523 1.33043i 0.260026 0.0458496i
\(843\) 0 0
\(844\) −31.8522 26.7272i −1.09640 0.919987i
\(845\) −0.00304558 −0.000104771
\(846\) 0 0
\(847\) −29.8891 + 4.51168i −1.02700 + 0.155023i
\(848\) 9.23471 + 25.3722i 0.317121 + 0.871284i
\(849\) 0 0
\(850\) −1.96753 + 0.346928i −0.0674856 + 0.0118995i
\(851\) 3.21231 0.566417i 0.110117 0.0194165i
\(852\) 0 0
\(853\) 5.23344 + 14.3788i 0.179190 + 0.492319i 0.996473 0.0839170i \(-0.0267430\pi\)
−0.817283 + 0.576236i \(0.804521\pi\)
\(854\) 2.99494 + 3.75386i 0.102485 + 0.128455i
\(855\) 0 0
\(856\) −7.54264 −0.257802
\(857\) 13.4455 + 11.2821i 0.459289 + 0.385389i 0.842869 0.538118i \(-0.180865\pi\)
−0.383580 + 0.923507i \(0.625309\pi\)
\(858\) 0 0
\(859\) −15.6157 + 2.75347i −0.532801 + 0.0939472i −0.433575 0.901118i \(-0.642748\pi\)
−0.0992264 + 0.995065i \(0.531637\pi\)
\(860\) −0.00116348 0.00659842i −3.96743e−5 0.000225004i
\(861\) 0 0
\(862\) −1.45649 1.22214i −0.0496081 0.0416261i
\(863\) 1.76440 1.01868i 0.0600610 0.0346762i −0.469669 0.882843i \(-0.655627\pi\)
0.529730 + 0.848166i \(0.322293\pi\)
\(864\) 0 0
\(865\) −0.00676353 + 0.0117148i −0.000229967 + 0.000398315i
\(866\) 2.56031 14.5202i 0.0870028 0.493417i
\(867\) 0 0
\(868\) 7.40402 36.6664i 0.251309 1.24454i
\(869\) 4.17328 11.4660i 0.141569 0.388957i
\(870\) 0 0
\(871\) 3.76439 4.48622i 0.127551 0.152010i
\(872\) 1.90697 1.10099i 0.0645783 0.0372843i
\(873\) 0 0
\(874\) 3.57132 2.06190i 0.120802 0.0697448i
\(875\) 0.0126939 + 0.00775331i 0.000429132 + 0.000262110i
\(876\) 0 0
\(877\) 17.0905 + 6.22045i 0.577106 + 0.210050i 0.614049 0.789268i \(-0.289540\pi\)
−0.0369427 + 0.999317i \(0.511762\pi\)
\(878\) −1.43144 8.11809i −0.0483087 0.273972i
\(879\) 0 0
\(880\) 0.00439119 0.00523322i 0.000148027 0.000176412i
\(881\) 13.3725 + 23.1618i 0.450530 + 0.780341i 0.998419 0.0562101i \(-0.0179017\pi\)
−0.547889 + 0.836551i \(0.684568\pi\)
\(882\) 0 0
\(883\) 10.5208 18.2226i 0.354054 0.613240i −0.632901 0.774232i \(-0.718136\pi\)
0.986956 + 0.160992i \(0.0514694\pi\)
\(884\) 1.31930 + 3.62475i 0.0443729 + 0.121914i
\(885\) 0 0
\(886\) 10.6861 8.96668i 0.359006 0.301242i
\(887\) 17.0586 14.3138i 0.572771 0.480612i −0.309793 0.950804i \(-0.600260\pi\)
0.882564 + 0.470192i \(0.155815\pi\)
\(888\) 0 0
\(889\) 0.453511 18.3445i 0.0152103 0.615256i
\(890\) 0 0.000908428i 0 3.04506e-5i
\(891\) 0 0
\(892\) 36.6404 + 21.1543i 1.22681 + 0.708300i
\(893\) −13.2011 36.2697i −0.441758 1.21372i
\(894\) 0 0
\(895\) 0.0136576 0.00240820i 0.000456523 8.04973e-5i
\(896\) −22.5466 19.8888i −0.753230 0.664439i
\(897\) 0 0
\(898\) 10.9046 3.96896i 0.363892 0.132446i
\(899\) −33.9668 58.8322i −1.13286 1.96216i
\(900\) 0 0
\(901\) 7.29169 + 4.20986i 0.242922 + 0.140251i
\(902\) 15.0929 5.49336i 0.502538 0.182909i
\(903\) 0 0
\(904\) 21.1557 17.7517i 0.703627 0.590414i
\(905\) 0.00172835 0.00474860i 5.74522e−5 0.000157849i
\(906\) 0 0
\(907\) 0.624448 3.54142i 0.0207345 0.117591i −0.972684 0.232134i \(-0.925429\pi\)
0.993418 + 0.114543i \(0.0365404\pi\)
\(908\) 3.74506 6.48664i 0.124284 0.215267i
\(909\) 0 0
\(910\) −0.000746842 0.00190413i −2.47576e−5 6.31214e-5i
\(911\) 51.8774 + 9.14738i 1.71877 + 0.303066i 0.944189 0.329403i \(-0.106848\pi\)
0.774585 + 0.632470i \(0.217959\pi\)
\(912\) 0 0
\(913\) 5.87135 + 6.99721i 0.194313 + 0.231574i
\(914\) −3.09562 + 8.50515i −0.102394 + 0.281326i
\(915\) 0 0
\(916\) −14.5773 + 17.3725i −0.481647 + 0.574005i
\(917\) 10.6724 27.2100i 0.352432 0.898555i
\(918\) 0 0
\(919\) −27.2723 47.2370i −0.899629 1.55820i −0.827969 0.560774i \(-0.810504\pi\)
−0.0716603 0.997429i \(-0.522830\pi\)
\(920\) −0.00156994 0.000571410i −5.17592e−5 1.88388e-5i
\(921\) 0 0
\(922\) −0.327073 0.389790i −0.0107716 0.0128371i
\(923\) 22.6179 + 8.23224i 0.744477 + 0.270968i
\(924\) 0 0
\(925\) −1.78494 + 10.1229i −0.0586884 + 0.332838i
\(926\) 17.1535i 0.563700i
\(927\) 0 0
\(928\) −42.2874 −1.38815
\(929\) 32.1029 + 26.9376i 1.05326 + 0.883793i 0.993433 0.114416i \(-0.0364996\pi\)
0.0598303 + 0.998209i \(0.480944\pi\)
\(930\) 0 0
\(931\) −30.6133 19.7534i −1.00331 0.647392i
\(932\) −12.6086 15.0264i −0.413010 0.492206i
\(933\) 0 0
\(934\) −0.700821 0.123574i −0.0229316 0.00404345i
\(935\) 0.00213030i 6.96683e-5i
\(936\) 0 0
\(937\) −24.5420 14.1693i −0.801751 0.462891i 0.0423320 0.999104i \(-0.486521\pi\)
−0.844083 + 0.536212i \(0.819855\pi\)
\(938\) 1.34434 + 2.46735i 0.0438943 + 0.0805619i
\(939\) 0 0
\(940\) 0.00126741 + 0.00718785i 4.13384e−5 + 0.000234442i
\(941\) 15.2577 + 5.55334i 0.497386 + 0.181034i 0.578518 0.815670i \(-0.303631\pi\)
−0.0811321 + 0.996703i \(0.525854\pi\)
\(942\) 0 0
\(943\) 10.6130 + 1.87136i 0.345608 + 0.0609399i
\(944\) 33.8999 1.10335
\(945\) 0 0
\(946\) 16.0984 0.523405
\(947\) −9.66361 1.70396i −0.314025 0.0553711i 0.0144143 0.999896i \(-0.495412\pi\)
−0.328440 + 0.944525i \(0.606523\pi\)
\(948\) 0 0
\(949\) −18.5854 6.76454i −0.603308 0.219586i
\(950\) 2.25660 + 12.7978i 0.0732138 + 0.415216i
\(951\) 0 0
\(952\) −3.96388 0.0979946i −0.128470 0.00317602i
\(953\) 34.8176 + 20.1019i 1.12785 + 0.651166i 0.943394 0.331675i \(-0.107614\pi\)
0.184458 + 0.982840i \(0.440947\pi\)
\(954\) 0 0
\(955\) 0.0117277i 0.000379499i
\(956\) 21.6218 + 3.81251i 0.699300 + 0.123305i
\(957\) 0 0
\(958\) 11.4888 + 13.6919i 0.371188 + 0.442364i
\(959\) −19.9449 17.5938i −0.644054 0.568133i
\(960\) 0 0
\(961\) −26.2167 21.9984i −0.845701 0.709627i
\(962\) −2.82691 −0.0911432
\(963\) 0 0
\(964\) 35.1435i 1.13190i
\(965\) 0.00178439 0.0101198i 5.74415e−5 0.000325767i
\(966\) 0 0
\(967\) −6.39685 2.32826i −0.205709 0.0748719i 0.237111 0.971483i \(-0.423800\pi\)
−0.442820 + 0.896611i \(0.646022\pi\)
\(968\) 13.7545 + 16.3920i 0.442087 + 0.526859i
\(969\) 0 0
\(970\) 0.000473766 0 0.000172437i 1.52117e−5 0 5.53661e-6i
\(971\) 14.6415 + 25.3599i 0.469869 + 0.813836i 0.999406 0.0344500i \(-0.0109679\pi\)
−0.529538 + 0.848286i \(0.677635\pi\)
\(972\) 0 0
\(973\) −0.859463 + 0.685703i −0.0275531 + 0.0219826i
\(974\) 11.2124 13.3624i 0.359269 0.428160i
\(975\) 0 0
\(976\) −3.18995 + 8.76432i −0.102108 + 0.280539i
\(977\) 5.03211 + 5.99703i 0.160991 + 0.191862i 0.840510 0.541796i \(-0.182256\pi\)
−0.679518 + 0.733659i \(0.737811\pi\)
\(978\) 0 0
\(979\) 15.0904 + 2.66085i 0.482291 + 0.0850410i
\(980\) 0.00505236 + 0.00468384i 0.000161392 + 0.000149620i
\(981\) 0 0
\(982\) −2.71764 + 4.70709i −0.0867233 + 0.150209i
\(983\) 1.04697 5.93768i 0.0333932 0.189382i −0.963548 0.267535i \(-0.913791\pi\)
0.996941 + 0.0781524i \(0.0249021\pi\)
\(984\) 0 0
\(985\) 0.00198176 0.00544485i 6.31442e−5 0.000173487i
\(986\) −2.57475 + 2.16048i −0.0819969 + 0.0688036i
\(987\) 0 0
\(988\) 23.5773 8.58143i 0.750093 0.273012i
\(989\) 9.35438 + 5.40075i 0.297452 + 0.171734i
\(990\) 0 0
\(991\) −11.3468 19.6532i −0.360442 0.624304i 0.627592 0.778543i \(-0.284041\pi\)
−0.988034 + 0.154239i \(0.950707\pi\)
\(992\) −38.1519 + 13.8861i −1.21132 + 0.440886i
\(993\) 0 0
\(994\) −7.63947 + 8.66035i −0.242309 + 0.274690i
\(995\) −0.00618594 + 0.00109075i −0.000196107 + 3.45790e-5i
\(996\) 0 0
\(997\) 3.33531 + 9.16369i 0.105630 + 0.290217i 0.981236 0.192809i \(-0.0617598\pi\)
−0.875606 + 0.483026i \(0.839538\pi\)
\(998\) 2.74449 + 1.58453i 0.0868752 + 0.0501574i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.ba.a.521.9 132
3.2 odd 2 189.2.ba.a.38.14 yes 132
7.5 odd 6 567.2.bd.a.278.14 132
21.5 even 6 189.2.bd.a.173.9 yes 132
27.5 odd 18 567.2.bd.a.206.14 132
27.22 even 9 189.2.bd.a.59.9 yes 132
189.5 even 18 inner 567.2.ba.a.530.9 132
189.103 odd 18 189.2.ba.a.5.14 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.ba.a.5.14 132 189.103 odd 18
189.2.ba.a.38.14 yes 132 3.2 odd 2
189.2.bd.a.59.9 yes 132 27.22 even 9
189.2.bd.a.173.9 yes 132 21.5 even 6
567.2.ba.a.521.9 132 1.1 even 1 trivial
567.2.ba.a.530.9 132 189.5 even 18 inner
567.2.bd.a.206.14 132 27.5 odd 18
567.2.bd.a.278.14 132 7.5 odd 6