Properties

Label 567.2.ba.a.143.14
Level $567$
Weight $2$
Character 567.143
Analytic conductor $4.528$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [567,2,Mod(143,567)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(567, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([7, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("567.143"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.ba (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 143.14
Character \(\chi\) \(=\) 567.143
Dual form 567.2.ba.a.341.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.575801 - 0.686212i) q^{2} +(0.207955 + 1.17937i) q^{4} +(-0.100696 + 0.0844942i) q^{5} +(-1.70219 + 2.02548i) q^{7} +(2.48059 + 1.43217i) q^{8} +0.117751i q^{10} +(-2.57587 + 3.06980i) q^{11} +(1.02604 - 2.81901i) q^{13} +(0.409789 + 2.33433i) q^{14} +(0.160408 - 0.0583836i) q^{16} +0.344621 q^{17} +4.89841i q^{19} +(-0.120590 - 0.101187i) q^{20} +(0.623349 + 3.53519i) q^{22} +(-2.18009 + 5.98976i) q^{23} +(-0.865240 + 4.90702i) q^{25} +(-1.34365 - 2.32726i) q^{26} +(-2.74277 - 1.58630i) q^{28} +(-2.29851 - 6.31510i) q^{29} +(8.59607 - 1.51572i) q^{31} +(-1.90702 + 5.23950i) q^{32} +(0.198433 - 0.236483i) q^{34} +(0.000262488 - 0.347783i) q^{35} +(3.64300 - 6.30985i) q^{37} +(3.36135 + 2.82051i) q^{38} +(-0.370796 + 0.0653813i) q^{40} +(9.04416 + 3.29180i) q^{41} +(0.350643 - 1.98860i) q^{43} +(-4.15611 - 2.39953i) q^{44} +(2.85495 + 4.94491i) q^{46} +(-0.771769 + 4.37692i) q^{47} +(-1.20513 - 6.89548i) q^{49} +(2.86905 + 3.41920i) q^{50} +(3.53803 + 0.623850i) q^{52} +(-5.49931 - 3.17503i) q^{53} -0.526764i q^{55} +(-7.12325 + 2.58656i) q^{56} +(-5.65698 - 2.05897i) q^{58} +(-0.167214 - 0.0608610i) q^{59} +(-4.60007 - 0.811116i) q^{61} +(3.90952 - 6.77148i) q^{62} +(2.66805 + 4.62120i) q^{64} +(0.134872 + 0.370558i) q^{65} +(8.83064 - 7.40979i) q^{67} +(0.0716657 + 0.406437i) q^{68} +(-0.238502 - 0.200434i) q^{70} +(-0.373587 + 0.215690i) q^{71} +(1.31951 - 0.761822i) q^{73} +(-2.23226 - 6.13309i) q^{74} +(-5.77706 + 1.01865i) q^{76} +(-1.83321 - 10.4427i) q^{77} +(1.81204 + 1.52049i) q^{79} +(-0.0112194 + 0.0194325i) q^{80} +(7.46651 - 4.31079i) q^{82} +(6.81615 - 2.48087i) q^{83} +(-0.0347021 + 0.0291185i) q^{85} +(-1.16270 - 1.38565i) q^{86} +(-10.7861 + 3.92584i) q^{88} +15.4181 q^{89} +(3.96334 + 6.87669i) q^{91} +(-7.51752 - 1.32554i) q^{92} +(2.55911 + 3.04983i) q^{94} +(-0.413888 - 0.493252i) q^{95} +(-12.2061 - 2.15226i) q^{97} +(-5.42568 - 3.14345i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q + 3 q^{2} - 3 q^{4} + 9 q^{5} - 6 q^{7} + 18 q^{8} + 9 q^{11} - 3 q^{14} + 3 q^{16} + 18 q^{17} - 18 q^{20} - 12 q^{22} + 6 q^{23} - 3 q^{25} - 12 q^{28} - 6 q^{29} - 9 q^{31} - 3 q^{32} - 18 q^{34}+ \cdots - 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.575801 0.686212i 0.407152 0.485225i −0.523034 0.852312i \(-0.675200\pi\)
0.930187 + 0.367086i \(0.119645\pi\)
\(3\) 0 0
\(4\) 0.207955 + 1.17937i 0.103978 + 0.589686i
\(5\) −0.100696 + 0.0844942i −0.0450327 + 0.0377870i −0.665026 0.746820i \(-0.731580\pi\)
0.619994 + 0.784607i \(0.287135\pi\)
\(6\) 0 0
\(7\) −1.70219 + 2.02548i −0.643366 + 0.765559i
\(8\) 2.48059 + 1.43217i 0.877021 + 0.506348i
\(9\) 0 0
\(10\) 0.117751i 0.0372361i
\(11\) −2.57587 + 3.06980i −0.776654 + 0.925580i −0.998777 0.0494386i \(-0.984257\pi\)
0.222123 + 0.975019i \(0.428701\pi\)
\(12\) 0 0
\(13\) 1.02604 2.81901i 0.284571 0.781852i −0.712231 0.701945i \(-0.752315\pi\)
0.996802 0.0799075i \(-0.0254625\pi\)
\(14\) 0.409789 + 2.33433i 0.109521 + 0.623877i
\(15\) 0 0
\(16\) 0.160408 0.0583836i 0.0401019 0.0145959i
\(17\) 0.344621 0.0835829 0.0417914 0.999126i \(-0.486693\pi\)
0.0417914 + 0.999126i \(0.486693\pi\)
\(18\) 0 0
\(19\) 4.89841i 1.12377i 0.827214 + 0.561887i \(0.189924\pi\)
−0.827214 + 0.561887i \(0.810076\pi\)
\(20\) −0.120590 0.101187i −0.0269649 0.0226262i
\(21\) 0 0
\(22\) 0.623349 + 3.53519i 0.132898 + 0.753704i
\(23\) −2.18009 + 5.98976i −0.454581 + 1.24895i 0.474887 + 0.880047i \(0.342489\pi\)
−0.929468 + 0.368904i \(0.879733\pi\)
\(24\) 0 0
\(25\) −0.865240 + 4.90702i −0.173048 + 0.981404i
\(26\) −1.34365 2.32726i −0.263511 0.456414i
\(27\) 0 0
\(28\) −2.74277 1.58630i −0.518335 0.299783i
\(29\) −2.29851 6.31510i −0.426822 1.17268i −0.947731 0.319072i \(-0.896629\pi\)
0.520908 0.853613i \(-0.325593\pi\)
\(30\) 0 0
\(31\) 8.59607 1.51572i 1.54390 0.272231i 0.664125 0.747622i \(-0.268804\pi\)
0.879775 + 0.475391i \(0.157693\pi\)
\(32\) −1.90702 + 5.23950i −0.337117 + 0.926222i
\(33\) 0 0
\(34\) 0.198433 0.236483i 0.0340310 0.0405565i
\(35\) 0.000262488 0.347783i 4.43686e−5 0.0587861i
\(36\) 0 0
\(37\) 3.64300 6.30985i 0.598905 1.03733i −0.394078 0.919077i \(-0.628936\pi\)
0.992983 0.118257i \(-0.0377305\pi\)
\(38\) 3.36135 + 2.82051i 0.545283 + 0.457547i
\(39\) 0 0
\(40\) −0.370796 + 0.0653813i −0.0586280 + 0.0103377i
\(41\) 9.04416 + 3.29180i 1.41246 + 0.514094i 0.931851 0.362841i \(-0.118193\pi\)
0.480609 + 0.876935i \(0.340415\pi\)
\(42\) 0 0
\(43\) 0.350643 1.98860i 0.0534726 0.303258i −0.946328 0.323207i \(-0.895239\pi\)
0.999801 + 0.0199486i \(0.00635026\pi\)
\(44\) −4.15611 2.39953i −0.626556 0.361743i
\(45\) 0 0
\(46\) 2.85495 + 4.94491i 0.420939 + 0.729088i
\(47\) −0.771769 + 4.37692i −0.112574 + 0.638439i 0.875349 + 0.483492i \(0.160632\pi\)
−0.987923 + 0.154947i \(0.950479\pi\)
\(48\) 0 0
\(49\) −1.20513 6.89548i −0.172161 0.985069i
\(50\) 2.86905 + 3.41920i 0.405745 + 0.483549i
\(51\) 0 0
\(52\) 3.53803 + 0.623850i 0.490637 + 0.0865125i
\(53\) −5.49931 3.17503i −0.755388 0.436123i 0.0722494 0.997387i \(-0.476982\pi\)
−0.827637 + 0.561263i \(0.810316\pi\)
\(54\) 0 0
\(55\) 0.526764i 0.0710288i
\(56\) −7.12325 + 2.58656i −0.951884 + 0.345644i
\(57\) 0 0
\(58\) −5.65698 2.05897i −0.742798 0.270356i
\(59\) −0.167214 0.0608610i −0.0217694 0.00792343i 0.331112 0.943591i \(-0.392576\pi\)
−0.352882 + 0.935668i \(0.614798\pi\)
\(60\) 0 0
\(61\) −4.60007 0.811116i −0.588978 0.103853i −0.128787 0.991672i \(-0.541108\pi\)
−0.460192 + 0.887820i \(0.652219\pi\)
\(62\) 3.90952 6.77148i 0.496509 0.859979i
\(63\) 0 0
\(64\) 2.66805 + 4.62120i 0.333506 + 0.577649i
\(65\) 0.134872 + 0.370558i 0.0167288 + 0.0459620i
\(66\) 0 0
\(67\) 8.83064 7.40979i 1.07883 0.905249i 0.0830108 0.996549i \(-0.473546\pi\)
0.995824 + 0.0912992i \(0.0291020\pi\)
\(68\) 0.0716657 + 0.406437i 0.00869075 + 0.0492877i
\(69\) 0 0
\(70\) −0.238502 0.200434i −0.0285064 0.0239564i
\(71\) −0.373587 + 0.215690i −0.0443366 + 0.0255977i −0.522004 0.852943i \(-0.674816\pi\)
0.477668 + 0.878540i \(0.341482\pi\)
\(72\) 0 0
\(73\) 1.31951 0.761822i 0.154437 0.0891645i −0.420790 0.907158i \(-0.638247\pi\)
0.575227 + 0.817994i \(0.304914\pi\)
\(74\) −2.23226 6.13309i −0.259495 0.712957i
\(75\) 0 0
\(76\) −5.77706 + 1.01865i −0.662674 + 0.116847i
\(77\) −1.83321 10.4427i −0.208914 1.19006i
\(78\) 0 0
\(79\) 1.81204 + 1.52049i 0.203871 + 0.171068i 0.739007 0.673698i \(-0.235295\pi\)
−0.535136 + 0.844766i \(0.679740\pi\)
\(80\) −0.0112194 + 0.0194325i −0.00125436 + 0.00217262i
\(81\) 0 0
\(82\) 7.46651 4.31079i 0.824538 0.476047i
\(83\) 6.81615 2.48087i 0.748169 0.272311i 0.0603341 0.998178i \(-0.480783\pi\)
0.687835 + 0.725867i \(0.258561\pi\)
\(84\) 0 0
\(85\) −0.0347021 + 0.0291185i −0.00376397 + 0.00315834i
\(86\) −1.16270 1.38565i −0.125377 0.149418i
\(87\) 0 0
\(88\) −10.7861 + 3.92584i −1.14981 + 0.418496i
\(89\) 15.4181 1.63431 0.817156 0.576417i \(-0.195550\pi\)
0.817156 + 0.576417i \(0.195550\pi\)
\(90\) 0 0
\(91\) 3.96334 + 6.87669i 0.415471 + 0.720873i
\(92\) −7.51752 1.32554i −0.783756 0.138197i
\(93\) 0 0
\(94\) 2.55911 + 3.04983i 0.263952 + 0.314566i
\(95\) −0.413888 0.493252i −0.0424640 0.0506066i
\(96\) 0 0
\(97\) −12.2061 2.15226i −1.23934 0.218529i −0.484708 0.874676i \(-0.661074\pi\)
−0.754634 + 0.656147i \(0.772185\pi\)
\(98\) −5.42568 3.14345i −0.548076 0.317536i
\(99\) 0 0
\(100\) −5.96714 −0.596714
\(101\) 3.54678 1.29092i 0.352917 0.128451i −0.159477 0.987202i \(-0.550981\pi\)
0.512394 + 0.858750i \(0.328759\pi\)
\(102\) 0 0
\(103\) −6.43432 7.66812i −0.633992 0.755563i 0.349416 0.936968i \(-0.386380\pi\)
−0.983408 + 0.181405i \(0.941935\pi\)
\(104\) 6.58247 5.52335i 0.645464 0.541609i
\(105\) 0 0
\(106\) −5.34525 + 1.94551i −0.519176 + 0.188965i
\(107\) 4.00378 2.31158i 0.387060 0.223469i −0.293826 0.955859i \(-0.594928\pi\)
0.680885 + 0.732390i \(0.261595\pi\)
\(108\) 0 0
\(109\) −5.95833 + 10.3201i −0.570704 + 0.988489i 0.425789 + 0.904822i \(0.359996\pi\)
−0.996494 + 0.0836667i \(0.973337\pi\)
\(110\) −0.361472 0.303311i −0.0344650 0.0289196i
\(111\) 0 0
\(112\) −0.154789 + 0.424282i −0.0146262 + 0.0400909i
\(113\) 3.00669 0.530160i 0.282846 0.0498733i −0.0304256 0.999537i \(-0.509686\pi\)
0.313271 + 0.949664i \(0.398575\pi\)
\(114\) 0 0
\(115\) −0.286573 0.787352i −0.0267230 0.0734209i
\(116\) 6.96987 4.02405i 0.647136 0.373624i
\(117\) 0 0
\(118\) −0.138046 + 0.0797007i −0.0127081 + 0.00733704i
\(119\) −0.586609 + 0.698023i −0.0537744 + 0.0639876i
\(120\) 0 0
\(121\) −0.878449 4.98193i −0.0798590 0.452903i
\(122\) −3.20532 + 2.68958i −0.290196 + 0.243503i
\(123\) 0 0
\(124\) 3.57519 + 9.82277i 0.321062 + 0.882110i
\(125\) −0.656113 1.13642i −0.0586845 0.101645i
\(126\) 0 0
\(127\) 4.57273 7.92020i 0.405764 0.702804i −0.588646 0.808391i \(-0.700339\pi\)
0.994410 + 0.105587i \(0.0336720\pi\)
\(128\) −6.27472 1.10640i −0.554612 0.0977931i
\(129\) 0 0
\(130\) 0.331941 + 0.120817i 0.0291131 + 0.0105963i
\(131\) 5.23893 + 1.90681i 0.457727 + 0.166599i 0.560585 0.828097i \(-0.310576\pi\)
−0.102858 + 0.994696i \(0.532799\pi\)
\(132\) 0 0
\(133\) −9.92164 8.33801i −0.860315 0.722997i
\(134\) 10.3263i 0.892052i
\(135\) 0 0
\(136\) 0.854863 + 0.493555i 0.0733039 + 0.0423220i
\(137\) −14.2458 2.51192i −1.21710 0.214608i −0.472023 0.881586i \(-0.656476\pi\)
−0.745077 + 0.666979i \(0.767587\pi\)
\(138\) 0 0
\(139\) −8.80185 10.4896i −0.746563 0.889720i 0.250356 0.968154i \(-0.419452\pi\)
−0.996919 + 0.0784343i \(0.975008\pi\)
\(140\) 0.410220 0.0720137i 0.0346699 0.00608627i
\(141\) 0 0
\(142\) −0.0671020 + 0.380554i −0.00563107 + 0.0319354i
\(143\) 6.01086 + 10.4111i 0.502654 + 0.870622i
\(144\) 0 0
\(145\) 0.765040 + 0.441696i 0.0635331 + 0.0366809i
\(146\) 0.237005 1.34412i 0.0196147 0.111241i
\(147\) 0 0
\(148\) 8.19925 + 2.98428i 0.673974 + 0.245306i
\(149\) −16.0341 + 2.82725i −1.31357 + 0.231617i −0.786175 0.618004i \(-0.787941\pi\)
−0.527393 + 0.849622i \(0.676830\pi\)
\(150\) 0 0
\(151\) −3.24977 2.72688i −0.264462 0.221910i 0.500908 0.865501i \(-0.333000\pi\)
−0.765370 + 0.643590i \(0.777444\pi\)
\(152\) −7.01536 + 12.1510i −0.569020 + 0.985572i
\(153\) 0 0
\(154\) −8.22150 4.75496i −0.662508 0.383166i
\(155\) −0.737523 + 0.878945i −0.0592393 + 0.0705986i
\(156\) 0 0
\(157\) −1.56492 + 4.29960i −0.124895 + 0.343145i −0.986344 0.164698i \(-0.947335\pi\)
0.861449 + 0.507843i \(0.169557\pi\)
\(158\) 2.08675 0.367951i 0.166013 0.0292726i
\(159\) 0 0
\(160\) −0.250677 0.688731i −0.0198178 0.0544489i
\(161\) −8.42121 14.6114i −0.663684 1.15154i
\(162\) 0 0
\(163\) −4.14531 7.17988i −0.324686 0.562372i 0.656763 0.754097i \(-0.271925\pi\)
−0.981449 + 0.191725i \(0.938592\pi\)
\(164\) −2.00148 + 11.3510i −0.156290 + 0.886363i
\(165\) 0 0
\(166\) 2.22233 6.10581i 0.172487 0.473903i
\(167\) −0.761050 4.31613i −0.0588919 0.333992i 0.941100 0.338130i \(-0.109794\pi\)
−0.999991 + 0.00413722i \(0.998683\pi\)
\(168\) 0 0
\(169\) 3.06452 + 2.57143i 0.235732 + 0.197803i
\(170\) 0.0405794i 0.00311230i
\(171\) 0 0
\(172\) 2.41821 0.184387
\(173\) 15.5919 5.67499i 1.18543 0.431462i 0.327314 0.944916i \(-0.393856\pi\)
0.858117 + 0.513454i \(0.171634\pi\)
\(174\) 0 0
\(175\) −8.46627 10.1052i −0.639990 0.763880i
\(176\) −0.233963 + 0.642808i −0.0176356 + 0.0484535i
\(177\) 0 0
\(178\) 8.87773 10.5801i 0.665414 0.793010i
\(179\) 10.4083i 0.777951i 0.921248 + 0.388976i \(0.127171\pi\)
−0.921248 + 0.388976i \(0.872829\pi\)
\(180\) 0 0
\(181\) 14.3465 + 8.28296i 1.06637 + 0.615668i 0.927187 0.374599i \(-0.122220\pi\)
0.139181 + 0.990267i \(0.455553\pi\)
\(182\) 7.00096 + 1.23991i 0.518946 + 0.0919081i
\(183\) 0 0
\(184\) −13.9863 + 11.7359i −1.03108 + 0.865179i
\(185\) 0.166310 + 0.943191i 0.0122274 + 0.0693448i
\(186\) 0 0
\(187\) −0.887699 + 1.05792i −0.0649150 + 0.0773626i
\(188\) −5.32251 −0.388184
\(189\) 0 0
\(190\) −0.576792 −0.0418449
\(191\) 6.66865 7.94739i 0.482527 0.575053i −0.468774 0.883318i \(-0.655304\pi\)
0.951300 + 0.308265i \(0.0997485\pi\)
\(192\) 0 0
\(193\) 3.16593 + 17.9549i 0.227888 + 1.29242i 0.857086 + 0.515174i \(0.172273\pi\)
−0.629197 + 0.777246i \(0.716616\pi\)
\(194\) −8.50519 + 7.13670i −0.610637 + 0.512385i
\(195\) 0 0
\(196\) 7.88173 2.85525i 0.562981 0.203946i
\(197\) 18.9850 + 10.9610i 1.35263 + 0.780941i 0.988617 0.150454i \(-0.0480735\pi\)
0.364012 + 0.931394i \(0.381407\pi\)
\(198\) 0 0
\(199\) 7.25537i 0.514320i 0.966369 + 0.257160i \(0.0827867\pi\)
−0.966369 + 0.257160i \(0.917213\pi\)
\(200\) −9.17399 + 10.9331i −0.648699 + 0.773089i
\(201\) 0 0
\(202\) 1.15639 3.17715i 0.0813633 0.223544i
\(203\) 16.7036 + 6.09389i 1.17236 + 0.427707i
\(204\) 0 0
\(205\) −1.18885 + 0.432707i −0.0830330 + 0.0302215i
\(206\) −8.96685 −0.624750
\(207\) 0 0
\(208\) 0.512094i 0.0355074i
\(209\) −15.0372 12.6177i −1.04014 0.872783i
\(210\) 0 0
\(211\) 0.796078 + 4.51478i 0.0548043 + 0.310810i 0.999871 0.0160673i \(-0.00511459\pi\)
−0.945067 + 0.326878i \(0.894003\pi\)
\(212\) 2.60093 7.14600i 0.178633 0.490789i
\(213\) 0 0
\(214\) 0.719141 4.07845i 0.0491595 0.278797i
\(215\) 0.132716 + 0.229871i 0.00905118 + 0.0156771i
\(216\) 0 0
\(217\) −11.5620 + 19.9912i −0.784883 + 1.35709i
\(218\) 3.65099 + 10.0310i 0.247276 + 0.679386i
\(219\) 0 0
\(220\) 0.621251 0.109543i 0.0418847 0.00738540i
\(221\) 0.353593 0.971490i 0.0237853 0.0653495i
\(222\) 0 0
\(223\) 15.1586 18.0653i 1.01510 1.20974i 0.0374904 0.999297i \(-0.488064\pi\)
0.977605 0.210447i \(-0.0674919\pi\)
\(224\) −7.36639 12.7812i −0.492188 0.853982i
\(225\) 0 0
\(226\) 1.36745 2.36849i 0.0909615 0.157550i
\(227\) 1.87601 + 1.57416i 0.124515 + 0.104480i 0.702919 0.711270i \(-0.251880\pi\)
−0.578404 + 0.815751i \(0.696324\pi\)
\(228\) 0 0
\(229\) 0.258016 0.0454952i 0.0170502 0.00300640i −0.165117 0.986274i \(-0.552800\pi\)
0.182167 + 0.983268i \(0.441689\pi\)
\(230\) −0.705299 0.256708i −0.0465060 0.0169268i
\(231\) 0 0
\(232\) 3.34263 18.9570i 0.219455 1.24459i
\(233\) 25.1425 + 14.5160i 1.64714 + 0.950977i 0.978201 + 0.207662i \(0.0665853\pi\)
0.668941 + 0.743316i \(0.266748\pi\)
\(234\) 0 0
\(235\) −0.292110 0.505950i −0.0190552 0.0330045i
\(236\) 0.0370047 0.209864i 0.00240880 0.0136610i
\(237\) 0 0
\(238\) 0.141222 + 0.804460i 0.00915407 + 0.0521454i
\(239\) −1.21344 1.44612i −0.0784911 0.0935420i 0.725370 0.688359i \(-0.241669\pi\)
−0.803861 + 0.594817i \(0.797224\pi\)
\(240\) 0 0
\(241\) 18.0533 + 3.18328i 1.16291 + 0.205053i 0.721607 0.692303i \(-0.243404\pi\)
0.441307 + 0.897356i \(0.354515\pi\)
\(242\) −3.92447 2.26580i −0.252275 0.145651i
\(243\) 0 0
\(244\) 5.59387i 0.358111i
\(245\) 0.703980 + 0.592523i 0.0449757 + 0.0378549i
\(246\) 0 0
\(247\) 13.8087 + 5.02595i 0.878625 + 0.319793i
\(248\) 23.4941 + 8.55114i 1.49188 + 0.542998i
\(249\) 0 0
\(250\) −1.15762 0.204119i −0.0732141 0.0129096i
\(251\) −3.29266 + 5.70305i −0.207831 + 0.359973i −0.951031 0.309096i \(-0.899974\pi\)
0.743200 + 0.669069i \(0.233307\pi\)
\(252\) 0 0
\(253\) −12.7717 22.1213i −0.802952 1.39075i
\(254\) −2.80196 7.69832i −0.175811 0.483036i
\(255\) 0 0
\(256\) −12.5476 + 10.5287i −0.784224 + 0.658042i
\(257\) −5.02735 28.5115i −0.313598 1.77850i −0.579978 0.814632i \(-0.696939\pi\)
0.266381 0.963868i \(-0.414172\pi\)
\(258\) 0 0
\(259\) 6.57942 + 18.1193i 0.408825 + 1.12588i
\(260\) −0.408978 + 0.236124i −0.0253638 + 0.0146438i
\(261\) 0 0
\(262\) 4.32506 2.49707i 0.267203 0.154270i
\(263\) 7.94138 + 21.8188i 0.489686 + 1.34540i 0.900965 + 0.433892i \(0.142860\pi\)
−0.411278 + 0.911510i \(0.634918\pi\)
\(264\) 0 0
\(265\) 0.822031 0.144946i 0.0504970 0.00890398i
\(266\) −11.4345 + 2.00732i −0.701096 + 0.123077i
\(267\) 0 0
\(268\) 10.5753 + 8.87371i 0.645988 + 0.542048i
\(269\) 4.60903 7.98308i 0.281018 0.486737i −0.690618 0.723220i \(-0.742661\pi\)
0.971636 + 0.236483i \(0.0759947\pi\)
\(270\) 0 0
\(271\) 25.5138 14.7304i 1.54985 0.894807i 0.551700 0.834043i \(-0.313980\pi\)
0.998152 0.0607643i \(-0.0193538\pi\)
\(272\) 0.0552799 0.0201202i 0.00335183 0.00121997i
\(273\) 0 0
\(274\) −9.92644 + 8.32927i −0.599678 + 0.503190i
\(275\) −12.8348 15.2960i −0.773970 0.922381i
\(276\) 0 0
\(277\) −2.86248 + 1.04186i −0.171990 + 0.0625991i −0.426580 0.904450i \(-0.640282\pi\)
0.254590 + 0.967049i \(0.418059\pi\)
\(278\) −12.2662 −0.735680
\(279\) 0 0
\(280\) 0.498735 0.862331i 0.0298051 0.0515341i
\(281\) −24.6845 4.35255i −1.47256 0.259651i −0.620956 0.783845i \(-0.713256\pi\)
−0.851599 + 0.524194i \(0.824367\pi\)
\(282\) 0 0
\(283\) 7.17877 + 8.55533i 0.426734 + 0.508562i 0.935977 0.352061i \(-0.114519\pi\)
−0.509243 + 0.860623i \(0.670075\pi\)
\(284\) −0.332068 0.395744i −0.0197046 0.0234831i
\(285\) 0 0
\(286\) 10.6053 + 1.87000i 0.627105 + 0.110575i
\(287\) −22.0623 + 12.7155i −1.30230 + 0.750572i
\(288\) 0 0
\(289\) −16.8812 −0.993014
\(290\) 0.743608 0.270651i 0.0436662 0.0158932i
\(291\) 0 0
\(292\) 1.17287 + 1.39777i 0.0686371 + 0.0817986i
\(293\) −3.69754 + 3.10260i −0.216012 + 0.181256i −0.744373 0.667764i \(-0.767251\pi\)
0.528360 + 0.849020i \(0.322807\pi\)
\(294\) 0 0
\(295\) 0.0219803 0.00800016i 0.00127974 0.000465787i
\(296\) 18.0735 10.4348i 1.05050 0.606508i
\(297\) 0 0
\(298\) −7.29237 + 12.6308i −0.422436 + 0.731680i
\(299\) 14.6483 + 12.2914i 0.847135 + 0.710830i
\(300\) 0 0
\(301\) 3.43100 + 4.09518i 0.197759 + 0.236042i
\(302\) −3.74243 + 0.659892i −0.215353 + 0.0379725i
\(303\) 0 0
\(304\) 0.285987 + 0.785743i 0.0164025 + 0.0450655i
\(305\) 0.531744 0.307003i 0.0304476 0.0175789i
\(306\) 0 0
\(307\) −17.7257 + 10.2339i −1.01166 + 0.584082i −0.911677 0.410907i \(-0.865212\pi\)
−0.0999825 + 0.994989i \(0.531879\pi\)
\(308\) 11.9347 4.33366i 0.680040 0.246933i
\(309\) 0 0
\(310\) 0.178477 + 1.01219i 0.0101368 + 0.0574888i
\(311\) −11.3004 + 9.48217i −0.640787 + 0.537684i −0.904260 0.426982i \(-0.859577\pi\)
0.263473 + 0.964667i \(0.415132\pi\)
\(312\) 0 0
\(313\) 4.05965 + 11.1538i 0.229465 + 0.630450i 0.999976 0.00697724i \(-0.00222094\pi\)
−0.770511 + 0.637427i \(0.779999\pi\)
\(314\) 2.04935 + 3.54958i 0.115652 + 0.200314i
\(315\) 0 0
\(316\) −1.41639 + 2.45327i −0.0796784 + 0.138007i
\(317\) 20.1601 + 3.55477i 1.13230 + 0.199656i 0.708237 0.705975i \(-0.249491\pi\)
0.424067 + 0.905631i \(0.360602\pi\)
\(318\) 0 0
\(319\) 25.3068 + 9.21090i 1.41691 + 0.515712i
\(320\) −0.659127 0.239903i −0.0368463 0.0134110i
\(321\) 0 0
\(322\) −14.8755 2.63452i −0.828977 0.146816i
\(323\) 1.68810i 0.0939282i
\(324\) 0 0
\(325\) 12.9452 + 7.47390i 0.718069 + 0.414577i
\(326\) −7.31379 1.28962i −0.405074 0.0714254i
\(327\) 0 0
\(328\) 17.7204 + 21.1184i 0.978447 + 1.16607i
\(329\) −7.55166 9.01353i −0.416337 0.496932i
\(330\) 0 0
\(331\) −2.39022 + 13.5556i −0.131378 + 0.745083i 0.845935 + 0.533285i \(0.179043\pi\)
−0.977314 + 0.211798i \(0.932068\pi\)
\(332\) 4.34333 + 7.52287i 0.238371 + 0.412871i
\(333\) 0 0
\(334\) −3.40000 1.96299i −0.186040 0.107410i
\(335\) −0.263129 + 1.49228i −0.0143762 + 0.0815317i
\(336\) 0 0
\(337\) −11.8712 4.32077i −0.646667 0.235367i −0.00219742 0.999998i \(-0.500699\pi\)
−0.644469 + 0.764630i \(0.722922\pi\)
\(338\) 3.52910 0.622276i 0.191958 0.0338473i
\(339\) 0 0
\(340\) −0.0415580 0.0348713i −0.00225380 0.00189116i
\(341\) −17.4894 + 30.2925i −0.947104 + 1.64043i
\(342\) 0 0
\(343\) 16.0180 + 9.29642i 0.864891 + 0.501960i
\(344\) 3.71780 4.43071i 0.200451 0.238888i
\(345\) 0 0
\(346\) 5.08358 13.9670i 0.273295 0.750872i
\(347\) −17.8481 + 3.14709i −0.958134 + 0.168945i −0.630784 0.775958i \(-0.717267\pi\)
−0.327350 + 0.944903i \(0.606155\pi\)
\(348\) 0 0
\(349\) −6.17471 16.9649i −0.330525 0.908109i −0.987975 0.154612i \(-0.950587\pi\)
0.657450 0.753498i \(-0.271635\pi\)
\(350\) −11.8092 0.00891295i −0.631228 0.000476417i
\(351\) 0 0
\(352\) −11.1720 19.3505i −0.595469 1.03138i
\(353\) 2.71457 15.3951i 0.144482 0.819398i −0.823300 0.567607i \(-0.807869\pi\)
0.967782 0.251791i \(-0.0810195\pi\)
\(354\) 0 0
\(355\) 0.0193942 0.0532851i 0.00102934 0.00282808i
\(356\) 3.20627 + 18.1836i 0.169932 + 0.963731i
\(357\) 0 0
\(358\) 7.14229 + 5.99309i 0.377482 + 0.316745i
\(359\) 10.1138i 0.533785i 0.963726 + 0.266892i \(0.0859968\pi\)
−0.963726 + 0.266892i \(0.914003\pi\)
\(360\) 0 0
\(361\) −4.99446 −0.262866
\(362\) 13.9446 5.07542i 0.732912 0.266758i
\(363\) 0 0
\(364\) −7.28598 + 6.10430i −0.381889 + 0.319952i
\(365\) −0.0685006 + 0.188204i −0.00358549 + 0.00985105i
\(366\) 0 0
\(367\) −17.9093 + 21.3435i −0.934859 + 1.11412i 0.0584104 + 0.998293i \(0.481397\pi\)
−0.993269 + 0.115829i \(0.963048\pi\)
\(368\) 1.08809i 0.0567204i
\(369\) 0 0
\(370\) 0.742991 + 0.428966i 0.0386262 + 0.0223009i
\(371\) 15.7918 5.73425i 0.819869 0.297707i
\(372\) 0 0
\(373\) 15.1151 12.6831i 0.782632 0.656706i −0.161278 0.986909i \(-0.551562\pi\)
0.943910 + 0.330203i \(0.107117\pi\)
\(374\) 0.214819 + 1.21830i 0.0111080 + 0.0629968i
\(375\) 0 0
\(376\) −8.18293 + 9.75203i −0.422002 + 0.502923i
\(377\) −20.1607 −1.03833
\(378\) 0 0
\(379\) 3.29633 0.169321 0.0846605 0.996410i \(-0.473019\pi\)
0.0846605 + 0.996410i \(0.473019\pi\)
\(380\) 0.495658 0.590702i 0.0254267 0.0303024i
\(381\) 0 0
\(382\) −1.61378 9.15222i −0.0825684 0.468269i
\(383\) 23.6377 19.8344i 1.20783 1.01349i 0.208459 0.978031i \(-0.433155\pi\)
0.999371 0.0354584i \(-0.0112891\pi\)
\(384\) 0 0
\(385\) 1.06695 + 0.896649i 0.0543767 + 0.0456975i
\(386\) 14.1438 + 8.16592i 0.719900 + 0.415635i
\(387\) 0 0
\(388\) 14.8431i 0.753545i
\(389\) 8.64017 10.2969i 0.438074 0.522076i −0.501160 0.865355i \(-0.667093\pi\)
0.939234 + 0.343279i \(0.111538\pi\)
\(390\) 0 0
\(391\) −0.751306 + 2.06420i −0.0379952 + 0.104391i
\(392\) 6.88606 18.8308i 0.347799 0.951099i
\(393\) 0 0
\(394\) 18.4532 6.71641i 0.929658 0.338368i
\(395\) −0.310938 −0.0156450
\(396\) 0 0
\(397\) 32.3533i 1.62376i −0.583821 0.811882i \(-0.698443\pi\)
0.583821 0.811882i \(-0.301557\pi\)
\(398\) 4.97873 + 4.17765i 0.249561 + 0.209407i
\(399\) 0 0
\(400\) 0.147699 + 0.837640i 0.00738493 + 0.0418820i
\(401\) −13.0462 + 35.8442i −0.651498 + 1.78998i −0.0393585 + 0.999225i \(0.512531\pi\)
−0.612139 + 0.790750i \(0.709691\pi\)
\(402\) 0 0
\(403\) 4.54704 25.7876i 0.226504 1.28457i
\(404\) 2.26005 + 3.91452i 0.112442 + 0.194754i
\(405\) 0 0
\(406\) 13.7996 7.95334i 0.684864 0.394718i
\(407\) 9.98612 + 27.4366i 0.494993 + 1.35998i
\(408\) 0 0
\(409\) −22.3158 + 3.93488i −1.10345 + 0.194567i −0.695562 0.718466i \(-0.744845\pi\)
−0.407885 + 0.913033i \(0.633734\pi\)
\(410\) −0.387613 + 1.06496i −0.0191428 + 0.0525945i
\(411\) 0 0
\(412\) 7.70552 9.18309i 0.379624 0.452418i
\(413\) 0.407902 0.235092i 0.0200716 0.0115681i
\(414\) 0 0
\(415\) −0.476741 + 0.825740i −0.0234023 + 0.0405340i
\(416\) 12.8135 + 10.7518i 0.628235 + 0.527152i
\(417\) 0 0
\(418\) −17.3168 + 3.05342i −0.846993 + 0.149348i
\(419\) −1.24840 0.454379i −0.0609881 0.0221979i 0.311346 0.950297i \(-0.399220\pi\)
−0.372334 + 0.928099i \(0.621442\pi\)
\(420\) 0 0
\(421\) −0.798906 + 4.53082i −0.0389363 + 0.220819i −0.998067 0.0621441i \(-0.980206\pi\)
0.959131 + 0.282963i \(0.0913173\pi\)
\(422\) 3.55648 + 2.05334i 0.173127 + 0.0999548i
\(423\) 0 0
\(424\) −9.09435 15.7519i −0.441661 0.764979i
\(425\) −0.298180 + 1.69106i −0.0144639 + 0.0820286i
\(426\) 0 0
\(427\) 9.47306 7.93667i 0.458434 0.384082i
\(428\) 3.55882 + 4.24124i 0.172022 + 0.205008i
\(429\) 0 0
\(430\) 0.234159 + 0.0412885i 0.0112921 + 0.00199111i
\(431\) −15.3689 8.87327i −0.740296 0.427410i 0.0818808 0.996642i \(-0.473907\pi\)
−0.822177 + 0.569232i \(0.807241\pi\)
\(432\) 0 0
\(433\) 1.22234i 0.0587418i −0.999569 0.0293709i \(-0.990650\pi\)
0.999569 0.0293709i \(-0.00935038\pi\)
\(434\) 7.06077 + 19.4450i 0.338928 + 0.933388i
\(435\) 0 0
\(436\) −13.4103 4.88096i −0.642239 0.233756i
\(437\) −29.3403 10.6790i −1.40354 0.510846i
\(438\) 0 0
\(439\) 4.79703 + 0.845847i 0.228950 + 0.0403701i 0.286946 0.957947i \(-0.407360\pi\)
−0.0579961 + 0.998317i \(0.518471\pi\)
\(440\) 0.754414 1.30668i 0.0359653 0.0622937i
\(441\) 0 0
\(442\) −0.463049 0.802024i −0.0220250 0.0381484i
\(443\) −7.95536 21.8572i −0.377971 1.03847i −0.972196 0.234168i \(-0.924764\pi\)
0.594226 0.804298i \(-0.297459\pi\)
\(444\) 0 0
\(445\) −1.55254 + 1.30274i −0.0735975 + 0.0617557i
\(446\) −3.66832 20.8041i −0.173700 0.985100i
\(447\) 0 0
\(448\) −13.9016 2.46206i −0.656791 0.116321i
\(449\) −19.9333 + 11.5085i −0.940710 + 0.543119i −0.890183 0.455603i \(-0.849424\pi\)
−0.0505273 + 0.998723i \(0.516090\pi\)
\(450\) 0 0
\(451\) −33.4018 + 19.2845i −1.57283 + 0.908072i
\(452\) 1.25051 + 3.43576i 0.0588192 + 0.161604i
\(453\) 0 0
\(454\) 2.16041 0.380939i 0.101393 0.0178783i
\(455\) −0.980134 0.357578i −0.0459494 0.0167635i
\(456\) 0 0
\(457\) 20.3778 + 17.0990i 0.953231 + 0.799856i 0.979839 0.199790i \(-0.0640260\pi\)
−0.0266074 + 0.999646i \(0.508470\pi\)
\(458\) 0.117346 0.203250i 0.00548323 0.00949724i
\(459\) 0 0
\(460\) 0.868987 0.501710i 0.0405167 0.0233923i
\(461\) 25.7975 9.38952i 1.20151 0.437314i 0.337758 0.941233i \(-0.390331\pi\)
0.863751 + 0.503919i \(0.168109\pi\)
\(462\) 0 0
\(463\) 2.44473 2.05137i 0.113616 0.0953355i −0.584210 0.811603i \(-0.698595\pi\)
0.697826 + 0.716267i \(0.254151\pi\)
\(464\) −0.737397 0.878795i −0.0342328 0.0407970i
\(465\) 0 0
\(466\) 24.4382 8.89476i 1.13208 0.412042i
\(467\) −16.9027 −0.782162 −0.391081 0.920356i \(-0.627899\pi\)
−0.391081 + 0.920356i \(0.627899\pi\)
\(468\) 0 0
\(469\) −0.0230191 + 30.4991i −0.00106292 + 1.40832i
\(470\) −0.515386 0.0908765i −0.0237730 0.00419182i
\(471\) 0 0
\(472\) −0.327627 0.390450i −0.0150802 0.0179719i
\(473\) 5.20138 + 6.19877i 0.239160 + 0.285020i
\(474\) 0 0
\(475\) −24.0366 4.23831i −1.10288 0.194467i
\(476\) −0.945217 0.546673i −0.0433240 0.0250567i
\(477\) 0 0
\(478\) −1.69105 −0.0773468
\(479\) −35.4520 + 12.9035i −1.61984 + 0.589574i −0.983352 0.181710i \(-0.941837\pi\)
−0.636490 + 0.771285i \(0.719614\pi\)
\(480\) 0 0
\(481\) −14.0497 16.7438i −0.640611 0.763450i
\(482\) 12.5795 10.5554i 0.572980 0.480787i
\(483\) 0 0
\(484\) 5.69287 2.07204i 0.258767 0.0941835i
\(485\) 1.41096 0.814620i 0.0640685 0.0369900i
\(486\) 0 0
\(487\) −9.18231 + 15.9042i −0.416090 + 0.720689i −0.995542 0.0943172i \(-0.969933\pi\)
0.579452 + 0.815006i \(0.303267\pi\)
\(488\) −10.2492 8.60012i −0.463960 0.389309i
\(489\) 0 0
\(490\) 0.811949 0.141905i 0.0366801 0.00641062i
\(491\) 17.9717 3.16890i 0.811053 0.143011i 0.247284 0.968943i \(-0.420462\pi\)
0.563769 + 0.825933i \(0.309351\pi\)
\(492\) 0 0
\(493\) −0.792114 2.17632i −0.0356750 0.0980163i
\(494\) 11.3999 6.58174i 0.512906 0.296126i
\(495\) 0 0
\(496\) 1.29038 0.745003i 0.0579399 0.0334516i
\(497\) 0.199037 1.12384i 0.00892805 0.0504110i
\(498\) 0 0
\(499\) 6.49963 + 36.8612i 0.290963 + 1.65013i 0.683172 + 0.730258i \(0.260600\pi\)
−0.392208 + 0.919876i \(0.628289\pi\)
\(500\) 1.20382 1.01013i 0.0538365 0.0451742i
\(501\) 0 0
\(502\) 2.01759 + 5.54328i 0.0900494 + 0.247409i
\(503\) −8.72136 15.1058i −0.388866 0.673536i 0.603431 0.797415i \(-0.293800\pi\)
−0.992297 + 0.123879i \(0.960466\pi\)
\(504\) 0 0
\(505\) −0.248072 + 0.429673i −0.0110391 + 0.0191202i
\(506\) −22.5339 3.97333i −1.00175 0.176636i
\(507\) 0 0
\(508\) 10.2918 + 3.74591i 0.456625 + 0.166198i
\(509\) −26.2302 9.54701i −1.16263 0.423164i −0.312595 0.949886i \(-0.601198\pi\)
−0.850037 + 0.526723i \(0.823421\pi\)
\(510\) 0 0
\(511\) −0.703004 + 3.96941i −0.0310991 + 0.175596i
\(512\) 1.92969i 0.0852812i
\(513\) 0 0
\(514\) −22.4597 12.9671i −0.990655 0.571955i
\(515\) 1.29582 + 0.228489i 0.0571008 + 0.0100684i
\(516\) 0 0
\(517\) −11.4483 13.6436i −0.503496 0.600043i
\(518\) 16.2222 + 5.91825i 0.712761 + 0.260033i
\(519\) 0 0
\(520\) −0.196139 + 1.11236i −0.00860127 + 0.0487802i
\(521\) −3.13445 5.42902i −0.137323 0.237850i 0.789160 0.614188i \(-0.210516\pi\)
−0.926482 + 0.376338i \(0.877183\pi\)
\(522\) 0 0
\(523\) 5.33996 + 3.08303i 0.233500 + 0.134811i 0.612186 0.790714i \(-0.290290\pi\)
−0.378686 + 0.925525i \(0.623624\pi\)
\(524\) −1.15938 + 6.57518i −0.0506478 + 0.287238i
\(525\) 0 0
\(526\) 19.5450 + 7.11378i 0.852200 + 0.310176i
\(527\) 2.96239 0.522349i 0.129044 0.0227539i
\(528\) 0 0
\(529\) −13.5054 11.3324i −0.587190 0.492711i
\(530\) 0.373862 0.647548i 0.0162395 0.0281277i
\(531\) 0 0
\(532\) 7.77036 13.4352i 0.336888 0.582491i
\(533\) 18.5593 22.1181i 0.803890 0.958039i
\(534\) 0 0
\(535\) −0.207850 + 0.571064i −0.00898615 + 0.0246892i
\(536\) 32.5172 5.73367i 1.40453 0.247657i
\(537\) 0 0
\(538\) −2.82420 7.75944i −0.121760 0.334533i
\(539\) 24.2720 + 14.0623i 1.04547 + 0.605708i
\(540\) 0 0
\(541\) −10.3506 17.9278i −0.445008 0.770777i 0.553045 0.833152i \(-0.313466\pi\)
−0.998053 + 0.0623747i \(0.980133\pi\)
\(542\) 4.58267 25.9896i 0.196843 1.11635i
\(543\) 0 0
\(544\) −0.657200 + 1.80564i −0.0281772 + 0.0774163i
\(545\) −0.272010 1.54264i −0.0116516 0.0660796i
\(546\) 0 0
\(547\) −12.9704 10.8834i −0.554573 0.465342i 0.321913 0.946769i \(-0.395674\pi\)
−0.876486 + 0.481427i \(0.840118\pi\)
\(548\) 17.3235i 0.740022i
\(549\) 0 0
\(550\) −17.8866 −0.762687
\(551\) 30.9340 11.2590i 1.31783 0.479651i
\(552\) 0 0
\(553\) −6.16415 + 1.08211i −0.262126 + 0.0460160i
\(554\) −0.933281 + 2.56417i −0.0396513 + 0.108941i
\(555\) 0 0
\(556\) 10.5408 12.5620i 0.447030 0.532749i
\(557\) 42.9293i 1.81897i −0.415735 0.909486i \(-0.636476\pi\)
0.415735 0.909486i \(-0.363524\pi\)
\(558\) 0 0
\(559\) −5.24610 3.02883i −0.221886 0.128106i
\(560\) −0.0202627 0.0558024i −0.000856257 0.00235808i
\(561\) 0 0
\(562\) −17.2001 + 14.4326i −0.725544 + 0.608804i
\(563\) −0.471251 2.67260i −0.0198609 0.112637i 0.973266 0.229682i \(-0.0737687\pi\)
−0.993127 + 0.117046i \(0.962658\pi\)
\(564\) 0 0
\(565\) −0.257967 + 0.307433i −0.0108527 + 0.0129338i
\(566\) 10.0043 0.420513
\(567\) 0 0
\(568\) −1.23562 −0.0518454
\(569\) 21.3534 25.4480i 0.895182 1.06684i −0.102217 0.994762i \(-0.532594\pi\)
0.997399 0.0720743i \(-0.0229619\pi\)
\(570\) 0 0
\(571\) 0.378167 + 2.14469i 0.0158258 + 0.0897526i 0.991698 0.128591i \(-0.0410456\pi\)
−0.975872 + 0.218344i \(0.929934\pi\)
\(572\) −11.0286 + 9.25410i −0.461129 + 0.386933i
\(573\) 0 0
\(574\) −3.97797 + 22.4610i −0.166037 + 0.937505i
\(575\) −27.5056 15.8803i −1.14706 0.662256i
\(576\) 0 0
\(577\) 34.2253i 1.42482i −0.701764 0.712410i \(-0.747604\pi\)
0.701764 0.712410i \(-0.252396\pi\)
\(578\) −9.72023 + 11.5841i −0.404308 + 0.481836i
\(579\) 0 0
\(580\) −0.361830 + 0.994121i −0.0150242 + 0.0412786i
\(581\) −6.57739 + 18.0289i −0.272876 + 0.747964i
\(582\) 0 0
\(583\) 23.9122 8.70333i 0.990342 0.360455i
\(584\) 4.36423 0.180593
\(585\) 0 0
\(586\) 4.32377i 0.178613i
\(587\) −10.2925 8.63644i −0.424817 0.356464i 0.405175 0.914239i \(-0.367211\pi\)
−0.829992 + 0.557775i \(0.811655\pi\)
\(588\) 0 0
\(589\) 7.42462 + 42.1071i 0.305926 + 1.73499i
\(590\) 0.00716644 0.0196896i 0.000295038 0.000810609i
\(591\) 0 0
\(592\) 0.215972 1.22484i 0.00887641 0.0503406i
\(593\) −1.95066 3.37864i −0.0801039 0.138744i 0.823190 0.567765i \(-0.192192\pi\)
−0.903294 + 0.429021i \(0.858859\pi\)
\(594\) 0 0
\(595\) 9.04589e−5 0.119853i 3.70846e−6 0.00491351i
\(596\) −6.66876 18.3223i −0.273163 0.750510i
\(597\) 0 0
\(598\) 16.8690 2.97447i 0.689826 0.121635i
\(599\) 3.18327 8.74596i 0.130065 0.357350i −0.857517 0.514456i \(-0.827994\pi\)
0.987582 + 0.157105i \(0.0502163\pi\)
\(600\) 0 0
\(601\) −20.1709 + 24.0388i −0.822789 + 0.980561i −0.999993 0.00361252i \(-0.998850\pi\)
0.177205 + 0.984174i \(0.443295\pi\)
\(602\) 4.78573 + 0.00361202i 0.195052 + 0.000147215i
\(603\) 0 0
\(604\) 2.54020 4.39975i 0.103359 0.179023i
\(605\) 0.509401 + 0.427438i 0.0207101 + 0.0173778i
\(606\) 0 0
\(607\) −7.05213 + 1.24348i −0.286237 + 0.0504714i −0.314923 0.949117i \(-0.601979\pi\)
0.0286860 + 0.999588i \(0.490868\pi\)
\(608\) −25.6653 9.34139i −1.04086 0.378843i
\(609\) 0 0
\(610\) 0.0955096 0.541662i 0.00386707 0.0219312i
\(611\) 11.5467 + 6.66650i 0.467130 + 0.269698i
\(612\) 0 0
\(613\) −17.4253 30.1815i −0.703801 1.21902i −0.967122 0.254311i \(-0.918151\pi\)
0.263321 0.964708i \(-0.415182\pi\)
\(614\) −3.18381 + 18.0563i −0.128488 + 0.728693i
\(615\) 0 0
\(616\) 10.4083 28.5296i 0.419363 1.14949i
\(617\) −4.32090 5.14944i −0.173953 0.207309i 0.672023 0.740530i \(-0.265426\pi\)
−0.845976 + 0.533222i \(0.820981\pi\)
\(618\) 0 0
\(619\) −33.9380 5.98419i −1.36408 0.240525i −0.556780 0.830660i \(-0.687963\pi\)
−0.807304 + 0.590135i \(0.799074\pi\)
\(620\) −1.18998 0.687033i −0.0477906 0.0275919i
\(621\) 0 0
\(622\) 13.2143i 0.529846i
\(623\) −26.2444 + 31.2290i −1.05146 + 1.25116i
\(624\) 0 0
\(625\) −23.2490 8.46196i −0.929962 0.338478i
\(626\) 9.99142 + 3.63658i 0.399338 + 0.145347i
\(627\) 0 0
\(628\) −5.39626 0.951506i −0.215334 0.0379692i
\(629\) 1.25545 2.17451i 0.0500582 0.0867033i
\(630\) 0 0
\(631\) 13.2483 + 22.9468i 0.527407 + 0.913496i 0.999490 + 0.0319417i \(0.0101691\pi\)
−0.472083 + 0.881554i \(0.656498\pi\)
\(632\) 2.31734 + 6.36685i 0.0921790 + 0.253260i
\(633\) 0 0
\(634\) 14.0475 11.7873i 0.557899 0.468132i
\(635\) 0.208754 + 1.18390i 0.00828416 + 0.0469818i
\(636\) 0 0
\(637\) −20.6749 3.67773i −0.819170 0.145717i
\(638\) 20.8923 12.0622i 0.827133 0.477546i
\(639\) 0 0
\(640\) 0.725326 0.418767i 0.0286710 0.0165532i
\(641\) −0.814710 2.23840i −0.0321791 0.0884114i 0.922563 0.385847i \(-0.126091\pi\)
−0.954742 + 0.297436i \(0.903869\pi\)
\(642\) 0 0
\(643\) 9.49012 1.67336i 0.374254 0.0659911i 0.0166424 0.999862i \(-0.494702\pi\)
0.357612 + 0.933870i \(0.383591\pi\)
\(644\) 15.4811 12.9703i 0.610039 0.511100i
\(645\) 0 0
\(646\) 1.15839 + 0.972007i 0.0455764 + 0.0382431i
\(647\) 1.16581 2.01925i 0.0458328 0.0793847i −0.842199 0.539167i \(-0.818739\pi\)
0.888032 + 0.459782i \(0.152073\pi\)
\(648\) 0 0
\(649\) 0.617553 0.356545i 0.0242411 0.0139956i
\(650\) 12.5825 4.57966i 0.493527 0.179629i
\(651\) 0 0
\(652\) 7.60572 6.38196i 0.297863 0.249937i
\(653\) −12.3603 14.7305i −0.483698 0.576448i 0.467905 0.883779i \(-0.345009\pi\)
−0.951603 + 0.307330i \(0.900564\pi\)
\(654\) 0 0
\(655\) −0.688655 + 0.250650i −0.0269080 + 0.00979370i
\(656\) 1.64294 0.0641460
\(657\) 0 0
\(658\) −10.5334 0.00795009i −0.410637 0.000309927i
\(659\) −38.6246 6.81055i −1.50460 0.265301i −0.640239 0.768176i \(-0.721165\pi\)
−0.864360 + 0.502874i \(0.832276\pi\)
\(660\) 0 0
\(661\) −22.2105 26.4694i −0.863888 1.02954i −0.999249 0.0387452i \(-0.987664\pi\)
0.135361 0.990796i \(-0.456781\pi\)
\(662\) 7.92573 + 9.44552i 0.308042 + 0.367110i
\(663\) 0 0
\(664\) 20.4611 + 3.60784i 0.794044 + 0.140011i
\(665\) 1.70359 + 0.00128578i 0.0660622 + 4.98602e-5i
\(666\) 0 0
\(667\) 42.8369 1.65865
\(668\) 4.93206 1.79512i 0.190827 0.0694554i
\(669\) 0 0
\(670\) 0.872509 + 1.03982i 0.0337079 + 0.0401716i
\(671\) 14.3391 12.0320i 0.553556 0.464489i
\(672\) 0 0
\(673\) 13.9024 5.06006i 0.535898 0.195051i −0.0598720 0.998206i \(-0.519069\pi\)
0.595770 + 0.803155i \(0.296847\pi\)
\(674\) −9.80042 + 5.65828i −0.377498 + 0.217949i
\(675\) 0 0
\(676\) −2.39540 + 4.14895i −0.0921307 + 0.159575i
\(677\) −14.3500 12.0411i −0.551516 0.462777i 0.323938 0.946078i \(-0.394993\pi\)
−0.875454 + 0.483302i \(0.839437\pi\)
\(678\) 0 0
\(679\) 25.1364 21.0596i 0.964647 0.808195i
\(680\) −0.127784 + 0.0225318i −0.00490030 + 0.000864055i
\(681\) 0 0
\(682\) 10.7167 + 29.4439i 0.410364 + 1.12746i
\(683\) 19.2619 11.1209i 0.737037 0.425529i −0.0839538 0.996470i \(-0.526755\pi\)
0.820991 + 0.570941i \(0.193421\pi\)
\(684\) 0 0
\(685\) 1.64674 0.950746i 0.0629187 0.0363261i
\(686\) 15.6025 5.63887i 0.595706 0.215293i
\(687\) 0 0
\(688\) −0.0598556 0.339458i −0.00228197 0.0129417i
\(689\) −14.5929 + 12.2449i −0.555946 + 0.466494i
\(690\) 0 0
\(691\) 0.935144 + 2.56929i 0.0355745 + 0.0977403i 0.956208 0.292687i \(-0.0945495\pi\)
−0.920634 + 0.390427i \(0.872327\pi\)
\(692\) 9.93535 + 17.2085i 0.377685 + 0.654170i
\(693\) 0 0
\(694\) −8.11734 + 14.0597i −0.308130 + 0.533697i
\(695\) 1.77263 + 0.312562i 0.0672396 + 0.0118562i
\(696\) 0 0
\(697\) 3.11681 + 1.13443i 0.118058 + 0.0429694i
\(698\) −15.1969 5.53123i −0.575212 0.209360i
\(699\) 0 0
\(700\) 10.1572 12.0863i 0.383905 0.456820i
\(701\) 7.89910i 0.298345i 0.988811 + 0.149173i \(0.0476610\pi\)
−0.988811 + 0.149173i \(0.952339\pi\)
\(702\) 0 0
\(703\) 30.9083 + 17.8449i 1.16573 + 0.673033i
\(704\) −21.0587 3.71322i −0.793680 0.139947i
\(705\) 0 0
\(706\) −9.00125 10.7273i −0.338766 0.403726i
\(707\) −3.42254 + 9.38131i −0.128718 + 0.352820i
\(708\) 0 0
\(709\) 6.03163 34.2071i 0.226523 1.28467i −0.633230 0.773964i \(-0.718271\pi\)
0.859753 0.510711i \(-0.170618\pi\)
\(710\) −0.0253977 0.0439901i −0.000953159 0.00165092i
\(711\) 0 0
\(712\) 38.2459 + 22.0813i 1.43332 + 0.827531i
\(713\) −9.66145 + 54.7928i −0.361824 + 2.05201i
\(714\) 0 0
\(715\) −1.48495 0.540478i −0.0555340 0.0202127i
\(716\) −12.2752 + 2.16446i −0.458747 + 0.0808895i
\(717\) 0 0
\(718\) 6.94020 + 5.82352i 0.259006 + 0.217332i
\(719\) 1.44565 2.50394i 0.0539137 0.0933812i −0.837809 0.545963i \(-0.816164\pi\)
0.891723 + 0.452582i \(0.149497\pi\)
\(720\) 0 0
\(721\) 26.4840 + 0.0199887i 0.986317 + 0.000744419i
\(722\) −2.87581 + 3.42726i −0.107027 + 0.127549i
\(723\) 0 0
\(724\) −6.78527 + 18.6424i −0.252172 + 0.692838i
\(725\) 32.9771 5.81475i 1.22474 0.215954i
\(726\) 0 0
\(727\) 8.56203 + 23.5240i 0.317548 + 0.872456i 0.991076 + 0.133295i \(0.0425557\pi\)
−0.673528 + 0.739161i \(0.735222\pi\)
\(728\) −0.0171587 + 22.7344i −0.000635945 + 0.842593i
\(729\) 0 0
\(730\) 0.0897052 + 0.155374i 0.00332014 + 0.00575065i
\(731\) 0.120839 0.685312i 0.00446939 0.0253472i
\(732\) 0 0
\(733\) 6.23827 17.1395i 0.230416 0.633062i −0.769569 0.638563i \(-0.779529\pi\)
0.999985 + 0.00550162i \(0.00175123\pi\)
\(734\) 4.33397 + 24.5792i 0.159970 + 0.907234i
\(735\) 0 0
\(736\) −27.2259 22.8452i −1.00356 0.842086i
\(737\) 46.1950i 1.70161i
\(738\) 0 0
\(739\) 23.7495 0.873641 0.436821 0.899549i \(-0.356104\pi\)
0.436821 + 0.899549i \(0.356104\pi\)
\(740\) −1.07779 + 0.392283i −0.0396203 + 0.0144206i
\(741\) 0 0
\(742\) 5.15801 14.1383i 0.189357 0.519034i
\(743\) −3.47920 + 9.55903i −0.127640 + 0.350687i −0.987008 0.160670i \(-0.948635\pi\)
0.859369 + 0.511357i \(0.170857\pi\)
\(744\) 0 0
\(745\) 1.37569 1.63949i 0.0504014 0.0600661i
\(746\) 17.6751i 0.647132i
\(747\) 0 0
\(748\) −1.43228 0.826928i −0.0523694 0.0302355i
\(749\) −2.13311 + 12.0443i −0.0779422 + 0.440090i
\(750\) 0 0
\(751\) −10.6919 + 8.97158i −0.390153 + 0.327378i −0.816673 0.577101i \(-0.804184\pi\)
0.426520 + 0.904478i \(0.359740\pi\)
\(752\) 0.131743 + 0.747150i 0.00480416 + 0.0272458i
\(753\) 0 0
\(754\) −11.6085 + 13.8345i −0.422757 + 0.503823i
\(755\) 0.557645 0.0202948
\(756\) 0 0
\(757\) −23.1271 −0.840570 −0.420285 0.907392i \(-0.638070\pi\)
−0.420285 + 0.907392i \(0.638070\pi\)
\(758\) 1.89803 2.26198i 0.0689395 0.0821589i
\(759\) 0 0
\(760\) −0.320265 1.81631i −0.0116172 0.0658846i
\(761\) −12.8791 + 10.8068i −0.466866 + 0.391747i −0.845650 0.533738i \(-0.820787\pi\)
0.378784 + 0.925485i \(0.376342\pi\)
\(762\) 0 0
\(763\) −10.7610 29.6352i −0.389575 1.07287i
\(764\) 10.7597 + 6.21212i 0.389273 + 0.224747i
\(765\) 0 0
\(766\) 27.6411i 0.998715i
\(767\) −0.343135 + 0.408933i −0.0123899 + 0.0147657i
\(768\) 0 0
\(769\) −5.01510 + 13.7789i −0.180849 + 0.496879i −0.996681 0.0814109i \(-0.974057\pi\)
0.815832 + 0.578290i \(0.196280\pi\)
\(770\) 1.22964 0.215862i 0.0443132 0.00777913i
\(771\) 0 0
\(772\) −20.5171 + 7.46762i −0.738427 + 0.268765i
\(773\) 48.1829 1.73302 0.866508 0.499163i \(-0.166359\pi\)
0.866508 + 0.499163i \(0.166359\pi\)
\(774\) 0 0
\(775\) 43.4926i 1.56230i
\(776\) −27.1959 22.8201i −0.976276 0.819193i
\(777\) 0 0
\(778\) −2.09088 11.8580i −0.0749617 0.425129i
\(779\) −16.1246 + 44.3020i −0.577725 + 1.58729i
\(780\) 0 0
\(781\) 0.300184 1.70243i 0.0107414 0.0609176i
\(782\) 0.983875 + 1.70412i 0.0351833 + 0.0609393i
\(783\) 0 0
\(784\) −0.595895 1.03573i −0.0212820 0.0369903i
\(785\) −0.205709 0.565180i −0.00734206 0.0201722i
\(786\) 0 0
\(787\) −24.8204 + 4.37651i −0.884753 + 0.156006i −0.597519 0.801855i \(-0.703847\pi\)
−0.287234 + 0.957860i \(0.592736\pi\)
\(788\) −8.97909 + 24.6698i −0.319867 + 0.878827i
\(789\) 0 0
\(790\) −0.179038 + 0.213370i −0.00636990 + 0.00759135i
\(791\) −4.04411 + 6.99242i −0.143792 + 0.248622i
\(792\) 0 0
\(793\) −7.00637 + 12.1354i −0.248804 + 0.430940i
\(794\) −22.2012 18.6290i −0.787892 0.661120i
\(795\) 0 0
\(796\) −8.55679 + 1.50879i −0.303287 + 0.0534777i
\(797\) 48.1785 + 17.5355i 1.70657 + 0.621140i 0.996546 0.0830393i \(-0.0264627\pi\)
0.710022 + 0.704179i \(0.248685\pi\)
\(798\) 0 0
\(799\) −0.265968 + 1.50838i −0.00940927 + 0.0533626i
\(800\) −24.0603 13.8912i −0.850661 0.491129i
\(801\) 0 0
\(802\) 17.0847 + 29.5916i 0.603283 + 1.04492i
\(803\) −1.06025 + 6.01300i −0.0374156 + 0.212194i
\(804\) 0 0
\(805\) 2.08256 + 0.759772i 0.0734007 + 0.0267784i
\(806\) −15.0776 17.9687i −0.531084 0.632922i
\(807\) 0 0
\(808\) 10.6469 + 1.87734i 0.374557 + 0.0660445i
\(809\) 17.0109 + 9.82125i 0.598072 + 0.345297i 0.768283 0.640111i \(-0.221112\pi\)
−0.170211 + 0.985408i \(0.554445\pi\)
\(810\) 0 0
\(811\) 18.4996i 0.649608i 0.945781 + 0.324804i \(0.105298\pi\)
−0.945781 + 0.324804i \(0.894702\pi\)
\(812\) −3.71337 + 20.9670i −0.130314 + 0.735798i
\(813\) 0 0
\(814\) 24.5774 + 8.94543i 0.861436 + 0.313537i
\(815\) 1.02408 + 0.372733i 0.0358718 + 0.0130563i
\(816\) 0 0
\(817\) 9.74096 + 1.71759i 0.340793 + 0.0600910i
\(818\) −10.1493 + 17.5791i −0.354862 + 0.614639i
\(819\) 0 0
\(820\) −0.757550 1.31212i −0.0264548 0.0458211i
\(821\) 10.8254 + 29.7424i 0.377808 + 1.03802i 0.972263 + 0.233889i \(0.0751453\pi\)
−0.594456 + 0.804128i \(0.702632\pi\)
\(822\) 0 0
\(823\) 21.5880 18.1145i 0.752509 0.631430i −0.183656 0.982991i \(-0.558793\pi\)
0.936165 + 0.351560i \(0.114349\pi\)
\(824\) −4.97885 28.2365i −0.173447 0.983665i
\(825\) 0 0
\(826\) 0.0735472 0.415274i 0.00255903 0.0144492i
\(827\) 26.8439 15.4983i 0.933454 0.538930i 0.0455515 0.998962i \(-0.485495\pi\)
0.887902 + 0.460032i \(0.152162\pi\)
\(828\) 0 0
\(829\) −8.33259 + 4.81082i −0.289403 + 0.167087i −0.637672 0.770308i \(-0.720103\pi\)
0.348270 + 0.937394i \(0.386769\pi\)
\(830\) 0.292125 + 0.802607i 0.0101398 + 0.0278589i
\(831\) 0 0
\(832\) 15.7647 2.77974i 0.546543 0.0963702i
\(833\) −0.415313 2.37633i −0.0143897 0.0823349i
\(834\) 0 0
\(835\) 0.441323 + 0.370314i 0.0152726 + 0.0128152i
\(836\) 11.7539 20.3583i 0.406517 0.704107i
\(837\) 0 0
\(838\) −1.03063 + 0.595033i −0.0356024 + 0.0205551i
\(839\) −46.3318 + 16.8634i −1.59955 + 0.582189i −0.979335 0.202242i \(-0.935177\pi\)
−0.620216 + 0.784431i \(0.712955\pi\)
\(840\) 0 0
\(841\) −12.3820 + 10.3898i −0.426967 + 0.358268i
\(842\) 2.64909 + 3.15707i 0.0912938 + 0.108800i
\(843\) 0 0
\(844\) −5.15906 + 1.87774i −0.177582 + 0.0646346i
\(845\) −0.525857 −0.0180900
\(846\) 0 0
\(847\) 11.5861 + 6.70089i 0.398102 + 0.230245i
\(848\) −1.06750 0.188229i −0.0366581 0.00646382i
\(849\) 0 0
\(850\) 0.988736 + 1.17833i 0.0339134 + 0.0404164i
\(851\) 29.8524 + 35.5767i 1.02333 + 1.21955i
\(852\) 0 0
\(853\) 15.1514 + 2.67160i 0.518774 + 0.0914738i 0.426903 0.904297i \(-0.359604\pi\)
0.0918701 + 0.995771i \(0.470716\pi\)
\(854\) 0.00835540 11.0705i 0.000285916 0.378824i
\(855\) 0 0
\(856\) 13.2423 0.452613
\(857\) 2.89686 1.05437i 0.0989548 0.0360166i −0.292068 0.956397i \(-0.594343\pi\)
0.391023 + 0.920381i \(0.372121\pi\)
\(858\) 0 0
\(859\) −20.1100 23.9661i −0.686143 0.817713i 0.304741 0.952435i \(-0.401430\pi\)
−0.990883 + 0.134722i \(0.956986\pi\)
\(860\) −0.243505 + 0.204325i −0.00830345 + 0.00696742i
\(861\) 0 0
\(862\) −14.9384 + 5.43713i −0.508804 + 0.185189i
\(863\) 5.09715 2.94284i 0.173509 0.100176i −0.410730 0.911757i \(-0.634726\pi\)
0.584239 + 0.811581i \(0.301393\pi\)
\(864\) 0 0
\(865\) −1.09054 + 1.88888i −0.0370796 + 0.0642238i
\(866\) −0.838783 0.703822i −0.0285030 0.0239168i
\(867\) 0 0
\(868\) −25.9815 9.47869i −0.881868 0.321728i
\(869\) −9.33518 + 1.64604i −0.316674 + 0.0558382i
\(870\) 0 0
\(871\) −11.8277 32.4963i −0.400766 1.10110i
\(872\) −29.5603 + 17.0667i −1.00104 + 0.577950i
\(873\) 0 0
\(874\) −24.2222 + 13.9847i −0.819329 + 0.473040i
\(875\) 3.41862 + 0.605456i 0.115570 + 0.0204681i
\(876\) 0 0
\(877\) 2.60088 + 14.7504i 0.0878256 + 0.498084i 0.996711 + 0.0810379i \(0.0258235\pi\)
−0.908885 + 0.417046i \(0.863065\pi\)
\(878\) 3.34257 2.80475i 0.112806 0.0946556i
\(879\) 0 0
\(880\) −0.0307544 0.0844970i −0.00103673 0.00284839i
\(881\) −11.8885 20.5915i −0.400533 0.693744i 0.593257 0.805013i \(-0.297842\pi\)
−0.993790 + 0.111269i \(0.964508\pi\)
\(882\) 0 0
\(883\) −11.3387 + 19.6392i −0.381578 + 0.660913i −0.991288 0.131712i \(-0.957953\pi\)
0.609710 + 0.792625i \(0.291286\pi\)
\(884\) 1.21928 + 0.214992i 0.0410088 + 0.00723096i
\(885\) 0 0
\(886\) −19.5794 7.12631i −0.657782 0.239413i
\(887\) 10.8540 + 3.95053i 0.364442 + 0.132646i 0.517749 0.855533i \(-0.326770\pi\)
−0.153307 + 0.988179i \(0.548992\pi\)
\(888\) 0 0
\(889\) 8.25857 + 22.7436i 0.276984 + 0.762797i
\(890\) 1.81549i 0.0608554i
\(891\) 0 0
\(892\) 24.4581 + 14.1209i 0.818917 + 0.472802i
\(893\) −21.4400 3.78044i −0.717461 0.126508i
\(894\) 0 0
\(895\) −0.879440 1.04808i −0.0293964 0.0350333i
\(896\) 12.9217 10.8260i 0.431685 0.361672i
\(897\) 0 0
\(898\) −3.58033 + 20.3051i −0.119477 + 0.677589i
\(899\) −29.3300 50.8011i −0.978212 1.69431i
\(900\) 0 0
\(901\) −1.89518 1.09418i −0.0631375 0.0364525i
\(902\) −5.99948 + 34.0247i −0.199761 + 1.13290i
\(903\) 0 0
\(904\) 8.21764 + 2.99098i 0.273315 + 0.0994784i
\(905\) −2.14450 + 0.378134i −0.0712857 + 0.0125696i
\(906\) 0 0
\(907\) −17.1444 14.3858i −0.569269 0.477673i 0.312134 0.950038i \(-0.398956\pi\)
−0.881403 + 0.472365i \(0.843401\pi\)
\(908\) −1.46639 + 2.53986i −0.0486639 + 0.0842883i
\(909\) 0 0
\(910\) −0.809736 + 0.466687i −0.0268425 + 0.0154705i
\(911\) 29.6477 35.3327i 0.982271 1.17063i −0.00306421 0.999995i \(-0.500975\pi\)
0.985335 0.170630i \(-0.0545802\pi\)
\(912\) 0 0
\(913\) −9.94171 + 27.3146i −0.329023 + 0.903982i
\(914\) 23.4670 4.13787i 0.776221 0.136869i
\(915\) 0 0
\(916\) 0.107311 + 0.294836i 0.00354567 + 0.00974165i
\(917\) −12.7798 + 7.36558i −0.422027 + 0.243233i
\(918\) 0 0
\(919\) −8.95419 15.5091i −0.295371 0.511598i 0.679700 0.733490i \(-0.262110\pi\)
−0.975071 + 0.221892i \(0.928777\pi\)
\(920\) 0.416752 2.36352i 0.0137399 0.0779228i
\(921\) 0 0
\(922\) 8.41101 23.1091i 0.277002 0.761056i
\(923\) 0.224720 + 1.27445i 0.00739674 + 0.0419490i
\(924\) 0 0
\(925\) 27.8105 + 23.3358i 0.914404 + 0.767276i
\(926\) 2.85879i 0.0939456i
\(927\) 0 0
\(928\) 37.4713 1.23005
\(929\) 27.6851 10.0766i 0.908320 0.330602i 0.154738 0.987955i \(-0.450547\pi\)
0.753582 + 0.657354i \(0.228324\pi\)
\(930\) 0 0
\(931\) 33.7769 5.90323i 1.10699 0.193470i
\(932\) −11.8913 + 32.6711i −0.389513 + 1.07018i
\(933\) 0 0
\(934\) −9.73256 + 11.5988i −0.318459 + 0.379525i
\(935\) 0.181534i 0.00593679i
\(936\) 0 0
\(937\) 42.6087 + 24.6001i 1.39196 + 0.803651i 0.993533 0.113547i \(-0.0362211\pi\)
0.398432 + 0.917198i \(0.369554\pi\)
\(938\) 20.9156 + 17.5772i 0.682919 + 0.573916i
\(939\) 0 0
\(940\) 0.535957 0.449721i 0.0174810 0.0146683i
\(941\) −2.46173 13.9611i −0.0802500 0.455120i −0.998281 0.0586114i \(-0.981333\pi\)
0.918031 0.396509i \(-0.129778\pi\)
\(942\) 0 0
\(943\) −39.4342 + 46.9959i −1.28416 + 1.53040i
\(944\) −0.0303757 −0.000988646
\(945\) 0 0
\(946\) 7.24863 0.235673
\(947\) −10.2975 + 12.2720i −0.334622 + 0.398787i −0.906950 0.421237i \(-0.861596\pi\)
0.572328 + 0.820025i \(0.306040\pi\)
\(948\) 0 0
\(949\) −0.793715 4.50138i −0.0257651 0.146121i
\(950\) −16.7487 + 14.0538i −0.543399 + 0.455966i
\(951\) 0 0
\(952\) −2.45482 + 0.891384i −0.0795612 + 0.0288899i
\(953\) −38.0570 21.9722i −1.23279 0.711750i −0.265177 0.964200i \(-0.585430\pi\)
−0.967610 + 0.252450i \(0.918764\pi\)
\(954\) 0 0
\(955\) 1.36374i 0.0441294i
\(956\) 1.45318 1.73183i 0.0469991 0.0560114i
\(957\) 0 0
\(958\) −11.5588 + 31.7574i −0.373446 + 1.02604i
\(959\) 29.3368 24.5788i 0.947335 0.793691i
\(960\) 0 0
\(961\) 42.4645 15.4558i 1.36982 0.498575i
\(962\) −19.5796 −0.631272
\(963\) 0 0
\(964\) 21.9535i 0.707075i
\(965\) −1.83588 1.54049i −0.0590990 0.0495900i
\(966\) 0 0
\(967\) −5.36073 30.4022i −0.172389 0.977669i −0.941114 0.338089i \(-0.890219\pi\)
0.768725 0.639580i \(-0.220892\pi\)
\(968\) 4.95589 13.6162i 0.159288 0.437642i
\(969\) 0 0
\(970\) 0.253431 1.43728i 0.00813718 0.0461482i
\(971\) 26.8436 + 46.4945i 0.861453 + 1.49208i 0.870527 + 0.492121i \(0.163778\pi\)
−0.00907360 + 0.999959i \(0.502888\pi\)
\(972\) 0 0
\(973\) 36.2289 + 0.0273437i 1.16145 + 0.000876598i
\(974\) 5.62650 + 15.4587i 0.180285 + 0.495328i
\(975\) 0 0
\(976\) −0.785242 + 0.138459i −0.0251350 + 0.00443198i
\(977\) 8.60683 23.6471i 0.275357 0.756537i −0.722517 0.691354i \(-0.757015\pi\)
0.997873 0.0651829i \(-0.0207631\pi\)
\(978\) 0 0
\(979\) −39.7149 + 47.3304i −1.26929 + 1.51269i
\(980\) −0.552409 + 0.953473i −0.0176461 + 0.0304576i
\(981\) 0 0
\(982\) 8.17359 14.1571i 0.260830 0.451771i
\(983\) −20.1305 16.8915i −0.642064 0.538756i 0.262587 0.964908i \(-0.415424\pi\)
−0.904651 + 0.426152i \(0.859869\pi\)
\(984\) 0 0
\(985\) −2.83787 + 0.500392i −0.0904220 + 0.0159438i
\(986\) −1.94951 0.709565i −0.0620852 0.0225972i
\(987\) 0 0
\(988\) −3.05588 + 17.3307i −0.0972204 + 0.551364i
\(989\) 11.1468 + 6.43559i 0.354447 + 0.204640i
\(990\) 0 0
\(991\) −18.0463 31.2570i −0.573258 0.992912i −0.996228 0.0867687i \(-0.972346\pi\)
0.422970 0.906144i \(-0.360987\pi\)
\(992\) −8.45129 + 47.9296i −0.268329 + 1.52177i
\(993\) 0 0
\(994\) −0.656585 0.783688i −0.0208256 0.0248571i
\(995\) −0.613037 0.730589i −0.0194346 0.0231612i
\(996\) 0 0
\(997\) −12.4645 2.19782i −0.394754 0.0696058i −0.0272522 0.999629i \(-0.508676\pi\)
−0.367502 + 0.930023i \(0.619787\pi\)
\(998\) 29.0371 + 16.7646i 0.919153 + 0.530673i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.ba.a.143.14 132
3.2 odd 2 189.2.ba.a.101.9 132
7.5 odd 6 567.2.bd.a.467.9 132
21.5 even 6 189.2.bd.a.47.14 yes 132
27.4 even 9 189.2.bd.a.185.14 yes 132
27.23 odd 18 567.2.bd.a.17.9 132
189.131 even 18 inner 567.2.ba.a.341.14 132
189.166 odd 18 189.2.ba.a.131.9 yes 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.ba.a.101.9 132 3.2 odd 2
189.2.ba.a.131.9 yes 132 189.166 odd 18
189.2.bd.a.47.14 yes 132 21.5 even 6
189.2.bd.a.185.14 yes 132 27.4 even 9
567.2.ba.a.143.14 132 1.1 even 1 trivial
567.2.ba.a.341.14 132 189.131 even 18 inner
567.2.bd.a.17.9 132 27.23 odd 18
567.2.bd.a.467.9 132 7.5 odd 6