Properties

Label 567.2.a.g
Level $567$
Weight $2$
Character orbit 567.a
Self dual yes
Analytic conductor $4.528$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
Defining polynomial: \(x^{3} - x^{2} - 4 x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + ( 1 + \beta_{1} + \beta_{2} ) q^{4} + ( 2 + \beta_{2} ) q^{5} - q^{7} + ( 2 + \beta_{1} + \beta_{2} ) q^{8} +O(q^{10})\) \( q + \beta_{1} q^{2} + ( 1 + \beta_{1} + \beta_{2} ) q^{4} + ( 2 + \beta_{2} ) q^{5} - q^{7} + ( 2 + \beta_{1} + \beta_{2} ) q^{8} + ( -1 + 3 \beta_{1} ) q^{10} + ( 1 - 2 \beta_{1} - \beta_{2} ) q^{11} + q^{13} -\beta_{1} q^{14} + ( 2 \beta_{1} - \beta_{2} ) q^{16} + ( 4 - \beta_{1} - \beta_{2} ) q^{17} + ( -1 - \beta_{1} - \beta_{2} ) q^{19} + ( 5 + 2 \beta_{1} + \beta_{2} ) q^{20} + ( -5 - 2 \beta_{1} - 2 \beta_{2} ) q^{22} + ( -1 + \beta_{1} - 2 \beta_{2} ) q^{23} + ( 3 - \beta_{1} + 2 \beta_{2} ) q^{25} + \beta_{1} q^{26} + ( -1 - \beta_{1} - \beta_{2} ) q^{28} -\beta_{1} q^{29} + ( -2 + 2 \beta_{1} - \beta_{2} ) q^{31} + ( 3 - \beta_{1} ) q^{32} + ( -2 + 2 \beta_{1} - \beta_{2} ) q^{34} + ( -2 - \beta_{2} ) q^{35} + 3 \beta_{2} q^{37} + ( -2 - 3 \beta_{1} - \beta_{2} ) q^{38} + ( 7 + 2 \beta_{1} + 2 \beta_{2} ) q^{40} + ( 7 - \beta_{2} ) q^{41} + ( -4 \beta_{1} - \beta_{2} ) q^{43} + ( -6 - 5 \beta_{1} ) q^{44} + ( 5 - 2 \beta_{1} + \beta_{2} ) q^{46} + ( 3 + 3 \beta_{1} + 3 \beta_{2} ) q^{47} + q^{49} + ( -5 + 4 \beta_{1} - \beta_{2} ) q^{50} + ( 1 + \beta_{1} + \beta_{2} ) q^{52} + ( 5 + \beta_{1} - 2 \beta_{2} ) q^{53} + ( -5 \beta_{1} + \beta_{2} ) q^{55} + ( -2 - \beta_{1} - \beta_{2} ) q^{56} + ( -3 - \beta_{1} - \beta_{2} ) q^{58} + ( 4 - \beta_{1} + 2 \beta_{2} ) q^{59} + ( -1 - \beta_{1} + 2 \beta_{2} ) q^{61} + ( 7 - \beta_{1} + 2 \beta_{2} ) q^{62} + ( -3 - 2 \beta_{1} + \beta_{2} ) q^{64} + ( 2 + \beta_{2} ) q^{65} + ( 2 - 7 \beta_{1} - \beta_{2} ) q^{67} + ( -1 + \beta_{1} + 4 \beta_{2} ) q^{68} + ( 1 - 3 \beta_{1} ) q^{70} + ( -2 - \beta_{1} + 2 \beta_{2} ) q^{71} + ( -1 + \beta_{1} - 5 \beta_{2} ) q^{73} + ( -3 + 3 \beta_{1} ) q^{74} + ( -6 - 4 \beta_{1} - \beta_{2} ) q^{76} + ( -1 + 2 \beta_{1} + \beta_{2} ) q^{77} + ( 3 + 5 \beta_{1} - \beta_{2} ) q^{79} + ( -6 + 7 \beta_{1} ) q^{80} + ( 1 + 6 \beta_{1} ) q^{82} + ( 4 - \beta_{1} - \beta_{2} ) q^{83} + ( 5 - 2 \beta_{1} + 4 \beta_{2} ) q^{85} + ( -11 - 5 \beta_{1} - 4 \beta_{2} ) q^{86} + ( -5 - 7 \beta_{1} - \beta_{2} ) q^{88} + ( -1 + 6 \beta_{1} + \beta_{2} ) q^{89} - q^{91} + ( -5 + 2 \beta_{1} + 2 \beta_{2} ) q^{92} + ( 6 + 9 \beta_{1} + 3 \beta_{2} ) q^{94} + ( -5 - 2 \beta_{1} - \beta_{2} ) q^{95} + ( 2 - 5 \beta_{1} - 2 \beta_{2} ) q^{97} + \beta_{1} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q + q^{2} + 3q^{4} + 5q^{5} - 3q^{7} + 6q^{8} + O(q^{10}) \) \( 3q + q^{2} + 3q^{4} + 5q^{5} - 3q^{7} + 6q^{8} + 2q^{11} + 3q^{13} - q^{14} + 3q^{16} + 12q^{17} - 3q^{19} + 16q^{20} - 15q^{22} + 6q^{25} + q^{26} - 3q^{28} - q^{29} - 3q^{31} + 8q^{32} - 3q^{34} - 5q^{35} - 3q^{37} - 8q^{38} + 21q^{40} + 22q^{41} - 3q^{43} - 23q^{44} + 12q^{46} + 9q^{47} + 3q^{49} - 10q^{50} + 3q^{52} + 18q^{53} - 6q^{55} - 6q^{56} - 9q^{58} + 9q^{59} - 6q^{61} + 18q^{62} - 12q^{64} + 5q^{65} - 6q^{68} - 9q^{71} + 3q^{73} - 6q^{74} - 21q^{76} - 2q^{77} + 15q^{79} - 11q^{80} + 9q^{82} + 12q^{83} + 9q^{85} - 34q^{86} - 21q^{88} + 2q^{89} - 3q^{91} - 15q^{92} + 24q^{94} - 16q^{95} + 3q^{97} + q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 4 x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - \nu - 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + \beta_{1} + 3\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.69963
0.239123
2.46050
−1.69963 0 0.888736 3.58836 0 −1.00000 1.88874 0 −6.09888
1.2 0.239123 0 −1.94282 −1.18194 0 −1.00000 −0.942820 0 −0.282630
1.3 2.46050 0 4.05408 2.59358 0 −1.00000 5.05408 0 6.38151
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 567.2.a.g 3
3.b odd 2 1 567.2.a.d 3
4.b odd 2 1 9072.2.a.cd 3
7.b odd 2 1 3969.2.a.p 3
9.c even 3 2 189.2.f.a 6
9.d odd 6 2 63.2.f.b 6
12.b even 2 1 9072.2.a.bq 3
21.c even 2 1 3969.2.a.m 3
36.f odd 6 2 3024.2.r.g 6
36.h even 6 2 1008.2.r.k 6
63.g even 3 2 1323.2.g.c 6
63.h even 3 2 1323.2.h.d 6
63.i even 6 2 441.2.h.b 6
63.j odd 6 2 441.2.h.c 6
63.k odd 6 2 1323.2.g.b 6
63.l odd 6 2 1323.2.f.c 6
63.n odd 6 2 441.2.g.e 6
63.o even 6 2 441.2.f.d 6
63.s even 6 2 441.2.g.d 6
63.t odd 6 2 1323.2.h.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.f.b 6 9.d odd 6 2
189.2.f.a 6 9.c even 3 2
441.2.f.d 6 63.o even 6 2
441.2.g.d 6 63.s even 6 2
441.2.g.e 6 63.n odd 6 2
441.2.h.b 6 63.i even 6 2
441.2.h.c 6 63.j odd 6 2
567.2.a.d 3 3.b odd 2 1
567.2.a.g 3 1.a even 1 1 trivial
1008.2.r.k 6 36.h even 6 2
1323.2.f.c 6 63.l odd 6 2
1323.2.g.b 6 63.k odd 6 2
1323.2.g.c 6 63.g even 3 2
1323.2.h.d 6 63.h even 3 2
1323.2.h.e 6 63.t odd 6 2
3024.2.r.g 6 36.f odd 6 2
3969.2.a.m 3 21.c even 2 1
3969.2.a.p 3 7.b odd 2 1
9072.2.a.bq 3 12.b even 2 1
9072.2.a.cd 3 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - T_{2}^{2} - 4 T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(567))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + 2 T^{2} - 3 T^{3} + 4 T^{4} - 4 T^{5} + 8 T^{6} \)
$3$ 1
$5$ \( 1 - 5 T + 17 T^{2} - 39 T^{3} + 85 T^{4} - 125 T^{5} + 125 T^{6} \)
$7$ \( ( 1 + T )^{3} \)
$11$ \( 1 - 2 T + 14 T^{2} + 3 T^{3} + 154 T^{4} - 242 T^{5} + 1331 T^{6} \)
$13$ \( ( 1 - T + 13 T^{2} )^{3} \)
$17$ \( 1 - 12 T + 90 T^{2} - 435 T^{3} + 1530 T^{4} - 3468 T^{5} + 4913 T^{6} \)
$19$ \( 1 + 3 T + 51 T^{2} + 107 T^{3} + 969 T^{4} + 1083 T^{5} + 6859 T^{6} \)
$23$ \( 1 + 36 T^{2} + 9 T^{3} + 828 T^{4} + 12167 T^{6} \)
$29$ \( 1 + T + 83 T^{2} + 57 T^{3} + 2407 T^{4} + 841 T^{5} + 24389 T^{6} \)
$31$ \( 1 + 3 T + 69 T^{2} + 213 T^{3} + 2139 T^{4} + 2883 T^{5} + 29791 T^{6} \)
$37$ \( 1 + 3 T + 57 T^{2} + 303 T^{3} + 2109 T^{4} + 4107 T^{5} + 50653 T^{6} \)
$41$ \( 1 - 22 T + 278 T^{2} - 2157 T^{3} + 11398 T^{4} - 36982 T^{5} + 68921 T^{6} \)
$43$ \( 1 + 3 T + 63 T^{2} + 379 T^{3} + 2709 T^{4} + 5547 T^{5} + 79507 T^{6} \)
$47$ \( 1 - 9 T + 87 T^{2} - 657 T^{3} + 4089 T^{4} - 19881 T^{5} + 103823 T^{6} \)
$53$ \( 1 - 18 T + 234 T^{2} - 1917 T^{3} + 12402 T^{4} - 50562 T^{5} + 148877 T^{6} \)
$59$ \( 1 - 9 T + 171 T^{2} - 999 T^{3} + 10089 T^{4} - 31329 T^{5} + 205379 T^{6} \)
$61$ \( 1 + 6 T + 162 T^{2} + 665 T^{3} + 9882 T^{4} + 22326 T^{5} + 226981 T^{6} \)
$67$ \( 1 - 6 T^{2} + 683 T^{3} - 402 T^{4} + 300763 T^{6} \)
$71$ \( 1 + 9 T + 207 T^{2} + 1197 T^{3} + 14697 T^{4} + 45369 T^{5} + 357911 T^{6} \)
$73$ \( 1 - 3 T + 51 T^{2} - 681 T^{3} + 3723 T^{4} - 15987 T^{5} + 389017 T^{6} \)
$79$ \( 1 - 15 T + 189 T^{2} - 1601 T^{3} + 14931 T^{4} - 93615 T^{5} + 493039 T^{6} \)
$83$ \( 1 - 12 T + 288 T^{2} - 2019 T^{3} + 23904 T^{4} - 82668 T^{5} + 571787 T^{6} \)
$89$ \( 1 - 2 T + 116 T^{2} - 735 T^{3} + 10324 T^{4} - 15842 T^{5} + 704969 T^{6} \)
$97$ \( 1 - 3 T + 177 T^{2} + 21 T^{3} + 17169 T^{4} - 28227 T^{5} + 912673 T^{6} \)
show more
show less