Properties

Label 567.2.ba.a.521.13
Level $567$
Weight $2$
Character 567.521
Analytic conductor $4.528$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(143,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([7, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.143");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.ba (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 521.13
Character \(\chi\) \(=\) 567.521
Dual form 567.2.ba.a.530.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.408566 + 0.0720413i) q^{2} +(-1.71765 - 0.625173i) q^{4} +(-0.0312679 - 0.177329i) q^{5} +(1.82229 + 1.91814i) q^{7} +(-1.37531 - 0.794036i) q^{8} -0.0747032i q^{10} +(-1.56303 - 0.275605i) q^{11} +(3.21910 + 3.83638i) q^{13} +(0.606342 + 0.914967i) q^{14} +(2.29578 + 1.92639i) q^{16} +7.76129 q^{17} -4.34679i q^{19} +(-0.0571540 + 0.324137i) q^{20} +(-0.618747 - 0.225206i) q^{22} +(1.56305 + 1.86277i) q^{23} +(4.66800 - 1.69901i) q^{25} +(1.03884 + 1.79932i) q^{26} +(-1.93089 - 4.43393i) q^{28} +(-2.81590 + 3.35586i) q^{29} +(0.459948 - 1.26370i) q^{31} +(2.84078 + 3.38551i) q^{32} +(3.17100 + 0.559134i) q^{34} +(0.283162 - 0.383121i) q^{35} +(2.09041 - 3.62070i) q^{37} +(0.313148 - 1.77595i) q^{38} +(-0.0978025 + 0.268710i) q^{40} +(-8.48927 + 7.12335i) q^{41} +(-0.714703 + 0.260131i) q^{43} +(2.51244 + 1.45056i) q^{44} +(0.504413 + 0.873669i) q^{46} +(8.67893 - 3.15887i) q^{47} +(-0.358507 + 6.99081i) q^{49} +(2.02959 - 0.357871i) q^{50} +(-3.13089 - 8.60205i) q^{52} +(8.42703 + 4.86535i) q^{53} +0.285788i q^{55} +(-0.983146 - 4.08500i) q^{56} +(-1.39224 + 1.16823i) q^{58} +(-1.51017 + 1.26718i) q^{59} +(-0.916897 - 2.51916i) q^{61} +(0.278957 - 0.483169i) q^{62} +(-2.08017 - 3.60297i) q^{64} +(0.579646 - 0.690796i) q^{65} +(-0.722307 - 4.09641i) q^{67} +(-13.3312 - 4.85215i) q^{68} +(0.143291 - 0.136131i) q^{70} +(-5.04844 + 2.91472i) q^{71} +(-7.42228 + 4.28526i) q^{73} +(1.11491 - 1.32870i) q^{74} +(-2.71749 + 7.46625i) q^{76} +(-2.31965 - 3.50034i) q^{77} +(-0.884454 + 5.01599i) q^{79} +(0.269820 - 0.467342i) q^{80} +(-3.98161 + 2.29878i) q^{82} +(-10.1615 - 8.52653i) q^{83} +(-0.242679 - 1.37630i) q^{85} +(-0.310744 + 0.0547926i) q^{86} +(1.93081 + 1.62014i) q^{88} -8.19131 q^{89} +(-1.49256 + 13.1657i) q^{91} +(-1.52022 - 4.17676i) q^{92} +(3.77349 - 0.665368i) q^{94} +(-0.770811 + 0.135915i) q^{95} +(1.63818 + 4.50085i) q^{97} +(-0.650101 + 2.83038i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q + 3 q^{2} - 3 q^{4} + 9 q^{5} - 6 q^{7} + 18 q^{8} + 9 q^{11} - 3 q^{14} + 3 q^{16} + 18 q^{17} - 18 q^{20} - 12 q^{22} + 6 q^{23} - 3 q^{25} - 12 q^{28} - 6 q^{29} - 9 q^{31} - 3 q^{32} - 18 q^{34}+ \cdots - 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.408566 + 0.0720413i 0.288900 + 0.0509409i 0.316220 0.948686i \(-0.397586\pi\)
−0.0273200 + 0.999627i \(0.508697\pi\)
\(3\) 0 0
\(4\) −1.71765 0.625173i −0.858824 0.312586i
\(5\) −0.0312679 0.177329i −0.0139834 0.0793039i 0.977017 0.213159i \(-0.0683753\pi\)
−0.991001 + 0.133855i \(0.957264\pi\)
\(6\) 0 0
\(7\) 1.82229 + 1.91814i 0.688761 + 0.724988i
\(8\) −1.37531 0.794036i −0.486246 0.280734i
\(9\) 0 0
\(10\) 0.0747032i 0.0236232i
\(11\) −1.56303 0.275605i −0.471272 0.0830979i −0.0670317 0.997751i \(-0.521353\pi\)
−0.404240 + 0.914653i \(0.632464\pi\)
\(12\) 0 0
\(13\) 3.21910 + 3.83638i 0.892819 + 1.06402i 0.997580 + 0.0695228i \(0.0221477\pi\)
−0.104761 + 0.994497i \(0.533408\pi\)
\(14\) 0.606342 + 0.914967i 0.162052 + 0.244535i
\(15\) 0 0
\(16\) 2.29578 + 1.92639i 0.573944 + 0.481597i
\(17\) 7.76129 1.88239 0.941195 0.337864i \(-0.109704\pi\)
0.941195 + 0.337864i \(0.109704\pi\)
\(18\) 0 0
\(19\) 4.34679i 0.997221i −0.866826 0.498611i \(-0.833844\pi\)
0.866826 0.498611i \(-0.166156\pi\)
\(20\) −0.0571540 + 0.324137i −0.0127800 + 0.0724791i
\(21\) 0 0
\(22\) −0.618747 0.225206i −0.131917 0.0480140i
\(23\) 1.56305 + 1.86277i 0.325918 + 0.388414i 0.903977 0.427581i \(-0.140634\pi\)
−0.578059 + 0.815995i \(0.696190\pi\)
\(24\) 0 0
\(25\) 4.66800 1.69901i 0.933599 0.339802i
\(26\) 1.03884 + 1.79932i 0.203733 + 0.352877i
\(27\) 0 0
\(28\) −1.93089 4.43393i −0.364904 0.837935i
\(29\) −2.81590 + 3.35586i −0.522899 + 0.623167i −0.961264 0.275630i \(-0.911113\pi\)
0.438365 + 0.898797i \(0.355558\pi\)
\(30\) 0 0
\(31\) 0.459948 1.26370i 0.0826090 0.226966i −0.891510 0.453000i \(-0.850354\pi\)
0.974119 + 0.226034i \(0.0725759\pi\)
\(32\) 2.84078 + 3.38551i 0.502184 + 0.598480i
\(33\) 0 0
\(34\) 3.17100 + 0.559134i 0.543823 + 0.0958906i
\(35\) 0.283162 0.383121i 0.0478631 0.0647593i
\(36\) 0 0
\(37\) 2.09041 3.62070i 0.343662 0.595240i −0.641448 0.767167i \(-0.721666\pi\)
0.985110 + 0.171927i \(0.0549992\pi\)
\(38\) 0.313148 1.77595i 0.0507993 0.288097i
\(39\) 0 0
\(40\) −0.0978025 + 0.268710i −0.0154639 + 0.0424868i
\(41\) −8.48927 + 7.12335i −1.32580 + 1.11248i −0.340763 + 0.940149i \(0.610685\pi\)
−0.985039 + 0.172331i \(0.944870\pi\)
\(42\) 0 0
\(43\) −0.714703 + 0.260131i −0.108991 + 0.0396696i −0.395940 0.918276i \(-0.629581\pi\)
0.286949 + 0.957946i \(0.407359\pi\)
\(44\) 2.51244 + 1.45056i 0.378764 + 0.218680i
\(45\) 0 0
\(46\) 0.504413 + 0.873669i 0.0743716 + 0.128815i
\(47\) 8.67893 3.15887i 1.26595 0.460769i 0.380190 0.924908i \(-0.375859\pi\)
0.885762 + 0.464139i \(0.153636\pi\)
\(48\) 0 0
\(49\) −0.358507 + 6.99081i −0.0512153 + 0.998688i
\(50\) 2.02959 0.357871i 0.287027 0.0506106i
\(51\) 0 0
\(52\) −3.13089 8.60205i −0.434176 1.19289i
\(53\) 8.42703 + 4.86535i 1.15754 + 0.668307i 0.950714 0.310071i \(-0.100353\pi\)
0.206828 + 0.978377i \(0.433686\pi\)
\(54\) 0 0
\(55\) 0.285788i 0.0385357i
\(56\) −0.983146 4.08500i −0.131378 0.545881i
\(57\) 0 0
\(58\) −1.39224 + 1.16823i −0.182810 + 0.153396i
\(59\) −1.51017 + 1.26718i −0.196608 + 0.164973i −0.735777 0.677224i \(-0.763183\pi\)
0.539169 + 0.842197i \(0.318738\pi\)
\(60\) 0 0
\(61\) −0.916897 2.51916i −0.117397 0.322545i 0.867052 0.498218i \(-0.166012\pi\)
−0.984449 + 0.175673i \(0.943790\pi\)
\(62\) 0.278957 0.483169i 0.0354276 0.0613625i
\(63\) 0 0
\(64\) −2.08017 3.60297i −0.260022 0.450371i
\(65\) 0.579646 0.690796i 0.0718963 0.0856827i
\(66\) 0 0
\(67\) −0.722307 4.09641i −0.0882438 0.500456i −0.996609 0.0822786i \(-0.973780\pi\)
0.908366 0.418177i \(-0.137331\pi\)
\(68\) −13.3312 4.85215i −1.61664 0.588410i
\(69\) 0 0
\(70\) 0.143291 0.136131i 0.0171266 0.0162708i
\(71\) −5.04844 + 2.91472i −0.599139 + 0.345913i −0.768703 0.639606i \(-0.779097\pi\)
0.169564 + 0.985519i \(0.445764\pi\)
\(72\) 0 0
\(73\) −7.42228 + 4.28526i −0.868712 + 0.501551i −0.866920 0.498447i \(-0.833904\pi\)
−0.00179209 + 0.999998i \(0.500570\pi\)
\(74\) 1.11491 1.32870i 0.129606 0.154458i
\(75\) 0 0
\(76\) −2.71749 + 7.46625i −0.311718 + 0.856438i
\(77\) −2.31965 3.50034i −0.264349 0.398901i
\(78\) 0 0
\(79\) −0.884454 + 5.01599i −0.0995088 + 0.564343i 0.893763 + 0.448539i \(0.148055\pi\)
−0.993272 + 0.115804i \(0.963056\pi\)
\(80\) 0.269820 0.467342i 0.0301668 0.0522504i
\(81\) 0 0
\(82\) −3.98161 + 2.29878i −0.439695 + 0.253858i
\(83\) −10.1615 8.52653i −1.11537 0.935909i −0.117011 0.993131i \(-0.537331\pi\)
−0.998361 + 0.0572219i \(0.981776\pi\)
\(84\) 0 0
\(85\) −0.242679 1.37630i −0.0263222 0.149281i
\(86\) −0.310744 + 0.0547926i −0.0335084 + 0.00590843i
\(87\) 0 0
\(88\) 1.93081 + 1.62014i 0.205825 + 0.172708i
\(89\) −8.19131 −0.868278 −0.434139 0.900846i \(-0.642947\pi\)
−0.434139 + 0.900846i \(0.642947\pi\)
\(90\) 0 0
\(91\) −1.49256 + 13.1657i −0.156463 + 1.38014i
\(92\) −1.52022 4.17676i −0.158493 0.435457i
\(93\) 0 0
\(94\) 3.77349 0.665368i 0.389206 0.0686275i
\(95\) −0.770811 + 0.135915i −0.0790835 + 0.0139446i
\(96\) 0 0
\(97\) 1.63818 + 4.50085i 0.166332 + 0.456993i 0.994655 0.103258i \(-0.0329269\pi\)
−0.828323 + 0.560251i \(0.810705\pi\)
\(98\) −0.650101 + 2.83038i −0.0656701 + 0.285912i
\(99\) 0 0
\(100\) −9.08015 −0.908015
\(101\) −9.59097 8.04778i −0.954337 0.800784i 0.0256856 0.999670i \(-0.491823\pi\)
−0.980023 + 0.198886i \(0.936268\pi\)
\(102\) 0 0
\(103\) 2.76125 0.486882i 0.272074 0.0479739i −0.0359467 0.999354i \(-0.511445\pi\)
0.308020 + 0.951380i \(0.400334\pi\)
\(104\) −1.38104 7.83229i −0.135423 0.768020i
\(105\) 0 0
\(106\) 3.09250 + 2.59491i 0.300370 + 0.252040i
\(107\) 6.82463 3.94020i 0.659762 0.380913i −0.132425 0.991193i \(-0.542276\pi\)
0.792186 + 0.610280i \(0.208943\pi\)
\(108\) 0 0
\(109\) 8.69846 15.0662i 0.833161 1.44308i −0.0623578 0.998054i \(-0.519862\pi\)
0.895519 0.445024i \(-0.146805\pi\)
\(110\) −0.0205886 + 0.116764i −0.00196304 + 0.0111330i
\(111\) 0 0
\(112\) 0.488502 + 7.91406i 0.0461591 + 0.747808i
\(113\) −1.02719 + 2.82219i −0.0966304 + 0.265490i −0.978585 0.205845i \(-0.934006\pi\)
0.881954 + 0.471335i \(0.156228\pi\)
\(114\) 0 0
\(115\) 0.281450 0.335419i 0.0262453 0.0312779i
\(116\) 6.93471 4.00376i 0.643872 0.371740i
\(117\) 0 0
\(118\) −0.708295 + 0.408934i −0.0652038 + 0.0376455i
\(119\) 14.1433 + 14.8872i 1.29652 + 1.36471i
\(120\) 0 0
\(121\) −7.96951 2.90066i −0.724501 0.263697i
\(122\) −0.193130 1.09530i −0.0174852 0.0991635i
\(123\) 0 0
\(124\) −1.58006 + 1.88304i −0.141893 + 0.169102i
\(125\) −0.897403 1.55435i −0.0802662 0.139025i
\(126\) 0 0
\(127\) 5.25357 9.09945i 0.466179 0.807446i −0.533075 0.846068i \(-0.678964\pi\)
0.999254 + 0.0386222i \(0.0122969\pi\)
\(128\) −3.61343 9.92780i −0.319385 0.877502i
\(129\) 0 0
\(130\) 0.286590 0.240477i 0.0251356 0.0210913i
\(131\) 11.1700 9.37272i 0.975925 0.818898i −0.00754465 0.999972i \(-0.502402\pi\)
0.983470 + 0.181073i \(0.0579571\pi\)
\(132\) 0 0
\(133\) 8.33774 7.92111i 0.722973 0.686848i
\(134\) 1.72569i 0.149077i
\(135\) 0 0
\(136\) −10.6742 6.16274i −0.915304 0.528451i
\(137\) 2.17300 + 5.97027i 0.185652 + 0.510075i 0.997247 0.0741452i \(-0.0236228\pi\)
−0.811595 + 0.584220i \(0.801401\pi\)
\(138\) 0 0
\(139\) −15.1483 + 2.67106i −1.28487 + 0.226556i −0.774045 0.633131i \(-0.781769\pi\)
−0.510821 + 0.859687i \(0.670658\pi\)
\(140\) −0.725890 + 0.481042i −0.0613489 + 0.0406555i
\(141\) 0 0
\(142\) −2.27260 + 0.827159i −0.190713 + 0.0694137i
\(143\) −3.97424 6.88358i −0.332343 0.575634i
\(144\) 0 0
\(145\) 0.683138 + 0.394410i 0.0567315 + 0.0327539i
\(146\) −3.34121 + 1.21610i −0.276521 + 0.100645i
\(147\) 0 0
\(148\) −5.85416 + 4.91223i −0.481209 + 0.403783i
\(149\) −5.96220 + 16.3810i −0.488442 + 1.34198i 0.413648 + 0.910437i \(0.364254\pi\)
−0.902090 + 0.431547i \(0.857968\pi\)
\(150\) 0 0
\(151\) 0.399188 2.26391i 0.0324854 0.184234i −0.964247 0.265004i \(-0.914627\pi\)
0.996733 + 0.0807699i \(0.0257379\pi\)
\(152\) −3.45150 + 5.97818i −0.279954 + 0.484894i
\(153\) 0 0
\(154\) −0.695563 1.59723i −0.0560500 0.128709i
\(155\) −0.238471 0.0420489i −0.0191545 0.00337745i
\(156\) 0 0
\(157\) −3.60935 4.30145i −0.288057 0.343293i 0.602538 0.798090i \(-0.294156\pi\)
−0.890595 + 0.454797i \(0.849712\pi\)
\(158\) −0.722716 + 1.98565i −0.0574962 + 0.157970i
\(159\) 0 0
\(160\) 0.511524 0.609611i 0.0404395 0.0481940i
\(161\) −0.724718 + 6.39265i −0.0571157 + 0.503811i
\(162\) 0 0
\(163\) 9.58450 + 16.6008i 0.750716 + 1.30028i 0.947476 + 0.319827i \(0.103625\pi\)
−0.196760 + 0.980452i \(0.563042\pi\)
\(164\) 19.0349 6.92814i 1.48638 0.540997i
\(165\) 0 0
\(166\) −3.53740 4.21571i −0.274555 0.327202i
\(167\) 8.84469 + 3.21920i 0.684422 + 0.249109i 0.660745 0.750610i \(-0.270240\pi\)
0.0236772 + 0.999720i \(0.492463\pi\)
\(168\) 0 0
\(169\) −2.09775 + 11.8969i −0.161365 + 0.915147i
\(170\) 0.579794i 0.0444681i
\(171\) 0 0
\(172\) 1.39024 0.106005
\(173\) −4.11126 3.44976i −0.312573 0.262280i 0.472981 0.881072i \(-0.343178\pi\)
−0.785555 + 0.618792i \(0.787622\pi\)
\(174\) 0 0
\(175\) 11.7654 + 5.85777i 0.889380 + 0.442805i
\(176\) −3.05745 3.64373i −0.230464 0.274656i
\(177\) 0 0
\(178\) −3.34670 0.590113i −0.250846 0.0442308i
\(179\) 14.8693i 1.11138i −0.831389 0.555691i \(-0.812454\pi\)
0.831389 0.555691i \(-0.187546\pi\)
\(180\) 0 0
\(181\) −5.48950 3.16937i −0.408031 0.235577i 0.281912 0.959440i \(-0.409031\pi\)
−0.689944 + 0.723863i \(0.742365\pi\)
\(182\) −1.55828 + 5.27153i −0.115508 + 0.390752i
\(183\) 0 0
\(184\) −0.670572 3.80300i −0.0494352 0.280361i
\(185\) −0.707418 0.257479i −0.0520104 0.0189302i
\(186\) 0 0
\(187\) −12.1311 2.13905i −0.887117 0.156423i
\(188\) −16.8822 −1.23126
\(189\) 0 0
\(190\) −0.324719 −0.0235576
\(191\) −16.6883 2.94260i −1.20752 0.212919i −0.466575 0.884482i \(-0.654512\pi\)
−0.740947 + 0.671563i \(0.765623\pi\)
\(192\) 0 0
\(193\) 11.5156 + 4.19135i 0.828915 + 0.301700i 0.721413 0.692505i \(-0.243493\pi\)
0.107501 + 0.994205i \(0.465715\pi\)
\(194\) 0.345057 + 1.95691i 0.0247736 + 0.140498i
\(195\) 0 0
\(196\) 4.98626 11.7836i 0.356161 0.841688i
\(197\) 11.7644 + 6.79216i 0.838176 + 0.483921i 0.856644 0.515908i \(-0.172545\pi\)
−0.0184676 + 0.999829i \(0.505879\pi\)
\(198\) 0 0
\(199\) 7.03966i 0.499028i −0.968371 0.249514i \(-0.919729\pi\)
0.968371 0.249514i \(-0.0802709\pi\)
\(200\) −7.76902 1.36989i −0.549352 0.0968657i
\(201\) 0 0
\(202\) −3.33878 3.97900i −0.234915 0.279961i
\(203\) −11.5684 + 0.714068i −0.811941 + 0.0501177i
\(204\) 0 0
\(205\) 1.52862 + 1.28266i 0.106763 + 0.0895850i
\(206\) 1.16323 0.0810459
\(207\) 0 0
\(208\) 15.0087i 1.04067i
\(209\) −1.19799 + 6.79417i −0.0828670 + 0.469962i
\(210\) 0 0
\(211\) −12.4387 4.52733i −0.856318 0.311674i −0.123704 0.992319i \(-0.539477\pi\)
−0.732613 + 0.680645i \(0.761700\pi\)
\(212\) −11.4330 13.6253i −0.785221 0.935790i
\(213\) 0 0
\(214\) 3.07217 1.11818i 0.210009 0.0764371i
\(215\) 0.0684760 + 0.118604i 0.00467002 + 0.00808871i
\(216\) 0 0
\(217\) 3.26210 1.42058i 0.221446 0.0964352i
\(218\) 4.63928 5.52888i 0.314212 0.374463i
\(219\) 0 0
\(220\) 0.178667 0.490884i 0.0120457 0.0330954i
\(221\) 24.9844 + 29.7753i 1.68063 + 2.00290i
\(222\) 0 0
\(223\) −12.9495 2.28334i −0.867162 0.152904i −0.277668 0.960677i \(-0.589562\pi\)
−0.589494 + 0.807773i \(0.700673\pi\)
\(224\) −1.31715 + 11.6184i −0.0880056 + 0.776288i
\(225\) 0 0
\(226\) −0.622992 + 1.07905i −0.0414408 + 0.0717776i
\(227\) 1.26546 7.17680i 0.0839918 0.476341i −0.913578 0.406664i \(-0.866692\pi\)
0.997570 0.0696770i \(-0.0221969\pi\)
\(228\) 0 0
\(229\) 1.41178 3.87883i 0.0932930 0.256321i −0.884265 0.466985i \(-0.845340\pi\)
0.977559 + 0.210664i \(0.0675626\pi\)
\(230\) 0.139155 0.116765i 0.00917560 0.00769924i
\(231\) 0 0
\(232\) 6.53740 2.37942i 0.429202 0.156217i
\(233\) 12.6906 + 7.32691i 0.831388 + 0.480002i 0.854328 0.519735i \(-0.173969\pi\)
−0.0229398 + 0.999737i \(0.507303\pi\)
\(234\) 0 0
\(235\) −0.831531 1.44025i −0.0542431 0.0939518i
\(236\) 3.38615 1.23246i 0.220420 0.0802262i
\(237\) 0 0
\(238\) 4.70600 + 7.10133i 0.305045 + 0.460311i
\(239\) 22.4643 3.96107i 1.45310 0.256220i 0.609324 0.792921i \(-0.291441\pi\)
0.843773 + 0.536701i \(0.180330\pi\)
\(240\) 0 0
\(241\) 0.269437 + 0.740271i 0.0173559 + 0.0476851i 0.948068 0.318068i \(-0.103034\pi\)
−0.930712 + 0.365753i \(0.880812\pi\)
\(242\) −3.04711 1.75925i −0.195875 0.113089i
\(243\) 0 0
\(244\) 4.90024i 0.313706i
\(245\) 1.25088 0.155014i 0.0799160 0.00990349i
\(246\) 0 0
\(247\) 16.6759 13.9928i 1.06106 0.890338i
\(248\) −1.63599 + 1.37276i −0.103885 + 0.0871703i
\(249\) 0 0
\(250\) −0.254672 0.699705i −0.0161069 0.0442532i
\(251\) 5.78209 10.0149i 0.364962 0.632133i −0.623808 0.781578i \(-0.714415\pi\)
0.988770 + 0.149444i \(0.0477485\pi\)
\(252\) 0 0
\(253\) −1.92971 3.34235i −0.121320 0.210132i
\(254\) 2.80197 3.33926i 0.175811 0.209524i
\(255\) 0 0
\(256\) 0.683760 + 3.87780i 0.0427350 + 0.242362i
\(257\) −9.55906 3.47921i −0.596278 0.217027i 0.0262107 0.999656i \(-0.491656\pi\)
−0.622488 + 0.782629i \(0.713878\pi\)
\(258\) 0 0
\(259\) 10.7544 2.58827i 0.668243 0.160828i
\(260\) −1.42750 + 0.824165i −0.0885295 + 0.0511125i
\(261\) 0 0
\(262\) 5.23890 3.02468i 0.323660 0.186865i
\(263\) −11.0604 + 13.1813i −0.682014 + 0.812793i −0.990365 0.138480i \(-0.955778\pi\)
0.308351 + 0.951273i \(0.400223\pi\)
\(264\) 0 0
\(265\) 0.599271 1.64648i 0.0368129 0.101143i
\(266\) 3.97717 2.63564i 0.243856 0.161601i
\(267\) 0 0
\(268\) −1.32029 + 7.48775i −0.0806497 + 0.457387i
\(269\) 5.09560 8.82584i 0.310684 0.538121i −0.667826 0.744317i \(-0.732775\pi\)
0.978511 + 0.206196i \(0.0661085\pi\)
\(270\) 0 0
\(271\) −6.85061 + 3.95520i −0.416145 + 0.240261i −0.693426 0.720527i \(-0.743900\pi\)
0.277282 + 0.960789i \(0.410566\pi\)
\(272\) 17.8182 + 14.9512i 1.08039 + 0.906552i
\(273\) 0 0
\(274\) 0.457709 + 2.59580i 0.0276512 + 0.156818i
\(275\) −7.76448 + 1.36909i −0.468216 + 0.0825591i
\(276\) 0 0
\(277\) 10.5255 + 8.83194i 0.632416 + 0.530660i 0.901679 0.432407i \(-0.142336\pi\)
−0.269263 + 0.963067i \(0.586780\pi\)
\(278\) −6.38153 −0.382739
\(279\) 0 0
\(280\) −0.693648 + 0.302069i −0.0414534 + 0.0180521i
\(281\) −0.953112 2.61865i −0.0568579 0.156216i 0.908012 0.418944i \(-0.137600\pi\)
−0.964870 + 0.262729i \(0.915378\pi\)
\(282\) 0 0
\(283\) −16.1660 + 2.85051i −0.960972 + 0.169445i −0.632063 0.774917i \(-0.717792\pi\)
−0.328908 + 0.944362i \(0.606681\pi\)
\(284\) 10.4936 1.85031i 0.622683 0.109796i
\(285\) 0 0
\(286\) −1.12784 3.09871i −0.0666905 0.183231i
\(287\) −29.1335 3.30279i −1.71970 0.194957i
\(288\) 0 0
\(289\) 43.2377 2.54339
\(290\) 0.250693 + 0.210357i 0.0147212 + 0.0123526i
\(291\) 0 0
\(292\) 15.4279 2.72035i 0.902849 0.159197i
\(293\) 0.270460 + 1.53385i 0.0158004 + 0.0896087i 0.991688 0.128664i \(-0.0410689\pi\)
−0.975888 + 0.218273i \(0.929958\pi\)
\(294\) 0 0
\(295\) 0.271928 + 0.228175i 0.0158323 + 0.0132849i
\(296\) −5.74994 + 3.31973i −0.334208 + 0.192955i
\(297\) 0 0
\(298\) −3.61606 + 6.26320i −0.209473 + 0.362818i
\(299\) −2.11467 + 11.9929i −0.122295 + 0.693567i
\(300\) 0 0
\(301\) −1.80136 0.896866i −0.103829 0.0516945i
\(302\) 0.326189 0.896198i 0.0187701 0.0515704i
\(303\) 0 0
\(304\) 8.37359 9.97926i 0.480258 0.572350i
\(305\) −0.418050 + 0.241361i −0.0239375 + 0.0138203i
\(306\) 0 0
\(307\) 1.41615 0.817613i 0.0808238 0.0466637i −0.459043 0.888414i \(-0.651808\pi\)
0.539867 + 0.841750i \(0.318474\pi\)
\(308\) 1.79603 + 7.46254i 0.102338 + 0.425218i
\(309\) 0 0
\(310\) −0.0944022 0.0343596i −0.00536168 0.00195149i
\(311\) −2.06271 11.6982i −0.116965 0.663344i −0.985758 0.168168i \(-0.946215\pi\)
0.868793 0.495176i \(-0.164896\pi\)
\(312\) 0 0
\(313\) −1.19230 + 1.42093i −0.0673929 + 0.0803157i −0.798688 0.601746i \(-0.794472\pi\)
0.731295 + 0.682062i \(0.238916\pi\)
\(314\) −1.16478 2.01745i −0.0657321 0.113851i
\(315\) 0 0
\(316\) 4.65504 8.06276i 0.261866 0.453566i
\(317\) 7.22432 + 19.8487i 0.405758 + 1.11481i 0.959398 + 0.282055i \(0.0910162\pi\)
−0.553640 + 0.832756i \(0.686762\pi\)
\(318\) 0 0
\(319\) 5.32623 4.46924i 0.298212 0.250229i
\(320\) −0.573867 + 0.481532i −0.0320802 + 0.0269184i
\(321\) 0 0
\(322\) −0.756630 + 2.55961i −0.0421653 + 0.142642i
\(323\) 33.7367i 1.87716i
\(324\) 0 0
\(325\) 21.5448 + 12.4389i 1.19509 + 0.689986i
\(326\) 2.71996 + 7.47303i 0.150645 + 0.413893i
\(327\) 0 0
\(328\) 17.3316 3.05602i 0.956976 0.168741i
\(329\) 21.8747 + 10.8910i 1.20599 + 0.600440i
\(330\) 0 0
\(331\) −23.4181 + 8.52351i −1.28718 + 0.468494i −0.892800 0.450454i \(-0.851262\pi\)
−0.394378 + 0.918948i \(0.629040\pi\)
\(332\) 12.1234 + 20.9983i 0.665357 + 1.15243i
\(333\) 0 0
\(334\) 3.38173 + 1.95244i 0.185040 + 0.106833i
\(335\) −0.703826 + 0.256172i −0.0384541 + 0.0139962i
\(336\) 0 0
\(337\) 4.61488 3.87234i 0.251388 0.210940i −0.508382 0.861132i \(-0.669756\pi\)
0.759770 + 0.650192i \(0.225312\pi\)
\(338\) −1.71414 + 4.70955i −0.0932368 + 0.256166i
\(339\) 0 0
\(340\) −0.443589 + 2.51572i −0.0240570 + 0.136434i
\(341\) −1.06719 + 1.84843i −0.0577918 + 0.100098i
\(342\) 0 0
\(343\) −14.0627 + 12.0516i −0.759312 + 0.650727i
\(344\) 1.18949 + 0.209740i 0.0641331 + 0.0113084i
\(345\) 0 0
\(346\) −1.43120 1.70563i −0.0769416 0.0916955i
\(347\) 11.1036 30.5068i 0.596071 1.63769i −0.162958 0.986633i \(-0.552103\pi\)
0.759028 0.651057i \(-0.225674\pi\)
\(348\) 0 0
\(349\) −6.71581 + 8.00359i −0.359489 + 0.428422i −0.915229 0.402934i \(-0.867990\pi\)
0.555740 + 0.831356i \(0.312435\pi\)
\(350\) 4.38494 + 3.24088i 0.234385 + 0.173232i
\(351\) 0 0
\(352\) −3.50717 6.07460i −0.186933 0.323777i
\(353\) −4.68991 + 1.70699i −0.249618 + 0.0908537i −0.463799 0.885940i \(-0.653514\pi\)
0.214181 + 0.976794i \(0.431292\pi\)
\(354\) 0 0
\(355\) 0.674717 + 0.804097i 0.0358103 + 0.0426770i
\(356\) 14.0698 + 5.12099i 0.745698 + 0.271412i
\(357\) 0 0
\(358\) 1.07120 6.07508i 0.0566148 0.321078i
\(359\) 16.1906i 0.854506i 0.904132 + 0.427253i \(0.140519\pi\)
−0.904132 + 0.427253i \(0.859481\pi\)
\(360\) 0 0
\(361\) 0.105445 0.00554976
\(362\) −2.01450 1.69037i −0.105880 0.0888437i
\(363\) 0 0
\(364\) 10.7945 21.6809i 0.565787 1.13639i
\(365\) 0.991979 + 1.18219i 0.0519225 + 0.0618789i
\(366\) 0 0
\(367\) −11.3391 1.99938i −0.591895 0.104367i −0.130326 0.991471i \(-0.541602\pi\)
−0.461569 + 0.887104i \(0.652713\pi\)
\(368\) 7.28754i 0.379889i
\(369\) 0 0
\(370\) −0.270478 0.156161i −0.0140615 0.00811841i
\(371\) 6.02409 + 25.0303i 0.312755 + 1.29951i
\(372\) 0 0
\(373\) −5.79313 32.8545i −0.299957 1.70114i −0.646343 0.763047i \(-0.723702\pi\)
0.346386 0.938092i \(-0.387409\pi\)
\(374\) −4.80228 1.74789i −0.248320 0.0903811i
\(375\) 0 0
\(376\) −14.4445 2.54695i −0.744917 0.131349i
\(377\) −21.9390 −1.12992
\(378\) 0 0
\(379\) −12.4601 −0.640032 −0.320016 0.947412i \(-0.603688\pi\)
−0.320016 + 0.947412i \(0.603688\pi\)
\(380\) 1.40895 + 0.248436i 0.0722777 + 0.0127445i
\(381\) 0 0
\(382\) −6.60629 2.40449i −0.338007 0.123024i
\(383\) −5.05101 28.6457i −0.258094 1.46373i −0.788003 0.615672i \(-0.788885\pi\)
0.529908 0.848055i \(-0.322226\pi\)
\(384\) 0 0
\(385\) −0.548181 + 0.520790i −0.0279379 + 0.0265419i
\(386\) 4.40296 + 2.54205i 0.224105 + 0.129387i
\(387\) 0 0
\(388\) 8.75503i 0.444469i
\(389\) −10.6003 1.86913i −0.537459 0.0947685i −0.101671 0.994818i \(-0.532419\pi\)
−0.435788 + 0.900050i \(0.643530\pi\)
\(390\) 0 0
\(391\) 12.1313 + 14.4575i 0.613505 + 0.731147i
\(392\) 6.04401 9.32987i 0.305269 0.471230i
\(393\) 0 0
\(394\) 4.31721 + 3.62257i 0.217498 + 0.182502i
\(395\) 0.917134 0.0461460
\(396\) 0 0
\(397\) 39.1821i 1.96650i 0.182275 + 0.983248i \(0.441654\pi\)
−0.182275 + 0.983248i \(0.558346\pi\)
\(398\) 0.507146 2.87617i 0.0254209 0.144169i
\(399\) 0 0
\(400\) 13.9896 + 5.09181i 0.699482 + 0.254590i
\(401\) −6.65975 7.93679i −0.332572 0.396344i 0.573681 0.819079i \(-0.305515\pi\)
−0.906254 + 0.422734i \(0.861070\pi\)
\(402\) 0 0
\(403\) 6.32864 2.30344i 0.315252 0.114742i
\(404\) 11.4427 + 19.8193i 0.569294 + 0.986045i
\(405\) 0 0
\(406\) −4.77790 0.541657i −0.237123 0.0268820i
\(407\) −4.26527 + 5.08315i −0.211421 + 0.251962i
\(408\) 0 0
\(409\) 8.09126 22.2306i 0.400087 1.09923i −0.562154 0.827033i \(-0.690027\pi\)
0.962241 0.272198i \(-0.0877506\pi\)
\(410\) 0.532137 + 0.634176i 0.0262804 + 0.0313197i
\(411\) 0 0
\(412\) −5.04723 0.889964i −0.248659 0.0438454i
\(413\) −5.18261 0.587538i −0.255019 0.0289109i
\(414\) 0 0
\(415\) −1.19427 + 2.06854i −0.0586245 + 0.101541i
\(416\) −3.84334 + 21.7966i −0.188435 + 1.06867i
\(417\) 0 0
\(418\) −0.978921 + 2.68956i −0.0478806 + 0.131551i
\(419\) −0.297747 + 0.249839i −0.0145459 + 0.0122054i −0.650032 0.759907i \(-0.725244\pi\)
0.635486 + 0.772113i \(0.280800\pi\)
\(420\) 0 0
\(421\) −29.2829 + 10.6581i −1.42716 + 0.519444i −0.936116 0.351691i \(-0.885607\pi\)
−0.491044 + 0.871135i \(0.663385\pi\)
\(422\) −4.75590 2.74582i −0.231513 0.133664i
\(423\) 0 0
\(424\) −7.72652 13.3827i −0.375233 0.649922i
\(425\) 36.2297 13.1865i 1.75740 0.639640i
\(426\) 0 0
\(427\) 3.16123 6.34937i 0.152983 0.307268i
\(428\) −14.1856 + 2.50131i −0.685688 + 0.120905i
\(429\) 0 0
\(430\) 0.0194326 + 0.0533907i 0.000937124 + 0.00257473i
\(431\) −20.9763 12.1107i −1.01039 0.583352i −0.0990874 0.995079i \(-0.531592\pi\)
−0.911307 + 0.411727i \(0.864926\pi\)
\(432\) 0 0
\(433\) 10.0296i 0.481991i 0.970526 + 0.240995i \(0.0774739\pi\)
−0.970526 + 0.240995i \(0.922526\pi\)
\(434\) 1.43513 0.345395i 0.0688882 0.0165795i
\(435\) 0 0
\(436\) −24.3599 + 20.4403i −1.16663 + 0.978915i
\(437\) 8.09706 6.79424i 0.387335 0.325013i
\(438\) 0 0
\(439\) −14.0388 38.5712i −0.670034 1.84090i −0.524200 0.851595i \(-0.675636\pi\)
−0.145834 0.989309i \(-0.546587\pi\)
\(440\) 0.226926 0.393048i 0.0108183 0.0187378i
\(441\) 0 0
\(442\) 8.06274 + 13.9651i 0.383506 + 0.664251i
\(443\) 22.4132 26.7110i 1.06488 1.26908i 0.103273 0.994653i \(-0.467068\pi\)
0.961609 0.274424i \(-0.0884872\pi\)
\(444\) 0 0
\(445\) 0.256125 + 1.45256i 0.0121415 + 0.0688578i
\(446\) −5.12623 1.86580i −0.242734 0.0883480i
\(447\) 0 0
\(448\) 3.12030 10.5557i 0.147420 0.498711i
\(449\) −0.655683 + 0.378559i −0.0309436 + 0.0178653i −0.515392 0.856955i \(-0.672354\pi\)
0.484448 + 0.874820i \(0.339020\pi\)
\(450\) 0 0
\(451\) 15.2322 8.79433i 0.717258 0.414109i
\(452\) 3.52872 4.20536i 0.165977 0.197804i
\(453\) 0 0
\(454\) 1.03405 2.84103i 0.0485305 0.133336i
\(455\) 2.38133 0.146989i 0.111638 0.00689096i
\(456\) 0 0
\(457\) −5.45161 + 30.9176i −0.255015 + 1.44626i 0.541018 + 0.841011i \(0.318039\pi\)
−0.796033 + 0.605253i \(0.793072\pi\)
\(458\) 0.856242 1.48305i 0.0400096 0.0692986i
\(459\) 0 0
\(460\) −0.693126 + 0.400177i −0.0323172 + 0.0186583i
\(461\) 8.35408 + 7.00990i 0.389088 + 0.326484i 0.816258 0.577688i \(-0.196045\pi\)
−0.427170 + 0.904171i \(0.640489\pi\)
\(462\) 0 0
\(463\) 1.23596 + 7.00945i 0.0574397 + 0.325757i 0.999965 0.00837823i \(-0.00266690\pi\)
−0.942525 + 0.334135i \(0.891556\pi\)
\(464\) −12.9294 + 2.27979i −0.600230 + 0.105837i
\(465\) 0 0
\(466\) 4.65711 + 3.90778i 0.215736 + 0.181024i
\(467\) −13.2274 −0.612090 −0.306045 0.952017i \(-0.599006\pi\)
−0.306045 + 0.952017i \(0.599006\pi\)
\(468\) 0 0
\(469\) 6.54122 8.85033i 0.302045 0.408670i
\(470\) −0.235978 0.648344i −0.0108849 0.0299059i
\(471\) 0 0
\(472\) 3.08314 0.543641i 0.141913 0.0250231i
\(473\) 1.18880 0.209617i 0.0546610 0.00963820i
\(474\) 0 0
\(475\) −7.38524 20.2908i −0.338858 0.931005i
\(476\) −14.9862 34.4131i −0.686891 1.57732i
\(477\) 0 0
\(478\) 9.46353 0.432852
\(479\) −1.52575 1.28025i −0.0697132 0.0584963i 0.607265 0.794499i \(-0.292267\pi\)
−0.676978 + 0.736003i \(0.736711\pi\)
\(480\) 0 0
\(481\) 20.6197 3.63580i 0.940175 0.165778i
\(482\) 0.0567527 + 0.321861i 0.00258501 + 0.0146603i
\(483\) 0 0
\(484\) 11.8754 + 9.96464i 0.539791 + 0.452938i
\(485\) 0.746909 0.431228i 0.0339154 0.0195811i
\(486\) 0 0
\(487\) −7.16028 + 12.4020i −0.324463 + 0.561987i −0.981404 0.191956i \(-0.938517\pi\)
0.656940 + 0.753943i \(0.271850\pi\)
\(488\) −0.739281 + 4.19267i −0.0334657 + 0.189793i
\(489\) 0 0
\(490\) 0.522236 + 0.0267816i 0.0235922 + 0.00120987i
\(491\) −9.11592 + 25.0458i −0.411396 + 1.13030i 0.545053 + 0.838401i \(0.316509\pi\)
−0.956449 + 0.291899i \(0.905713\pi\)
\(492\) 0 0
\(493\) −21.8550 + 26.0458i −0.984300 + 1.17304i
\(494\) 7.82128 4.51562i 0.351896 0.203167i
\(495\) 0 0
\(496\) 3.49030 2.01513i 0.156719 0.0904819i
\(497\) −14.7906 4.37214i −0.663447 0.196117i
\(498\) 0 0
\(499\) −20.0327 7.29129i −0.896785 0.326403i −0.147821 0.989014i \(-0.547226\pi\)
−0.748964 + 0.662611i \(0.769448\pi\)
\(500\) 0.569687 + 3.23086i 0.0254772 + 0.144488i
\(501\) 0 0
\(502\) 3.08385 3.67519i 0.137639 0.164032i
\(503\) 6.74300 + 11.6792i 0.300655 + 0.520751i 0.976285 0.216491i \(-0.0694612\pi\)
−0.675629 + 0.737242i \(0.736128\pi\)
\(504\) 0 0
\(505\) −1.12721 + 1.95239i −0.0501604 + 0.0868803i
\(506\) −0.547626 1.50459i −0.0243450 0.0668872i
\(507\) 0 0
\(508\) −14.7125 + 12.3453i −0.652763 + 0.547733i
\(509\) 6.79910 5.70512i 0.301365 0.252875i −0.479547 0.877516i \(-0.659199\pi\)
0.780912 + 0.624641i \(0.214755\pi\)
\(510\) 0 0
\(511\) −21.7453 6.42797i −0.961954 0.284357i
\(512\) 22.7635i 1.00601i
\(513\) 0 0
\(514\) −3.65486 2.11014i −0.161209 0.0930741i
\(515\) −0.172677 0.474425i −0.00760904 0.0209057i
\(516\) 0 0
\(517\) −14.4360 + 2.54546i −0.634897 + 0.111949i
\(518\) 4.58033 0.282725i 0.201248 0.0124222i
\(519\) 0 0
\(520\) −1.34571 + 0.489798i −0.0590133 + 0.0214791i
\(521\) −21.3144 36.9177i −0.933802 1.61739i −0.776756 0.629802i \(-0.783136\pi\)
−0.157046 0.987591i \(-0.550197\pi\)
\(522\) 0 0
\(523\) −19.7089 11.3789i −0.861809 0.497565i 0.00280898 0.999996i \(-0.499106\pi\)
−0.864617 + 0.502431i \(0.832439\pi\)
\(524\) −25.0457 + 9.11587i −1.09412 + 0.398229i
\(525\) 0 0
\(526\) −5.46851 + 4.58862i −0.238438 + 0.200074i
\(527\) 3.56979 9.80791i 0.155502 0.427239i
\(528\) 0 0
\(529\) 2.96712 16.8274i 0.129005 0.731625i
\(530\) 0.363457 0.629526i 0.0157876 0.0273449i
\(531\) 0 0
\(532\) −19.2734 + 8.39316i −0.835606 + 0.363890i
\(533\) −54.6557 9.63728i −2.36740 0.417437i
\(534\) 0 0
\(535\) −0.912103 1.08700i −0.0394336 0.0469952i
\(536\) −2.25930 + 6.20737i −0.0975867 + 0.268117i
\(537\) 0 0
\(538\) 2.71772 3.23885i 0.117169 0.139637i
\(539\) 2.48706 10.8281i 0.107125 0.466397i
\(540\) 0 0
\(541\) −1.69482 2.93552i −0.0728660 0.126208i 0.827290 0.561775i \(-0.189881\pi\)
−0.900156 + 0.435567i \(0.856548\pi\)
\(542\) −3.08387 + 1.12244i −0.132463 + 0.0482127i
\(543\) 0 0
\(544\) 22.0482 + 26.2760i 0.945307 + 1.12657i
\(545\) −2.94365 1.07140i −0.126092 0.0458938i
\(546\) 0 0
\(547\) −0.794100 + 4.50356i −0.0339532 + 0.192558i −0.997067 0.0765371i \(-0.975614\pi\)
0.963113 + 0.269096i \(0.0867247\pi\)
\(548\) 11.6133i 0.496097i
\(549\) 0 0
\(550\) −3.27094 −0.139473
\(551\) 14.5872 + 12.2401i 0.621435 + 0.521446i
\(552\) 0 0
\(553\) −11.2331 + 7.44408i −0.477679 + 0.316555i
\(554\) 3.66410 + 4.36671i 0.155673 + 0.185524i
\(555\) 0 0
\(556\) 27.6894 + 4.88239i 1.17429 + 0.207059i
\(557\) 28.3433i 1.20094i −0.799646 0.600472i \(-0.794979\pi\)
0.799646 0.600472i \(-0.205021\pi\)
\(558\) 0 0
\(559\) −3.29867 1.90449i −0.139519 0.0805511i
\(560\) 1.38812 0.334081i 0.0586586 0.0141175i
\(561\) 0 0
\(562\) −0.200758 1.13856i −0.00846848 0.0480271i
\(563\) −4.56240 1.66058i −0.192282 0.0699851i 0.244084 0.969754i \(-0.421513\pi\)
−0.436367 + 0.899769i \(0.643735\pi\)
\(564\) 0 0
\(565\) 0.532575 + 0.0939073i 0.0224056 + 0.00395071i
\(566\) −6.81026 −0.286257
\(567\) 0 0
\(568\) 9.25755 0.388438
\(569\) −24.0084 4.23332i −1.00648 0.177470i −0.353978 0.935254i \(-0.615171\pi\)
−0.652506 + 0.757784i \(0.726282\pi\)
\(570\) 0 0
\(571\) 6.78414 + 2.46923i 0.283908 + 0.103334i 0.480049 0.877242i \(-0.340619\pi\)
−0.196141 + 0.980576i \(0.562841\pi\)
\(572\) 2.52292 + 14.3082i 0.105488 + 0.598254i
\(573\) 0 0
\(574\) −11.6650 3.44822i −0.486889 0.143926i
\(575\) 10.4612 + 6.03976i 0.436261 + 0.251875i
\(576\) 0 0
\(577\) 26.1510i 1.08868i 0.838864 + 0.544340i \(0.183220\pi\)
−0.838864 + 0.544340i \(0.816780\pi\)
\(578\) 17.6655 + 3.11490i 0.734786 + 0.129563i
\(579\) 0 0
\(580\) −0.926816 1.10454i −0.0384839 0.0458634i
\(581\) −2.16220 35.0290i −0.0897030 1.45325i
\(582\) 0 0
\(583\) −11.8308 9.92722i −0.489982 0.411143i
\(584\) 13.6106 0.563210
\(585\) 0 0
\(586\) 0.646165i 0.0266928i
\(587\) 3.34943 18.9956i 0.138246 0.784031i −0.834298 0.551313i \(-0.814127\pi\)
0.972544 0.232718i \(-0.0747619\pi\)
\(588\) 0 0
\(589\) −5.49302 1.99929i −0.226336 0.0823795i
\(590\) 0.0946628 + 0.112815i 0.00389720 + 0.00464451i
\(591\) 0 0
\(592\) 11.7740 4.28539i 0.483908 0.176128i
\(593\) 19.5311 + 33.8289i 0.802047 + 1.38919i 0.918266 + 0.395963i \(0.129589\pi\)
−0.116219 + 0.993224i \(0.537078\pi\)
\(594\) 0 0
\(595\) 2.19770 2.97351i 0.0900971 0.121902i
\(596\) 20.4819 24.4094i 0.838972 0.999848i
\(597\) 0 0
\(598\) −1.72797 + 4.74755i −0.0706618 + 0.194142i
\(599\) −5.53430 6.59552i −0.226125 0.269486i 0.641038 0.767509i \(-0.278504\pi\)
−0.867164 + 0.498023i \(0.834059\pi\)
\(600\) 0 0
\(601\) 41.3305 + 7.28768i 1.68591 + 0.297271i 0.932737 0.360557i \(-0.117413\pi\)
0.753168 + 0.657828i \(0.228525\pi\)
\(602\) −0.671366 0.496202i −0.0273628 0.0202237i
\(603\) 0 0
\(604\) −2.10100 + 3.63903i −0.0854883 + 0.148070i
\(605\) −0.265182 + 1.50392i −0.0107812 + 0.0611431i
\(606\) 0 0
\(607\) 15.1581 41.6466i 0.615249 1.69038i −0.103073 0.994674i \(-0.532868\pi\)
0.718323 0.695710i \(-0.244910\pi\)
\(608\) 14.7161 12.3483i 0.596817 0.500789i
\(609\) 0 0
\(610\) −0.188189 + 0.0684952i −0.00761955 + 0.00277329i
\(611\) 40.0570 + 23.1269i 1.62053 + 0.935615i
\(612\) 0 0
\(613\) −22.3176 38.6553i −0.901401 1.56127i −0.825677 0.564143i \(-0.809207\pi\)
−0.0757236 0.997129i \(-0.524127\pi\)
\(614\) 0.637493 0.232028i 0.0257271 0.00936390i
\(615\) 0 0
\(616\) 0.410843 + 6.65594i 0.0165534 + 0.268176i
\(617\) −26.5556 + 4.68248i −1.06909 + 0.188509i −0.680386 0.732854i \(-0.738188\pi\)
−0.388703 + 0.921363i \(0.627077\pi\)
\(618\) 0 0
\(619\) 13.2165 + 36.3120i 0.531215 + 1.45950i 0.857626 + 0.514274i \(0.171939\pi\)
−0.326411 + 0.945228i \(0.605839\pi\)
\(620\) 0.383322 + 0.221311i 0.0153946 + 0.00888807i
\(621\) 0 0
\(622\) 4.92809i 0.197599i
\(623\) −14.9270 15.7121i −0.598036 0.629491i
\(624\) 0 0
\(625\) 18.7794 15.7577i 0.751174 0.630310i
\(626\) −0.589500 + 0.494650i −0.0235612 + 0.0197702i
\(627\) 0 0
\(628\) 3.51044 + 9.64485i 0.140082 + 0.384871i
\(629\) 16.2243 28.1013i 0.646906 1.12047i
\(630\) 0 0
\(631\) −5.01811 8.69163i −0.199768 0.346008i 0.748685 0.662926i \(-0.230686\pi\)
−0.948453 + 0.316917i \(0.897352\pi\)
\(632\) 5.19927 6.19625i 0.206816 0.246474i
\(633\) 0 0
\(634\) 1.52169 + 8.62995i 0.0604341 + 0.342739i
\(635\) −1.77786 0.647090i −0.0705524 0.0256790i
\(636\) 0 0
\(637\) −27.9735 + 21.1288i −1.10835 + 0.837153i
\(638\) 2.49809 1.44227i 0.0989002 0.0571001i
\(639\) 0 0
\(640\) −1.64750 + 0.951186i −0.0651233 + 0.0375989i
\(641\) −20.4966 + 24.4269i −0.809567 + 0.964804i −0.999857 0.0169239i \(-0.994613\pi\)
0.190290 + 0.981728i \(0.439057\pi\)
\(642\) 0 0
\(643\) −4.12226 + 11.3258i −0.162566 + 0.446646i −0.994053 0.108898i \(-0.965268\pi\)
0.831487 + 0.555544i \(0.187490\pi\)
\(644\) 5.24132 10.5273i 0.206537 0.414832i
\(645\) 0 0
\(646\) 2.43043 13.7837i 0.0956242 0.542312i
\(647\) −21.3692 + 37.0126i −0.840111 + 1.45512i 0.0496886 + 0.998765i \(0.484177\pi\)
−0.889800 + 0.456351i \(0.849156\pi\)
\(648\) 0 0
\(649\) 2.70969 1.56444i 0.106365 0.0614096i
\(650\) 7.90637 + 6.63424i 0.310114 + 0.260216i
\(651\) 0 0
\(652\) −6.08441 34.5064i −0.238284 1.35137i
\(653\) −14.0027 + 2.46906i −0.547970 + 0.0966218i −0.440777 0.897616i \(-0.645297\pi\)
−0.107192 + 0.994238i \(0.534186\pi\)
\(654\) 0 0
\(655\) −2.01132 1.68769i −0.0785886 0.0659437i
\(656\) −33.2118 −1.29670
\(657\) 0 0
\(658\) 8.15267 + 6.02558i 0.317824 + 0.234902i
\(659\) −0.747205 2.05293i −0.0291070 0.0799707i 0.924288 0.381696i \(-0.124660\pi\)
−0.953395 + 0.301725i \(0.902438\pi\)
\(660\) 0 0
\(661\) −19.1020 + 3.36819i −0.742980 + 0.131007i −0.532310 0.846550i \(-0.678676\pi\)
−0.210670 + 0.977557i \(0.567565\pi\)
\(662\) −10.1819 + 1.79535i −0.395731 + 0.0697781i
\(663\) 0 0
\(664\) 7.20488 + 19.7952i 0.279604 + 0.768204i
\(665\) −1.66535 1.23085i −0.0645793 0.0477301i
\(666\) 0 0
\(667\) −10.6526 −0.412469
\(668\) −13.1795 11.0589i −0.509930 0.427882i
\(669\) 0 0
\(670\) −0.306015 + 0.0539587i −0.0118224 + 0.00208460i
\(671\) 0.738849 + 4.19022i 0.0285229 + 0.161762i
\(672\) 0 0
\(673\) −8.85877 7.43339i −0.341480 0.286536i 0.455878 0.890042i \(-0.349325\pi\)
−0.797358 + 0.603506i \(0.793770\pi\)
\(674\) 2.16445 1.24965i 0.0833716 0.0481346i
\(675\) 0 0
\(676\) 11.0408 19.1233i 0.424647 0.735510i
\(677\) 2.04862 11.6183i 0.0787348 0.446527i −0.919799 0.392390i \(-0.871648\pi\)
0.998534 0.0541367i \(-0.0172407\pi\)
\(678\) 0 0
\(679\) −5.64802 + 11.3441i −0.216751 + 0.435347i
\(680\) −0.759073 + 2.08554i −0.0291091 + 0.0799767i
\(681\) 0 0
\(682\) −0.569183 + 0.678326i −0.0217951 + 0.0259744i
\(683\) −20.5498 + 11.8644i −0.786317 + 0.453980i −0.838664 0.544648i \(-0.816663\pi\)
0.0523472 + 0.998629i \(0.483330\pi\)
\(684\) 0 0
\(685\) 0.990756 0.572013i 0.0378549 0.0218555i
\(686\) −6.61374 + 3.91080i −0.252514 + 0.149315i
\(687\) 0 0
\(688\) −2.14191 0.779592i −0.0816596 0.0297217i
\(689\) 8.46217 + 47.9913i 0.322383 + 1.82832i
\(690\) 0 0
\(691\) −4.08371 + 4.86678i −0.155352 + 0.185141i −0.838107 0.545507i \(-0.816337\pi\)
0.682755 + 0.730648i \(0.260782\pi\)
\(692\) 4.90500 + 8.49571i 0.186460 + 0.322959i
\(693\) 0 0
\(694\) 6.73429 11.6641i 0.255630 0.442765i
\(695\) 0.947313 + 2.60272i 0.0359336 + 0.0987268i
\(696\) 0 0
\(697\) −65.8877 + 55.2864i −2.49568 + 2.09412i
\(698\) −3.32044 + 2.78618i −0.125681 + 0.105459i
\(699\) 0 0
\(700\) −16.5467 17.4170i −0.625406 0.658300i
\(701\) 30.6664i 1.15825i −0.815238 0.579126i \(-0.803394\pi\)
0.815238 0.579126i \(-0.196606\pi\)
\(702\) 0 0
\(703\) −15.7384 9.08659i −0.593586 0.342707i
\(704\) 2.25838 + 6.20485i 0.0851160 + 0.233854i
\(705\) 0 0
\(706\) −2.03911 + 0.359550i −0.0767430 + 0.0135319i
\(707\) −2.04079 33.0622i −0.0767518 1.24343i
\(708\) 0 0
\(709\) 13.9023 5.06001i 0.522111 0.190033i −0.0675015 0.997719i \(-0.521503\pi\)
0.589612 + 0.807686i \(0.299281\pi\)
\(710\) 0.217739 + 0.377134i 0.00817159 + 0.0141536i
\(711\) 0 0
\(712\) 11.2656 + 6.50420i 0.422196 + 0.243755i
\(713\) 3.07289 1.11844i 0.115081 0.0418860i
\(714\) 0 0
\(715\) −1.09639 + 0.919982i −0.0410027 + 0.0344054i
\(716\) −9.29587 + 25.5402i −0.347403 + 0.954481i
\(717\) 0 0
\(718\) −1.16639 + 6.61492i −0.0435293 + 0.246867i
\(719\) 4.89820 8.48393i 0.182672 0.316397i −0.760118 0.649786i \(-0.774859\pi\)
0.942790 + 0.333388i \(0.108192\pi\)
\(720\) 0 0
\(721\) 5.96570 + 4.40921i 0.222174 + 0.164208i
\(722\) 0.0430815 + 0.00759643i 0.00160333 + 0.000282710i
\(723\) 0 0
\(724\) 7.44763 + 8.87574i 0.276789 + 0.329864i
\(725\) −7.44296 + 20.4494i −0.276425 + 0.759470i
\(726\) 0 0
\(727\) 29.0898 34.6679i 1.07888 1.28576i 0.122873 0.992422i \(-0.460789\pi\)
0.956009 0.293339i \(-0.0947663\pi\)
\(728\) 12.5068 16.9218i 0.463531 0.627162i
\(729\) 0 0
\(730\) 0.320122 + 0.554468i 0.0118483 + 0.0205218i
\(731\) −5.54702 + 2.01895i −0.205164 + 0.0746736i
\(732\) 0 0
\(733\) −15.4136 18.3692i −0.569315 0.678483i 0.402175 0.915563i \(-0.368254\pi\)
−0.971490 + 0.237079i \(0.923810\pi\)
\(734\) −4.48873 1.63376i −0.165682 0.0603033i
\(735\) 0 0
\(736\) −1.86615 + 10.5834i −0.0687871 + 0.390111i
\(737\) 6.60188i 0.243184i
\(738\) 0 0
\(739\) −22.3128 −0.820790 −0.410395 0.911908i \(-0.634609\pi\)
−0.410395 + 0.911908i \(0.634609\pi\)
\(740\) 1.05413 + 0.884518i 0.0387505 + 0.0325155i
\(741\) 0 0
\(742\) 0.658029 + 10.6605i 0.0241570 + 0.391360i
\(743\) 28.1973 + 33.6043i 1.03446 + 1.23282i 0.972051 + 0.234770i \(0.0754337\pi\)
0.0624085 + 0.998051i \(0.480122\pi\)
\(744\) 0 0
\(745\) 3.09125 + 0.545071i 0.113255 + 0.0199699i
\(746\) 13.8406i 0.506739i
\(747\) 0 0
\(748\) 19.4998 + 11.2582i 0.712982 + 0.411641i
\(749\) 19.9943 + 5.91038i 0.730576 + 0.215961i
\(750\) 0 0
\(751\) −3.23209 18.3301i −0.117941 0.668875i −0.985252 0.171109i \(-0.945265\pi\)
0.867311 0.497766i \(-0.165846\pi\)
\(752\) 26.0101 + 9.46690i 0.948491 + 0.345222i
\(753\) 0 0
\(754\) −8.96354 1.58051i −0.326433 0.0575589i
\(755\) −0.413938 −0.0150647
\(756\) 0 0
\(757\) 26.2705 0.954819 0.477410 0.878681i \(-0.341576\pi\)
0.477410 + 0.878681i \(0.341576\pi\)
\(758\) −5.09078 0.897641i −0.184905 0.0326038i
\(759\) 0 0
\(760\) 1.16803 + 0.425126i 0.0423687 + 0.0154210i
\(761\) −2.11972 12.0216i −0.0768399 0.435781i −0.998821 0.0485459i \(-0.984541\pi\)
0.921981 0.387235i \(-0.126570\pi\)
\(762\) 0 0
\(763\) 44.7501 10.7701i 1.62006 0.389904i
\(764\) 26.8250 + 15.4874i 0.970494 + 0.560315i
\(765\) 0 0
\(766\) 12.0676i 0.436018i
\(767\) −9.72280 1.71439i −0.351070 0.0619031i
\(768\) 0 0
\(769\) 5.10850 + 6.08807i 0.184217 + 0.219541i 0.850247 0.526383i \(-0.176452\pi\)
−0.666030 + 0.745925i \(0.732008\pi\)
\(770\) −0.261487 + 0.173285i −0.00942333 + 0.00624478i
\(771\) 0 0
\(772\) −17.1595 14.3985i −0.617585 0.518215i
\(773\) −7.78940 −0.280165 −0.140083 0.990140i \(-0.544737\pi\)
−0.140083 + 0.990140i \(0.544737\pi\)
\(774\) 0 0
\(775\) 6.68038i 0.239966i
\(776\) 1.32084 7.49084i 0.0474153 0.268906i
\(777\) 0 0
\(778\) −4.19629 1.52733i −0.150444 0.0547573i
\(779\) 30.9637 + 36.9011i 1.10939 + 1.32212i
\(780\) 0 0
\(781\) 8.69418 3.16442i 0.311102 0.113232i
\(782\) 3.91490 + 6.78080i 0.139996 + 0.242481i
\(783\) 0 0
\(784\) −14.2901 + 15.3587i −0.510359 + 0.548526i
\(785\) −0.649915 + 0.774539i −0.0231965 + 0.0276445i
\(786\) 0 0
\(787\) −8.13240 + 22.3436i −0.289889 + 0.796463i 0.706193 + 0.708020i \(0.250411\pi\)
−0.996081 + 0.0884429i \(0.971811\pi\)
\(788\) −15.9608 19.0213i −0.568579 0.677606i
\(789\) 0 0
\(790\) 0.374710 + 0.0660715i 0.0133316 + 0.00235072i
\(791\) −7.28521 + 3.17256i −0.259032 + 0.112803i
\(792\) 0 0
\(793\) 6.71285 11.6270i 0.238380 0.412887i
\(794\) −2.82273 + 16.0085i −0.100175 + 0.568121i
\(795\) 0 0
\(796\) −4.40101 + 12.0917i −0.155989 + 0.428578i
\(797\) 10.6111 8.90378i 0.375865 0.315388i −0.435212 0.900328i \(-0.643326\pi\)
0.811077 + 0.584940i \(0.198882\pi\)
\(798\) 0 0
\(799\) 67.3597 24.5169i 2.38302 0.867347i
\(800\) 19.0128 + 10.9770i 0.672204 + 0.388097i
\(801\) 0 0
\(802\) −2.14918 3.72248i −0.0758900 0.131445i
\(803\) 12.7823 4.65238i 0.451077 0.164179i
\(804\) 0 0
\(805\) 1.15626 0.0713712i 0.0407529 0.00251551i
\(806\) 2.75161 0.485183i 0.0969214 0.0170899i
\(807\) 0 0
\(808\) 6.80033 + 18.6838i 0.239235 + 0.657292i
\(809\) 28.3326 + 16.3578i 0.996122 + 0.575111i 0.907099 0.420918i \(-0.138292\pi\)
0.0890233 + 0.996030i \(0.471625\pi\)
\(810\) 0 0
\(811\) 47.6172i 1.67207i −0.548679 0.836033i \(-0.684869\pi\)
0.548679 0.836033i \(-0.315131\pi\)
\(812\) 20.3168 + 6.00572i 0.712981 + 0.210760i
\(813\) 0 0
\(814\) −2.10884 + 1.76953i −0.0739149 + 0.0620219i
\(815\) 2.64412 2.21868i 0.0926196 0.0777171i
\(816\) 0 0
\(817\) 1.13073 + 3.10666i 0.0395593 + 0.108688i
\(818\) 4.90734 8.49976i 0.171581 0.297187i
\(819\) 0 0
\(820\) −1.82374 3.15881i −0.0636878 0.110311i
\(821\) 31.4248 37.4506i 1.09673 1.30703i 0.148691 0.988884i \(-0.452494\pi\)
0.948040 0.318150i \(-0.103062\pi\)
\(822\) 0 0
\(823\) 3.43354 + 19.4726i 0.119686 + 0.678771i 0.984323 + 0.176375i \(0.0564371\pi\)
−0.864637 + 0.502396i \(0.832452\pi\)
\(824\) −4.18417 1.52291i −0.145762 0.0530532i
\(825\) 0 0
\(826\) −2.07511 0.613410i −0.0722024 0.0213433i
\(827\) −33.5168 + 19.3510i −1.16549 + 0.672899i −0.952615 0.304180i \(-0.901618\pi\)
−0.212880 + 0.977078i \(0.568284\pi\)
\(828\) 0 0
\(829\) 11.1500 6.43746i 0.387256 0.223582i −0.293715 0.955893i \(-0.594892\pi\)
0.680970 + 0.732311i \(0.261558\pi\)
\(830\) −0.636960 + 0.759099i −0.0221092 + 0.0263487i
\(831\) 0 0
\(832\) 7.12605 19.5787i 0.247051 0.678768i
\(833\) −2.78248 + 54.2577i −0.0964072 + 1.87992i
\(834\) 0 0
\(835\) 0.294303 1.66908i 0.0101848 0.0577608i
\(836\) 6.30526 10.9210i 0.218072 0.377712i
\(837\) 0 0
\(838\) −0.139648 + 0.0806258i −0.00482406 + 0.00278517i
\(839\) −10.7228 8.99751i −0.370193 0.310628i 0.438645 0.898660i \(-0.355459\pi\)
−0.808838 + 0.588032i \(0.799903\pi\)
\(840\) 0 0
\(841\) 1.70331 + 9.65992i 0.0587347 + 0.333101i
\(842\) −12.7318 + 2.24496i −0.438768 + 0.0773666i
\(843\) 0 0
\(844\) 18.5350 + 15.5527i 0.638001 + 0.535347i
\(845\) 2.17526 0.0748312
\(846\) 0 0
\(847\) −8.95889 20.5725i −0.307831 0.706879i
\(848\) 9.97405 + 27.4035i 0.342510 + 0.941039i
\(849\) 0 0
\(850\) 15.7522 2.77754i 0.540296 0.0952688i
\(851\) 10.0120 1.76538i 0.343205 0.0605164i
\(852\) 0 0
\(853\) 1.21924 + 3.34982i 0.0417458 + 0.114696i 0.958814 0.284035i \(-0.0916731\pi\)
−0.917068 + 0.398730i \(0.869451\pi\)
\(854\) 1.74899 2.36640i 0.0598492 0.0809766i
\(855\) 0 0
\(856\) −12.5146 −0.427741
\(857\) 22.6428 + 18.9996i 0.773464 + 0.649013i 0.941593 0.336752i \(-0.109328\pi\)
−0.168130 + 0.985765i \(0.553773\pi\)
\(858\) 0 0
\(859\) 26.8449 4.73347i 0.915935 0.161504i 0.304238 0.952596i \(-0.401598\pi\)
0.611697 + 0.791092i \(0.290487\pi\)
\(860\) −0.0434697 0.246529i −0.00148231 0.00840657i
\(861\) 0 0
\(862\) −7.69776 6.45919i −0.262187 0.220001i
\(863\) 23.1530 13.3674i 0.788136 0.455031i −0.0511699 0.998690i \(-0.516295\pi\)
0.839306 + 0.543659i \(0.182962\pi\)
\(864\) 0 0
\(865\) −0.483191 + 0.836911i −0.0164290 + 0.0284558i
\(866\) −0.722544 + 4.09775i −0.0245530 + 0.139247i
\(867\) 0 0
\(868\) −6.49125 + 0.400678i −0.220327 + 0.0135999i
\(869\) 2.76486 7.59639i 0.0937914 0.257690i
\(870\) 0 0
\(871\) 13.3902 15.9578i 0.453709 0.540710i
\(872\) −23.9262 + 13.8138i −0.810242 + 0.467793i
\(873\) 0 0
\(874\) 3.79765 2.19258i 0.128458 0.0741650i
\(875\) 1.34612 4.55382i 0.0455073 0.153947i
\(876\) 0 0
\(877\) 39.7412 + 14.4646i 1.34196 + 0.488435i 0.910430 0.413662i \(-0.135751\pi\)
0.431533 + 0.902097i \(0.357973\pi\)
\(878\) −2.95705 16.7703i −0.0997957 0.565970i
\(879\) 0 0
\(880\) −0.550539 + 0.656106i −0.0185587 + 0.0221173i
\(881\) 24.9251 + 43.1715i 0.839747 + 1.45448i 0.890106 + 0.455753i \(0.150630\pi\)
−0.0503592 + 0.998731i \(0.516037\pi\)
\(882\) 0 0
\(883\) −19.7615 + 34.2280i −0.665028 + 1.15186i 0.314249 + 0.949340i \(0.398247\pi\)
−0.979278 + 0.202522i \(0.935086\pi\)
\(884\) −24.2997 66.7630i −0.817289 2.24548i
\(885\) 0 0
\(886\) 11.0816 9.29854i 0.372293 0.312391i
\(887\) −28.4361 + 23.8607i −0.954791 + 0.801165i −0.980098 0.198515i \(-0.936388\pi\)
0.0253071 + 0.999680i \(0.491944\pi\)
\(888\) 0 0
\(889\) 27.0275 6.50478i 0.906475 0.218163i
\(890\) 0.611918i 0.0205115i
\(891\) 0 0
\(892\) 20.8152 + 12.0176i 0.696944 + 0.402381i
\(893\) −13.7309 37.7255i −0.459489 1.26243i
\(894\) 0 0
\(895\) −2.63675 + 0.464930i −0.0881369 + 0.0155409i
\(896\) 12.4582 25.0224i 0.416199 0.835940i
\(897\) 0 0
\(898\) −0.295162 + 0.107430i −0.00984968 + 0.00358499i
\(899\) 2.94562 + 5.10196i 0.0982418 + 0.170160i
\(900\) 0 0
\(901\) 65.4046 + 37.7614i 2.17894 + 1.25801i
\(902\) 6.85694 2.49572i 0.228311 0.0830984i
\(903\) 0 0
\(904\) 3.65363 3.06576i 0.121518 0.101966i
\(905\) −0.390375 + 1.07255i −0.0129765 + 0.0356527i
\(906\) 0 0
\(907\) −5.56403 + 31.5552i −0.184751 + 1.04777i 0.741525 + 0.670926i \(0.234103\pi\)
−0.926275 + 0.376847i \(0.877008\pi\)
\(908\) −6.66036 + 11.5361i −0.221032 + 0.382838i
\(909\) 0 0
\(910\) 0.983519 + 0.111499i 0.0326034 + 0.00369615i
\(911\) 17.5085 + 3.08722i 0.580082 + 0.102284i 0.455988 0.889986i \(-0.349286\pi\)
0.124095 + 0.992270i \(0.460397\pi\)
\(912\) 0 0
\(913\) 13.5328 + 16.1278i 0.447872 + 0.533753i
\(914\) −4.45469 + 12.2392i −0.147348 + 0.404835i
\(915\) 0 0
\(916\) −4.84988 + 5.77987i −0.160245 + 0.190972i
\(917\) 38.3331 + 4.34572i 1.26587 + 0.143508i
\(918\) 0 0
\(919\) 10.1037 + 17.5002i 0.333292 + 0.577279i 0.983155 0.182773i \(-0.0585072\pi\)
−0.649863 + 0.760051i \(0.725174\pi\)
\(920\) −0.653415 + 0.237823i −0.0215424 + 0.00784081i
\(921\) 0 0
\(922\) 2.90819 + 3.46585i 0.0957762 + 0.114142i
\(923\) −27.4334 9.98494i −0.902981 0.328658i
\(924\) 0 0
\(925\) 3.60643 20.4531i 0.118579 0.672493i
\(926\) 2.95287i 0.0970373i
\(927\) 0 0
\(928\) −19.3607 −0.635545
\(929\) 5.15862 + 4.32860i 0.169249 + 0.142017i 0.723478 0.690348i \(-0.242542\pi\)
−0.554229 + 0.832364i \(0.686987\pi\)
\(930\) 0 0
\(931\) 30.3876 + 1.55835i 0.995913 + 0.0510730i
\(932\) −17.2174 20.5189i −0.563974 0.672118i
\(933\) 0 0
\(934\) −5.40427 0.952918i −0.176833 0.0311804i
\(935\) 2.21809i 0.0725392i
\(936\) 0 0
\(937\) −37.6538 21.7394i −1.23009 0.710196i −0.263045 0.964784i \(-0.584727\pi\)
−0.967050 + 0.254588i \(0.918060\pi\)
\(938\) 3.31011 3.14471i 0.108079 0.102678i
\(939\) 0 0
\(940\) 0.527870 + 2.99370i 0.0172172 + 0.0976438i
\(941\) −11.5099 4.18926i −0.375212 0.136566i 0.147529 0.989058i \(-0.452868\pi\)
−0.522741 + 0.852492i \(0.675090\pi\)
\(942\) 0 0
\(943\) −26.5383 4.67942i −0.864206 0.152383i
\(944\) −5.90810 −0.192292
\(945\) 0 0
\(946\) 0.500804 0.0162825
\(947\) 13.5396 + 2.38739i 0.439977 + 0.0775798i 0.389249 0.921133i \(-0.372735\pi\)
0.0507283 + 0.998712i \(0.483846\pi\)
\(948\) 0 0
\(949\) −40.3330 14.6800i −1.30926 0.476533i
\(950\) −1.55559 8.82217i −0.0504699 0.286229i
\(951\) 0 0
\(952\) −7.63048 31.7049i −0.247305 1.02756i
\(953\) 41.3778 + 23.8895i 1.34036 + 0.773857i 0.986860 0.161578i \(-0.0516584\pi\)
0.353499 + 0.935435i \(0.384992\pi\)
\(954\) 0 0
\(955\) 3.05132i 0.0987385i
\(956\) −41.0622 7.24037i −1.32805 0.234170i
\(957\) 0 0
\(958\) −0.531138 0.632986i −0.0171603 0.0204508i
\(959\) −7.49196 + 15.0477i −0.241928 + 0.485915i
\(960\) 0 0
\(961\) 22.3620 + 18.7639i 0.721355 + 0.605289i
\(962\) 8.68643 0.280062
\(963\) 0 0
\(964\) 1.43997i 0.0463783i
\(965\) 0.383178 2.17311i 0.0123349 0.0699550i
\(966\) 0 0
\(967\) 42.4888 + 15.4647i 1.36635 + 0.497310i 0.918011 0.396555i \(-0.129795\pi\)
0.448336 + 0.893865i \(0.352017\pi\)
\(968\) 8.65731 + 10.3174i 0.278257 + 0.331613i
\(969\) 0 0
\(970\) 0.336228 0.122377i 0.0107956 0.00392929i
\(971\) 7.07273 + 12.2503i 0.226975 + 0.393132i 0.956910 0.290384i \(-0.0937832\pi\)
−0.729935 + 0.683516i \(0.760450\pi\)
\(972\) 0 0
\(973\) −32.7282 24.1892i −1.04922 0.775469i
\(974\) −3.81890 + 4.55119i −0.122366 + 0.145830i
\(975\) 0 0
\(976\) 2.74787 7.54972i 0.0879573 0.241661i
\(977\) −23.6226 28.1523i −0.755753 0.900672i 0.241818 0.970322i \(-0.422256\pi\)
−0.997572 + 0.0696497i \(0.977812\pi\)
\(978\) 0 0
\(979\) 12.8033 + 2.25756i 0.409195 + 0.0721521i
\(980\) −2.24549 0.515758i −0.0717295 0.0164753i
\(981\) 0 0
\(982\) −5.52879 + 9.57614i −0.176431 + 0.305587i
\(983\) −1.70439 + 9.66609i −0.0543617 + 0.308300i −0.999849 0.0173575i \(-0.994475\pi\)
0.945488 + 0.325658i \(0.105586\pi\)
\(984\) 0 0
\(985\) 0.836600 2.29854i 0.0266563 0.0732375i
\(986\) −10.8056 + 9.06697i −0.344120 + 0.288751i
\(987\) 0 0
\(988\) −37.3913 + 13.6093i −1.18957 + 0.432970i
\(989\) −1.60168 0.924730i −0.0509305 0.0294047i
\(990\) 0 0
\(991\) 15.3744 + 26.6292i 0.488384 + 0.845905i 0.999911 0.0133618i \(-0.00425333\pi\)
−0.511527 + 0.859267i \(0.670920\pi\)
\(992\) 5.58487 2.03273i 0.177320 0.0645392i
\(993\) 0 0
\(994\) −5.72795 2.85184i −0.181680 0.0904548i
\(995\) −1.24834 + 0.220115i −0.0395749 + 0.00697812i
\(996\) 0 0
\(997\) −14.3109 39.3189i −0.453231 1.24524i −0.930437 0.366451i \(-0.880573\pi\)
0.477206 0.878791i \(-0.341650\pi\)
\(998\) −7.65940 4.42216i −0.242454 0.139981i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.ba.a.521.13 132
3.2 odd 2 189.2.ba.a.38.10 yes 132
7.5 odd 6 567.2.bd.a.278.10 132
21.5 even 6 189.2.bd.a.173.13 yes 132
27.5 odd 18 567.2.bd.a.206.10 132
27.22 even 9 189.2.bd.a.59.13 yes 132
189.5 even 18 inner 567.2.ba.a.530.13 132
189.103 odd 18 189.2.ba.a.5.10 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.ba.a.5.10 132 189.103 odd 18
189.2.ba.a.38.10 yes 132 3.2 odd 2
189.2.bd.a.59.13 yes 132 27.22 even 9
189.2.bd.a.173.13 yes 132 21.5 even 6
567.2.ba.a.521.13 132 1.1 even 1 trivial
567.2.ba.a.530.13 132 189.5 even 18 inner
567.2.bd.a.206.10 132 27.5 odd 18
567.2.bd.a.278.10 132 7.5 odd 6