Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [567,2,Mod(143,567)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(567, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([7, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("567.143");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 567 = 3^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 567.ba (of order \(18\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.52751779461\) |
Analytic rank: | \(0\) |
Dimension: | \(132\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{18})\) |
Twist minimal: | no (minimal twist has level 189) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
143.1 | −1.75048 | + | 2.08614i | 0 | −0.940509 | − | 5.33389i | −2.08375 | + | 1.74847i | 0 | −0.122613 | + | 2.64291i | 8.05677 | + | 4.65158i | 0 | − | 7.40767i | |||||||
143.2 | −1.61592 | + | 1.92578i | 0 | −0.750127 | − | 4.25418i | 2.10349 | − | 1.76504i | 0 | −0.122508 | − | 2.64291i | 5.05050 | + | 2.91591i | 0 | 6.90302i | ||||||||
143.3 | −1.47978 | + | 1.76353i | 0 | −0.573000 | − | 3.24965i | 1.41208 | − | 1.18487i | 0 | −2.40040 | + | 1.11270i | 2.59137 | + | 1.49613i | 0 | 4.24358i | ||||||||
143.4 | −1.34473 | + | 1.60259i | 0 | −0.412694 | − | 2.34051i | −0.275976 | + | 0.231571i | 0 | 2.18789 | + | 1.48767i | 0.682329 | + | 0.393943i | 0 | − | 0.753678i | |||||||
143.5 | −1.06515 | + | 1.26940i | 0 | −0.129525 | − | 0.734574i | 2.93903 | − | 2.46614i | 0 | 2.02233 | + | 1.70592i | −1.79971 | − | 1.03907i | 0 | 6.35759i | ||||||||
143.6 | −1.02575 | + | 1.22245i | 0 | −0.0949069 | − | 0.538244i | −1.45366 | + | 1.21977i | 0 | −2.50057 | − | 0.864386i | −2.00866 | − | 1.15970i | 0 | − | 3.02821i | |||||||
143.7 | −0.905074 | + | 1.07862i | 0 | 0.00302336 | + | 0.0171463i | −1.61655 | + | 1.35644i | 0 | 1.08812 | − | 2.41164i | −2.46004 | − | 1.42030i | 0 | − | 2.97133i | |||||||
143.8 | −0.594351 | + | 0.708320i | 0 | 0.198832 | + | 1.12763i | 0.386349 | − | 0.324185i | 0 | 0.529787 | − | 2.59217i | −2.51844 | − | 1.45402i | 0 | 0.466338i | ||||||||
143.9 | −0.572822 | + | 0.682663i | 0 | 0.209393 | + | 1.18753i | 1.06212 | − | 0.891222i | 0 | −1.58403 | + | 2.11916i | −2.47415 | − | 1.42845i | 0 | 1.23558i | ||||||||
143.10 | −0.204899 | + | 0.244189i | 0 | 0.329652 | + | 1.86955i | 2.18935 | − | 1.83708i | 0 | 0.468007 | − | 2.60403i | −1.07619 | − | 0.621337i | 0 | 0.911030i | ||||||||
143.11 | −0.00959490 | + | 0.0114348i | 0 | 0.347258 | + | 1.96940i | −1.26073 | + | 1.05788i | 0 | 1.81613 | + | 1.92397i | −0.0517058 | − | 0.0298524i | 0 | − | 0.0245663i | |||||||
143.12 | 0.0103898 | − | 0.0123821i | 0 | 0.347251 | + | 1.96936i | −3.05823 | + | 2.56616i | 0 | −2.57348 | + | 0.614149i | 0.0559891 | + | 0.0323253i | 0 | 0.0645293i | ||||||||
143.13 | 0.159953 | − | 0.190625i | 0 | 0.336544 | + | 1.90863i | −1.62936 | + | 1.36719i | 0 | 2.64099 | − | 0.158668i | 0.848674 | + | 0.489982i | 0 | 0.529283i | ||||||||
143.14 | 0.575801 | − | 0.686212i | 0 | 0.207955 | + | 1.17937i | −0.100696 | + | 0.0844942i | 0 | −1.70219 | + | 2.02548i | 2.48059 | + | 1.43217i | 0 | 0.117751i | ||||||||
143.15 | 0.582560 | − | 0.694268i | 0 | 0.204665 | + | 1.16071i | 0.931176 | − | 0.781349i | 0 | −2.06750 | − | 1.65089i | 2.49483 | + | 1.44039i | 0 | − | 1.10167i | |||||||
143.16 | 0.720590 | − | 0.858766i | 0 | 0.129068 | + | 0.731979i | 3.14015 | − | 2.63490i | 0 | 0.864922 | + | 2.50038i | 2.66330 | + | 1.53766i | 0 | − | 4.59533i | |||||||
143.17 | 1.07972 | − | 1.28676i | 0 | −0.142658 | − | 0.809053i | −2.87107 | + | 2.40911i | 0 | −1.86335 | − | 1.87828i | 1.71431 | + | 0.989760i | 0 | 6.29553i | ||||||||
143.18 | 1.08992 | − | 1.29892i | 0 | −0.151961 | − | 0.861812i | −1.13756 | + | 0.954530i | 0 | 2.51978 | − | 0.806679i | 1.65184 | + | 0.953692i | 0 | 2.51796i | ||||||||
143.19 | 1.22264 | − | 1.45709i | 0 | −0.280959 | − | 1.59339i | 0.691544 | − | 0.580274i | 0 | −0.448602 | + | 2.60744i | 0.629295 | + | 0.363324i | 0 | − | 1.71711i | |||||||
143.20 | 1.44973 | − | 1.72772i | 0 | −0.536009 | − | 3.03986i | 2.61524 | − | 2.19445i | 0 | −0.126746 | − | 2.64271i | −2.12267 | − | 1.22552i | 0 | − | 7.69979i | |||||||
See next 80 embeddings (of 132 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
189.ba | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 567.2.ba.a | 132 | |
3.b | odd | 2 | 1 | 189.2.ba.a | ✓ | 132 | |
7.d | odd | 6 | 1 | 567.2.bd.a | 132 | ||
21.g | even | 6 | 1 | 189.2.bd.a | yes | 132 | |
27.e | even | 9 | 1 | 189.2.bd.a | yes | 132 | |
27.f | odd | 18 | 1 | 567.2.bd.a | 132 | ||
189.x | odd | 18 | 1 | 189.2.ba.a | ✓ | 132 | |
189.ba | even | 18 | 1 | inner | 567.2.ba.a | 132 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
189.2.ba.a | ✓ | 132 | 3.b | odd | 2 | 1 | |
189.2.ba.a | ✓ | 132 | 189.x | odd | 18 | 1 | |
189.2.bd.a | yes | 132 | 21.g | even | 6 | 1 | |
189.2.bd.a | yes | 132 | 27.e | even | 9 | 1 | |
567.2.ba.a | 132 | 1.a | even | 1 | 1 | trivial | |
567.2.ba.a | 132 | 189.ba | even | 18 | 1 | inner | |
567.2.bd.a | 132 | 7.d | odd | 6 | 1 | ||
567.2.bd.a | 132 | 27.f | odd | 18 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(567, [\chi])\).