Properties

Label 567.2.a.i.1.4
Level $567$
Weight $2$
Character 567.1
Self dual yes
Analytic conductor $4.528$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [567,2,Mod(1,567)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("567.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(567, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.456850\) of defining polynomial
Character \(\chi\) \(=\) 567.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.18890 q^{2} +2.79129 q^{4} +0.913701 q^{5} -1.00000 q^{7} +1.73205 q^{8} +2.00000 q^{10} +2.64575 q^{11} +4.00000 q^{13} -2.18890 q^{14} -1.79129 q^{16} +3.46410 q^{17} +5.58258 q^{19} +2.55040 q^{20} +5.79129 q^{22} -3.46410 q^{23} -4.16515 q^{25} +8.75560 q^{26} -2.79129 q^{28} -8.75560 q^{29} -9.16515 q^{31} -7.38505 q^{32} +7.58258 q^{34} -0.913701 q^{35} +3.00000 q^{37} +12.2197 q^{38} +1.58258 q^{40} -0.913701 q^{41} +0.582576 q^{43} +7.38505 q^{44} -7.58258 q^{46} -13.1334 q^{47} +1.00000 q^{49} -9.11710 q^{50} +11.1652 q^{52} -8.66025 q^{53} +2.41742 q^{55} -1.73205 q^{56} -19.1652 q^{58} +3.46410 q^{59} +11.5826 q^{61} -20.0616 q^{62} -12.5826 q^{64} +3.65480 q^{65} +8.58258 q^{67} +9.66930 q^{68} -2.00000 q^{70} -4.47315 q^{71} +15.1652 q^{73} +6.56670 q^{74} +15.5826 q^{76} -2.64575 q^{77} +0.582576 q^{79} -1.63670 q^{80} -2.00000 q^{82} -9.66930 q^{83} +3.16515 q^{85} +1.27520 q^{86} +4.58258 q^{88} -1.82740 q^{89} -4.00000 q^{91} -9.66930 q^{92} -28.7477 q^{94} +5.10080 q^{95} -1.58258 q^{97} +2.18890 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 4 q^{7} + 8 q^{10} + 16 q^{13} + 2 q^{16} + 4 q^{19} + 14 q^{22} + 20 q^{25} - 2 q^{28} + 12 q^{34} + 12 q^{37} - 12 q^{40} - 16 q^{43} - 12 q^{46} + 4 q^{49} + 8 q^{52} + 28 q^{55} - 40 q^{58}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.18890 1.54779 0.773893 0.633316i \(-0.218307\pi\)
0.773893 + 0.633316i \(0.218307\pi\)
\(3\) 0 0
\(4\) 2.79129 1.39564
\(5\) 0.913701 0.408619 0.204310 0.978906i \(-0.434505\pi\)
0.204310 + 0.978906i \(0.434505\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) 2.64575 0.797724 0.398862 0.917011i \(-0.369405\pi\)
0.398862 + 0.917011i \(0.369405\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) −2.18890 −0.585008
\(15\) 0 0
\(16\) −1.79129 −0.447822
\(17\) 3.46410 0.840168 0.420084 0.907485i \(-0.362001\pi\)
0.420084 + 0.907485i \(0.362001\pi\)
\(18\) 0 0
\(19\) 5.58258 1.28073 0.640365 0.768070i \(-0.278783\pi\)
0.640365 + 0.768070i \(0.278783\pi\)
\(20\) 2.55040 0.570287
\(21\) 0 0
\(22\) 5.79129 1.23471
\(23\) −3.46410 −0.722315 −0.361158 0.932505i \(-0.617618\pi\)
−0.361158 + 0.932505i \(0.617618\pi\)
\(24\) 0 0
\(25\) −4.16515 −0.833030
\(26\) 8.75560 1.71712
\(27\) 0 0
\(28\) −2.79129 −0.527504
\(29\) −8.75560 −1.62587 −0.812937 0.582351i \(-0.802133\pi\)
−0.812937 + 0.582351i \(0.802133\pi\)
\(30\) 0 0
\(31\) −9.16515 −1.64611 −0.823055 0.567962i \(-0.807732\pi\)
−0.823055 + 0.567962i \(0.807732\pi\)
\(32\) −7.38505 −1.30551
\(33\) 0 0
\(34\) 7.58258 1.30040
\(35\) −0.913701 −0.154444
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) 12.2197 1.98230
\(39\) 0 0
\(40\) 1.58258 0.250227
\(41\) −0.913701 −0.142696 −0.0713480 0.997451i \(-0.522730\pi\)
−0.0713480 + 0.997451i \(0.522730\pi\)
\(42\) 0 0
\(43\) 0.582576 0.0888420 0.0444210 0.999013i \(-0.485856\pi\)
0.0444210 + 0.999013i \(0.485856\pi\)
\(44\) 7.38505 1.11334
\(45\) 0 0
\(46\) −7.58258 −1.11799
\(47\) −13.1334 −1.91570 −0.957852 0.287262i \(-0.907255\pi\)
−0.957852 + 0.287262i \(0.907255\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −9.11710 −1.28935
\(51\) 0 0
\(52\) 11.1652 1.54833
\(53\) −8.66025 −1.18958 −0.594789 0.803882i \(-0.702764\pi\)
−0.594789 + 0.803882i \(0.702764\pi\)
\(54\) 0 0
\(55\) 2.41742 0.325965
\(56\) −1.73205 −0.231455
\(57\) 0 0
\(58\) −19.1652 −2.51651
\(59\) 3.46410 0.450988 0.225494 0.974245i \(-0.427600\pi\)
0.225494 + 0.974245i \(0.427600\pi\)
\(60\) 0 0
\(61\) 11.5826 1.48300 0.741498 0.670955i \(-0.234115\pi\)
0.741498 + 0.670955i \(0.234115\pi\)
\(62\) −20.0616 −2.54783
\(63\) 0 0
\(64\) −12.5826 −1.57282
\(65\) 3.65480 0.453322
\(66\) 0 0
\(67\) 8.58258 1.04853 0.524264 0.851556i \(-0.324340\pi\)
0.524264 + 0.851556i \(0.324340\pi\)
\(68\) 9.66930 1.17258
\(69\) 0 0
\(70\) −2.00000 −0.239046
\(71\) −4.47315 −0.530866 −0.265433 0.964129i \(-0.585515\pi\)
−0.265433 + 0.964129i \(0.585515\pi\)
\(72\) 0 0
\(73\) 15.1652 1.77495 0.887473 0.460859i \(-0.152459\pi\)
0.887473 + 0.460859i \(0.152459\pi\)
\(74\) 6.56670 0.763364
\(75\) 0 0
\(76\) 15.5826 1.78744
\(77\) −2.64575 −0.301511
\(78\) 0 0
\(79\) 0.582576 0.0655449 0.0327724 0.999463i \(-0.489566\pi\)
0.0327724 + 0.999463i \(0.489566\pi\)
\(80\) −1.63670 −0.182989
\(81\) 0 0
\(82\) −2.00000 −0.220863
\(83\) −9.66930 −1.06134 −0.530672 0.847577i \(-0.678060\pi\)
−0.530672 + 0.847577i \(0.678060\pi\)
\(84\) 0 0
\(85\) 3.16515 0.343309
\(86\) 1.27520 0.137508
\(87\) 0 0
\(88\) 4.58258 0.488504
\(89\) −1.82740 −0.193704 −0.0968521 0.995299i \(-0.530877\pi\)
−0.0968521 + 0.995299i \(0.530877\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) −9.66930 −1.00809
\(93\) 0 0
\(94\) −28.7477 −2.96510
\(95\) 5.10080 0.523331
\(96\) 0 0
\(97\) −1.58258 −0.160686 −0.0803431 0.996767i \(-0.525602\pi\)
−0.0803431 + 0.996767i \(0.525602\pi\)
\(98\) 2.18890 0.221112
\(99\) 0 0
\(100\) −11.6261 −1.16261
\(101\) 8.75560 0.871215 0.435608 0.900137i \(-0.356534\pi\)
0.435608 + 0.900137i \(0.356534\pi\)
\(102\) 0 0
\(103\) −5.58258 −0.550068 −0.275034 0.961435i \(-0.588689\pi\)
−0.275034 + 0.961435i \(0.588689\pi\)
\(104\) 6.92820 0.679366
\(105\) 0 0
\(106\) −18.9564 −1.84121
\(107\) 16.5022 1.59532 0.797662 0.603105i \(-0.206070\pi\)
0.797662 + 0.603105i \(0.206070\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 5.29150 0.504525
\(111\) 0 0
\(112\) 1.79129 0.169261
\(113\) 3.36875 0.316905 0.158453 0.987367i \(-0.449349\pi\)
0.158453 + 0.987367i \(0.449349\pi\)
\(114\) 0 0
\(115\) −3.16515 −0.295152
\(116\) −24.4394 −2.26914
\(117\) 0 0
\(118\) 7.58258 0.698033
\(119\) −3.46410 −0.317554
\(120\) 0 0
\(121\) −4.00000 −0.363636
\(122\) 25.3531 2.29536
\(123\) 0 0
\(124\) −25.5826 −2.29738
\(125\) −8.37420 −0.749012
\(126\) 0 0
\(127\) −16.5826 −1.47147 −0.735733 0.677272i \(-0.763162\pi\)
−0.735733 + 0.677272i \(0.763162\pi\)
\(128\) −12.7719 −1.12889
\(129\) 0 0
\(130\) 8.00000 0.701646
\(131\) −8.03260 −0.701812 −0.350906 0.936411i \(-0.614126\pi\)
−0.350906 + 0.936411i \(0.614126\pi\)
\(132\) 0 0
\(133\) −5.58258 −0.484071
\(134\) 18.7864 1.62290
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) −14.1425 −1.20827 −0.604136 0.796881i \(-0.706482\pi\)
−0.604136 + 0.796881i \(0.706482\pi\)
\(138\) 0 0
\(139\) 1.58258 0.134232 0.0671162 0.997745i \(-0.478620\pi\)
0.0671162 + 0.997745i \(0.478620\pi\)
\(140\) −2.55040 −0.215548
\(141\) 0 0
\(142\) −9.79129 −0.821667
\(143\) 10.5830 0.884995
\(144\) 0 0
\(145\) −8.00000 −0.664364
\(146\) 33.1950 2.74724
\(147\) 0 0
\(148\) 8.37386 0.688327
\(149\) 21.0707 1.72618 0.863088 0.505054i \(-0.168527\pi\)
0.863088 + 0.505054i \(0.168527\pi\)
\(150\) 0 0
\(151\) −11.4174 −0.929137 −0.464568 0.885537i \(-0.653791\pi\)
−0.464568 + 0.885537i \(0.653791\pi\)
\(152\) 9.66930 0.784284
\(153\) 0 0
\(154\) −5.79129 −0.466675
\(155\) −8.37420 −0.672632
\(156\) 0 0
\(157\) 19.1652 1.52955 0.764773 0.644300i \(-0.222851\pi\)
0.764773 + 0.644300i \(0.222851\pi\)
\(158\) 1.27520 0.101450
\(159\) 0 0
\(160\) −6.74773 −0.533455
\(161\) 3.46410 0.273009
\(162\) 0 0
\(163\) 5.41742 0.424325 0.212163 0.977234i \(-0.431949\pi\)
0.212163 + 0.977234i \(0.431949\pi\)
\(164\) −2.55040 −0.199153
\(165\) 0 0
\(166\) −21.1652 −1.64273
\(167\) 7.84190 0.606825 0.303412 0.952859i \(-0.401874\pi\)
0.303412 + 0.952859i \(0.401874\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 6.92820 0.531369
\(171\) 0 0
\(172\) 1.62614 0.123992
\(173\) 14.9608 1.13745 0.568725 0.822528i \(-0.307437\pi\)
0.568725 + 0.822528i \(0.307437\pi\)
\(174\) 0 0
\(175\) 4.16515 0.314856
\(176\) −4.73930 −0.357238
\(177\) 0 0
\(178\) −4.00000 −0.299813
\(179\) 12.2197 0.913344 0.456672 0.889635i \(-0.349041\pi\)
0.456672 + 0.889635i \(0.349041\pi\)
\(180\) 0 0
\(181\) −5.16515 −0.383923 −0.191961 0.981402i \(-0.561485\pi\)
−0.191961 + 0.981402i \(0.561485\pi\)
\(182\) −8.75560 −0.649009
\(183\) 0 0
\(184\) −6.00000 −0.442326
\(185\) 2.74110 0.201530
\(186\) 0 0
\(187\) 9.16515 0.670222
\(188\) −36.6591 −2.67364
\(189\) 0 0
\(190\) 11.1652 0.810005
\(191\) −0.818350 −0.0592137 −0.0296069 0.999562i \(-0.509426\pi\)
−0.0296069 + 0.999562i \(0.509426\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) −3.46410 −0.248708
\(195\) 0 0
\(196\) 2.79129 0.199378
\(197\) −10.4877 −0.747214 −0.373607 0.927587i \(-0.621879\pi\)
−0.373607 + 0.927587i \(0.621879\pi\)
\(198\) 0 0
\(199\) 10.7477 0.761886 0.380943 0.924598i \(-0.375599\pi\)
0.380943 + 0.924598i \(0.375599\pi\)
\(200\) −7.21425 −0.510125
\(201\) 0 0
\(202\) 19.1652 1.34846
\(203\) 8.75560 0.614523
\(204\) 0 0
\(205\) −0.834849 −0.0583084
\(206\) −12.2197 −0.851387
\(207\) 0 0
\(208\) −7.16515 −0.496814
\(209\) 14.7701 1.02167
\(210\) 0 0
\(211\) −15.7477 −1.08412 −0.542059 0.840340i \(-0.682355\pi\)
−0.542059 + 0.840340i \(0.682355\pi\)
\(212\) −24.1733 −1.66023
\(213\) 0 0
\(214\) 36.1216 2.46922
\(215\) 0.532300 0.0363025
\(216\) 0 0
\(217\) 9.16515 0.622171
\(218\) 13.1334 0.889507
\(219\) 0 0
\(220\) 6.74773 0.454932
\(221\) 13.8564 0.932083
\(222\) 0 0
\(223\) 22.0000 1.47323 0.736614 0.676313i \(-0.236423\pi\)
0.736614 + 0.676313i \(0.236423\pi\)
\(224\) 7.38505 0.493435
\(225\) 0 0
\(226\) 7.37386 0.490502
\(227\) −2.74110 −0.181933 −0.0909666 0.995854i \(-0.528996\pi\)
−0.0909666 + 0.995854i \(0.528996\pi\)
\(228\) 0 0
\(229\) −23.9129 −1.58021 −0.790104 0.612973i \(-0.789973\pi\)
−0.790104 + 0.612973i \(0.789973\pi\)
\(230\) −6.92820 −0.456832
\(231\) 0 0
\(232\) −15.1652 −0.995641
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −12.0000 −0.782794
\(236\) 9.66930 0.629418
\(237\) 0 0
\(238\) −7.58258 −0.491505
\(239\) −9.38325 −0.606952 −0.303476 0.952839i \(-0.598147\pi\)
−0.303476 + 0.952839i \(0.598147\pi\)
\(240\) 0 0
\(241\) 27.5826 1.77675 0.888375 0.459119i \(-0.151835\pi\)
0.888375 + 0.459119i \(0.151835\pi\)
\(242\) −8.75560 −0.562832
\(243\) 0 0
\(244\) 32.3303 2.06974
\(245\) 0.913701 0.0583742
\(246\) 0 0
\(247\) 22.3303 1.42084
\(248\) −15.8745 −1.00803
\(249\) 0 0
\(250\) −18.3303 −1.15931
\(251\) −2.55040 −0.160980 −0.0804899 0.996755i \(-0.525648\pi\)
−0.0804899 + 0.996755i \(0.525648\pi\)
\(252\) 0 0
\(253\) −9.16515 −0.576208
\(254\) −36.2976 −2.27752
\(255\) 0 0
\(256\) −2.79129 −0.174455
\(257\) −31.3676 −1.95666 −0.978329 0.207056i \(-0.933612\pi\)
−0.978329 + 0.207056i \(0.933612\pi\)
\(258\) 0 0
\(259\) −3.00000 −0.186411
\(260\) 10.2016 0.632677
\(261\) 0 0
\(262\) −17.5826 −1.08626
\(263\) 9.57395 0.590355 0.295178 0.955442i \(-0.404621\pi\)
0.295178 + 0.955442i \(0.404621\pi\)
\(264\) 0 0
\(265\) −7.91288 −0.486084
\(266\) −12.2197 −0.749238
\(267\) 0 0
\(268\) 23.9564 1.46337
\(269\) 6.92820 0.422420 0.211210 0.977441i \(-0.432260\pi\)
0.211210 + 0.977441i \(0.432260\pi\)
\(270\) 0 0
\(271\) −18.7477 −1.13884 −0.569422 0.822046i \(-0.692833\pi\)
−0.569422 + 0.822046i \(0.692833\pi\)
\(272\) −6.20520 −0.376246
\(273\) 0 0
\(274\) −30.9564 −1.87015
\(275\) −11.0200 −0.664528
\(276\) 0 0
\(277\) 7.00000 0.420589 0.210295 0.977638i \(-0.432558\pi\)
0.210295 + 0.977638i \(0.432558\pi\)
\(278\) 3.46410 0.207763
\(279\) 0 0
\(280\) −1.58258 −0.0945770
\(281\) 8.46955 0.505251 0.252626 0.967564i \(-0.418706\pi\)
0.252626 + 0.967564i \(0.418706\pi\)
\(282\) 0 0
\(283\) 8.41742 0.500364 0.250182 0.968199i \(-0.419510\pi\)
0.250182 + 0.968199i \(0.419510\pi\)
\(284\) −12.4859 −0.740899
\(285\) 0 0
\(286\) 23.1652 1.36978
\(287\) 0.913701 0.0539340
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) −17.5112 −1.02829
\(291\) 0 0
\(292\) 42.3303 2.47719
\(293\) 16.4068 0.958496 0.479248 0.877680i \(-0.340909\pi\)
0.479248 + 0.877680i \(0.340909\pi\)
\(294\) 0 0
\(295\) 3.16515 0.184282
\(296\) 5.19615 0.302020
\(297\) 0 0
\(298\) 46.1216 2.67175
\(299\) −13.8564 −0.801337
\(300\) 0 0
\(301\) −0.582576 −0.0335791
\(302\) −24.9916 −1.43811
\(303\) 0 0
\(304\) −10.0000 −0.573539
\(305\) 10.5830 0.605981
\(306\) 0 0
\(307\) −20.3303 −1.16031 −0.580156 0.814505i \(-0.697008\pi\)
−0.580156 + 0.814505i \(0.697008\pi\)
\(308\) −7.38505 −0.420802
\(309\) 0 0
\(310\) −18.3303 −1.04109
\(311\) −33.9180 −1.92331 −0.961657 0.274255i \(-0.911569\pi\)
−0.961657 + 0.274255i \(0.911569\pi\)
\(312\) 0 0
\(313\) 17.1652 0.970232 0.485116 0.874450i \(-0.338777\pi\)
0.485116 + 0.874450i \(0.338777\pi\)
\(314\) 41.9506 2.36741
\(315\) 0 0
\(316\) 1.62614 0.0914773
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) −23.1652 −1.29700
\(320\) −11.4967 −0.642685
\(321\) 0 0
\(322\) 7.58258 0.422560
\(323\) 19.3386 1.07603
\(324\) 0 0
\(325\) −16.6606 −0.924164
\(326\) 11.8582 0.656765
\(327\) 0 0
\(328\) −1.58258 −0.0873831
\(329\) 13.1334 0.724068
\(330\) 0 0
\(331\) −22.3303 −1.22738 −0.613692 0.789545i \(-0.710316\pi\)
−0.613692 + 0.789545i \(0.710316\pi\)
\(332\) −26.9898 −1.48126
\(333\) 0 0
\(334\) 17.1652 0.939235
\(335\) 7.84190 0.428449
\(336\) 0 0
\(337\) −1.83485 −0.0999506 −0.0499753 0.998750i \(-0.515914\pi\)
−0.0499753 + 0.998750i \(0.515914\pi\)
\(338\) 6.56670 0.357182
\(339\) 0 0
\(340\) 8.83485 0.479137
\(341\) −24.2487 −1.31314
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 1.00905 0.0544044
\(345\) 0 0
\(346\) 32.7477 1.76053
\(347\) 22.1751 1.19042 0.595210 0.803570i \(-0.297069\pi\)
0.595210 + 0.803570i \(0.297069\pi\)
\(348\) 0 0
\(349\) 2.74773 0.147082 0.0735412 0.997292i \(-0.476570\pi\)
0.0735412 + 0.997292i \(0.476570\pi\)
\(350\) 9.11710 0.487330
\(351\) 0 0
\(352\) −19.5390 −1.04143
\(353\) 9.28790 0.494345 0.247173 0.968971i \(-0.420499\pi\)
0.247173 + 0.968971i \(0.420499\pi\)
\(354\) 0 0
\(355\) −4.08712 −0.216922
\(356\) −5.10080 −0.270342
\(357\) 0 0
\(358\) 26.7477 1.41366
\(359\) 25.0671 1.32299 0.661494 0.749950i \(-0.269923\pi\)
0.661494 + 0.749950i \(0.269923\pi\)
\(360\) 0 0
\(361\) 12.1652 0.640271
\(362\) −11.3060 −0.594230
\(363\) 0 0
\(364\) −11.1652 −0.585213
\(365\) 13.8564 0.725277
\(366\) 0 0
\(367\) −27.1652 −1.41801 −0.709005 0.705204i \(-0.750856\pi\)
−0.709005 + 0.705204i \(0.750856\pi\)
\(368\) 6.20520 0.323469
\(369\) 0 0
\(370\) 6.00000 0.311925
\(371\) 8.66025 0.449618
\(372\) 0 0
\(373\) 29.3303 1.51867 0.759333 0.650703i \(-0.225525\pi\)
0.759333 + 0.650703i \(0.225525\pi\)
\(374\) 20.0616 1.03736
\(375\) 0 0
\(376\) −22.7477 −1.17312
\(377\) −35.0224 −1.80375
\(378\) 0 0
\(379\) 16.9129 0.868756 0.434378 0.900731i \(-0.356968\pi\)
0.434378 + 0.900731i \(0.356968\pi\)
\(380\) 14.2378 0.730384
\(381\) 0 0
\(382\) −1.79129 −0.0916503
\(383\) 12.4104 0.634142 0.317071 0.948402i \(-0.397301\pi\)
0.317071 + 0.948402i \(0.397301\pi\)
\(384\) 0 0
\(385\) −2.41742 −0.123203
\(386\) 30.6446 1.55977
\(387\) 0 0
\(388\) −4.41742 −0.224261
\(389\) 31.7490 1.60974 0.804869 0.593452i \(-0.202235\pi\)
0.804869 + 0.593452i \(0.202235\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 1.73205 0.0874818
\(393\) 0 0
\(394\) −22.9564 −1.15653
\(395\) 0.532300 0.0267829
\(396\) 0 0
\(397\) 7.58258 0.380559 0.190279 0.981730i \(-0.439061\pi\)
0.190279 + 0.981730i \(0.439061\pi\)
\(398\) 23.5257 1.17924
\(399\) 0 0
\(400\) 7.46099 0.373049
\(401\) −17.6066 −0.879230 −0.439615 0.898186i \(-0.644885\pi\)
−0.439615 + 0.898186i \(0.644885\pi\)
\(402\) 0 0
\(403\) −36.6606 −1.82619
\(404\) 24.4394 1.21591
\(405\) 0 0
\(406\) 19.1652 0.951150
\(407\) 7.93725 0.393435
\(408\) 0 0
\(409\) 36.7477 1.81706 0.908529 0.417822i \(-0.137206\pi\)
0.908529 + 0.417822i \(0.137206\pi\)
\(410\) −1.82740 −0.0902489
\(411\) 0 0
\(412\) −15.5826 −0.767698
\(413\) −3.46410 −0.170457
\(414\) 0 0
\(415\) −8.83485 −0.433686
\(416\) −29.5402 −1.44833
\(417\) 0 0
\(418\) 32.3303 1.58133
\(419\) −29.0079 −1.41713 −0.708565 0.705646i \(-0.750657\pi\)
−0.708565 + 0.705646i \(0.750657\pi\)
\(420\) 0 0
\(421\) 2.16515 0.105523 0.0527615 0.998607i \(-0.483198\pi\)
0.0527615 + 0.998607i \(0.483198\pi\)
\(422\) −34.4702 −1.67798
\(423\) 0 0
\(424\) −15.0000 −0.728464
\(425\) −14.4285 −0.699885
\(426\) 0 0
\(427\) −11.5826 −0.560520
\(428\) 46.0623 2.22650
\(429\) 0 0
\(430\) 1.16515 0.0561886
\(431\) −4.91010 −0.236511 −0.118256 0.992983i \(-0.537730\pi\)
−0.118256 + 0.992983i \(0.537730\pi\)
\(432\) 0 0
\(433\) 23.9129 1.14918 0.574590 0.818442i \(-0.305162\pi\)
0.574590 + 0.818442i \(0.305162\pi\)
\(434\) 20.0616 0.962988
\(435\) 0 0
\(436\) 16.7477 0.802071
\(437\) −19.3386 −0.925091
\(438\) 0 0
\(439\) 16.4174 0.783561 0.391780 0.920059i \(-0.371859\pi\)
0.391780 + 0.920059i \(0.371859\pi\)
\(440\) 4.18710 0.199612
\(441\) 0 0
\(442\) 30.3303 1.44267
\(443\) 17.3205 0.822922 0.411461 0.911427i \(-0.365019\pi\)
0.411461 + 0.911427i \(0.365019\pi\)
\(444\) 0 0
\(445\) −1.66970 −0.0791512
\(446\) 48.1558 2.28024
\(447\) 0 0
\(448\) 12.5826 0.594471
\(449\) −36.9452 −1.74355 −0.871775 0.489906i \(-0.837031\pi\)
−0.871775 + 0.489906i \(0.837031\pi\)
\(450\) 0 0
\(451\) −2.41742 −0.113832
\(452\) 9.40315 0.442287
\(453\) 0 0
\(454\) −6.00000 −0.281594
\(455\) −3.65480 −0.171340
\(456\) 0 0
\(457\) −5.33030 −0.249341 −0.124671 0.992198i \(-0.539787\pi\)
−0.124671 + 0.992198i \(0.539787\pi\)
\(458\) −52.3429 −2.44582
\(459\) 0 0
\(460\) −8.83485 −0.411927
\(461\) −23.7164 −1.10458 −0.552292 0.833651i \(-0.686247\pi\)
−0.552292 + 0.833651i \(0.686247\pi\)
\(462\) 0 0
\(463\) −24.9129 −1.15780 −0.578900 0.815399i \(-0.696518\pi\)
−0.578900 + 0.815399i \(0.696518\pi\)
\(464\) 15.6838 0.728102
\(465\) 0 0
\(466\) 0 0
\(467\) 9.66930 0.447442 0.223721 0.974653i \(-0.428180\pi\)
0.223721 + 0.974653i \(0.428180\pi\)
\(468\) 0 0
\(469\) −8.58258 −0.396307
\(470\) −26.2668 −1.21160
\(471\) 0 0
\(472\) 6.00000 0.276172
\(473\) 1.54135 0.0708714
\(474\) 0 0
\(475\) −23.2523 −1.06689
\(476\) −9.66930 −0.443192
\(477\) 0 0
\(478\) −20.5390 −0.939433
\(479\) 17.7019 0.808821 0.404410 0.914578i \(-0.367477\pi\)
0.404410 + 0.914578i \(0.367477\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 60.3755 2.75003
\(483\) 0 0
\(484\) −11.1652 −0.507507
\(485\) −1.44600 −0.0656595
\(486\) 0 0
\(487\) 2.58258 0.117028 0.0585138 0.998287i \(-0.481364\pi\)
0.0585138 + 0.998287i \(0.481364\pi\)
\(488\) 20.0616 0.908146
\(489\) 0 0
\(490\) 2.00000 0.0903508
\(491\) 33.0043 1.48946 0.744732 0.667364i \(-0.232577\pi\)
0.744732 + 0.667364i \(0.232577\pi\)
\(492\) 0 0
\(493\) −30.3303 −1.36601
\(494\) 48.8788 2.19916
\(495\) 0 0
\(496\) 16.4174 0.737164
\(497\) 4.47315 0.200648
\(498\) 0 0
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) −23.3748 −1.04535
\(501\) 0 0
\(502\) −5.58258 −0.249163
\(503\) 26.2668 1.17118 0.585590 0.810608i \(-0.300863\pi\)
0.585590 + 0.810608i \(0.300863\pi\)
\(504\) 0 0
\(505\) 8.00000 0.355995
\(506\) −20.0616 −0.891847
\(507\) 0 0
\(508\) −46.2867 −2.05364
\(509\) −8.56490 −0.379633 −0.189816 0.981820i \(-0.560789\pi\)
−0.189816 + 0.981820i \(0.560789\pi\)
\(510\) 0 0
\(511\) −15.1652 −0.670867
\(512\) 19.4340 0.858868
\(513\) 0 0
\(514\) −68.6606 −3.02849
\(515\) −5.10080 −0.224768
\(516\) 0 0
\(517\) −34.7477 −1.52820
\(518\) −6.56670 −0.288524
\(519\) 0 0
\(520\) 6.33030 0.277602
\(521\) 3.46410 0.151765 0.0758825 0.997117i \(-0.475823\pi\)
0.0758825 + 0.997117i \(0.475823\pi\)
\(522\) 0 0
\(523\) −15.5826 −0.681378 −0.340689 0.940176i \(-0.610660\pi\)
−0.340689 + 0.940176i \(0.610660\pi\)
\(524\) −22.4213 −0.979479
\(525\) 0 0
\(526\) 20.9564 0.913744
\(527\) −31.7490 −1.38301
\(528\) 0 0
\(529\) −11.0000 −0.478261
\(530\) −17.3205 −0.752355
\(531\) 0 0
\(532\) −15.5826 −0.675590
\(533\) −3.65480 −0.158307
\(534\) 0 0
\(535\) 15.0780 0.651880
\(536\) 14.8655 0.642090
\(537\) 0 0
\(538\) 15.1652 0.653816
\(539\) 2.64575 0.113961
\(540\) 0 0
\(541\) 11.0000 0.472927 0.236463 0.971640i \(-0.424012\pi\)
0.236463 + 0.971640i \(0.424012\pi\)
\(542\) −41.0369 −1.76269
\(543\) 0 0
\(544\) −25.5826 −1.09684
\(545\) 5.48220 0.234832
\(546\) 0 0
\(547\) 32.9129 1.40725 0.703627 0.710570i \(-0.251563\pi\)
0.703627 + 0.710570i \(0.251563\pi\)
\(548\) −39.4757 −1.68632
\(549\) 0 0
\(550\) −24.1216 −1.02855
\(551\) −48.8788 −2.08231
\(552\) 0 0
\(553\) −0.582576 −0.0247736
\(554\) 15.3223 0.650982
\(555\) 0 0
\(556\) 4.41742 0.187341
\(557\) −29.8263 −1.26378 −0.631890 0.775058i \(-0.717720\pi\)
−0.631890 + 0.775058i \(0.717720\pi\)
\(558\) 0 0
\(559\) 2.33030 0.0985613
\(560\) 1.63670 0.0691632
\(561\) 0 0
\(562\) 18.5390 0.782021
\(563\) −20.5939 −0.867930 −0.433965 0.900930i \(-0.642886\pi\)
−0.433965 + 0.900930i \(0.642886\pi\)
\(564\) 0 0
\(565\) 3.07803 0.129494
\(566\) 18.4249 0.774457
\(567\) 0 0
\(568\) −7.74773 −0.325087
\(569\) 33.0997 1.38761 0.693805 0.720163i \(-0.255933\pi\)
0.693805 + 0.720163i \(0.255933\pi\)
\(570\) 0 0
\(571\) −19.1652 −0.802037 −0.401018 0.916070i \(-0.631344\pi\)
−0.401018 + 0.916070i \(0.631344\pi\)
\(572\) 29.5402 1.23514
\(573\) 0 0
\(574\) 2.00000 0.0834784
\(575\) 14.4285 0.601710
\(576\) 0 0
\(577\) 5.25227 0.218655 0.109327 0.994006i \(-0.465130\pi\)
0.109327 + 0.994006i \(0.465130\pi\)
\(578\) −10.9445 −0.455231
\(579\) 0 0
\(580\) −22.3303 −0.927215
\(581\) 9.66930 0.401150
\(582\) 0 0
\(583\) −22.9129 −0.948954
\(584\) 26.2668 1.08693
\(585\) 0 0
\(586\) 35.9129 1.48355
\(587\) −19.1479 −0.790319 −0.395159 0.918613i \(-0.629311\pi\)
−0.395159 + 0.918613i \(0.629311\pi\)
\(588\) 0 0
\(589\) −51.1652 −2.10822
\(590\) 6.92820 0.285230
\(591\) 0 0
\(592\) −5.37386 −0.220864
\(593\) −11.8383 −0.486141 −0.243070 0.970009i \(-0.578155\pi\)
−0.243070 + 0.970009i \(0.578155\pi\)
\(594\) 0 0
\(595\) −3.16515 −0.129759
\(596\) 58.8143 2.40913
\(597\) 0 0
\(598\) −30.3303 −1.24030
\(599\) −11.4014 −0.465847 −0.232923 0.972495i \(-0.574829\pi\)
−0.232923 + 0.972495i \(0.574829\pi\)
\(600\) 0 0
\(601\) 13.5826 0.554045 0.277022 0.960863i \(-0.410652\pi\)
0.277022 + 0.960863i \(0.410652\pi\)
\(602\) −1.27520 −0.0519733
\(603\) 0 0
\(604\) −31.8693 −1.29674
\(605\) −3.65480 −0.148589
\(606\) 0 0
\(607\) 12.4174 0.504008 0.252004 0.967726i \(-0.418910\pi\)
0.252004 + 0.967726i \(0.418910\pi\)
\(608\) −41.2276 −1.67200
\(609\) 0 0
\(610\) 23.1652 0.937930
\(611\) −52.5336 −2.12528
\(612\) 0 0
\(613\) 1.00000 0.0403896 0.0201948 0.999796i \(-0.493571\pi\)
0.0201948 + 0.999796i \(0.493571\pi\)
\(614\) −44.5010 −1.79592
\(615\) 0 0
\(616\) −4.58258 −0.184637
\(617\) −38.6772 −1.55709 −0.778543 0.627591i \(-0.784041\pi\)
−0.778543 + 0.627591i \(0.784041\pi\)
\(618\) 0 0
\(619\) 17.9129 0.719979 0.359990 0.932956i \(-0.382780\pi\)
0.359990 + 0.932956i \(0.382780\pi\)
\(620\) −23.3748 −0.938755
\(621\) 0 0
\(622\) −74.2432 −2.97688
\(623\) 1.82740 0.0732133
\(624\) 0 0
\(625\) 13.1742 0.526970
\(626\) 37.5728 1.50171
\(627\) 0 0
\(628\) 53.4955 2.13470
\(629\) 10.3923 0.414368
\(630\) 0 0
\(631\) −12.8348 −0.510947 −0.255474 0.966816i \(-0.582231\pi\)
−0.255474 + 0.966816i \(0.582231\pi\)
\(632\) 1.00905 0.0401379
\(633\) 0 0
\(634\) 0 0
\(635\) −15.1515 −0.601269
\(636\) 0 0
\(637\) 4.00000 0.158486
\(638\) −50.7062 −2.00748
\(639\) 0 0
\(640\) −11.6697 −0.461285
\(641\) 12.1244 0.478883 0.239442 0.970911i \(-0.423036\pi\)
0.239442 + 0.970911i \(0.423036\pi\)
\(642\) 0 0
\(643\) 2.33030 0.0918982 0.0459491 0.998944i \(-0.485369\pi\)
0.0459491 + 0.998944i \(0.485369\pi\)
\(644\) 9.66930 0.381024
\(645\) 0 0
\(646\) 42.3303 1.66546
\(647\) 6.01450 0.236455 0.118227 0.992987i \(-0.462279\pi\)
0.118227 + 0.992987i \(0.462279\pi\)
\(648\) 0 0
\(649\) 9.16515 0.359764
\(650\) −36.4684 −1.43041
\(651\) 0 0
\(652\) 15.1216 0.592207
\(653\) 12.1244 0.474463 0.237231 0.971453i \(-0.423760\pi\)
0.237231 + 0.971453i \(0.423760\pi\)
\(654\) 0 0
\(655\) −7.33939 −0.286774
\(656\) 1.63670 0.0639024
\(657\) 0 0
\(658\) 28.7477 1.12070
\(659\) −41.1323 −1.60229 −0.801143 0.598473i \(-0.795774\pi\)
−0.801143 + 0.598473i \(0.795774\pi\)
\(660\) 0 0
\(661\) −8.00000 −0.311164 −0.155582 0.987823i \(-0.549725\pi\)
−0.155582 + 0.987823i \(0.549725\pi\)
\(662\) −48.8788 −1.89973
\(663\) 0 0
\(664\) −16.7477 −0.649938
\(665\) −5.10080 −0.197801
\(666\) 0 0
\(667\) 30.3303 1.17439
\(668\) 21.8890 0.846911
\(669\) 0 0
\(670\) 17.1652 0.663148
\(671\) 30.6446 1.18302
\(672\) 0 0
\(673\) −26.4955 −1.02132 −0.510662 0.859781i \(-0.670600\pi\)
−0.510662 + 0.859781i \(0.670600\pi\)
\(674\) −4.01630 −0.154702
\(675\) 0 0
\(676\) 8.37386 0.322072
\(677\) 43.5873 1.67520 0.837598 0.546286i \(-0.183959\pi\)
0.837598 + 0.546286i \(0.183959\pi\)
\(678\) 0 0
\(679\) 1.58258 0.0607337
\(680\) 5.48220 0.210233
\(681\) 0 0
\(682\) −53.0780 −2.03246
\(683\) −11.4014 −0.436261 −0.218130 0.975920i \(-0.569996\pi\)
−0.218130 + 0.975920i \(0.569996\pi\)
\(684\) 0 0
\(685\) −12.9220 −0.493723
\(686\) −2.18890 −0.0835726
\(687\) 0 0
\(688\) −1.04356 −0.0397854
\(689\) −34.6410 −1.31972
\(690\) 0 0
\(691\) 29.1652 1.10949 0.554747 0.832019i \(-0.312815\pi\)
0.554747 + 0.832019i \(0.312815\pi\)
\(692\) 41.7599 1.58747
\(693\) 0 0
\(694\) 48.5390 1.84252
\(695\) 1.44600 0.0548499
\(696\) 0 0
\(697\) −3.16515 −0.119889
\(698\) 6.01450 0.227652
\(699\) 0 0
\(700\) 11.6261 0.439427
\(701\) −29.4449 −1.11212 −0.556059 0.831143i \(-0.687687\pi\)
−0.556059 + 0.831143i \(0.687687\pi\)
\(702\) 0 0
\(703\) 16.7477 0.631652
\(704\) −33.2904 −1.25468
\(705\) 0 0
\(706\) 20.3303 0.765141
\(707\) −8.75560 −0.329288
\(708\) 0 0
\(709\) 15.0000 0.563337 0.281668 0.959512i \(-0.409112\pi\)
0.281668 + 0.959512i \(0.409112\pi\)
\(710\) −8.94630 −0.335749
\(711\) 0 0
\(712\) −3.16515 −0.118619
\(713\) 31.7490 1.18901
\(714\) 0 0
\(715\) 9.66970 0.361626
\(716\) 34.1087 1.27470
\(717\) 0 0
\(718\) 54.8693 2.04770
\(719\) −14.4285 −0.538093 −0.269046 0.963127i \(-0.586708\pi\)
−0.269046 + 0.963127i \(0.586708\pi\)
\(720\) 0 0
\(721\) 5.58258 0.207906
\(722\) 26.6283 0.991003
\(723\) 0 0
\(724\) −14.4174 −0.535819
\(725\) 36.4684 1.35440
\(726\) 0 0
\(727\) −36.2432 −1.34419 −0.672093 0.740467i \(-0.734604\pi\)
−0.672093 + 0.740467i \(0.734604\pi\)
\(728\) −6.92820 −0.256776
\(729\) 0 0
\(730\) 30.3303 1.12257
\(731\) 2.01810 0.0746422
\(732\) 0 0
\(733\) −16.7477 −0.618591 −0.309296 0.950966i \(-0.600093\pi\)
−0.309296 + 0.950966i \(0.600093\pi\)
\(734\) −59.4618 −2.19478
\(735\) 0 0
\(736\) 25.5826 0.942986
\(737\) 22.7074 0.836436
\(738\) 0 0
\(739\) −28.5826 −1.05143 −0.525714 0.850662i \(-0.676202\pi\)
−0.525714 + 0.850662i \(0.676202\pi\)
\(740\) 7.65120 0.281264
\(741\) 0 0
\(742\) 18.9564 0.695913
\(743\) 34.2041 1.25483 0.627413 0.778687i \(-0.284114\pi\)
0.627413 + 0.778687i \(0.284114\pi\)
\(744\) 0 0
\(745\) 19.2523 0.705349
\(746\) 64.2011 2.35057
\(747\) 0 0
\(748\) 25.5826 0.935392
\(749\) −16.5022 −0.602976
\(750\) 0 0
\(751\) −18.5826 −0.678088 −0.339044 0.940771i \(-0.610104\pi\)
−0.339044 + 0.940771i \(0.610104\pi\)
\(752\) 23.5257 0.857894
\(753\) 0 0
\(754\) −76.6606 −2.79181
\(755\) −10.4321 −0.379663
\(756\) 0 0
\(757\) −25.1652 −0.914643 −0.457321 0.889301i \(-0.651191\pi\)
−0.457321 + 0.889301i \(0.651191\pi\)
\(758\) 37.0206 1.34465
\(759\) 0 0
\(760\) 8.83485 0.320474
\(761\) −14.5794 −0.528503 −0.264252 0.964454i \(-0.585125\pi\)
−0.264252 + 0.964454i \(0.585125\pi\)
\(762\) 0 0
\(763\) −6.00000 −0.217215
\(764\) −2.28425 −0.0826413
\(765\) 0 0
\(766\) 27.1652 0.981517
\(767\) 13.8564 0.500326
\(768\) 0 0
\(769\) 19.0780 0.687971 0.343986 0.938975i \(-0.388223\pi\)
0.343986 + 0.938975i \(0.388223\pi\)
\(770\) −5.29150 −0.190693
\(771\) 0 0
\(772\) 39.0780 1.40645
\(773\) 10.7737 0.387503 0.193752 0.981051i \(-0.437934\pi\)
0.193752 + 0.981051i \(0.437934\pi\)
\(774\) 0 0
\(775\) 38.1742 1.37126
\(776\) −2.74110 −0.0983998
\(777\) 0 0
\(778\) 69.4955 2.49153
\(779\) −5.10080 −0.182755
\(780\) 0 0
\(781\) −11.8348 −0.423484
\(782\) −26.2668 −0.939299
\(783\) 0 0
\(784\) −1.79129 −0.0639746
\(785\) 17.5112 0.625002
\(786\) 0 0
\(787\) 8.08712 0.288275 0.144137 0.989558i \(-0.453959\pi\)
0.144137 + 0.989558i \(0.453959\pi\)
\(788\) −29.2741 −1.04285
\(789\) 0 0
\(790\) 1.16515 0.0414542
\(791\) −3.36875 −0.119779
\(792\) 0 0
\(793\) 46.3303 1.64524
\(794\) 16.5975 0.589024
\(795\) 0 0
\(796\) 30.0000 1.06332
\(797\) 2.20880 0.0782398 0.0391199 0.999235i \(-0.487545\pi\)
0.0391199 + 0.999235i \(0.487545\pi\)
\(798\) 0 0
\(799\) −45.4955 −1.60951
\(800\) 30.7599 1.08753
\(801\) 0 0
\(802\) −38.5390 −1.36086
\(803\) 40.1232 1.41592
\(804\) 0 0
\(805\) 3.16515 0.111557
\(806\) −80.2464 −2.82656
\(807\) 0 0
\(808\) 15.1652 0.533508
\(809\) 41.8553 1.47155 0.735776 0.677224i \(-0.236817\pi\)
0.735776 + 0.677224i \(0.236817\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) 24.4394 0.857655
\(813\) 0 0
\(814\) 17.3739 0.608954
\(815\) 4.94990 0.173388
\(816\) 0 0
\(817\) 3.25227 0.113783
\(818\) 80.4371 2.81242
\(819\) 0 0
\(820\) −2.33030 −0.0813777
\(821\) −50.9923 −1.77964 −0.889821 0.456309i \(-0.849171\pi\)
−0.889821 + 0.456309i \(0.849171\pi\)
\(822\) 0 0
\(823\) 12.0000 0.418294 0.209147 0.977884i \(-0.432931\pi\)
0.209147 + 0.977884i \(0.432931\pi\)
\(824\) −9.66930 −0.336846
\(825\) 0 0
\(826\) −7.58258 −0.263832
\(827\) −9.38325 −0.326288 −0.163144 0.986602i \(-0.552163\pi\)
−0.163144 + 0.986602i \(0.552163\pi\)
\(828\) 0 0
\(829\) 26.3303 0.914489 0.457245 0.889341i \(-0.348836\pi\)
0.457245 + 0.889341i \(0.348836\pi\)
\(830\) −19.3386 −0.671253
\(831\) 0 0
\(832\) −50.3303 −1.74489
\(833\) 3.46410 0.120024
\(834\) 0 0
\(835\) 7.16515 0.247960
\(836\) 41.2276 1.42589
\(837\) 0 0
\(838\) −63.4955 −2.19341
\(839\) −33.7273 −1.16440 −0.582198 0.813047i \(-0.697807\pi\)
−0.582198 + 0.813047i \(0.697807\pi\)
\(840\) 0 0
\(841\) 47.6606 1.64347
\(842\) 4.73930 0.163327
\(843\) 0 0
\(844\) −43.9564 −1.51304
\(845\) 2.74110 0.0942968
\(846\) 0 0
\(847\) 4.00000 0.137442
\(848\) 15.5130 0.532719
\(849\) 0 0
\(850\) −31.5826 −1.08327
\(851\) −10.3923 −0.356244
\(852\) 0 0
\(853\) −14.7477 −0.504953 −0.252476 0.967603i \(-0.581245\pi\)
−0.252476 + 0.967603i \(0.581245\pi\)
\(854\) −25.3531 −0.867566
\(855\) 0 0
\(856\) 28.5826 0.976932
\(857\) 12.6011 0.430446 0.215223 0.976565i \(-0.430952\pi\)
0.215223 + 0.976565i \(0.430952\pi\)
\(858\) 0 0
\(859\) −10.3303 −0.352465 −0.176233 0.984349i \(-0.556391\pi\)
−0.176233 + 0.984349i \(0.556391\pi\)
\(860\) 1.48580 0.0506654
\(861\) 0 0
\(862\) −10.7477 −0.366069
\(863\) 18.3296 0.623945 0.311973 0.950091i \(-0.399010\pi\)
0.311973 + 0.950091i \(0.399010\pi\)
\(864\) 0 0
\(865\) 13.6697 0.464784
\(866\) 52.3429 1.77868
\(867\) 0 0
\(868\) 25.5826 0.868329
\(869\) 1.54135 0.0522867
\(870\) 0 0
\(871\) 34.3303 1.16324
\(872\) 10.3923 0.351928
\(873\) 0 0
\(874\) −42.3303 −1.43184
\(875\) 8.37420 0.283100
\(876\) 0 0
\(877\) 13.0000 0.438979 0.219489 0.975615i \(-0.429561\pi\)
0.219489 + 0.975615i \(0.429561\pi\)
\(878\) 35.9361 1.21279
\(879\) 0 0
\(880\) −4.33030 −0.145974
\(881\) 37.3821 1.25944 0.629718 0.776824i \(-0.283171\pi\)
0.629718 + 0.776824i \(0.283171\pi\)
\(882\) 0 0
\(883\) 3.08712 0.103890 0.0519450 0.998650i \(-0.483458\pi\)
0.0519450 + 0.998650i \(0.483458\pi\)
\(884\) 38.6772 1.30086
\(885\) 0 0
\(886\) 37.9129 1.27371
\(887\) −29.9216 −1.00467 −0.502335 0.864673i \(-0.667525\pi\)
−0.502335 + 0.864673i \(0.667525\pi\)
\(888\) 0 0
\(889\) 16.5826 0.556162
\(890\) −3.65480 −0.122509
\(891\) 0 0
\(892\) 61.4083 2.05610
\(893\) −73.3182 −2.45350
\(894\) 0 0
\(895\) 11.1652 0.373210
\(896\) 12.7719 0.426679
\(897\) 0 0
\(898\) −80.8693 −2.69864
\(899\) 80.2464 2.67637
\(900\) 0 0
\(901\) −30.0000 −0.999445
\(902\) −5.29150 −0.176188
\(903\) 0 0
\(904\) 5.83485 0.194064
\(905\) −4.71940 −0.156878
\(906\) 0 0
\(907\) 9.41742 0.312700 0.156350 0.987702i \(-0.450027\pi\)
0.156350 + 0.987702i \(0.450027\pi\)
\(908\) −7.65120 −0.253914
\(909\) 0 0
\(910\) −8.00000 −0.265197
\(911\) −22.8027 −0.755488 −0.377744 0.925910i \(-0.623300\pi\)
−0.377744 + 0.925910i \(0.623300\pi\)
\(912\) 0 0
\(913\) −25.5826 −0.846660
\(914\) −11.6675 −0.385927
\(915\) 0 0
\(916\) −66.7477 −2.20541
\(917\) 8.03260 0.265260
\(918\) 0 0
\(919\) −48.0780 −1.58595 −0.792974 0.609256i \(-0.791468\pi\)
−0.792974 + 0.609256i \(0.791468\pi\)
\(920\) −5.48220 −0.180743
\(921\) 0 0
\(922\) −51.9129 −1.70966
\(923\) −17.8926 −0.588942
\(924\) 0 0
\(925\) −12.4955 −0.410848
\(926\) −54.5318 −1.79203
\(927\) 0 0
\(928\) 64.6606 2.12259
\(929\) 28.8172 0.945462 0.472731 0.881207i \(-0.343268\pi\)
0.472731 + 0.881207i \(0.343268\pi\)
\(930\) 0 0
\(931\) 5.58258 0.182962
\(932\) 0 0
\(933\) 0 0
\(934\) 21.1652 0.692545
\(935\) 8.37420 0.273866
\(936\) 0 0
\(937\) −21.4955 −0.702226 −0.351113 0.936333i \(-0.614197\pi\)
−0.351113 + 0.936333i \(0.614197\pi\)
\(938\) −18.7864 −0.613398
\(939\) 0 0
\(940\) −33.4955 −1.09250
\(941\) 43.3966 1.41469 0.707345 0.706869i \(-0.249893\pi\)
0.707345 + 0.706869i \(0.249893\pi\)
\(942\) 0 0
\(943\) 3.16515 0.103072
\(944\) −6.20520 −0.201962
\(945\) 0 0
\(946\) 3.37386 0.109694
\(947\) 20.5939 0.669212 0.334606 0.942358i \(-0.391397\pi\)
0.334606 + 0.942358i \(0.391397\pi\)
\(948\) 0 0
\(949\) 60.6606 1.96913
\(950\) −50.8969 −1.65131
\(951\) 0 0
\(952\) −6.00000 −0.194461
\(953\) −17.5112 −0.567244 −0.283622 0.958936i \(-0.591536\pi\)
−0.283622 + 0.958936i \(0.591536\pi\)
\(954\) 0 0
\(955\) −0.747727 −0.0241959
\(956\) −26.1914 −0.847089
\(957\) 0 0
\(958\) 38.7477 1.25188
\(959\) 14.1425 0.456684
\(960\) 0 0
\(961\) 53.0000 1.70968
\(962\) 26.2668 0.846876
\(963\) 0 0
\(964\) 76.9909 2.47971
\(965\) 12.7918 0.411783
\(966\) 0 0
\(967\) 4.00000 0.128631 0.0643157 0.997930i \(-0.479514\pi\)
0.0643157 + 0.997930i \(0.479514\pi\)
\(968\) −6.92820 −0.222681
\(969\) 0 0
\(970\) −3.16515 −0.101627
\(971\) 28.2849 0.907706 0.453853 0.891077i \(-0.350049\pi\)
0.453853 + 0.891077i \(0.350049\pi\)
\(972\) 0 0
\(973\) −1.58258 −0.0507350
\(974\) 5.65300 0.181134
\(975\) 0 0
\(976\) −20.7477 −0.664119
\(977\) 38.6772 1.23739 0.618697 0.785630i \(-0.287661\pi\)
0.618697 + 0.785630i \(0.287661\pi\)
\(978\) 0 0
\(979\) −4.83485 −0.154522
\(980\) 2.55040 0.0814696
\(981\) 0 0
\(982\) 72.2432 2.30537
\(983\) 28.4358 0.906962 0.453481 0.891266i \(-0.350182\pi\)
0.453481 + 0.891266i \(0.350182\pi\)
\(984\) 0 0
\(985\) −9.58258 −0.305326
\(986\) −66.3900 −2.11429
\(987\) 0 0
\(988\) 62.3303 1.98299
\(989\) −2.01810 −0.0641719
\(990\) 0 0
\(991\) −8.25227 −0.262142 −0.131071 0.991373i \(-0.541842\pi\)
−0.131071 + 0.991373i \(0.541842\pi\)
\(992\) 67.6851 2.14901
\(993\) 0 0
\(994\) 9.79129 0.310561
\(995\) 9.82020 0.311321
\(996\) 0 0
\(997\) 25.1652 0.796988 0.398494 0.917171i \(-0.369533\pi\)
0.398494 + 0.917171i \(0.369533\pi\)
\(998\) −43.7780 −1.38577
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.a.i.1.4 yes 4
3.2 odd 2 inner 567.2.a.i.1.1 4
4.3 odd 2 9072.2.a.ci.1.3 4
7.6 odd 2 3969.2.a.u.1.4 4
9.2 odd 6 567.2.f.n.190.4 8
9.4 even 3 567.2.f.n.379.1 8
9.5 odd 6 567.2.f.n.379.4 8
9.7 even 3 567.2.f.n.190.1 8
12.11 even 2 9072.2.a.ci.1.2 4
21.20 even 2 3969.2.a.u.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.a.i.1.1 4 3.2 odd 2 inner
567.2.a.i.1.4 yes 4 1.1 even 1 trivial
567.2.f.n.190.1 8 9.7 even 3
567.2.f.n.190.4 8 9.2 odd 6
567.2.f.n.379.1 8 9.4 even 3
567.2.f.n.379.4 8 9.5 odd 6
3969.2.a.u.1.1 4 21.20 even 2
3969.2.a.u.1.4 4 7.6 odd 2
9072.2.a.ci.1.2 4 12.11 even 2
9072.2.a.ci.1.3 4 4.3 odd 2