Properties

Label 567.1.l.d
Level 567567
Weight 11
Character orbit 567.l
Analytic conductor 0.2830.283
Analytic rank 00
Dimension 44
Projective image D6D_{6}
CM discriminant -7
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [567,1,Mod(55,567)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(567, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("567.55"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 567=347 567 = 3^{4} \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 567.l (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.2829698621630.282969862163
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 3 3
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.6751269.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ123+ζ12)q2+(ζ124+ζ1221)q4+ζ122q7+(ζ125ζ12)q8+(ζ123ζ12)q11+(ζ125+ζ123)q14++(ζ125ζ12)q98+O(q100) q + (\zeta_{12}^{3} + \zeta_{12}) q^{2} + (\zeta_{12}^{4} + \zeta_{12}^{2} - 1) q^{4} + \zeta_{12}^{2} q^{7} + (\zeta_{12}^{5} - \zeta_{12}) q^{8} + ( - \zeta_{12}^{3} - \zeta_{12}) q^{11} + (\zeta_{12}^{5} + \zeta_{12}^{3}) q^{14}+ \cdots + (\zeta_{12}^{5} - \zeta_{12}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q4+2q72q16+6q222q258q28+4q372q432q494q64+2q67+2q79+6q88+O(q100) 4 q - 4 q^{4} + 2 q^{7} - 2 q^{16} + 6 q^{22} - 2 q^{25} - 8 q^{28} + 4 q^{37} - 2 q^{43} - 2 q^{49} - 4 q^{64} + 2 q^{67} + 2 q^{79} + 6 q^{88}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/567Z)×\left(\mathbb{Z}/567\mathbb{Z}\right)^\times.

nn 325325 407407
χ(n)\chi(n) 1-1 ζ124\zeta_{12}^{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
55.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 1.50000i 0 −1.00000 1.73205i 0 0 0.500000 0.866025i 1.73205 0 0
55.2 0.866025 1.50000i 0 −1.00000 1.73205i 0 0 0.500000 0.866025i −1.73205 0 0
433.1 −0.866025 1.50000i 0 −1.00000 + 1.73205i 0 0 0.500000 + 0.866025i 1.73205 0 0
433.2 0.866025 + 1.50000i 0 −1.00000 + 1.73205i 0 0 0.500000 + 0.866025i −1.73205 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner
21.c even 2 1 inner
63.l odd 6 1 inner
63.o even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 567.1.l.d 4
3.b odd 2 1 inner 567.1.l.d 4
7.b odd 2 1 CM 567.1.l.d 4
7.c even 3 1 3969.1.k.e 4
7.c even 3 1 3969.1.t.e 4
7.d odd 6 1 3969.1.k.e 4
7.d odd 6 1 3969.1.t.e 4
9.c even 3 1 567.1.d.c 2
9.c even 3 1 inner 567.1.l.d 4
9.d odd 6 1 567.1.d.c 2
9.d odd 6 1 inner 567.1.l.d 4
21.c even 2 1 inner 567.1.l.d 4
21.g even 6 1 3969.1.k.e 4
21.g even 6 1 3969.1.t.e 4
21.h odd 6 1 3969.1.k.e 4
21.h odd 6 1 3969.1.t.e 4
63.g even 3 1 3969.1.m.c 4
63.g even 3 1 3969.1.t.e 4
63.h even 3 1 3969.1.k.e 4
63.h even 3 1 3969.1.m.c 4
63.i even 6 1 3969.1.k.e 4
63.i even 6 1 3969.1.m.c 4
63.j odd 6 1 3969.1.k.e 4
63.j odd 6 1 3969.1.m.c 4
63.k odd 6 1 3969.1.m.c 4
63.k odd 6 1 3969.1.t.e 4
63.l odd 6 1 567.1.d.c 2
63.l odd 6 1 inner 567.1.l.d 4
63.n odd 6 1 3969.1.m.c 4
63.n odd 6 1 3969.1.t.e 4
63.o even 6 1 567.1.d.c 2
63.o even 6 1 inner 567.1.l.d 4
63.s even 6 1 3969.1.m.c 4
63.s even 6 1 3969.1.t.e 4
63.t odd 6 1 3969.1.k.e 4
63.t odd 6 1 3969.1.m.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
567.1.d.c 2 9.c even 3 1
567.1.d.c 2 9.d odd 6 1
567.1.d.c 2 63.l odd 6 1
567.1.d.c 2 63.o even 6 1
567.1.l.d 4 1.a even 1 1 trivial
567.1.l.d 4 3.b odd 2 1 inner
567.1.l.d 4 7.b odd 2 1 CM
567.1.l.d 4 9.c even 3 1 inner
567.1.l.d 4 9.d odd 6 1 inner
567.1.l.d 4 21.c even 2 1 inner
567.1.l.d 4 63.l odd 6 1 inner
567.1.l.d 4 63.o even 6 1 inner
3969.1.k.e 4 7.c even 3 1
3969.1.k.e 4 7.d odd 6 1
3969.1.k.e 4 21.g even 6 1
3969.1.k.e 4 21.h odd 6 1
3969.1.k.e 4 63.h even 3 1
3969.1.k.e 4 63.i even 6 1
3969.1.k.e 4 63.j odd 6 1
3969.1.k.e 4 63.t odd 6 1
3969.1.m.c 4 63.g even 3 1
3969.1.m.c 4 63.h even 3 1
3969.1.m.c 4 63.i even 6 1
3969.1.m.c 4 63.j odd 6 1
3969.1.m.c 4 63.k odd 6 1
3969.1.m.c 4 63.n odd 6 1
3969.1.m.c 4 63.s even 6 1
3969.1.m.c 4 63.t odd 6 1
3969.1.t.e 4 7.c even 3 1
3969.1.t.e 4 7.d odd 6 1
3969.1.t.e 4 21.g even 6 1
3969.1.t.e 4 21.h odd 6 1
3969.1.t.e 4 63.g even 3 1
3969.1.t.e 4 63.k odd 6 1
3969.1.t.e 4 63.n odd 6 1
3969.1.t.e 4 63.s even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+3T22+9 T_{2}^{4} + 3T_{2}^{2} + 9 acting on S1new(567,[χ])S_{1}^{\mathrm{new}}(567, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+3T2+9 T^{4} + 3T^{2} + 9 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
1111 T4+3T2+9 T^{4} + 3T^{2} + 9 Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 (T1)4 (T - 1)^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
7171 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less