Properties

Label 5625.2.a.x.1.7
Level 56255625
Weight 22
Character 5625.1
Self dual yes
Analytic conductor 44.91644.916
Analytic rank 11
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5625,2,Mod(1,5625)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5625, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5625.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 5625=3254 5625 = 3^{2} \cdot 5^{4}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5625.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,6,0,0,0,0,0,0,-16,0,0,-12,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 44.915851137044.9158511370
Analytic rank: 11
Dimension: 88
Coefficient field: 8.8.14884000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x811x6+36x431x2+1 x^{8} - 11x^{6} + 36x^{4} - 31x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 25)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.7
Root 2.085292.08529 of defining polynomial
Character χ\chi == 5625.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+2.08529q2+2.34841q4+0.992398q7+0.726543q82.00000q113.37406q13+2.06943q143.18178q162.89451q172.58448q194.17057q22+4.54963q237.03588q26+2.33056q28+5.38430q29+0.136538q318.08800q326.03588q342.14910q375.38938q388.63318q41+4.64398q434.69683q44+9.48728q469.92630q476.01515q497.92369q527.56521q53+0.721020q56+11.2278q584.91775q592.76972q61+0.284720q6210.5022q64+2.18577q676.79751q689.64254q71+0.775929q734.48150q746.06943q761.98480q77+15.8508q7918.0026q82+1.77110q83+9.68401q861.45309q8814.5080q893.34841q91+10.6844q9220.6992q9417.0291q9712.5433q98+O(q100)q+2.08529 q^{2} +2.34841 q^{4} +0.992398 q^{7} +0.726543 q^{8} -2.00000 q^{11} -3.37406 q^{13} +2.06943 q^{14} -3.18178 q^{16} -2.89451 q^{17} -2.58448 q^{19} -4.17057 q^{22} +4.54963 q^{23} -7.03588 q^{26} +2.33056 q^{28} +5.38430 q^{29} +0.136538 q^{31} -8.08800 q^{32} -6.03588 q^{34} -2.14910 q^{37} -5.38938 q^{38} -8.63318 q^{41} +4.64398 q^{43} -4.69683 q^{44} +9.48728 q^{46} -9.92630 q^{47} -6.01515 q^{49} -7.92369 q^{52} -7.56521 q^{53} +0.721020 q^{56} +11.2278 q^{58} -4.91775 q^{59} -2.76972 q^{61} +0.284720 q^{62} -10.5022 q^{64} +2.18577 q^{67} -6.79751 q^{68} -9.64254 q^{71} +0.775929 q^{73} -4.48150 q^{74} -6.06943 q^{76} -1.98480 q^{77} +15.8508 q^{79} -18.0026 q^{82} +1.77110 q^{83} +9.68401 q^{86} -1.45309 q^{88} -14.5080 q^{89} -3.34841 q^{91} +10.6844 q^{92} -20.6992 q^{94} -17.0291 q^{97} -12.5433 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+6q416q1112q142q16+10q196q2620q29+16q31+2q3426q4112q44+6q4614q4910q5630q59+6q6144q6446q71+68q94+O(q100) 8 q + 6 q^{4} - 16 q^{11} - 12 q^{14} - 2 q^{16} + 10 q^{19} - 6 q^{26} - 20 q^{29} + 16 q^{31} + 2 q^{34} - 26 q^{41} - 12 q^{44} + 6 q^{46} - 14 q^{49} - 10 q^{56} - 30 q^{59} + 6 q^{61} - 44 q^{64} - 46 q^{71}+ \cdots - 68 q^{94}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.08529 1.47452 0.737260 0.675610i 0.236119π-0.236119\pi
0.737260 + 0.675610i 0.236119π0.236119\pi
33 0 0
44 2.34841 1.17421
55 0 0
66 0 0
77 0.992398 0.375091 0.187546 0.982256i 0.439947π-0.439947\pi
0.187546 + 0.982256i 0.439947π0.439947\pi
88 0.726543 0.256872
99 0 0
1010 0 0
1111 −2.00000 −0.603023 −0.301511 0.953463i 0.597491π-0.597491\pi
−0.301511 + 0.953463i 0.597491π0.597491\pi
1212 0 0
1313 −3.37406 −0.935796 −0.467898 0.883782i 0.654989π-0.654989\pi
−0.467898 + 0.883782i 0.654989π0.654989\pi
1414 2.06943 0.553079
1515 0 0
1616 −3.18178 −0.795445
1717 −2.89451 −0.702022 −0.351011 0.936371i 0.614162π-0.614162\pi
−0.351011 + 0.936371i 0.614162π0.614162\pi
1818 0 0
1919 −2.58448 −0.592921 −0.296460 0.955045i 0.595806π-0.595806\pi
−0.296460 + 0.955045i 0.595806π0.595806\pi
2020 0 0
2121 0 0
2222 −4.17057 −0.889169
2323 4.54963 0.948664 0.474332 0.880346i 0.342690π-0.342690\pi
0.474332 + 0.880346i 0.342690π0.342690\pi
2424 0 0
2525 0 0
2626 −7.03588 −1.37985
2727 0 0
2828 2.33056 0.440435
2929 5.38430 0.999839 0.499919 0.866072i 0.333363π-0.333363\pi
0.499919 + 0.866072i 0.333363π0.333363\pi
3030 0 0
3131 0.136538 0.0245229 0.0122614 0.999925i 0.496097π-0.496097\pi
0.0122614 + 0.999925i 0.496097π0.496097\pi
3232 −8.08800 −1.42977
3333 0 0
3434 −6.03588 −1.03515
3535 0 0
3636 0 0
3737 −2.14910 −0.353311 −0.176655 0.984273i 0.556528π-0.556528\pi
−0.176655 + 0.984273i 0.556528π0.556528\pi
3838 −5.38938 −0.874273
3939 0 0
4040 0 0
4141 −8.63318 −1.34828 −0.674138 0.738605i 0.735485π-0.735485\pi
−0.674138 + 0.738605i 0.735485π0.735485\pi
4242 0 0
4343 4.64398 0.708200 0.354100 0.935208i 0.384787π-0.384787\pi
0.354100 + 0.935208i 0.384787π0.384787\pi
4444 −4.69683 −0.708073
4545 0 0
4646 9.48728 1.39882
4747 −9.92630 −1.44790 −0.723950 0.689853i 0.757675π-0.757675\pi
−0.723950 + 0.689853i 0.757675π0.757675\pi
4848 0 0
4949 −6.01515 −0.859306
5050 0 0
5151 0 0
5252 −7.92369 −1.09882
5353 −7.56521 −1.03916 −0.519581 0.854421i 0.673912π-0.673912\pi
−0.519581 + 0.854421i 0.673912π0.673912\pi
5454 0 0
5555 0 0
5656 0.721020 0.0963503
5757 0 0
5858 11.2278 1.47428
5959 −4.91775 −0.640237 −0.320118 0.947378i 0.603723π-0.603723\pi
−0.320118 + 0.947378i 0.603723π0.603723\pi
6060 0 0
6161 −2.76972 −0.354626 −0.177313 0.984155i 0.556740π-0.556740\pi
−0.177313 + 0.984155i 0.556740π0.556740\pi
6262 0.284720 0.0361595
6363 0 0
6464 −10.5022 −1.31278
6565 0 0
6666 0 0
6767 2.18577 0.267035 0.133517 0.991046i 0.457373π-0.457373\pi
0.133517 + 0.991046i 0.457373π0.457373\pi
6868 −6.79751 −0.824319
6969 0 0
7070 0 0
7171 −9.64254 −1.14436 −0.572179 0.820128i 0.693902π-0.693902\pi
−0.572179 + 0.820128i 0.693902π0.693902\pi
7272 0 0
7373 0.775929 0.0908157 0.0454078 0.998969i 0.485541π-0.485541\pi
0.0454078 + 0.998969i 0.485541π0.485541\pi
7474 −4.48150 −0.520963
7575 0 0
7676 −6.06943 −0.696212
7777 −1.98480 −0.226189
7878 0 0
7979 15.8508 1.78336 0.891679 0.452667i 0.149527π-0.149527\pi
0.891679 + 0.452667i 0.149527π0.149527\pi
8080 0 0
8181 0 0
8282 −18.0026 −1.98806
8383 1.77110 0.194404 0.0972019 0.995265i 0.469011π-0.469011\pi
0.0972019 + 0.995265i 0.469011π0.469011\pi
8484 0 0
8585 0 0
8686 9.68401 1.04425
8787 0 0
8888 −1.45309 −0.154899
8989 −14.5080 −1.53785 −0.768923 0.639341i 0.779207π-0.779207\pi
−0.768923 + 0.639341i 0.779207π0.779207\pi
9090 0 0
9191 −3.34841 −0.351009
9292 10.6844 1.11393
9393 0 0
9494 −20.6992 −2.13496
9595 0 0
9696 0 0
9797 −17.0291 −1.72904 −0.864522 0.502595i 0.832379π-0.832379\pi
−0.864522 + 0.502595i 0.832379π0.832379\pi
9898 −12.5433 −1.26706
9999 0 0
100100 0 0
101101 2.54716 0.253452 0.126726 0.991938i 0.459553π-0.459553\pi
0.126726 + 0.991938i 0.459553π0.459553\pi
102102 0 0
103103 10.1654 1.00163 0.500815 0.865555i 0.333034π-0.333034\pi
0.500815 + 0.865555i 0.333034π0.333034\pi
104104 −2.45140 −0.240380
105105 0 0
106106 −15.7756 −1.53226
107107 4.81720 0.465697 0.232848 0.972513i 0.425195π-0.425195\pi
0.232848 + 0.972513i 0.425195π0.425195\pi
108108 0 0
109109 16.2743 1.55879 0.779397 0.626531i 0.215526π-0.215526\pi
0.779397 + 0.626531i 0.215526π0.215526\pi
110110 0 0
111111 0 0
112112 −3.15759 −0.298365
113113 −6.75704 −0.635649 −0.317825 0.948150i 0.602952π-0.602952\pi
−0.317825 + 0.948150i 0.602952π0.602952\pi
114114 0 0
115115 0 0
116116 12.6446 1.17402
117117 0 0
118118 −10.2549 −0.944041
119119 −2.87251 −0.263322
120120 0 0
121121 −7.00000 −0.636364
122122 −5.77565 −0.522903
123123 0 0
124124 0.320647 0.0287950
125125 0 0
126126 0 0
127127 −1.49081 −0.132288 −0.0661441 0.997810i 0.521070π-0.521070\pi
−0.0661441 + 0.997810i 0.521070π0.521070\pi
128128 −5.72414 −0.505948
129129 0 0
130130 0 0
131131 −14.1147 −1.23320 −0.616602 0.787275i 0.711491π-0.711491\pi
−0.616602 + 0.787275i 0.711491π0.711491\pi
132132 0 0
133133 −2.56484 −0.222399
134134 4.55796 0.393748
135135 0 0
136136 −2.10299 −0.180330
137137 0.689447 0.0589035 0.0294517 0.999566i 0.490624π-0.490624\pi
0.0294517 + 0.999566i 0.490624π0.490624\pi
138138 0 0
139139 −16.5719 −1.40561 −0.702803 0.711384i 0.748069π-0.748069\pi
−0.702803 + 0.711384i 0.748069π0.748069\pi
140140 0 0
141141 0 0
142142 −20.1074 −1.68738
143143 6.74812 0.564307
144144 0 0
145145 0 0
146146 1.61803 0.133909
147147 0 0
148148 −5.04699 −0.414860
149149 −3.21156 −0.263101 −0.131551 0.991309i 0.541996π-0.541996\pi
−0.131551 + 0.991309i 0.541996π0.541996\pi
150150 0 0
151151 17.6863 1.43929 0.719647 0.694340i 0.244304π-0.244304\pi
0.719647 + 0.694340i 0.244304π0.244304\pi
152152 −1.87774 −0.152305
153153 0 0
154154 −4.13887 −0.333519
155155 0 0
156156 0 0
157157 1.65512 0.132093 0.0660465 0.997817i 0.478961π-0.478961\pi
0.0660465 + 0.997817i 0.478961π0.478961\pi
158158 33.0535 2.62960
159159 0 0
160160 0 0
161161 4.51505 0.355836
162162 0 0
163163 0.892934 0.0699400 0.0349700 0.999388i 0.488866π-0.488866\pi
0.0349700 + 0.999388i 0.488866π0.488866\pi
164164 −20.2743 −1.58316
165165 0 0
166166 3.69325 0.286652
167167 −5.19558 −0.402046 −0.201023 0.979587i 0.564427π-0.564427\pi
−0.201023 + 0.979587i 0.564427π0.564427\pi
168168 0 0
169169 −1.61570 −0.124285
170170 0 0
171171 0 0
172172 10.9060 0.831573
173173 5.76465 0.438278 0.219139 0.975694i 0.429675π-0.429675\pi
0.219139 + 0.975694i 0.429675π0.429675\pi
174174 0 0
175175 0 0
176176 6.36356 0.479671
177177 0 0
178178 −30.2534 −2.26758
179179 −8.66887 −0.647942 −0.323971 0.946067i 0.605018π-0.605018\pi
−0.323971 + 0.946067i 0.605018π0.605018\pi
180180 0 0
181181 14.2909 1.06223 0.531116 0.847299i 0.321773π-0.321773\pi
0.531116 + 0.847299i 0.321773π0.321773\pi
182182 −6.98240 −0.517570
183183 0 0
184184 3.30550 0.243685
185185 0 0
186186 0 0
187187 5.78902 0.423335
188188 −23.3111 −1.70013
189189 0 0
190190 0 0
191191 1.26636 0.0916305 0.0458153 0.998950i 0.485411π-0.485411\pi
0.0458153 + 0.998950i 0.485411π0.485411\pi
192192 0 0
193193 21.1730 1.52406 0.762031 0.647540i 0.224202π-0.224202\pi
0.762031 + 0.647540i 0.224202π0.224202\pi
194194 −35.5105 −2.54951
195195 0 0
196196 −14.1261 −1.00900
197197 12.2013 0.869308 0.434654 0.900597i 0.356871π-0.356871\pi
0.434654 + 0.900597i 0.356871π0.356871\pi
198198 0 0
199199 10.4065 0.737695 0.368848 0.929490i 0.379752π-0.379752\pi
0.368848 + 0.929490i 0.379752π0.379752\pi
200200 0 0
201201 0 0
202202 5.31156 0.373720
203203 5.34337 0.375031
204204 0 0
205205 0 0
206206 21.1978 1.47692
207207 0 0
208208 10.7355 0.744375
209209 5.16896 0.357545
210210 0 0
211211 −8.65769 −0.596020 −0.298010 0.954563i 0.596323π-0.596323\pi
−0.298010 + 0.954563i 0.596323π0.596323\pi
212212 −17.7662 −1.22019
213213 0 0
214214 10.0452 0.686679
215215 0 0
216216 0 0
217217 0.135500 0.00919832
218218 33.9365 2.29847
219219 0 0
220220 0 0
221221 9.76626 0.656950
222222 0 0
223223 28.3434 1.89801 0.949007 0.315256i 0.102091π-0.102091\pi
0.949007 + 0.315256i 0.102091π0.102091\pi
224224 −8.02652 −0.536295
225225 0 0
226226 −14.0904 −0.937277
227227 −22.2415 −1.47622 −0.738109 0.674682i 0.764281π-0.764281\pi
−0.738109 + 0.674682i 0.764281π0.764281\pi
228228 0 0
229229 2.47559 0.163592 0.0817958 0.996649i 0.473934π-0.473934\pi
0.0817958 + 0.996649i 0.473934π0.473934\pi
230230 0 0
231231 0 0
232232 3.91192 0.256830
233233 −5.95605 −0.390194 −0.195097 0.980784i 0.562502π-0.562502\pi
−0.195097 + 0.980784i 0.562502π0.562502\pi
234234 0 0
235235 0 0
236236 −11.5489 −0.751770
237237 0 0
238238 −5.99000 −0.388274
239239 7.03243 0.454890 0.227445 0.973791i 0.426963π-0.426963\pi
0.227445 + 0.973791i 0.426963π0.426963\pi
240240 0 0
241241 1.17976 0.0759953 0.0379976 0.999278i 0.487902π-0.487902\pi
0.0379976 + 0.999278i 0.487902π0.487902\pi
242242 −14.5970 −0.938330
243243 0 0
244244 −6.50444 −0.416404
245245 0 0
246246 0 0
247247 8.72020 0.554853
248248 0.0992004 0.00629923
249249 0 0
250250 0 0
251251 −4.60867 −0.290897 −0.145448 0.989366i 0.546462π-0.546462\pi
−0.145448 + 0.989366i 0.546462π0.546462\pi
252252 0 0
253253 −9.09927 −0.572066
254254 −3.10877 −0.195062
255255 0 0
256256 9.06799 0.566750
257257 9.75542 0.608526 0.304263 0.952588i 0.401590π-0.401590\pi
0.304263 + 0.952588i 0.401590π0.401590\pi
258258 0 0
259259 −2.13277 −0.132524
260260 0 0
261261 0 0
262262 −29.4331 −1.81838
263263 −0.995828 −0.0614054 −0.0307027 0.999529i 0.509775π-0.509775\pi
−0.0307027 + 0.999529i 0.509775π0.509775\pi
264264 0 0
265265 0 0
266266 −5.34841 −0.327932
267267 0 0
268268 5.13310 0.313554
269269 3.28853 0.200506 0.100253 0.994962i 0.468035π-0.468035\pi
0.100253 + 0.994962i 0.468035π0.468035\pi
270270 0 0
271271 12.1500 0.738063 0.369031 0.929417i 0.379689π-0.379689\pi
0.369031 + 0.929417i 0.379689π0.379689\pi
272272 9.20970 0.558420
273273 0 0
274274 1.43769 0.0868543
275275 0 0
276276 0 0
277277 −11.8666 −0.712993 −0.356496 0.934297i 0.616029π-0.616029\pi
−0.356496 + 0.934297i 0.616029π0.616029\pi
278278 −34.5571 −2.07259
279279 0 0
280280 0 0
281281 24.6416 1.47000 0.734998 0.678070i 0.237183π-0.237183\pi
0.734998 + 0.678070i 0.237183π0.237183\pi
282282 0 0
283283 −3.36343 −0.199935 −0.0999675 0.994991i 0.531874π-0.531874\pi
−0.0999675 + 0.994991i 0.531874π0.531874\pi
284284 −22.6447 −1.34371
285285 0 0
286286 14.0718 0.832081
287287 −8.56755 −0.505727
288288 0 0
289289 −8.62180 −0.507165
290290 0 0
291291 0 0
292292 1.82220 0.106636
293293 8.96340 0.523647 0.261824 0.965116i 0.415676π-0.415676\pi
0.261824 + 0.965116i 0.415676π0.415676\pi
294294 0 0
295295 0 0
296296 −1.56142 −0.0907555
297297 0 0
298298 −6.69702 −0.387948
299299 −15.3507 −0.887756
300300 0 0
301301 4.60867 0.265640
302302 36.8811 2.12227
303303 0 0
304304 8.22325 0.471636
305305 0 0
306306 0 0
307307 9.48133 0.541128 0.270564 0.962702i 0.412790π-0.412790\pi
0.270564 + 0.962702i 0.412790π0.412790\pi
308308 −4.66112 −0.265592
309309 0 0
310310 0 0
311311 −29.3320 −1.66327 −0.831633 0.555325i 0.812594π-0.812594\pi
−0.831633 + 0.555325i 0.812594π0.812594\pi
312312 0 0
313313 18.8901 1.06773 0.533865 0.845570i 0.320739π-0.320739\pi
0.533865 + 0.845570i 0.320739π0.320739\pi
314314 3.45140 0.194774
315315 0 0
316316 37.2243 2.09403
317317 −22.7893 −1.27998 −0.639988 0.768385i 0.721061π-0.721061\pi
−0.639988 + 0.768385i 0.721061π0.721061\pi
318318 0 0
319319 −10.7686 −0.602925
320320 0 0
321321 0 0
322322 9.41516 0.524687
323323 7.48081 0.416244
324324 0 0
325325 0 0
326326 1.86202 0.103128
327327 0 0
328328 −6.27237 −0.346334
329329 −9.85084 −0.543094
330330 0 0
331331 2.96299 0.162861 0.0814304 0.996679i 0.474051π-0.474051\pi
0.0814304 + 0.996679i 0.474051π0.474051\pi
332332 4.15928 0.228270
333333 0 0
334334 −10.8343 −0.592824
335335 0 0
336336 0 0
337337 −18.8123 −1.02477 −0.512385 0.858756i 0.671238π-0.671238\pi
−0.512385 + 0.858756i 0.671238π0.671238\pi
338338 −3.36920 −0.183261
339339 0 0
340340 0 0
341341 −0.273075 −0.0147879
342342 0 0
343343 −12.9162 −0.697410
344344 3.37405 0.181916
345345 0 0
346346 12.0209 0.646249
347347 22.7382 1.22065 0.610325 0.792151i 0.291039π-0.291039\pi
0.610325 + 0.792151i 0.291039π0.291039\pi
348348 0 0
349349 1.93849 0.103765 0.0518824 0.998653i 0.483478π-0.483478\pi
0.0518824 + 0.998653i 0.483478π0.483478\pi
350350 0 0
351351 0 0
352352 16.1760 0.862184
353353 −5.24945 −0.279400 −0.139700 0.990194i 0.544614π-0.544614\pi
−0.139700 + 0.990194i 0.544614π0.544614\pi
354354 0 0
355355 0 0
356356 −34.0708 −1.80575
357357 0 0
358358 −18.0771 −0.955402
359359 −22.5937 −1.19245 −0.596226 0.802817i 0.703334π-0.703334\pi
−0.596226 + 0.802817i 0.703334π0.703334\pi
360360 0 0
361361 −12.3205 −0.648445
362362 29.8005 1.56628
363363 0 0
364364 −7.86346 −0.412157
365365 0 0
366366 0 0
367367 −7.29872 −0.380990 −0.190495 0.981688i 0.561009π-0.561009\pi
−0.190495 + 0.981688i 0.561009π0.561009\pi
368368 −14.4759 −0.754610
369369 0 0
370370 0 0
371371 −7.50770 −0.389781
372372 0 0
373373 −22.3074 −1.15503 −0.577516 0.816380i 0.695978π-0.695978\pi
−0.577516 + 0.816380i 0.695978π0.695978\pi
374374 12.0718 0.624216
375375 0 0
376376 −7.21188 −0.371924
377377 −18.1669 −0.935645
378378 0 0
379379 −32.9466 −1.69235 −0.846177 0.532903i 0.821101π-0.821101\pi
−0.846177 + 0.532903i 0.821101π0.821101\pi
380380 0 0
381381 0 0
382382 2.64072 0.135111
383383 20.7002 1.05773 0.528865 0.848706i 0.322618π-0.322618\pi
0.528865 + 0.848706i 0.322618π0.322618\pi
384384 0 0
385385 0 0
386386 44.1516 2.24726
387387 0 0
388388 −39.9914 −2.03026
389389 1.14446 0.0580263 0.0290132 0.999579i 0.490764π-0.490764\pi
0.0290132 + 0.999579i 0.490764π0.490764\pi
390390 0 0
391391 −13.1690 −0.665983
392392 −4.37026 −0.220731
393393 0 0
394394 25.4432 1.28181
395395 0 0
396396 0 0
397397 −4.68513 −0.235140 −0.117570 0.993065i 0.537510π-0.537510\pi
−0.117570 + 0.993065i 0.537510π0.537510\pi
398398 21.7005 1.08775
399399 0 0
400400 0 0
401401 24.0851 1.20275 0.601376 0.798966i 0.294619π-0.294619\pi
0.601376 + 0.798966i 0.294619π0.294619\pi
402402 0 0
403403 −0.460687 −0.0229484
404404 5.98179 0.297605
405405 0 0
406406 11.1424 0.552990
407407 4.29821 0.213054
408408 0 0
409409 −1.89934 −0.0939165 −0.0469583 0.998897i 0.514953π-0.514953\pi
−0.0469583 + 0.998897i 0.514953π0.514953\pi
410410 0 0
411411 0 0
412412 23.8726 1.17612
413413 −4.88037 −0.240147
414414 0 0
415415 0 0
416416 27.2894 1.33797
417417 0 0
418418 10.7788 0.527207
419419 2.32806 0.113733 0.0568666 0.998382i 0.481889π-0.481889\pi
0.0568666 + 0.998382i 0.481889π0.481889\pi
420420 0 0
421421 −23.9501 −1.16725 −0.583627 0.812022i 0.698367π-0.698367\pi
−0.583627 + 0.812022i 0.698367π0.698367\pi
422422 −18.0537 −0.878842
423423 0 0
424424 −5.49645 −0.266931
425425 0 0
426426 0 0
427427 −2.74866 −0.133017
428428 11.3128 0.546824
429429 0 0
430430 0 0
431431 −1.19227 −0.0574294 −0.0287147 0.999588i 0.509141π-0.509141\pi
−0.0287147 + 0.999588i 0.509141π0.509141\pi
432432 0 0
433433 25.6138 1.23092 0.615461 0.788167i 0.288970π-0.288970\pi
0.615461 + 0.788167i 0.288970π0.288970\pi
434434 0.282556 0.0135631
435435 0 0
436436 38.2187 1.83035
437437 −11.7584 −0.562483
438438 0 0
439439 19.3741 0.924676 0.462338 0.886704i 0.347011π-0.347011\pi
0.462338 + 0.886704i 0.347011π0.347011\pi
440440 0 0
441441 0 0
442442 20.3654 0.968685
443443 2.46263 0.117003 0.0585016 0.998287i 0.481368π-0.481368\pi
0.0585016 + 0.998287i 0.481368π0.481368\pi
444444 0 0
445445 0 0
446446 59.1040 2.79866
447447 0 0
448448 −10.4224 −0.492412
449449 14.3585 0.677618 0.338809 0.940855i 0.389976π-0.389976\pi
0.338809 + 0.940855i 0.389976π0.389976\pi
450450 0 0
451451 17.2664 0.813041
452452 −15.8683 −0.746384
453453 0 0
454454 −46.3798 −2.17671
455455 0 0
456456 0 0
457457 25.1964 1.17864 0.589319 0.807901i 0.299396π-0.299396\pi
0.589319 + 0.807901i 0.299396π0.299396\pi
458458 5.16231 0.241219
459459 0 0
460460 0 0
461461 −28.8255 −1.34254 −0.671269 0.741214i 0.734251π-0.734251\pi
−0.671269 + 0.741214i 0.734251π0.734251\pi
462462 0 0
463463 −31.8796 −1.48157 −0.740786 0.671742i 0.765547π-0.765547\pi
−0.740786 + 0.671742i 0.765547π0.765547\pi
464464 −17.1316 −0.795317
465465 0 0
466466 −12.4201 −0.575348
467467 43.0996 1.99441 0.997206 0.0747039i 0.0238012π-0.0238012\pi
0.997206 + 0.0747039i 0.0238012π0.0238012\pi
468468 0 0
469469 2.16916 0.100162
470470 0 0
471471 0 0
472472 −3.57295 −0.164459
473473 −9.28795 −0.427060
474474 0 0
475475 0 0
476476 −6.74584 −0.309195
477477 0 0
478478 14.6646 0.670744
479479 −21.0263 −0.960717 −0.480359 0.877072i 0.659494π-0.659494\pi
−0.480359 + 0.877072i 0.659494π0.659494\pi
480480 0 0
481481 7.25121 0.330627
482482 2.46014 0.112057
483483 0 0
484484 −16.4389 −0.747223
485485 0 0
486486 0 0
487487 27.9190 1.26513 0.632565 0.774507i 0.282002π-0.282002\pi
0.632565 + 0.774507i 0.282002π0.282002\pi
488488 −2.01232 −0.0910933
489489 0 0
490490 0 0
491491 −14.9611 −0.675183 −0.337591 0.941293i 0.609612π-0.609612\pi
−0.337591 + 0.941293i 0.609612π0.609612\pi
492492 0 0
493493 −15.5849 −0.701909
494494 18.1841 0.818142
495495 0 0
496496 −0.434433 −0.0195066
497497 −9.56924 −0.429239
498498 0 0
499499 −44.3253 −1.98427 −0.992137 0.125160i 0.960056π-0.960056\pi
−0.992137 + 0.125160i 0.960056π0.960056\pi
500500 0 0
501501 0 0
502502 −9.61040 −0.428933
503503 23.6212 1.05322 0.526609 0.850108i 0.323463π-0.323463\pi
0.526609 + 0.850108i 0.323463π0.323463\pi
504504 0 0
505505 0 0
506506 −18.9746 −0.843522
507507 0 0
508508 −3.50105 −0.155334
509509 26.7154 1.18414 0.592070 0.805886i 0.298311π-0.298311\pi
0.592070 + 0.805886i 0.298311π0.298311\pi
510510 0 0
511511 0.770031 0.0340642
512512 30.3576 1.34163
513513 0 0
514514 20.3428 0.897283
515515 0 0
516516 0 0
517517 19.8526 0.873116
518518 −4.44743 −0.195409
519519 0 0
520520 0 0
521521 −32.7073 −1.43293 −0.716466 0.697622i 0.754241π-0.754241\pi
−0.716466 + 0.697622i 0.754241π0.754241\pi
522522 0 0
523523 0.235966 0.0103181 0.00515904 0.999987i 0.498358π-0.498358\pi
0.00515904 + 0.999987i 0.498358π0.498358\pi
524524 −33.1471 −1.44804
525525 0 0
526526 −2.07658 −0.0905434
527527 −0.395210 −0.0172156
528528 0 0
529529 −2.30084 −0.100037
530530 0 0
531531 0 0
532532 −6.02330 −0.261143
533533 29.1289 1.26171
534534 0 0
535535 0 0
536536 1.58806 0.0685936
537537 0 0
538538 6.85753 0.295649
539539 12.0303 0.518181
540540 0 0
541541 −33.5572 −1.44274 −0.721369 0.692551i 0.756487π-0.756487\pi
−0.721369 + 0.692551i 0.756487π0.756487\pi
542542 25.3363 1.08829
543543 0 0
544544 23.4108 1.00373
545545 0 0
546546 0 0
547547 38.5125 1.64668 0.823338 0.567552i 0.192109π-0.192109\pi
0.823338 + 0.567552i 0.192109π0.192109\pi
548548 1.61911 0.0691648
549549 0 0
550550 0 0
551551 −13.9156 −0.592825
552552 0 0
553553 15.7303 0.668922
554554 −24.7452 −1.05132
555555 0 0
556556 −38.9176 −1.65047
557557 −4.33445 −0.183657 −0.0918283 0.995775i 0.529271π-0.529271\pi
−0.0918283 + 0.995775i 0.529271π0.529271\pi
558558 0 0
559559 −15.6691 −0.662731
560560 0 0
561561 0 0
562562 51.3848 2.16754
563563 34.9018 1.47094 0.735468 0.677559i 0.236962π-0.236962\pi
0.735468 + 0.677559i 0.236962π0.236962\pi
564564 0 0
565565 0 0
566566 −7.01371 −0.294808
567567 0 0
568568 −7.00572 −0.293953
569569 41.9646 1.75925 0.879623 0.475671i 0.157795π-0.157795\pi
0.879623 + 0.475671i 0.157795π0.157795\pi
570570 0 0
571571 −13.8332 −0.578900 −0.289450 0.957193i 0.593472π-0.593472\pi
−0.289450 + 0.957193i 0.593472π0.593472\pi
572572 15.8474 0.662613
573573 0 0
574574 −17.8658 −0.745704
575575 0 0
576576 0 0
577577 12.7793 0.532008 0.266004 0.963972i 0.414296π-0.414296\pi
0.266004 + 0.963972i 0.414296π0.414296\pi
578578 −17.9789 −0.747824
579579 0 0
580580 0 0
581581 1.75764 0.0729191
582582 0 0
583583 15.1304 0.626638
584584 0.563746 0.0233280
585585 0 0
586586 18.6912 0.772128
587587 −12.1870 −0.503009 −0.251505 0.967856i 0.580925π-0.580925\pi
−0.251505 + 0.967856i 0.580925π0.580925\pi
588588 0 0
589589 −0.352879 −0.0145401
590590 0 0
591591 0 0
592592 6.83798 0.281039
593593 −31.2580 −1.28361 −0.641807 0.766866i 0.721815π-0.721815\pi
−0.641807 + 0.766866i 0.721815π0.721815\pi
594594 0 0
595595 0 0
596596 −7.54208 −0.308936
597597 0 0
598598 −32.0107 −1.30901
599599 33.3707 1.36349 0.681746 0.731589i 0.261221π-0.261221\pi
0.681746 + 0.731589i 0.261221π0.261221\pi
600600 0 0
601601 −46.8052 −1.90922 −0.954611 0.297854i 0.903729π-0.903729\pi
−0.954611 + 0.297854i 0.903729π0.903729\pi
602602 9.61040 0.391691
603603 0 0
604604 41.5349 1.69003
605605 0 0
606606 0 0
607607 −30.7401 −1.24770 −0.623851 0.781543i 0.714433π-0.714433\pi
−0.623851 + 0.781543i 0.714433π0.714433\pi
608608 20.9033 0.847741
609609 0 0
610610 0 0
611611 33.4919 1.35494
612612 0 0
613613 38.2895 1.54650 0.773248 0.634103i 0.218631π-0.218631\pi
0.773248 + 0.634103i 0.218631π0.218631\pi
614614 19.7713 0.797904
615615 0 0
616616 −1.44204 −0.0581014
617617 0.425306 0.0171222 0.00856109 0.999963i 0.497275π-0.497275\pi
0.00856109 + 0.999963i 0.497275π0.497275\pi
618618 0 0
619619 7.51147 0.301912 0.150956 0.988541i 0.451765π-0.451765\pi
0.150956 + 0.988541i 0.451765π0.451765\pi
620620 0 0
621621 0 0
622622 −61.1656 −2.45252
623623 −14.3977 −0.576833
624624 0 0
625625 0 0
626626 39.3912 1.57439
627627 0 0
628628 3.88691 0.155105
629629 6.22061 0.248032
630630 0 0
631631 −11.2716 −0.448714 −0.224357 0.974507i 0.572028π-0.572028\pi
−0.224357 + 0.974507i 0.572028π0.572028\pi
632632 11.5163 0.458094
633633 0 0
634634 −47.5222 −1.88735
635635 0 0
636636 0 0
637637 20.2955 0.804136
638638 −22.4556 −0.889025
639639 0 0
640640 0 0
641641 −26.0825 −1.03020 −0.515099 0.857131i 0.672245π-0.672245\pi
−0.515099 + 0.857131i 0.672245π0.672245\pi
642642 0 0
643643 31.9492 1.25995 0.629977 0.776614i 0.283064π-0.283064\pi
0.629977 + 0.776614i 0.283064π0.283064\pi
644644 10.6032 0.417825
645645 0 0
646646 15.5996 0.613759
647647 −7.39433 −0.290701 −0.145351 0.989380i 0.546431π-0.546431\pi
−0.145351 + 0.989380i 0.546431π0.546431\pi
648648 0 0
649649 9.83550 0.386077
650650 0 0
651651 0 0
652652 2.09698 0.0821240
653653 18.6853 0.731212 0.365606 0.930770i 0.380862π-0.380862\pi
0.365606 + 0.930770i 0.380862π0.380862\pi
654654 0 0
655655 0 0
656656 27.4689 1.07248
657657 0 0
658658 −20.5418 −0.800803
659659 −9.80157 −0.381815 −0.190907 0.981608i 0.561143π-0.561143\pi
−0.190907 + 0.981608i 0.561143π0.561143\pi
660660 0 0
661661 −28.1585 −1.09524 −0.547619 0.836728i 0.684466π-0.684466\pi
−0.547619 + 0.836728i 0.684466π0.684466\pi
662662 6.17868 0.240141
663663 0 0
664664 1.28678 0.0499368
665665 0 0
666666 0 0
667667 24.4966 0.948511
668668 −12.2014 −0.472085
669669 0 0
670670 0 0
671671 5.53943 0.213847
672672 0 0
673673 39.0253 1.50432 0.752158 0.658983i 0.229013π-0.229013\pi
0.752158 + 0.658983i 0.229013π0.229013\pi
674674 −39.2290 −1.51104
675675 0 0
676676 −3.79434 −0.145936
677677 5.03533 0.193523 0.0967617 0.995308i 0.469152π-0.469152\pi
0.0967617 + 0.995308i 0.469152π0.469152\pi
678678 0 0
679679 −16.8997 −0.648549
680680 0 0
681681 0 0
682682 −0.569440 −0.0218050
683683 −30.3312 −1.16059 −0.580295 0.814406i 0.697063π-0.697063\pi
−0.580295 + 0.814406i 0.697063π0.697063\pi
684684 0 0
685685 0 0
686686 −26.9340 −1.02834
687687 0 0
688688 −14.7761 −0.563334
689689 25.5255 0.972444
690690 0 0
691691 −21.2329 −0.807739 −0.403869 0.914817i 0.632335π-0.632335\pi
−0.403869 + 0.914817i 0.632335π0.632335\pi
692692 13.5378 0.514629
693693 0 0
694694 47.4156 1.79987
695695 0 0
696696 0 0
697697 24.9888 0.946520
698698 4.04230 0.153003
699699 0 0
700700 0 0
701701 −32.7698 −1.23770 −0.618849 0.785510i 0.712401π-0.712401\pi
−0.618849 + 0.785510i 0.712401π0.712401\pi
702702 0 0
703703 5.55432 0.209485
704704 21.0045 0.791636
705705 0 0
706706 −10.9466 −0.411981
707707 2.52780 0.0950676
708708 0 0
709709 19.8459 0.745330 0.372665 0.927966i 0.378444π-0.378444\pi
0.372665 + 0.927966i 0.378444π0.378444\pi
710710 0 0
711711 0 0
712712 −10.5407 −0.395029
713713 0.621196 0.0232640
714714 0 0
715715 0 0
716716 −20.3581 −0.760817
717717 0 0
718718 −47.1144 −1.75829
719719 −24.2201 −0.903258 −0.451629 0.892206i 0.649157π-0.649157\pi
−0.451629 + 0.892206i 0.649157π0.649157\pi
720720 0 0
721721 10.0882 0.375703
722722 −25.6917 −0.956144
723723 0 0
724724 33.5609 1.24728
725725 0 0
726726 0 0
727727 5.86510 0.217524 0.108762 0.994068i 0.465311π-0.465311\pi
0.108762 + 0.994068i 0.465311π0.465311\pi
728728 −2.43277 −0.0901643
729729 0 0
730730 0 0
731731 −13.4420 −0.497172
732732 0 0
733733 34.5015 1.27434 0.637171 0.770723i 0.280105π-0.280105\pi
0.637171 + 0.770723i 0.280105π0.280105\pi
734734 −15.2199 −0.561777
735735 0 0
736736 −36.7974 −1.35637
737737 −4.37155 −0.161028
738738 0 0
739739 39.5712 1.45565 0.727826 0.685762i 0.240531π-0.240531\pi
0.727826 + 0.685762i 0.240531π0.240531\pi
740740 0 0
741741 0 0
742742 −15.6557 −0.574739
743743 29.7058 1.08980 0.544900 0.838501i 0.316567π-0.316567\pi
0.544900 + 0.838501i 0.316567π0.316567\pi
744744 0 0
745745 0 0
746746 −46.5172 −1.70312
747747 0 0
748748 13.5950 0.497083
749749 4.78058 0.174679
750750 0 0
751751 26.8870 0.981122 0.490561 0.871407i 0.336792π-0.336792\pi
0.490561 + 0.871407i 0.336792π0.336792\pi
752752 31.5833 1.15172
753753 0 0
754754 −37.8833 −1.37963
755755 0 0
756756 0 0
757757 44.6792 1.62389 0.811947 0.583731i 0.198408π-0.198408\pi
0.811947 + 0.583731i 0.198408π0.198408\pi
758758 −68.7031 −2.49541
759759 0 0
760760 0 0
761761 −20.3080 −0.736163 −0.368081 0.929794i 0.619985π-0.619985\pi
−0.368081 + 0.929794i 0.619985π0.619985\pi
762762 0 0
763763 16.1506 0.584690
764764 2.97393 0.107593
765765 0 0
766766 43.1658 1.55964
767767 16.5928 0.599131
768768 0 0
769769 26.0577 0.939665 0.469832 0.882756i 0.344314π-0.344314\pi
0.469832 + 0.882756i 0.344314π0.344314\pi
770770 0 0
771771 0 0
772772 49.7229 1.78956
773773 −13.7305 −0.493851 −0.246926 0.969034i 0.579420π-0.579420\pi
−0.246926 + 0.969034i 0.579420π0.579420\pi
774774 0 0
775775 0 0
776776 −12.3724 −0.444142
777777 0 0
778778 2.38652 0.0855609
779779 22.3123 0.799421
780780 0 0
781781 19.2851 0.690074
782782 −27.4610 −0.982005
783783 0 0
784784 19.1389 0.683531
785785 0 0
786786 0 0
787787 −19.6660 −0.701018 −0.350509 0.936559i 0.613991π-0.613991\pi
−0.350509 + 0.936559i 0.613991π0.613991\pi
788788 28.6538 1.02075
789789 0 0
790790 0 0
791791 −6.70568 −0.238427
792792 0 0
793793 9.34520 0.331858
794794 −9.76984 −0.346719
795795 0 0
796796 24.4387 0.866207
797797 −10.9441 −0.387660 −0.193830 0.981035i 0.562091π-0.562091\pi
−0.193830 + 0.981035i 0.562091π0.562091\pi
798798 0 0
799799 28.7318 1.01646
800800 0 0
801801 0 0
802802 50.2243 1.77348
803803 −1.55186 −0.0547639
804804 0 0
805805 0 0
806806 −0.960663 −0.0338379
807807 0 0
808808 1.85062 0.0651046
809809 −16.4427 −0.578096 −0.289048 0.957315i 0.593339π-0.593339\pi
−0.289048 + 0.957315i 0.593339π0.593339\pi
810810 0 0
811811 22.6473 0.795253 0.397627 0.917547i 0.369834π-0.369834\pi
0.397627 + 0.917547i 0.369834π0.369834\pi
812812 12.5484 0.440364
813813 0 0
814814 8.96299 0.314153
815815 0 0
816816 0 0
817817 −12.0023 −0.419906
818818 −3.96067 −0.138482
819819 0 0
820820 0 0
821821 39.7792 1.38830 0.694151 0.719829i 0.255780π-0.255780\pi
0.694151 + 0.719829i 0.255780π0.255780\pi
822822 0 0
823823 16.5602 0.577252 0.288626 0.957442i 0.406802π-0.406802\pi
0.288626 + 0.957442i 0.406802π0.406802\pi
824824 7.38562 0.257290
825825 0 0
826826 −10.1770 −0.354102
827827 26.0361 0.905365 0.452683 0.891672i 0.350467π-0.350467\pi
0.452683 + 0.891672i 0.350467π0.350467\pi
828828 0 0
829829 5.14357 0.178644 0.0893218 0.996003i 0.471530π-0.471530\pi
0.0893218 + 0.996003i 0.471530π0.471530\pi
830830 0 0
831831 0 0
832832 35.4352 1.22849
833833 17.4109 0.603252
834834 0 0
835835 0 0
836836 12.1389 0.419832
837837 0 0
838838 4.85467 0.167702
839839 −38.5664 −1.33146 −0.665730 0.746193i 0.731880π-0.731880\pi
−0.665730 + 0.746193i 0.731880π0.731880\pi
840840 0 0
841841 −0.00936035 −0.000322771 0
842842 −49.9427 −1.72114
843843 0 0
844844 −20.3318 −0.699850
845845 0 0
846846 0 0
847847 −6.94679 −0.238694
848848 24.0708 0.826596
849849 0 0
850850 0 0
851851 −9.77764 −0.335173
852852 0 0
853853 9.14763 0.313209 0.156604 0.987661i 0.449945π-0.449945\pi
0.156604 + 0.987661i 0.449945π0.449945\pi
854854 −5.73175 −0.196136
855855 0 0
856856 3.49990 0.119624
857857 13.6712 0.466998 0.233499 0.972357i 0.424982π-0.424982\pi
0.233499 + 0.972357i 0.424982π0.424982\pi
858858 0 0
859859 −35.6556 −1.21655 −0.608277 0.793725i 0.708139π-0.708139\pi
−0.608277 + 0.793725i 0.708139π0.708139\pi
860860 0 0
861861 0 0
862862 −2.48621 −0.0846808
863863 −33.9333 −1.15510 −0.577552 0.816354i 0.695992π-0.695992\pi
−0.577552 + 0.816354i 0.695992π0.695992\pi
864864 0 0
865865 0 0
866866 53.4121 1.81502
867867 0 0
868868 0.318210 0.0108007
869869 −31.7017 −1.07541
870870 0 0
871871 −7.37494 −0.249890
872872 11.8240 0.400410
873873 0 0
874874 −24.5197 −0.829391
875875 0 0
876876 0 0
877877 28.6991 0.969099 0.484550 0.874764i 0.338983π-0.338983\pi
0.484550 + 0.874764i 0.338983π0.338983\pi
878878 40.4006 1.36345
879879 0 0
880880 0 0
881881 −8.33039 −0.280658 −0.140329 0.990105i 0.544816π-0.544816\pi
−0.140329 + 0.990105i 0.544816π0.544816\pi
882882 0 0
883883 −50.3165 −1.69329 −0.846643 0.532161i 0.821380π-0.821380\pi
−0.846643 + 0.532161i 0.821380π0.821380\pi
884884 22.9352 0.771395
885885 0 0
886886 5.13529 0.172524
887887 −12.1186 −0.406903 −0.203452 0.979085i 0.565216π-0.565216\pi
−0.203452 + 0.979085i 0.565216π0.565216\pi
888888 0 0
889889 −1.47948 −0.0496202
890890 0 0
891891 0 0
892892 66.5620 2.22866
893893 25.6543 0.858490
894894 0 0
895895 0 0
896896 −5.68063 −0.189777
897897 0 0
898898 29.9415 0.999161
899899 0.735159 0.0245189
900900 0 0
901901 21.8976 0.729514
902902 36.0053 1.19884
903903 0 0
904904 −4.90928 −0.163280
905905 0 0
906906 0 0
907907 −31.9105 −1.05957 −0.529786 0.848132i 0.677728π-0.677728\pi
−0.529786 + 0.848132i 0.677728π0.677728\pi
908908 −52.2322 −1.73339
909909 0 0
910910 0 0
911911 24.6880 0.817949 0.408975 0.912546i 0.365886π-0.365886\pi
0.408975 + 0.912546i 0.365886π0.365886\pi
912912 0 0
913913 −3.54220 −0.117230
914914 52.5416 1.73792
915915 0 0
916916 5.81371 0.192090
917917 −14.0074 −0.462565
918918 0 0
919919 −19.4850 −0.642752 −0.321376 0.946952i 0.604145π-0.604145\pi
−0.321376 + 0.946952i 0.604145π0.604145\pi
920920 0 0
921921 0 0
922922 −60.1094 −1.97960
923923 32.5345 1.07089
924924 0 0
925925 0 0
926926 −66.4781 −2.18461
927927 0 0
928928 −43.5482 −1.42954
929929 −11.7642 −0.385972 −0.192986 0.981201i 0.561817π-0.561817\pi
−0.192986 + 0.981201i 0.561817π0.561817\pi
930930 0 0
931931 15.5460 0.509501
932932 −13.9873 −0.458168
933933 0 0
934934 89.8749 2.94080
935935 0 0
936936 0 0
937937 −21.0683 −0.688271 −0.344136 0.938920i 0.611828π-0.611828\pi
−0.344136 + 0.938920i 0.611828π0.611828\pi
938938 4.52331 0.147691
939939 0 0
940940 0 0
941941 2.24706 0.0732521 0.0366261 0.999329i 0.488339π-0.488339\pi
0.0366261 + 0.999329i 0.488339π0.488339\pi
942942 0 0
943943 −39.2778 −1.27906
944944 15.6472 0.509273
945945 0 0
946946 −19.3680 −0.629709
947947 6.75625 0.219549 0.109774 0.993957i 0.464987π-0.464987\pi
0.109774 + 0.993957i 0.464987π0.464987\pi
948948 0 0
949949 −2.61803 −0.0849850
950950 0 0
951951 0 0
952952 −2.08700 −0.0676400
953953 −59.9534 −1.94208 −0.971040 0.238918i 0.923207π-0.923207\pi
−0.971040 + 0.238918i 0.923207π0.923207\pi
954954 0 0
955955 0 0
956956 16.5150 0.534135
957957 0 0
958958 −43.8459 −1.41660
959959 0.684206 0.0220942
960960 0 0
961961 −30.9814 −0.999399
962962 15.1208 0.487516
963963 0 0
964964 2.77057 0.0892342
965965 0 0
966966 0 0
967967 −9.05599 −0.291221 −0.145610 0.989342i 0.546515π-0.546515\pi
−0.145610 + 0.989342i 0.546515π0.546515\pi
968968 −5.08580 −0.163464
969969 0 0
970970 0 0
971971 −47.3508 −1.51956 −0.759780 0.650180i 0.774693π-0.774693\pi
−0.759780 + 0.650180i 0.774693π0.774693\pi
972972 0 0
973973 −16.4459 −0.527231
974974 58.2191 1.86546
975975 0 0
976976 8.81263 0.282085
977977 4.74467 0.151795 0.0758977 0.997116i 0.475818π-0.475818\pi
0.0758977 + 0.997116i 0.475818π0.475818\pi
978978 0 0
979979 29.0160 0.927357
980980 0 0
981981 0 0
982982 −31.1981 −0.995570
983983 −18.5656 −0.592150 −0.296075 0.955165i 0.595678π-0.595678\pi
−0.296075 + 0.955165i 0.595678π0.595678\pi
984984 0 0
985985 0 0
986986 −32.4990 −1.03498
987987 0 0
988988 20.4786 0.651513
989989 21.1284 0.671843
990990 0 0
991991 −39.7199 −1.26174 −0.630871 0.775887i 0.717302π-0.717302\pi
−0.630871 + 0.775887i 0.717302π0.717302\pi
992992 −1.10432 −0.0350621
993993 0 0
994994 −19.9546 −0.632921
995995 0 0
996996 0 0
997997 30.2914 0.959338 0.479669 0.877449i 0.340757π-0.340757\pi
0.479669 + 0.877449i 0.340757π0.340757\pi
998998 −92.4309 −2.92585
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5625.2.a.x.1.7 8
3.2 odd 2 625.2.a.f.1.2 8
5.4 even 2 inner 5625.2.a.x.1.2 8
12.11 even 2 10000.2.a.bj.1.7 8
15.2 even 4 625.2.b.c.624.2 8
15.8 even 4 625.2.b.c.624.7 8
15.14 odd 2 625.2.a.f.1.7 8
25.2 odd 20 225.2.m.a.154.2 8
25.13 odd 20 225.2.m.a.19.2 8
60.59 even 2 10000.2.a.bj.1.2 8
75.2 even 20 25.2.e.a.4.1 8
75.8 even 20 625.2.e.a.374.1 8
75.11 odd 10 125.2.d.b.101.1 16
75.14 odd 10 125.2.d.b.101.4 16
75.17 even 20 625.2.e.i.374.2 8
75.23 even 20 125.2.e.b.24.2 8
75.29 odd 10 625.2.d.o.376.1 16
75.38 even 20 25.2.e.a.19.1 yes 8
75.41 odd 10 125.2.d.b.26.1 16
75.44 odd 10 625.2.d.o.251.1 16
75.47 even 20 625.2.e.a.249.1 8
75.53 even 20 625.2.e.i.249.2 8
75.56 odd 10 625.2.d.o.251.4 16
75.59 odd 10 125.2.d.b.26.4 16
75.62 even 20 125.2.e.b.99.2 8
75.71 odd 10 625.2.d.o.376.4 16
300.227 odd 20 400.2.y.c.129.1 8
300.263 odd 20 400.2.y.c.369.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.2.e.a.4.1 8 75.2 even 20
25.2.e.a.19.1 yes 8 75.38 even 20
125.2.d.b.26.1 16 75.41 odd 10
125.2.d.b.26.4 16 75.59 odd 10
125.2.d.b.101.1 16 75.11 odd 10
125.2.d.b.101.4 16 75.14 odd 10
125.2.e.b.24.2 8 75.23 even 20
125.2.e.b.99.2 8 75.62 even 20
225.2.m.a.19.2 8 25.13 odd 20
225.2.m.a.154.2 8 25.2 odd 20
400.2.y.c.129.1 8 300.227 odd 20
400.2.y.c.369.1 8 300.263 odd 20
625.2.a.f.1.2 8 3.2 odd 2
625.2.a.f.1.7 8 15.14 odd 2
625.2.b.c.624.2 8 15.2 even 4
625.2.b.c.624.7 8 15.8 even 4
625.2.d.o.251.1 16 75.44 odd 10
625.2.d.o.251.4 16 75.56 odd 10
625.2.d.o.376.1 16 75.29 odd 10
625.2.d.o.376.4 16 75.71 odd 10
625.2.e.a.249.1 8 75.47 even 20
625.2.e.a.374.1 8 75.8 even 20
625.2.e.i.249.2 8 75.53 even 20
625.2.e.i.374.2 8 75.17 even 20
5625.2.a.x.1.2 8 5.4 even 2 inner
5625.2.a.x.1.7 8 1.1 even 1 trivial
10000.2.a.bj.1.2 8 60.59 even 2
10000.2.a.bj.1.7 8 12.11 even 2