Properties

Label 567.2.ba.a.143.8
Level $567$
Weight $2$
Character 567.143
Analytic conductor $4.528$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(143,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([7, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.143");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.ba (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 143.8
Character \(\chi\) \(=\) 567.143
Dual form 567.2.ba.a.341.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.594351 + 0.708320i) q^{2} +(0.198832 + 1.12763i) q^{4} +(0.386349 - 0.324185i) q^{5} +(0.529787 - 2.59217i) q^{7} +(-2.51844 - 1.45402i) q^{8} +0.466338i q^{10} +(-3.12271 + 3.72150i) q^{11} +(-1.60911 + 4.42100i) q^{13} +(1.52120 + 1.91591i) q^{14} +(0.374792 - 0.136413i) q^{16} +4.77392 q^{17} +6.37115i q^{19} +(0.442381 + 0.371202i) q^{20} +(-0.780028 - 4.42376i) q^{22} +(-1.22699 + 3.37113i) q^{23} +(-0.824071 + 4.67354i) q^{25} +(-2.17510 - 3.76739i) q^{26} +(3.02836 + 0.0819996i) q^{28} +(-0.997075 - 2.73944i) q^{29} +(-0.773023 + 0.136305i) q^{31} +(1.86308 - 5.11878i) q^{32} +(-2.83739 + 3.38147i) q^{34} +(-0.635660 - 1.17323i) q^{35} +(2.73726 - 4.74107i) q^{37} +(-4.51281 - 3.78670i) q^{38} +(-1.44437 + 0.254681i) q^{40} +(-5.44849 - 1.98309i) q^{41} +(-1.36729 + 7.75429i) q^{43} +(-4.81739 - 2.78132i) q^{44} +(-1.65857 - 2.87274i) q^{46} +(-1.33467 + 7.56931i) q^{47} +(-6.43865 - 2.74659i) q^{49} +(-2.82057 - 3.36143i) q^{50} +(-5.30521 - 0.935452i) q^{52} +(4.26125 + 2.46023i) q^{53} +2.45014i q^{55} +(-5.10329 + 5.75788i) q^{56} +(2.53301 + 0.921941i) q^{58} +(5.01169 + 1.82411i) q^{59} +(-7.07246 - 1.24706i) q^{61} +(0.362900 - 0.628561i) q^{62} +(2.91725 + 5.05283i) q^{64} +(0.811544 + 2.22970i) q^{65} +(6.70384 - 5.62519i) q^{67} +(0.949211 + 5.38324i) q^{68} +(1.20883 + 0.247060i) q^{70} +(11.3110 - 6.53043i) q^{71} +(8.42907 - 4.86653i) q^{73} +(1.73130 + 4.75671i) q^{74} +(-7.18433 + 1.26679i) q^{76} +(7.99238 + 10.0662i) q^{77} +(-3.63977 - 3.05413i) q^{79} +(0.100577 - 0.174205i) q^{80} +(4.64298 - 2.68063i) q^{82} +(-2.75845 + 1.00400i) q^{83} +(1.84440 - 1.54764i) q^{85} +(-4.67987 - 5.57725i) q^{86} +(13.2755 - 4.83188i) q^{88} -11.2094 q^{89} +(10.6075 + 6.51327i) q^{91} +(-4.04537 - 0.713308i) q^{92} +(-4.56823 - 5.44420i) q^{94} +(2.06543 + 2.46149i) q^{95} +(-2.41733 - 0.426241i) q^{97} +(5.77228 - 2.92818i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q + 3 q^{2} - 3 q^{4} + 9 q^{5} - 6 q^{7} + 18 q^{8} + 9 q^{11} - 3 q^{14} + 3 q^{16} + 18 q^{17} - 18 q^{20} - 12 q^{22} + 6 q^{23} - 3 q^{25} - 12 q^{28} - 6 q^{29} - 9 q^{31} - 3 q^{32} - 18 q^{34}+ \cdots - 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.594351 + 0.708320i −0.420270 + 0.500858i −0.934089 0.357041i \(-0.883786\pi\)
0.513819 + 0.857898i \(0.328230\pi\)
\(3\) 0 0
\(4\) 0.198832 + 1.12763i 0.0994162 + 0.563817i
\(5\) 0.386349 0.324185i 0.172781 0.144980i −0.552297 0.833648i \(-0.686248\pi\)
0.725077 + 0.688667i \(0.241804\pi\)
\(6\) 0 0
\(7\) 0.529787 2.59217i 0.200241 0.979747i
\(8\) −2.51844 1.45402i −0.890401 0.514073i
\(9\) 0 0
\(10\) 0.466338i 0.147469i
\(11\) −3.12271 + 3.72150i −0.941533 + 1.12208i 0.0508281 + 0.998707i \(0.483814\pi\)
−0.992361 + 0.123368i \(0.960631\pi\)
\(12\) 0 0
\(13\) −1.60911 + 4.42100i −0.446287 + 1.22616i 0.489003 + 0.872282i \(0.337361\pi\)
−0.935290 + 0.353882i \(0.884862\pi\)
\(14\) 1.52120 + 1.91591i 0.406559 + 0.512050i
\(15\) 0 0
\(16\) 0.374792 0.136413i 0.0936980 0.0341033i
\(17\) 4.77392 1.15785 0.578923 0.815382i \(-0.303473\pi\)
0.578923 + 0.815382i \(0.303473\pi\)
\(18\) 0 0
\(19\) 6.37115i 1.46164i 0.682569 + 0.730821i \(0.260863\pi\)
−0.682569 + 0.730821i \(0.739137\pi\)
\(20\) 0.442381 + 0.371202i 0.0989195 + 0.0830033i
\(21\) 0 0
\(22\) −0.780028 4.42376i −0.166302 0.943148i
\(23\) −1.22699 + 3.37113i −0.255845 + 0.702929i 0.743567 + 0.668661i \(0.233132\pi\)
−0.999413 + 0.0342682i \(0.989090\pi\)
\(24\) 0 0
\(25\) −0.824071 + 4.67354i −0.164814 + 0.934708i
\(26\) −2.17510 3.76739i −0.426573 0.738846i
\(27\) 0 0
\(28\) 3.02836 + 0.0819996i 0.572305 + 0.0154965i
\(29\) −0.997075 2.73944i −0.185152 0.508701i 0.812039 0.583604i \(-0.198358\pi\)
−0.997191 + 0.0749022i \(0.976136\pi\)
\(30\) 0 0
\(31\) −0.773023 + 0.136305i −0.138839 + 0.0244811i −0.242636 0.970117i \(-0.578012\pi\)
0.103797 + 0.994599i \(0.466901\pi\)
\(32\) 1.86308 5.11878i 0.329349 0.904880i
\(33\) 0 0
\(34\) −2.83739 + 3.38147i −0.486608 + 0.579916i
\(35\) −0.635660 1.17323i −0.107446 0.198312i
\(36\) 0 0
\(37\) 2.73726 4.74107i 0.450002 0.779426i −0.548383 0.836227i \(-0.684757\pi\)
0.998386 + 0.0568005i \(0.0180899\pi\)
\(38\) −4.51281 3.78670i −0.732075 0.614284i
\(39\) 0 0
\(40\) −1.44437 + 0.254681i −0.228374 + 0.0402686i
\(41\) −5.44849 1.98309i −0.850912 0.309707i −0.120500 0.992713i \(-0.538450\pi\)
−0.730412 + 0.683007i \(0.760672\pi\)
\(42\) 0 0
\(43\) −1.36729 + 7.75429i −0.208510 + 1.18252i 0.683310 + 0.730128i \(0.260540\pi\)
−0.891820 + 0.452390i \(0.850571\pi\)
\(44\) −4.81739 2.78132i −0.726249 0.419300i
\(45\) 0 0
\(46\) −1.65857 2.87274i −0.244544 0.423562i
\(47\) −1.33467 + 7.56931i −0.194682 + 1.10410i 0.718188 + 0.695849i \(0.244972\pi\)
−0.912871 + 0.408249i \(0.866139\pi\)
\(48\) 0 0
\(49\) −6.43865 2.74659i −0.919807 0.392370i
\(50\) −2.82057 3.36143i −0.398889 0.475378i
\(51\) 0 0
\(52\) −5.30521 0.935452i −0.735700 0.129724i
\(53\) 4.26125 + 2.46023i 0.585328 + 0.337939i 0.763248 0.646106i \(-0.223604\pi\)
−0.177920 + 0.984045i \(0.556937\pi\)
\(54\) 0 0
\(55\) 2.45014i 0.330376i
\(56\) −5.10329 + 5.75788i −0.681956 + 0.769429i
\(57\) 0 0
\(58\) 2.53301 + 0.921941i 0.332601 + 0.121057i
\(59\) 5.01169 + 1.82411i 0.652467 + 0.237478i 0.646981 0.762507i \(-0.276031\pi\)
0.00548607 + 0.999985i \(0.498254\pi\)
\(60\) 0 0
\(61\) −7.07246 1.24706i −0.905535 0.159670i −0.298560 0.954391i \(-0.596506\pi\)
−0.606975 + 0.794721i \(0.707617\pi\)
\(62\) 0.362900 0.628561i 0.0460883 0.0798273i
\(63\) 0 0
\(64\) 2.91725 + 5.05283i 0.364656 + 0.631603i
\(65\) 0.811544 + 2.22970i 0.100660 + 0.276560i
\(66\) 0 0
\(67\) 6.70384 5.62519i 0.819005 0.687227i −0.133734 0.991017i \(-0.542697\pi\)
0.952739 + 0.303790i \(0.0982523\pi\)
\(68\) 0.949211 + 5.38324i 0.115109 + 0.652814i
\(69\) 0 0
\(70\) 1.20883 + 0.247060i 0.144482 + 0.0295293i
\(71\) 11.3110 6.53043i 1.34237 0.775019i 0.355217 0.934784i \(-0.384407\pi\)
0.987155 + 0.159764i \(0.0510735\pi\)
\(72\) 0 0
\(73\) 8.42907 4.86653i 0.986548 0.569584i 0.0823076 0.996607i \(-0.473771\pi\)
0.904241 + 0.427023i \(0.140438\pi\)
\(74\) 1.73130 + 4.75671i 0.201260 + 0.552956i
\(75\) 0 0
\(76\) −7.18433 + 1.26679i −0.824099 + 0.145311i
\(77\) 7.99238 + 10.0662i 0.910816 + 1.14715i
\(78\) 0 0
\(79\) −3.63977 3.05413i −0.409506 0.343617i 0.414648 0.909982i \(-0.363905\pi\)
−0.824154 + 0.566365i \(0.808349\pi\)
\(80\) 0.100577 0.174205i 0.0112449 0.0194767i
\(81\) 0 0
\(82\) 4.64298 2.68063i 0.512731 0.296026i
\(83\) −2.75845 + 1.00400i −0.302780 + 0.110203i −0.488942 0.872316i \(-0.662617\pi\)
0.186163 + 0.982519i \(0.440395\pi\)
\(84\) 0 0
\(85\) 1.84440 1.54764i 0.200053 0.167865i
\(86\) −4.67987 5.57725i −0.504643 0.601410i
\(87\) 0 0
\(88\) 13.2755 4.83188i 1.41517 0.515080i
\(89\) −11.2094 −1.18819 −0.594097 0.804394i \(-0.702490\pi\)
−0.594097 + 0.804394i \(0.702490\pi\)
\(90\) 0 0
\(91\) 10.6075 + 6.51327i 1.11197 + 0.682776i
\(92\) −4.04537 0.713308i −0.421759 0.0743675i
\(93\) 0 0
\(94\) −4.56823 5.44420i −0.471177 0.561527i
\(95\) 2.06543 + 2.46149i 0.211909 + 0.252543i
\(96\) 0 0
\(97\) −2.41733 0.426241i −0.245443 0.0432783i 0.0495730 0.998771i \(-0.484214\pi\)
−0.295016 + 0.955492i \(0.595325\pi\)
\(98\) 5.77228 2.92818i 0.583089 0.295791i
\(99\) 0 0
\(100\) −5.43390 −0.543390
\(101\) 5.68215 2.06813i 0.565395 0.205787i −0.0434782 0.999054i \(-0.513844\pi\)
0.608874 + 0.793267i \(0.291622\pi\)
\(102\) 0 0
\(103\) −6.28671 7.49221i −0.619448 0.738229i 0.361528 0.932361i \(-0.382255\pi\)
−0.980975 + 0.194132i \(0.937811\pi\)
\(104\) 10.4807 8.79431i 1.02771 0.862354i
\(105\) 0 0
\(106\) −4.27531 + 1.55609i −0.415255 + 0.151140i
\(107\) −13.9175 + 8.03528i −1.34546 + 0.776800i −0.987602 0.156977i \(-0.949825\pi\)
−0.357855 + 0.933777i \(0.616492\pi\)
\(108\) 0 0
\(109\) 7.22285 12.5103i 0.691823 1.19827i −0.279417 0.960170i \(-0.590141\pi\)
0.971240 0.238103i \(-0.0765256\pi\)
\(110\) −1.73548 1.45624i −0.165472 0.138847i
\(111\) 0 0
\(112\) −0.155046 1.04379i −0.0146504 0.0986292i
\(113\) 1.50934 0.266138i 0.141987 0.0250361i −0.102203 0.994764i \(-0.532589\pi\)
0.244190 + 0.969727i \(0.421478\pi\)
\(114\) 0 0
\(115\) 0.618824 + 1.70021i 0.0577056 + 0.158545i
\(116\) 2.89084 1.66903i 0.268407 0.154965i
\(117\) 0 0
\(118\) −4.27075 + 2.46572i −0.393155 + 0.226988i
\(119\) 2.52916 12.3748i 0.231848 1.13440i
\(120\) 0 0
\(121\) −2.18812 12.4095i −0.198920 1.12813i
\(122\) 5.08684 4.26837i 0.460541 0.386440i
\(123\) 0 0
\(124\) −0.307404 0.844586i −0.0276057 0.0758461i
\(125\) 2.45757 + 4.25664i 0.219812 + 0.380725i
\(126\) 0 0
\(127\) 5.33708 9.24410i 0.473590 0.820281i −0.525953 0.850513i \(-0.676291\pi\)
0.999543 + 0.0302322i \(0.00962466\pi\)
\(128\) 5.41617 + 0.955018i 0.478727 + 0.0844124i
\(129\) 0 0
\(130\) −2.06168 0.750390i −0.180821 0.0658136i
\(131\) 8.65448 + 3.14997i 0.756146 + 0.275215i 0.691189 0.722674i \(-0.257087\pi\)
0.0649563 + 0.997888i \(0.479309\pi\)
\(132\) 0 0
\(133\) 16.5151 + 3.37535i 1.43204 + 0.292680i
\(134\) 8.09180i 0.699025i
\(135\) 0 0
\(136\) −12.0228 6.94138i −1.03095 0.595218i
\(137\) 14.6628 + 2.58546i 1.25273 + 0.220890i 0.760364 0.649497i \(-0.225020\pi\)
0.492368 + 0.870387i \(0.336132\pi\)
\(138\) 0 0
\(139\) 6.89067 + 8.21198i 0.584459 + 0.696531i 0.974531 0.224254i \(-0.0719944\pi\)
−0.390072 + 0.920784i \(0.627550\pi\)
\(140\) 1.19659 0.950068i 0.101130 0.0802954i
\(141\) 0 0
\(142\) −2.09709 + 11.8932i −0.175984 + 0.998055i
\(143\) −11.4280 19.7938i −0.955654 1.65524i
\(144\) 0 0
\(145\) −1.27331 0.735143i −0.105742 0.0610503i
\(146\) −1.56277 + 8.86290i −0.129336 + 0.733499i
\(147\) 0 0
\(148\) 5.89045 + 2.14395i 0.484192 + 0.176231i
\(149\) 2.09925 0.370154i 0.171977 0.0303242i −0.0869964 0.996209i \(-0.527727\pi\)
0.258974 + 0.965884i \(0.416616\pi\)
\(150\) 0 0
\(151\) 5.09411 + 4.27446i 0.414552 + 0.347851i 0.826086 0.563544i \(-0.190562\pi\)
−0.411534 + 0.911394i \(0.635007\pi\)
\(152\) 9.26378 16.0453i 0.751391 1.30145i
\(153\) 0 0
\(154\) −11.8804 0.321688i −0.957347 0.0259223i
\(155\) −0.254469 + 0.303264i −0.0204394 + 0.0243588i
\(156\) 0 0
\(157\) 0.202620 0.556695i 0.0161709 0.0444291i −0.931345 0.364139i \(-0.881363\pi\)
0.947515 + 0.319710i \(0.103585\pi\)
\(158\) 4.32660 0.762897i 0.344206 0.0606928i
\(159\) 0 0
\(160\) −0.939632 2.58162i −0.0742844 0.204095i
\(161\) 8.08848 + 4.96655i 0.637462 + 0.391419i
\(162\) 0 0
\(163\) 9.38783 + 16.2602i 0.735311 + 1.27360i 0.954587 + 0.297934i \(0.0962975\pi\)
−0.219275 + 0.975663i \(0.570369\pi\)
\(164\) 1.15286 6.53821i 0.0900235 0.510549i
\(165\) 0 0
\(166\) 0.928340 2.55059i 0.0720531 0.197964i
\(167\) 2.39928 + 13.6070i 0.185662 + 1.05294i 0.925102 + 0.379718i \(0.123979\pi\)
−0.739441 + 0.673221i \(0.764910\pi\)
\(168\) 0 0
\(169\) −6.99739 5.87151i −0.538261 0.451654i
\(170\) 2.22626i 0.170747i
\(171\) 0 0
\(172\) −9.01587 −0.687454
\(173\) −4.13775 + 1.50602i −0.314588 + 0.114501i −0.494488 0.869184i \(-0.664645\pi\)
0.179901 + 0.983685i \(0.442422\pi\)
\(174\) 0 0
\(175\) 11.6780 + 4.61211i 0.882775 + 0.348643i
\(176\) −0.662705 + 1.82077i −0.0499533 + 0.137246i
\(177\) 0 0
\(178\) 6.66231 7.93983i 0.499361 0.595116i
\(179\) 3.01335i 0.225228i −0.993639 0.112614i \(-0.964078\pi\)
0.993639 0.112614i \(-0.0359224\pi\)
\(180\) 0 0
\(181\) 1.98157 + 1.14406i 0.147289 + 0.0850373i 0.571833 0.820370i \(-0.306232\pi\)
−0.424544 + 0.905407i \(0.639566\pi\)
\(182\) −10.9180 + 3.64231i −0.809299 + 0.269986i
\(183\) 0 0
\(184\) 7.99179 6.70590i 0.589162 0.494366i
\(185\) −0.479448 2.71908i −0.0352497 0.199911i
\(186\) 0 0
\(187\) −14.9076 + 17.7662i −1.09015 + 1.29919i
\(188\) −8.80080 −0.641864
\(189\) 0 0
\(190\) −2.97111 −0.215547
\(191\) 8.45281 10.0737i 0.611624 0.728905i −0.367982 0.929833i \(-0.619951\pi\)
0.979606 + 0.200928i \(0.0643956\pi\)
\(192\) 0 0
\(193\) −0.00650905 0.0369147i −0.000468532 0.00265717i 0.984573 0.174977i \(-0.0559850\pi\)
−0.985041 + 0.172319i \(0.944874\pi\)
\(194\) 1.73866 1.45891i 0.124829 0.104744i
\(195\) 0 0
\(196\) 1.81694 7.80656i 0.129781 0.557611i
\(197\) 4.43094 + 2.55821i 0.315692 + 0.182265i 0.649471 0.760387i \(-0.274991\pi\)
−0.333779 + 0.942651i \(0.608324\pi\)
\(198\) 0 0
\(199\) 6.17488i 0.437726i 0.975756 + 0.218863i \(0.0702348\pi\)
−0.975756 + 0.218863i \(0.929765\pi\)
\(200\) 8.87079 10.5718i 0.627260 0.747539i
\(201\) 0 0
\(202\) −1.91229 + 5.25398i −0.134548 + 0.369669i
\(203\) −7.62932 + 1.13326i −0.535473 + 0.0795395i
\(204\) 0 0
\(205\) −2.74791 + 1.00016i −0.191922 + 0.0698540i
\(206\) 9.04339 0.630083
\(207\) 0 0
\(208\) 1.87646i 0.130109i
\(209\) −23.7103 19.8953i −1.64007 1.37618i
\(210\) 0 0
\(211\) 0.583521 + 3.30931i 0.0401712 + 0.227822i 0.998283 0.0585715i \(-0.0186546\pi\)
−0.958112 + 0.286394i \(0.907543\pi\)
\(212\) −1.92697 + 5.29431i −0.132345 + 0.363615i
\(213\) 0 0
\(214\) 2.58034 14.6338i 0.176388 1.00035i
\(215\) 1.98558 + 3.43912i 0.135415 + 0.234546i
\(216\) 0 0
\(217\) −0.0562129 + 2.07602i −0.00381598 + 0.140929i
\(218\) 4.56841 + 12.5516i 0.309412 + 0.850103i
\(219\) 0 0
\(220\) −2.76286 + 0.487167i −0.186272 + 0.0328448i
\(221\) −7.68177 + 21.1055i −0.516732 + 1.41971i
\(222\) 0 0
\(223\) −4.25268 + 5.06814i −0.284780 + 0.339388i −0.889403 0.457124i \(-0.848880\pi\)
0.604623 + 0.796512i \(0.293324\pi\)
\(224\) −12.2817 7.54128i −0.820604 0.503873i
\(225\) 0 0
\(226\) −0.708568 + 1.22728i −0.0471333 + 0.0816372i
\(227\) 8.02989 + 6.73788i 0.532962 + 0.447209i 0.869123 0.494596i \(-0.164684\pi\)
−0.336160 + 0.941805i \(0.609128\pi\)
\(228\) 0 0
\(229\) 17.2043 3.03357i 1.13689 0.200464i 0.426645 0.904419i \(-0.359695\pi\)
0.710245 + 0.703955i \(0.248584\pi\)
\(230\) −1.57209 0.572193i −0.103660 0.0377293i
\(231\) 0 0
\(232\) −1.47213 + 8.34887i −0.0966501 + 0.548130i
\(233\) 8.89526 + 5.13568i 0.582748 + 0.336450i 0.762225 0.647312i \(-0.224107\pi\)
−0.179477 + 0.983762i \(0.557440\pi\)
\(234\) 0 0
\(235\) 1.93821 + 3.35708i 0.126435 + 0.218992i
\(236\) −1.06044 + 6.01405i −0.0690287 + 0.391481i
\(237\) 0 0
\(238\) 7.26211 + 9.14643i 0.470733 + 0.592875i
\(239\) −14.4600 17.2328i −0.935342 1.11470i −0.993206 0.116372i \(-0.962873\pi\)
0.0578640 0.998324i \(-0.481571\pi\)
\(240\) 0 0
\(241\) 8.43248 + 1.48687i 0.543184 + 0.0957780i 0.438506 0.898728i \(-0.355508\pi\)
0.104678 + 0.994506i \(0.466619\pi\)
\(242\) 10.0904 + 5.82569i 0.648635 + 0.374489i
\(243\) 0 0
\(244\) 8.22310i 0.526430i
\(245\) −3.37797 + 1.02617i −0.215811 + 0.0655598i
\(246\) 0 0
\(247\) −28.1668 10.2519i −1.79221 0.652312i
\(248\) 2.14500 + 0.780716i 0.136208 + 0.0495755i
\(249\) 0 0
\(250\) −4.47572 0.789190i −0.283069 0.0499128i
\(251\) −8.90861 + 15.4302i −0.562307 + 0.973943i 0.434988 + 0.900436i \(0.356753\pi\)
−0.997295 + 0.0735073i \(0.976581\pi\)
\(252\) 0 0
\(253\) −8.71413 15.0933i −0.547853 0.948909i
\(254\) 3.37568 + 9.27460i 0.211809 + 0.581940i
\(255\) 0 0
\(256\) −12.8345 + 10.7695i −0.802159 + 0.673091i
\(257\) −4.15085 23.5406i −0.258923 1.46842i −0.785799 0.618482i \(-0.787748\pi\)
0.526877 0.849942i \(-0.323363\pi\)
\(258\) 0 0
\(259\) −10.8395 9.60718i −0.673532 0.596961i
\(260\) −2.35292 + 1.35846i −0.145922 + 0.0842482i
\(261\) 0 0
\(262\) −7.37499 + 4.25795i −0.455628 + 0.263057i
\(263\) −3.04119 8.35561i −0.187528 0.515229i 0.809927 0.586531i \(-0.199507\pi\)
−0.997455 + 0.0713021i \(0.977285\pi\)
\(264\) 0 0
\(265\) 2.44390 0.430926i 0.150128 0.0264716i
\(266\) −12.2066 + 9.69181i −0.748433 + 0.594243i
\(267\) 0 0
\(268\) 7.67611 + 6.44102i 0.468893 + 0.393448i
\(269\) −0.579284 + 1.00335i −0.0353195 + 0.0611752i −0.883145 0.469100i \(-0.844578\pi\)
0.847825 + 0.530276i \(0.177912\pi\)
\(270\) 0 0
\(271\) −22.8894 + 13.2152i −1.39043 + 0.802766i −0.993363 0.115023i \(-0.963306\pi\)
−0.397069 + 0.917789i \(0.629973\pi\)
\(272\) 1.78923 0.651226i 0.108488 0.0394864i
\(273\) 0 0
\(274\) −10.5462 + 8.84932i −0.637120 + 0.534607i
\(275\) −14.8193 17.6609i −0.893635 1.06499i
\(276\) 0 0
\(277\) 10.3151 3.75438i 0.619773 0.225579i −0.0130009 0.999915i \(-0.504138\pi\)
0.632774 + 0.774336i \(0.281916\pi\)
\(278\) −9.91218 −0.594493
\(279\) 0 0
\(280\) −0.105032 + 3.87897i −0.00627685 + 0.231813i
\(281\) −0.726106 0.128032i −0.0433159 0.00763776i 0.151948 0.988388i \(-0.451445\pi\)
−0.195264 + 0.980751i \(0.562556\pi\)
\(282\) 0 0
\(283\) −5.91960 7.05471i −0.351884 0.419359i 0.560847 0.827919i \(-0.310475\pi\)
−0.912731 + 0.408560i \(0.866031\pi\)
\(284\) 9.61294 + 11.4563i 0.570423 + 0.679803i
\(285\) 0 0
\(286\) 20.8126 + 3.66982i 1.23067 + 0.217001i
\(287\) −8.02704 + 13.0728i −0.473821 + 0.771662i
\(288\) 0 0
\(289\) 5.79036 0.340609
\(290\) 1.27751 0.464974i 0.0750178 0.0273042i
\(291\) 0 0
\(292\) 7.16364 + 8.53729i 0.419220 + 0.499607i
\(293\) −17.3436 + 14.5530i −1.01322 + 0.850196i −0.988761 0.149505i \(-0.952232\pi\)
−0.0244632 + 0.999701i \(0.507788\pi\)
\(294\) 0 0
\(295\) 2.52761 0.919975i 0.147163 0.0535630i
\(296\) −13.7872 + 7.96005i −0.801365 + 0.462668i
\(297\) 0 0
\(298\) −0.985503 + 1.70694i −0.0570887 + 0.0988805i
\(299\) −12.9294 10.8490i −0.747726 0.627416i
\(300\) 0 0
\(301\) 19.3760 + 7.65237i 1.11682 + 0.441075i
\(302\) −6.05537 + 1.06773i −0.348448 + 0.0614407i
\(303\) 0 0
\(304\) 0.869108 + 2.38786i 0.0498468 + 0.136953i
\(305\) −3.13672 + 1.81098i −0.179608 + 0.103697i
\(306\) 0 0
\(307\) 18.3264 10.5807i 1.04594 0.603875i 0.124432 0.992228i \(-0.460289\pi\)
0.921511 + 0.388353i \(0.126956\pi\)
\(308\) −9.76184 + 11.0140i −0.556233 + 0.627579i
\(309\) 0 0
\(310\) −0.0635642 0.360491i −0.00361020 0.0204745i
\(311\) −6.35195 + 5.32992i −0.360186 + 0.302232i −0.804865 0.593458i \(-0.797762\pi\)
0.444679 + 0.895690i \(0.353318\pi\)
\(312\) 0 0
\(313\) −9.78199 26.8758i −0.552911 1.51911i −0.829717 0.558184i \(-0.811498\pi\)
0.276807 0.960926i \(-0.410724\pi\)
\(314\) 0.273890 + 0.474392i 0.0154565 + 0.0267715i
\(315\) 0 0
\(316\) 2.72024 4.71159i 0.153025 0.265048i
\(317\) 19.8974 + 3.50845i 1.11755 + 0.197054i 0.701765 0.712409i \(-0.252396\pi\)
0.415785 + 0.909463i \(0.363507\pi\)
\(318\) 0 0
\(319\) 13.3084 + 4.84387i 0.745128 + 0.271204i
\(320\) 2.76513 + 1.00642i 0.154575 + 0.0562609i
\(321\) 0 0
\(322\) −8.32530 + 2.77736i −0.463951 + 0.154776i
\(323\) 30.4154i 1.69236i
\(324\) 0 0
\(325\) −19.3357 11.1635i −1.07255 0.619238i
\(326\) −17.0971 3.01468i −0.946920 0.166968i
\(327\) 0 0
\(328\) 10.8382 + 12.9165i 0.598441 + 0.713194i
\(329\) 18.9138 + 7.46982i 1.04275 + 0.411825i
\(330\) 0 0
\(331\) −2.59475 + 14.7155i −0.142620 + 0.808840i 0.826627 + 0.562750i \(0.190257\pi\)
−0.969247 + 0.246089i \(0.920854\pi\)
\(332\) −1.68061 2.91090i −0.0922354 0.159756i
\(333\) 0 0
\(334\) −11.0641 6.38786i −0.605400 0.349528i
\(335\) 0.766419 4.34658i 0.0418739 0.237479i
\(336\) 0 0
\(337\) −10.4942 3.81956i −0.571653 0.208065i 0.0399880 0.999200i \(-0.487268\pi\)
−0.611641 + 0.791136i \(0.709490\pi\)
\(338\) 8.31781 1.46665i 0.452429 0.0797755i
\(339\) 0 0
\(340\) 2.11190 + 1.77209i 0.114534 + 0.0961051i
\(341\) 1.90667 3.30245i 0.103252 0.178838i
\(342\) 0 0
\(343\) −10.5307 + 15.2349i −0.568606 + 0.822610i
\(344\) 14.7183 17.5406i 0.793559 0.945727i
\(345\) 0 0
\(346\) 1.39253 3.82596i 0.0748631 0.205685i
\(347\) −17.9205 + 3.15986i −0.962022 + 0.169630i −0.632537 0.774530i \(-0.717986\pi\)
−0.329485 + 0.944161i \(0.606875\pi\)
\(348\) 0 0
\(349\) −8.74024 24.0136i −0.467854 1.28542i −0.919454 0.393198i \(-0.871369\pi\)
0.451599 0.892221i \(-0.350854\pi\)
\(350\) −10.2077 + 5.53055i −0.545624 + 0.295621i
\(351\) 0 0
\(352\) 13.2317 + 22.9179i 0.705250 + 1.22153i
\(353\) 2.22706 12.6303i 0.118535 0.672243i −0.866405 0.499343i \(-0.833575\pi\)
0.984939 0.172901i \(-0.0553140\pi\)
\(354\) 0 0
\(355\) 2.25294 6.18990i 0.119574 0.328526i
\(356\) −2.22879 12.6401i −0.118126 0.669924i
\(357\) 0 0
\(358\) 2.13441 + 1.79099i 0.112807 + 0.0946565i
\(359\) 21.4389i 1.13150i −0.824577 0.565750i \(-0.808587\pi\)
0.824577 0.565750i \(-0.191413\pi\)
\(360\) 0 0
\(361\) −21.5916 −1.13640
\(362\) −1.98811 + 0.723612i −0.104493 + 0.0380322i
\(363\) 0 0
\(364\) −5.23548 + 13.2564i −0.274414 + 0.694824i
\(365\) 1.67891 4.61276i 0.0878780 0.241443i
\(366\) 0 0
\(367\) −4.47982 + 5.33884i −0.233844 + 0.278685i −0.870187 0.492722i \(-0.836002\pi\)
0.636343 + 0.771407i \(0.280447\pi\)
\(368\) 1.43085i 0.0745882i
\(369\) 0 0
\(370\) 2.21094 + 1.27649i 0.114941 + 0.0663614i
\(371\) 8.63489 9.74247i 0.448301 0.505804i
\(372\) 0 0
\(373\) −8.84883 + 7.42505i −0.458175 + 0.384454i −0.842459 0.538760i \(-0.818893\pi\)
0.384284 + 0.923215i \(0.374448\pi\)
\(374\) −3.72379 21.1187i −0.192553 1.09202i
\(375\) 0 0
\(376\) 14.3672 17.1222i 0.740933 0.883009i
\(377\) 13.7155 0.706382
\(378\) 0 0
\(379\) 6.46443 0.332055 0.166028 0.986121i \(-0.446906\pi\)
0.166028 + 0.986121i \(0.446906\pi\)
\(380\) −2.36498 + 2.81848i −0.121321 + 0.144585i
\(381\) 0 0
\(382\) 2.11144 + 11.9746i 0.108031 + 0.612673i
\(383\) 1.78265 1.49582i 0.0910889 0.0764327i −0.596106 0.802906i \(-0.703286\pi\)
0.687195 + 0.726473i \(0.258842\pi\)
\(384\) 0 0
\(385\) 6.35116 + 1.29805i 0.323685 + 0.0661548i
\(386\) 0.0300160 + 0.0173298i 0.00152778 + 0.000882062i
\(387\) 0 0
\(388\) 2.81062i 0.142688i
\(389\) 21.1876 25.2503i 1.07425 1.28024i 0.116331 0.993211i \(-0.462887\pi\)
0.957921 0.287032i \(-0.0926688\pi\)
\(390\) 0 0
\(391\) −5.85756 + 16.0935i −0.296230 + 0.813884i
\(392\) 12.2217 + 16.2790i 0.617291 + 0.822216i
\(393\) 0 0
\(394\) −4.44556 + 1.61805i −0.223964 + 0.0815163i
\(395\) −2.39633 −0.120572
\(396\) 0 0
\(397\) 25.4001i 1.27479i 0.770535 + 0.637397i \(0.219989\pi\)
−0.770535 + 0.637397i \(0.780011\pi\)
\(398\) −4.37379 3.67005i −0.219238 0.183963i
\(399\) 0 0
\(400\) 0.328677 + 1.86402i 0.0164339 + 0.0932010i
\(401\) 6.66838 18.3212i 0.333003 0.914918i −0.654323 0.756215i \(-0.727046\pi\)
0.987326 0.158703i \(-0.0507314\pi\)
\(402\) 0 0
\(403\) 0.641277 3.63686i 0.0319443 0.181165i
\(404\) 3.46190 + 5.99618i 0.172236 + 0.298321i
\(405\) 0 0
\(406\) 3.73178 6.07756i 0.185205 0.301624i
\(407\) 9.09623 + 24.9917i 0.450883 + 1.23879i
\(408\) 0 0
\(409\) −17.0494 + 3.00627i −0.843038 + 0.148650i −0.578457 0.815713i \(-0.696345\pi\)
−0.264581 + 0.964363i \(0.585234\pi\)
\(410\) 0.924791 2.54084i 0.0456722 0.125483i
\(411\) 0 0
\(412\) 7.19847 8.57880i 0.354643 0.422647i
\(413\) 7.38352 12.0247i 0.363319 0.591699i
\(414\) 0 0
\(415\) −0.740246 + 1.28214i −0.0363372 + 0.0629379i
\(416\) 19.6322 + 16.4734i 0.962547 + 0.807673i
\(417\) 0 0
\(418\) 28.1844 4.96967i 1.37854 0.243075i
\(419\) −3.08710 1.12361i −0.150815 0.0548920i 0.265510 0.964108i \(-0.414460\pi\)
−0.416324 + 0.909216i \(0.636682\pi\)
\(420\) 0 0
\(421\) −0.564741 + 3.20281i −0.0275238 + 0.156095i −0.995472 0.0950543i \(-0.969698\pi\)
0.967948 + 0.251150i \(0.0808086\pi\)
\(422\) −2.69087 1.55357i −0.130989 0.0756267i
\(423\) 0 0
\(424\) −7.15446 12.3919i −0.347451 0.601803i
\(425\) −3.93405 + 22.3111i −0.190830 + 1.08225i
\(426\) 0 0
\(427\) −6.97949 + 17.6723i −0.337761 + 0.855223i
\(428\) −11.8281 14.0962i −0.571734 0.681366i
\(429\) 0 0
\(430\) −3.61613 0.637621i −0.174385 0.0307488i
\(431\) 29.6610 + 17.1248i 1.42872 + 0.824872i 0.997020 0.0771457i \(-0.0245807\pi\)
0.431700 + 0.902017i \(0.357914\pi\)
\(432\) 0 0
\(433\) 27.4243i 1.31793i 0.752174 + 0.658965i \(0.229005\pi\)
−0.752174 + 0.658965i \(0.770995\pi\)
\(434\) −1.43707 1.27370i −0.0689818 0.0611395i
\(435\) 0 0
\(436\) 15.5432 + 5.65727i 0.744386 + 0.270934i
\(437\) −21.4780 7.81734i −1.02743 0.373954i
\(438\) 0 0
\(439\) 3.72213 + 0.656313i 0.177648 + 0.0313241i 0.261764 0.965132i \(-0.415696\pi\)
−0.0841165 + 0.996456i \(0.526807\pi\)
\(440\) 3.56255 6.17051i 0.169838 0.294168i
\(441\) 0 0
\(442\) −10.3838 17.9852i −0.493906 0.855470i
\(443\) 7.38522 + 20.2907i 0.350883 + 0.964042i 0.982087 + 0.188426i \(0.0603385\pi\)
−0.631205 + 0.775616i \(0.717439\pi\)
\(444\) 0 0
\(445\) −4.33074 + 3.63392i −0.205297 + 0.172264i
\(446\) −1.06228 6.02451i −0.0503006 0.285269i
\(447\) 0 0
\(448\) 14.6433 4.88508i 0.691830 0.230798i
\(449\) 15.0109 8.66655i 0.708408 0.409000i −0.102063 0.994778i \(-0.532544\pi\)
0.810471 + 0.585778i \(0.199211\pi\)
\(450\) 0 0
\(451\) 24.3942 14.0840i 1.14868 0.663188i
\(452\) 0.600213 + 1.64907i 0.0282316 + 0.0775657i
\(453\) 0 0
\(454\) −9.54514 + 1.68307i −0.447976 + 0.0789902i
\(455\) 6.20969 0.922391i 0.291115 0.0432424i
\(456\) 0 0
\(457\) 25.1386 + 21.0938i 1.17593 + 0.986726i 0.999997 + 0.00232513i \(0.000740114\pi\)
0.175938 + 0.984401i \(0.443704\pi\)
\(458\) −8.07662 + 13.9891i −0.377396 + 0.653669i
\(459\) 0 0
\(460\) −1.79417 + 1.03586i −0.0836535 + 0.0482974i
\(461\) 0.748682 0.272498i 0.0348696 0.0126915i −0.324526 0.945877i \(-0.605205\pi\)
0.359396 + 0.933185i \(0.382983\pi\)
\(462\) 0 0
\(463\) 8.79280 7.37804i 0.408636 0.342887i −0.415184 0.909737i \(-0.636283\pi\)
0.823820 + 0.566851i \(0.191838\pi\)
\(464\) −0.747391 0.890706i −0.0346968 0.0413500i
\(465\) 0 0
\(466\) −8.92461 + 3.24829i −0.413425 + 0.150474i
\(467\) −5.18972 −0.240151 −0.120076 0.992765i \(-0.538314\pi\)
−0.120076 + 0.992765i \(0.538314\pi\)
\(468\) 0 0
\(469\) −11.0298 20.3576i −0.509310 0.940028i
\(470\) −3.52986 0.622410i −0.162820 0.0287096i
\(471\) 0 0
\(472\) −9.96933 11.8810i −0.458876 0.546867i
\(473\) −24.5880 29.3028i −1.13056 1.34734i
\(474\) 0 0
\(475\) −29.7758 5.25028i −1.36621 0.240899i
\(476\) 14.4571 + 0.391460i 0.662642 + 0.0179425i
\(477\) 0 0
\(478\) 20.8007 0.951400
\(479\) −17.4081 + 6.33602i −0.795395 + 0.289500i −0.707577 0.706637i \(-0.750212\pi\)
−0.0878180 + 0.996137i \(0.527989\pi\)
\(480\) 0 0
\(481\) 16.5557 + 19.7303i 0.754874 + 0.899624i
\(482\) −6.06503 + 5.08917i −0.276255 + 0.231805i
\(483\) 0 0
\(484\) 13.5583 4.93481i 0.616285 0.224310i
\(485\) −1.07212 + 0.618987i −0.0486823 + 0.0281067i
\(486\) 0 0
\(487\) 12.9714 22.4672i 0.587792 1.01809i −0.406729 0.913549i \(-0.633331\pi\)
0.994521 0.104537i \(-0.0333360\pi\)
\(488\) 15.9983 + 13.4241i 0.724208 + 0.607682i
\(489\) 0 0
\(490\) 1.28084 3.00259i 0.0578625 0.135643i
\(491\) −17.9073 + 3.15754i −0.808146 + 0.142498i −0.562431 0.826844i \(-0.690134\pi\)
−0.245715 + 0.969342i \(0.579023\pi\)
\(492\) 0 0
\(493\) −4.75996 13.0779i −0.214378 0.588998i
\(494\) 24.0026 13.8579i 1.07993 0.623497i
\(495\) 0 0
\(496\) −0.271129 + 0.156536i −0.0121741 + 0.00702870i
\(497\) −10.9355 32.7798i −0.490525 1.47038i
\(498\) 0 0
\(499\) −4.24424 24.0703i −0.189998 1.07753i −0.919363 0.393410i \(-0.871295\pi\)
0.729365 0.684125i \(-0.239816\pi\)
\(500\) −4.31129 + 3.61760i −0.192807 + 0.161784i
\(501\) 0 0
\(502\) −5.63465 15.4811i −0.251487 0.690954i
\(503\) 7.81528 + 13.5365i 0.348466 + 0.603561i 0.985977 0.166880i \(-0.0533693\pi\)
−0.637511 + 0.770441i \(0.720036\pi\)
\(504\) 0 0
\(505\) 1.52484 2.64109i 0.0678543 0.117527i
\(506\) 15.8701 + 2.79833i 0.705514 + 0.124401i
\(507\) 0 0
\(508\) 11.4852 + 4.18025i 0.509571 + 0.185469i
\(509\) 22.9635 + 8.35802i 1.01784 + 0.370463i 0.796438 0.604720i \(-0.206715\pi\)
0.221400 + 0.975183i \(0.428937\pi\)
\(510\) 0 0
\(511\) −8.14923 24.4278i −0.360501 1.08062i
\(512\) 4.49234i 0.198535i
\(513\) 0 0
\(514\) 19.1413 + 11.0513i 0.844288 + 0.487450i
\(515\) −4.85773 0.856548i −0.214057 0.0377440i
\(516\) 0 0
\(517\) −24.0014 28.6038i −1.05558 1.25799i
\(518\) 13.2474 1.96778i 0.582057 0.0864591i
\(519\) 0 0
\(520\) 1.19820 6.79535i 0.0525447 0.297996i
\(521\) 16.5999 + 28.7519i 0.727255 + 1.25964i 0.958039 + 0.286638i \(0.0925376\pi\)
−0.230784 + 0.973005i \(0.574129\pi\)
\(522\) 0 0
\(523\) 33.9429 + 19.5969i 1.48422 + 0.856915i 0.999839 0.0179428i \(-0.00571167\pi\)
0.484381 + 0.874857i \(0.339045\pi\)
\(524\) −1.83123 + 10.3854i −0.0799976 + 0.453689i
\(525\) 0 0
\(526\) 7.72598 + 2.81203i 0.336869 + 0.122610i
\(527\) −3.69035 + 0.650709i −0.160754 + 0.0283453i
\(528\) 0 0
\(529\) 7.76001 + 6.51142i 0.337392 + 0.283105i
\(530\) −1.14730 + 1.98719i −0.0498356 + 0.0863178i
\(531\) 0 0
\(532\) −0.522432 + 19.2941i −0.0226503 + 0.836506i
\(533\) 17.5345 20.8968i 0.759502 0.905139i
\(534\) 0 0
\(535\) −2.77210 + 7.61628i −0.119848 + 0.329280i
\(536\) −25.0623 + 4.41917i −1.08253 + 0.190879i
\(537\) 0 0
\(538\) −0.366394 1.00666i −0.0157964 0.0434002i
\(539\) 30.3275 15.3846i 1.30630 0.662663i
\(540\) 0 0
\(541\) −22.2029 38.4566i −0.954578 1.65338i −0.735330 0.677709i \(-0.762973\pi\)
−0.219248 0.975669i \(-0.570360\pi\)
\(542\) 4.24375 24.0675i 0.182284 1.03379i
\(543\) 0 0
\(544\) 8.89421 24.4366i 0.381336 1.04771i
\(545\) −1.26513 7.17490i −0.0541921 0.307339i
\(546\) 0 0
\(547\) 10.6883 + 8.96856i 0.456999 + 0.383468i 0.842025 0.539438i \(-0.181363\pi\)
−0.385026 + 0.922906i \(0.625808\pi\)
\(548\) 17.0484i 0.728272i
\(549\) 0 0
\(550\) 21.3174 0.908977
\(551\) 17.4534 6.35251i 0.743539 0.270626i
\(552\) 0 0
\(553\) −9.84512 + 7.81685i −0.418657 + 0.332406i
\(554\) −3.47147 + 9.53780i −0.147489 + 0.405222i
\(555\) 0 0
\(556\) −7.89002 + 9.40296i −0.334611 + 0.398774i
\(557\) 11.9840i 0.507780i 0.967233 + 0.253890i \(0.0817101\pi\)
−0.967233 + 0.253890i \(0.918290\pi\)
\(558\) 0 0
\(559\) −32.0816 18.5223i −1.35691 0.783410i
\(560\) −0.398284 0.353005i −0.0168306 0.0149172i
\(561\) 0 0
\(562\) 0.522250 0.438220i 0.0220298 0.0184852i
\(563\) 0.171106 + 0.970390i 0.00721125 + 0.0408970i 0.988201 0.153162i \(-0.0489457\pi\)
−0.980990 + 0.194059i \(0.937835\pi\)
\(564\) 0 0
\(565\) 0.496855 0.592129i 0.0209029 0.0249111i
\(566\) 8.51531 0.357925
\(567\) 0 0
\(568\) −37.9815 −1.59367
\(569\) 3.55957 4.24213i 0.149225 0.177839i −0.686254 0.727362i \(-0.740746\pi\)
0.835479 + 0.549523i \(0.185190\pi\)
\(570\) 0 0
\(571\) −2.29263 13.0021i −0.0959436 0.544123i −0.994454 0.105171i \(-0.966461\pi\)
0.898511 0.438952i \(-0.144650\pi\)
\(572\) 20.0479 16.8222i 0.838246 0.703372i
\(573\) 0 0
\(574\) −4.48884 13.4555i −0.187360 0.561623i
\(575\) −14.7440 8.51244i −0.614867 0.354993i
\(576\) 0 0
\(577\) 19.1388i 0.796760i 0.917220 + 0.398380i \(0.130427\pi\)
−0.917220 + 0.398380i \(0.869573\pi\)
\(578\) −3.44150 + 4.10142i −0.143148 + 0.170597i
\(579\) 0 0
\(580\) 0.575799 1.58199i 0.0239087 0.0656887i
\(581\) 1.14113 + 7.68228i 0.0473420 + 0.318714i
\(582\) 0 0
\(583\) −22.4624 + 8.17565i −0.930299 + 0.338601i
\(584\) −28.3041 −1.17123
\(585\) 0 0
\(586\) 20.9344i 0.864793i
\(587\) −20.7501 17.4114i −0.856450 0.718647i 0.104750 0.994499i \(-0.466596\pi\)
−0.961200 + 0.275852i \(0.911040\pi\)
\(588\) 0 0
\(589\) −0.868419 4.92505i −0.0357826 0.202933i
\(590\) −0.850651 + 2.33714i −0.0350207 + 0.0962187i
\(591\) 0 0
\(592\) 0.379158 2.15031i 0.0155833 0.0883772i
\(593\) −21.3668 37.0083i −0.877428 1.51975i −0.854154 0.520020i \(-0.825924\pi\)
−0.0232738 0.999729i \(-0.507409\pi\)
\(594\) 0 0
\(595\) −3.03459 5.60091i −0.124406 0.229615i
\(596\) 0.834798 + 2.29359i 0.0341946 + 0.0939490i
\(597\) 0 0
\(598\) 15.3692 2.71000i 0.628493 0.110820i
\(599\) −10.7152 + 29.4398i −0.437812 + 1.20288i 0.503100 + 0.864228i \(0.332193\pi\)
−0.940912 + 0.338650i \(0.890030\pi\)
\(600\) 0 0
\(601\) 3.68912 4.39652i 0.150482 0.179338i −0.685537 0.728038i \(-0.740433\pi\)
0.836019 + 0.548700i \(0.184877\pi\)
\(602\) −16.9365 + 9.17624i −0.690280 + 0.373996i
\(603\) 0 0
\(604\) −3.80716 + 6.59419i −0.154911 + 0.268314i
\(605\) −4.86835 4.08503i −0.197927 0.166080i
\(606\) 0 0
\(607\) −13.3273 + 2.34995i −0.540937 + 0.0953817i −0.437439 0.899248i \(-0.644114\pi\)
−0.103497 + 0.994630i \(0.533003\pi\)
\(608\) 32.6125 + 11.8700i 1.32261 + 0.481391i
\(609\) 0 0
\(610\) 0.581554 3.29816i 0.0235464 0.133539i
\(611\) −31.3163 18.0805i −1.26692 0.731457i
\(612\) 0 0
\(613\) −0.926764 1.60520i −0.0374316 0.0648335i 0.846703 0.532066i \(-0.178584\pi\)
−0.884134 + 0.467233i \(0.845251\pi\)
\(614\) −3.39775 + 19.2696i −0.137122 + 0.777658i
\(615\) 0 0
\(616\) −5.49186 36.9721i −0.221273 1.48965i
\(617\) 30.5178 + 36.3698i 1.22860 + 1.46419i 0.839823 + 0.542860i \(0.182659\pi\)
0.388779 + 0.921331i \(0.372897\pi\)
\(618\) 0 0
\(619\) −3.03430 0.535030i −0.121959 0.0215047i 0.112335 0.993670i \(-0.464167\pi\)
−0.234294 + 0.972166i \(0.575278\pi\)
\(620\) −0.392568 0.226649i −0.0157659 0.00910245i
\(621\) 0 0
\(622\) 7.66706i 0.307421i
\(623\) −5.93859 + 29.0566i −0.237925 + 1.16413i
\(624\) 0 0
\(625\) −19.9678 7.26768i −0.798711 0.290707i
\(626\) 24.8506 + 9.04487i 0.993229 + 0.361506i
\(627\) 0 0
\(628\) 0.668036 + 0.117793i 0.0266575 + 0.00470044i
\(629\) 13.0675 22.6335i 0.521033 0.902456i
\(630\) 0 0
\(631\) 12.7919 + 22.1562i 0.509238 + 0.882026i 0.999943 + 0.0106999i \(0.00340596\pi\)
−0.490705 + 0.871326i \(0.663261\pi\)
\(632\) 4.72576 + 12.9839i 0.187981 + 0.516473i
\(633\) 0 0
\(634\) −14.3112 + 12.0085i −0.568368 + 0.476918i
\(635\) −0.934825 5.30165i −0.0370974 0.210390i
\(636\) 0 0
\(637\) 22.5032 24.0457i 0.891608 0.952725i
\(638\) −11.3409 + 6.54765i −0.448989 + 0.259224i
\(639\) 0 0
\(640\) 2.40214 1.38687i 0.0949528 0.0548210i
\(641\) −4.50967 12.3902i −0.178121 0.489384i 0.818215 0.574913i \(-0.194964\pi\)
−0.996336 + 0.0855292i \(0.972742\pi\)
\(642\) 0 0
\(643\) 39.9985 7.05281i 1.57739 0.278136i 0.684703 0.728822i \(-0.259932\pi\)
0.892682 + 0.450686i \(0.148821\pi\)
\(644\) −3.99220 + 10.1084i −0.157315 + 0.398325i
\(645\) 0 0
\(646\) −21.5438 18.0774i −0.847630 0.711246i
\(647\) −20.0184 + 34.6729i −0.787006 + 1.36313i 0.140788 + 0.990040i \(0.455036\pi\)
−0.927794 + 0.373094i \(0.878297\pi\)
\(648\) 0 0
\(649\) −22.4385 + 12.9549i −0.880787 + 0.508523i
\(650\) 19.3995 7.06083i 0.760910 0.276949i
\(651\) 0 0
\(652\) −16.4690 + 13.8191i −0.644974 + 0.541198i
\(653\) 8.87922 + 10.5818i 0.347471 + 0.414100i 0.911268 0.411814i \(-0.135105\pi\)
−0.563797 + 0.825913i \(0.690660\pi\)
\(654\) 0 0
\(655\) 4.36483 1.58867i 0.170548 0.0620744i
\(656\) −2.31257 −0.0902907
\(657\) 0 0
\(658\) −16.5325 + 8.95734i −0.644503 + 0.349194i
\(659\) −36.6031 6.45411i −1.42585 0.251417i −0.593131 0.805106i \(-0.702108\pi\)
−0.832723 + 0.553690i \(0.813219\pi\)
\(660\) 0 0
\(661\) 29.0253 + 34.5910i 1.12895 + 1.34543i 0.930913 + 0.365240i \(0.119013\pi\)
0.198040 + 0.980194i \(0.436542\pi\)
\(662\) −8.88112 10.5841i −0.345175 0.411363i
\(663\) 0 0
\(664\) 8.40682 + 1.48235i 0.326248 + 0.0575263i
\(665\) 7.47483 4.04988i 0.289861 0.157048i
\(666\) 0 0
\(667\) 10.4584 0.404951
\(668\) −14.8666 + 5.41101i −0.575207 + 0.209358i
\(669\) 0 0
\(670\) 2.62324 + 3.12626i 0.101345 + 0.120778i
\(671\) 26.7262 22.4259i 1.03175 0.865744i
\(672\) 0 0
\(673\) 4.43681 1.61487i 0.171026 0.0622485i −0.255088 0.966918i \(-0.582104\pi\)
0.426114 + 0.904669i \(0.359882\pi\)
\(674\) 8.94268 5.16306i 0.344459 0.198874i
\(675\) 0 0
\(676\) 5.22961 9.05794i 0.201139 0.348382i
\(677\) −8.09974 6.79649i −0.311298 0.261210i 0.473730 0.880670i \(-0.342907\pi\)
−0.785028 + 0.619460i \(0.787352\pi\)
\(678\) 0 0
\(679\) −2.38556 + 6.04032i −0.0915494 + 0.231806i
\(680\) −6.89530 + 1.21583i −0.264423 + 0.0466248i
\(681\) 0 0
\(682\) 1.20596 + 3.31334i 0.0461786 + 0.126875i
\(683\) 8.04671 4.64577i 0.307899 0.177765i −0.338087 0.941115i \(-0.609780\pi\)
0.645986 + 0.763349i \(0.276447\pi\)
\(684\) 0 0
\(685\) 6.50314 3.75459i 0.248472 0.143456i
\(686\) −4.53226 16.5140i −0.173042 0.630509i
\(687\) 0 0
\(688\) 0.545338 + 3.09276i 0.0207908 + 0.117911i
\(689\) −17.7335 + 14.8802i −0.675593 + 0.566890i
\(690\) 0 0
\(691\) 3.54767 + 9.74713i 0.134960 + 0.370798i 0.988701 0.149898i \(-0.0478945\pi\)
−0.853742 + 0.520697i \(0.825672\pi\)
\(692\) −2.52096 4.36643i −0.0958325 0.165987i
\(693\) 0 0
\(694\) 8.41286 14.5715i 0.319348 0.553126i
\(695\) 5.32440 + 0.938836i 0.201966 + 0.0356121i
\(696\) 0 0
\(697\) −26.0107 9.46712i −0.985226 0.358593i
\(698\) 22.2041 + 8.08163i 0.840437 + 0.305894i
\(699\) 0 0
\(700\) −2.87881 + 14.0856i −0.108809 + 0.532385i
\(701\) 32.6042i 1.23144i −0.787964 0.615721i \(-0.788865\pi\)
0.787964 0.615721i \(-0.211135\pi\)
\(702\) 0 0
\(703\) 30.2060 + 17.4395i 1.13924 + 0.657742i
\(704\) −27.9138 4.92196i −1.05204 0.185503i
\(705\) 0 0
\(706\) 7.62264 + 9.08431i 0.286882 + 0.341892i
\(707\) −2.35062 15.8248i −0.0884040 0.595151i
\(708\) 0 0
\(709\) −2.10559 + 11.9414i −0.0790770 + 0.448468i 0.919401 + 0.393321i \(0.128674\pi\)
−0.998478 + 0.0551470i \(0.982437\pi\)
\(710\) 3.04539 + 5.27477i 0.114291 + 0.197959i
\(711\) 0 0
\(712\) 28.2301 + 16.2987i 1.05797 + 0.610819i
\(713\) 0.488991 2.77321i 0.0183129 0.103857i
\(714\) 0 0
\(715\) −10.8320 3.94254i −0.405095 0.147443i
\(716\) 3.39795 0.599151i 0.126988 0.0223913i
\(717\) 0 0
\(718\) 15.1856 + 12.7422i 0.566721 + 0.475535i
\(719\) 5.13678 8.89717i 0.191570 0.331808i −0.754201 0.656644i \(-0.771976\pi\)
0.945771 + 0.324835i \(0.105309\pi\)
\(720\) 0 0
\(721\) −22.7517 + 12.3269i −0.847316 + 0.459078i
\(722\) 12.8330 15.2937i 0.477593 0.569173i
\(723\) 0 0
\(724\) −0.896081 + 2.46196i −0.0333026 + 0.0914981i
\(725\) 13.6245 2.40238i 0.506003 0.0892220i
\(726\) 0 0
\(727\) 12.1820 + 33.4698i 0.451806 + 1.24133i 0.931452 + 0.363865i \(0.118543\pi\)
−0.479646 + 0.877462i \(0.659235\pi\)
\(728\) −17.2438 31.8267i −0.639098 1.17958i
\(729\) 0 0
\(730\) 2.26945 + 3.93080i 0.0839961 + 0.145485i
\(731\) −6.52735 + 37.0184i −0.241423 + 1.36918i
\(732\) 0 0
\(733\) 3.19323 8.77334i 0.117945 0.324051i −0.866646 0.498923i \(-0.833729\pi\)
0.984591 + 0.174872i \(0.0559513\pi\)
\(734\) −1.11902 6.34628i −0.0413038 0.234246i
\(735\) 0 0
\(736\) 14.9701 + 12.5614i 0.551804 + 0.463019i
\(737\) 42.5142i 1.56603i
\(738\) 0 0
\(739\) −49.8721 −1.83458 −0.917288 0.398226i \(-0.869626\pi\)
−0.917288 + 0.398226i \(0.869626\pi\)
\(740\) 2.97080 1.08128i 0.109209 0.0397488i
\(741\) 0 0
\(742\) 1.76863 + 11.9067i 0.0649284 + 0.437109i
\(743\) 13.7749 37.8461i 0.505350 1.38844i −0.380635 0.924725i \(-0.624295\pi\)
0.885985 0.463713i \(-0.153483\pi\)
\(744\) 0 0
\(745\) 0.691044 0.823555i 0.0253179 0.0301727i
\(746\) 10.6809i 0.391055i
\(747\) 0 0
\(748\) −22.9979 13.2778i −0.840885 0.485485i
\(749\) 13.4555 + 40.3335i 0.491652 + 1.47375i
\(750\) 0 0
\(751\) 31.1504 26.1383i 1.13669 0.953800i 0.137369 0.990520i \(-0.456135\pi\)
0.999326 + 0.0367201i \(0.0116910\pi\)
\(752\) 0.532329 + 3.01899i 0.0194120 + 0.110091i
\(753\) 0 0
\(754\) −8.15179 + 9.71493i −0.296871 + 0.353797i
\(755\) 3.35382 0.122058
\(756\) 0 0
\(757\) 38.9341 1.41508 0.707542 0.706671i \(-0.249804\pi\)
0.707542 + 0.706671i \(0.249804\pi\)
\(758\) −3.84214 + 4.57888i −0.139553 + 0.166312i
\(759\) 0 0
\(760\) −1.62261 9.20228i −0.0588582 0.333802i
\(761\) −29.3123 + 24.5960i −1.06257 + 0.891603i −0.994359 0.106067i \(-0.966174\pi\)
−0.0682127 + 0.997671i \(0.521730\pi\)
\(762\) 0 0
\(763\) −28.6023 25.3506i −1.03547 0.917755i
\(764\) 13.0401 + 7.52871i 0.471775 + 0.272379i
\(765\) 0 0
\(766\) 2.15172i 0.0777449i
\(767\) −16.1287 + 19.2215i −0.582375 + 0.694047i
\(768\) 0 0
\(769\) 2.38576 6.55481i 0.0860326 0.236373i −0.889214 0.457491i \(-0.848748\pi\)
0.975247 + 0.221118i \(0.0709706\pi\)
\(770\) −4.69425 + 3.72715i −0.169169 + 0.134317i
\(771\) 0 0
\(772\) 0.0403320 0.0146797i 0.00145158 0.000528333i
\(773\) 26.0359 0.936445 0.468222 0.883611i \(-0.344895\pi\)
0.468222 + 0.883611i \(0.344895\pi\)
\(774\) 0 0
\(775\) 3.72508i 0.133809i
\(776\) 5.46814 + 4.58831i 0.196295 + 0.164711i
\(777\) 0 0
\(778\) 5.29248 + 30.0151i 0.189744 + 1.07609i
\(779\) 12.6346 34.7132i 0.452680 1.24373i
\(780\) 0 0
\(781\) −11.0181 + 62.4867i −0.394258 + 2.23595i
\(782\) −7.91791 13.7142i −0.283144 0.490420i
\(783\) 0 0
\(784\) −2.78783 0.151084i −0.0995652 0.00539587i
\(785\) −0.102190 0.280765i −0.00364732 0.0100209i
\(786\) 0 0
\(787\) 27.4796 4.84540i 0.979543 0.172720i 0.339121 0.940743i \(-0.389871\pi\)
0.640422 + 0.768023i \(0.278759\pi\)
\(788\) −2.00371 + 5.50514i −0.0713791 + 0.196112i
\(789\) 0 0
\(790\) 1.42426 1.69737i 0.0506729 0.0603896i
\(791\) 0.109757 4.05346i 0.00390250 0.144125i
\(792\) 0 0
\(793\) 16.8936 29.2606i 0.599911 1.03908i
\(794\) −17.9914 15.0966i −0.638491 0.535757i
\(795\) 0 0
\(796\) −6.96301 + 1.22777i −0.246797 + 0.0435171i
\(797\) −10.0467 3.65670i −0.355873 0.129527i 0.157896 0.987456i \(-0.449529\pi\)
−0.513769 + 0.857929i \(0.671751\pi\)
\(798\) 0 0
\(799\) −6.37163 + 36.1353i −0.225412 + 1.27838i
\(800\) 22.3875 + 12.9254i 0.791518 + 0.456983i
\(801\) 0 0
\(802\) 9.01393 + 15.6126i 0.318293 + 0.551299i
\(803\) −8.21077 + 46.5656i −0.289752 + 1.64326i
\(804\) 0 0
\(805\) 4.73506 0.703348i 0.166889 0.0247898i
\(806\) 2.19492 + 2.61580i 0.0773127 + 0.0921377i
\(807\) 0 0
\(808\) −17.3172 3.05350i −0.609218 0.107422i
\(809\) −43.9114 25.3522i −1.54384 0.891338i −0.998591 0.0530646i \(-0.983101\pi\)
−0.545251 0.838273i \(-0.683566\pi\)
\(810\) 0 0
\(811\) 4.10320i 0.144083i 0.997402 + 0.0720414i \(0.0229514\pi\)
−0.997402 + 0.0720414i \(0.977049\pi\)
\(812\) −2.79486 8.37776i −0.0980805 0.294002i
\(813\) 0 0
\(814\) −23.1085 8.41079i −0.809951 0.294798i
\(815\) 8.89830 + 3.23871i 0.311694 + 0.113447i
\(816\) 0 0
\(817\) −49.4038 8.71122i −1.72842 0.304767i
\(818\) 8.00392 13.8632i 0.279850 0.484715i
\(819\) 0 0
\(820\) −1.67419 2.89977i −0.0584651 0.101265i
\(821\) −11.8782 32.6351i −0.414552 1.13897i −0.954744 0.297430i \(-0.903871\pi\)
0.540192 0.841542i \(-0.318352\pi\)
\(822\) 0 0
\(823\) −29.5910 + 24.8298i −1.03148 + 0.865512i −0.991026 0.133669i \(-0.957324\pi\)
−0.0404514 + 0.999182i \(0.512880\pi\)
\(824\) 4.93885 + 28.0096i 0.172053 + 0.975762i
\(825\) 0 0
\(826\) 4.12897 + 12.3768i 0.143665 + 0.430644i
\(827\) −28.4168 + 16.4064i −0.988148 + 0.570508i −0.904720 0.426006i \(-0.859920\pi\)
−0.0834279 + 0.996514i \(0.526587\pi\)
\(828\) 0 0
\(829\) −9.16621 + 5.29211i −0.318356 + 0.183803i −0.650659 0.759370i \(-0.725507\pi\)
0.332304 + 0.943172i \(0.392174\pi\)
\(830\) −0.468202 1.28637i −0.0162515 0.0446507i
\(831\) 0 0
\(832\) −27.0327 + 4.76660i −0.937190 + 0.165252i
\(833\) −30.7376 13.1120i −1.06500 0.454305i
\(834\) 0 0
\(835\) 5.33814 + 4.47923i 0.184734 + 0.155010i
\(836\) 17.7202 30.6923i 0.612867 1.06152i
\(837\) 0 0
\(838\) 2.63070 1.51883i 0.0908759 0.0524672i
\(839\) 40.4225 14.7126i 1.39554 0.507934i 0.468687 0.883364i \(-0.344727\pi\)
0.926851 + 0.375430i \(0.122505\pi\)
\(840\) 0 0
\(841\) 15.7049 13.1780i 0.541549 0.454413i
\(842\) −1.93296 2.30361i −0.0666141 0.0793876i
\(843\) 0 0
\(844\) −3.61567 + 1.31600i −0.124456 + 0.0452985i
\(845\) −4.60689 −0.158482
\(846\) 0 0
\(847\) −33.3267 0.902395i −1.14512 0.0310067i
\(848\) 1.93269 + 0.340786i 0.0663689 + 0.0117026i
\(849\) 0 0
\(850\) −13.4652 16.0472i −0.461853 0.550415i
\(851\) 12.6242 + 15.0449i 0.432751 + 0.515732i
\(852\) 0 0
\(853\) 35.0998 + 6.18904i 1.20179 + 0.211909i 0.738473 0.674283i \(-0.235547\pi\)
0.463320 + 0.886191i \(0.346658\pi\)
\(854\) −8.36937 15.4473i −0.286394 0.528594i
\(855\) 0 0
\(856\) 46.7338 1.59733
\(857\) 36.8153 13.3997i 1.25759 0.457724i 0.374628 0.927175i \(-0.377770\pi\)
0.882959 + 0.469451i \(0.155548\pi\)
\(858\) 0 0
\(859\) −10.4657 12.4725i −0.357083 0.425556i 0.557359 0.830272i \(-0.311815\pi\)
−0.914442 + 0.404716i \(0.867370\pi\)
\(860\) −3.48327 + 2.92281i −0.118779 + 0.0996671i
\(861\) 0 0
\(862\) −29.7589 + 10.8313i −1.01359 + 0.368917i
\(863\) −30.6409 + 17.6905i −1.04303 + 0.602193i −0.920690 0.390295i \(-0.872373\pi\)
−0.122339 + 0.992488i \(0.539040\pi\)
\(864\) 0 0
\(865\) −1.11039 + 1.92325i −0.0377543 + 0.0653924i
\(866\) −19.4252 16.2997i −0.660095 0.553886i
\(867\) 0 0
\(868\) −2.35217 + 0.349392i −0.0798377 + 0.0118591i
\(869\) 22.7319 4.00825i 0.771127 0.135971i
\(870\) 0 0
\(871\) 14.0817 + 38.6892i 0.477141 + 1.31093i
\(872\) −36.3806 + 21.0043i −1.23200 + 0.711296i
\(873\) 0 0
\(874\) 18.3026 10.5670i 0.619096 0.357435i
\(875\) 12.3359 4.11532i 0.417030 0.139123i
\(876\) 0 0
\(877\) −4.64641 26.3511i −0.156898 0.889814i −0.957030 0.289990i \(-0.906348\pi\)
0.800131 0.599825i \(-0.204763\pi\)
\(878\) −2.67713 + 2.24638i −0.0903489 + 0.0758117i
\(879\) 0 0
\(880\) 0.334231 + 0.918291i 0.0112669 + 0.0309556i
\(881\) 0.302257 + 0.523525i 0.0101833 + 0.0176380i 0.871072 0.491155i \(-0.163425\pi\)
−0.860889 + 0.508793i \(0.830092\pi\)
\(882\) 0 0
\(883\) −10.2674 + 17.7836i −0.345525 + 0.598466i −0.985449 0.169972i \(-0.945632\pi\)
0.639924 + 0.768438i \(0.278966\pi\)
\(884\) −25.3267 4.46578i −0.851828 0.150200i
\(885\) 0 0
\(886\) −18.7617 6.82872i −0.630313 0.229415i
\(887\) 13.3953 + 4.87548i 0.449769 + 0.163702i 0.556966 0.830535i \(-0.311965\pi\)
−0.107197 + 0.994238i \(0.534188\pi\)
\(888\) 0 0
\(889\) −21.1347 18.7320i −0.708836 0.628252i
\(890\) 5.22737i 0.175222i
\(891\) 0 0
\(892\) −6.56058 3.78775i −0.219665 0.126823i
\(893\) −48.2252 8.50341i −1.61380 0.284556i
\(894\) 0 0
\(895\) −0.976883 1.16420i −0.0326536 0.0389150i
\(896\) 5.34498 13.5337i 0.178563 0.452128i
\(897\) 0 0
\(898\) −2.78305 + 15.7835i −0.0928717 + 0.526702i
\(899\) 1.14416 + 1.98175i 0.0381599 + 0.0660949i
\(900\) 0 0
\(901\) 20.3429 + 11.7450i 0.677720 + 0.391282i
\(902\) −4.52273 + 25.6497i −0.150590 + 0.854041i
\(903\) 0 0
\(904\) −4.18815 1.52436i −0.139296 0.0506995i
\(905\) 1.13646 0.200389i 0.0377774 0.00666117i
\(906\) 0 0
\(907\) 21.6318 + 18.1512i 0.718272 + 0.602702i 0.926907 0.375292i \(-0.122457\pi\)
−0.208634 + 0.977994i \(0.566902\pi\)
\(908\) −6.00126 + 10.3945i −0.199159 + 0.344953i
\(909\) 0 0
\(910\) −3.03739 + 4.94667i −0.100688 + 0.163981i
\(911\) −20.6579 + 24.6191i −0.684426 + 0.815667i −0.990670 0.136286i \(-0.956483\pi\)
0.306244 + 0.951953i \(0.400928\pi\)
\(912\) 0 0
\(913\) 4.87749 13.4008i 0.161421 0.443501i
\(914\) −29.8823 + 5.26906i −0.988419 + 0.174285i
\(915\) 0 0
\(916\) 6.84153 + 18.7969i 0.226050 + 0.621068i
\(917\) 12.7503 20.7650i 0.421052 0.685722i
\(918\) 0 0
\(919\) 7.94398 + 13.7594i 0.262048 + 0.453880i 0.966786 0.255587i \(-0.0822688\pi\)
−0.704738 + 0.709468i \(0.748936\pi\)
\(920\) 0.913663 5.18164i 0.0301226 0.170834i
\(921\) 0 0
\(922\) −0.251964 + 0.692265i −0.00829799 + 0.0227985i
\(923\) 10.6703 + 60.5142i 0.351217 + 1.99185i
\(924\) 0 0
\(925\) 19.9019 + 16.6997i 0.654370 + 0.549081i
\(926\) 10.6133i 0.348773i
\(927\) 0 0
\(928\) −15.8802 −0.521293
\(929\) −30.6761 + 11.1652i −1.00645 + 0.366318i −0.792069 0.610432i \(-0.790996\pi\)
−0.214382 + 0.976750i \(0.568774\pi\)
\(930\) 0 0
\(931\) 17.4990 41.0216i 0.573505 1.34443i
\(932\) −4.02251 + 11.0517i −0.131762 + 0.362012i
\(933\) 0 0
\(934\) 3.08451 3.67598i 0.100928 0.120282i
\(935\) 11.6968i 0.382525i
\(936\) 0 0
\(937\) 3.11413 + 1.79794i 0.101734 + 0.0587362i 0.550004 0.835162i \(-0.314626\pi\)
−0.448270 + 0.893898i \(0.647960\pi\)
\(938\) 20.9753 + 4.28693i 0.684868 + 0.139973i
\(939\) 0 0
\(940\) −3.40018 + 2.85309i −0.110902 + 0.0930575i
\(941\) 3.47924 + 19.7318i 0.113420 + 0.643237i 0.987520 + 0.157492i \(0.0503407\pi\)
−0.874100 + 0.485745i \(0.838548\pi\)
\(942\) 0 0
\(943\) 13.3705 15.9343i 0.435404 0.518894i
\(944\) 2.12717 0.0692336
\(945\) 0 0
\(946\) 35.3696 1.14997
\(947\) 31.5741 37.6285i 1.02602 1.22276i 0.0514516 0.998675i \(-0.483615\pi\)
0.974569 0.224088i \(-0.0719403\pi\)
\(948\) 0 0
\(949\) 7.95159 + 45.0957i 0.258119 + 1.46387i
\(950\) 21.4162 17.9703i 0.694832 0.583034i
\(951\) 0 0
\(952\) −24.3627 + 27.4877i −0.789601 + 0.890881i
\(953\) 27.6214 + 15.9472i 0.894744 + 0.516581i 0.875491 0.483234i \(-0.160538\pi\)
0.0192530 + 0.999815i \(0.493871\pi\)
\(954\) 0 0
\(955\) 6.63223i 0.214614i
\(956\) 16.5572 19.7321i 0.535497 0.638181i
\(957\) 0 0
\(958\) 5.85857 16.0963i 0.189282 0.520048i
\(959\) 14.4701 36.6388i 0.467265 1.18313i
\(960\) 0 0
\(961\) −28.5515 + 10.3919i −0.921016 + 0.335222i
\(962\) −23.8152 −0.767834
\(963\) 0 0
\(964\) 9.80440i 0.315778i
\(965\) −0.0144820 0.0121518i −0.000466191 0.000391180i
\(966\) 0 0
\(967\) −7.25864 41.1658i −0.233422 1.32380i −0.845911 0.533323i \(-0.820943\pi\)
0.612489 0.790479i \(-0.290168\pi\)
\(968\) −12.5330 + 34.4340i −0.402825 + 1.10675i
\(969\) 0 0
\(970\) 0.198773 1.12730i 0.00638221 0.0361953i
\(971\) −23.9484 41.4799i −0.768542 1.33115i −0.938353 0.345677i \(-0.887649\pi\)
0.169811 0.985477i \(-0.445684\pi\)
\(972\) 0 0
\(973\) 24.9374 13.5112i 0.799456 0.433148i
\(974\) 8.20437 + 22.5413i 0.262885 + 0.722270i
\(975\) 0 0
\(976\) −2.82082 + 0.497386i −0.0902921 + 0.0159209i
\(977\) 8.07507 22.1861i 0.258344 0.709796i −0.740925 0.671587i \(-0.765613\pi\)
0.999270 0.0382082i \(-0.0121650\pi\)
\(978\) 0 0
\(979\) 35.0037 41.7158i 1.11872 1.33324i
\(980\) −1.82880 3.60508i −0.0584188 0.115160i
\(981\) 0 0
\(982\) 8.40668 14.5608i 0.268268 0.464654i
\(983\) 47.1705 + 39.5808i 1.50451 + 1.26243i 0.873675 + 0.486510i \(0.161730\pi\)
0.630831 + 0.775920i \(0.282714\pi\)
\(984\) 0 0
\(985\) 2.54122 0.448086i 0.0809701 0.0142772i
\(986\) 12.0924 + 4.40128i 0.385101 + 0.140165i
\(987\) 0 0
\(988\) 5.95990 33.8003i 0.189610 1.07533i
\(989\) −24.4631 14.1238i −0.777881 0.449110i
\(990\) 0 0
\(991\) 3.19820 + 5.53945i 0.101594 + 0.175966i 0.912342 0.409430i \(-0.134272\pi\)
−0.810747 + 0.585396i \(0.800939\pi\)
\(992\) −0.742492 + 4.21088i −0.0235741 + 0.133696i
\(993\) 0 0
\(994\) 29.7181 + 11.7369i 0.942602 + 0.372271i
\(995\) 2.00181 + 2.38566i 0.0634615 + 0.0756305i
\(996\) 0 0
\(997\) 35.4811 + 6.25628i 1.12370 + 0.198138i 0.704464 0.709740i \(-0.251187\pi\)
0.419234 + 0.907878i \(0.362299\pi\)
\(998\) 19.5720 + 11.2999i 0.619542 + 0.357693i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.ba.a.143.8 132
3.2 odd 2 189.2.ba.a.101.15 132
7.5 odd 6 567.2.bd.a.467.15 132
21.5 even 6 189.2.bd.a.47.8 yes 132
27.4 even 9 189.2.bd.a.185.8 yes 132
27.23 odd 18 567.2.bd.a.17.15 132
189.131 even 18 inner 567.2.ba.a.341.8 132
189.166 odd 18 189.2.ba.a.131.15 yes 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.ba.a.101.15 132 3.2 odd 2
189.2.ba.a.131.15 yes 132 189.166 odd 18
189.2.bd.a.47.8 yes 132 21.5 even 6
189.2.bd.a.185.8 yes 132 27.4 even 9
567.2.ba.a.143.8 132 1.1 even 1 trivial
567.2.ba.a.341.8 132 189.131 even 18 inner
567.2.bd.a.17.15 132 27.23 odd 18
567.2.bd.a.467.15 132 7.5 odd 6