Properties

Label 5625.2.a.q.1.4
Level $5625$
Weight $2$
Character 5625.1
Self dual yes
Analytic conductor $44.916$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5625,2,Mod(1,5625)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5625, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5625.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5625 = 3^{2} \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5625.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,10,0,0,6,-3,0,0,-3,0,6,22,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.9158511370\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.44400625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 11x^{4} - x^{3} + 29x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 75)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.246759\) of defining polynomial
Character \(\chi\) \(=\) 5625.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.246759 q^{2} -1.93911 q^{4} +1.24676 q^{7} -0.972011 q^{8} -2.56971 q^{11} +4.68126 q^{13} +0.307649 q^{14} +3.63837 q^{16} +5.83914 q^{17} +4.16857 q^{19} -0.634099 q^{22} +1.60547 q^{23} +1.15514 q^{26} -2.41760 q^{28} +3.21573 q^{29} -9.19312 q^{31} +2.84182 q^{32} +1.44086 q^{34} +1.27778 q^{37} +1.02863 q^{38} -8.69592 q^{41} +3.88086 q^{43} +4.98295 q^{44} +0.396163 q^{46} -3.20952 q^{47} -5.44559 q^{49} -9.07748 q^{52} -13.3343 q^{53} -1.21186 q^{56} +0.793511 q^{58} +6.39279 q^{59} +3.82692 q^{61} -2.26848 q^{62} -6.57549 q^{64} +10.1238 q^{67} -11.3227 q^{68} -13.8791 q^{71} +11.3814 q^{73} +0.315305 q^{74} -8.08332 q^{76} -3.20381 q^{77} +11.4832 q^{79} -2.14580 q^{82} -2.83229 q^{83} +0.957636 q^{86} +2.49779 q^{88} +1.38077 q^{89} +5.83641 q^{91} -3.11318 q^{92} -0.791979 q^{94} -0.0305081 q^{97} -1.34375 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 10 q^{4} + 6 q^{7} - 3 q^{8} - 3 q^{11} + 6 q^{13} + 22 q^{14} + 18 q^{16} - 13 q^{17} + 11 q^{19} + 16 q^{22} - 13 q^{23} + 28 q^{26} + 7 q^{28} + 3 q^{29} - 11 q^{31} - 16 q^{32} + 15 q^{34} + 21 q^{37}+ \cdots + 41 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.246759 0.174485 0.0872425 0.996187i \(-0.472195\pi\)
0.0872425 + 0.996187i \(0.472195\pi\)
\(3\) 0 0
\(4\) −1.93911 −0.969555
\(5\) 0 0
\(6\) 0 0
\(7\) 1.24676 0.471231 0.235615 0.971846i \(-0.424289\pi\)
0.235615 + 0.971846i \(0.424289\pi\)
\(8\) −0.972011 −0.343658
\(9\) 0 0
\(10\) 0 0
\(11\) −2.56971 −0.774797 −0.387398 0.921912i \(-0.626626\pi\)
−0.387398 + 0.921912i \(0.626626\pi\)
\(12\) 0 0
\(13\) 4.68126 1.29835 0.649174 0.760640i \(-0.275115\pi\)
0.649174 + 0.760640i \(0.275115\pi\)
\(14\) 0.307649 0.0822226
\(15\) 0 0
\(16\) 3.63837 0.909592
\(17\) 5.83914 1.41620 0.708100 0.706112i \(-0.249553\pi\)
0.708100 + 0.706112i \(0.249553\pi\)
\(18\) 0 0
\(19\) 4.16857 0.956336 0.478168 0.878268i \(-0.341301\pi\)
0.478168 + 0.878268i \(0.341301\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.634099 −0.135190
\(23\) 1.60547 0.334763 0.167382 0.985892i \(-0.446469\pi\)
0.167382 + 0.985892i \(0.446469\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.15514 0.226542
\(27\) 0 0
\(28\) −2.41760 −0.456884
\(29\) 3.21573 0.597147 0.298573 0.954387i \(-0.403489\pi\)
0.298573 + 0.954387i \(0.403489\pi\)
\(30\) 0 0
\(31\) −9.19312 −1.65113 −0.825566 0.564305i \(-0.809144\pi\)
−0.825566 + 0.564305i \(0.809144\pi\)
\(32\) 2.84182 0.502368
\(33\) 0 0
\(34\) 1.44086 0.247106
\(35\) 0 0
\(36\) 0 0
\(37\) 1.27778 0.210066 0.105033 0.994469i \(-0.466505\pi\)
0.105033 + 0.994469i \(0.466505\pi\)
\(38\) 1.02863 0.166866
\(39\) 0 0
\(40\) 0 0
\(41\) −8.69592 −1.35808 −0.679038 0.734104i \(-0.737603\pi\)
−0.679038 + 0.734104i \(0.737603\pi\)
\(42\) 0 0
\(43\) 3.88086 0.591825 0.295913 0.955215i \(-0.404376\pi\)
0.295913 + 0.955215i \(0.404376\pi\)
\(44\) 4.98295 0.751208
\(45\) 0 0
\(46\) 0.396163 0.0584111
\(47\) −3.20952 −0.468157 −0.234079 0.972218i \(-0.575207\pi\)
−0.234079 + 0.972218i \(0.575207\pi\)
\(48\) 0 0
\(49\) −5.44559 −0.777942
\(50\) 0 0
\(51\) 0 0
\(52\) −9.07748 −1.25882
\(53\) −13.3343 −1.83161 −0.915803 0.401628i \(-0.868444\pi\)
−0.915803 + 0.401628i \(0.868444\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.21186 −0.161942
\(57\) 0 0
\(58\) 0.793511 0.104193
\(59\) 6.39279 0.832270 0.416135 0.909303i \(-0.363384\pi\)
0.416135 + 0.909303i \(0.363384\pi\)
\(60\) 0 0
\(61\) 3.82692 0.489986 0.244993 0.969525i \(-0.421214\pi\)
0.244993 + 0.969525i \(0.421214\pi\)
\(62\) −2.26848 −0.288098
\(63\) 0 0
\(64\) −6.57549 −0.821936
\(65\) 0 0
\(66\) 0 0
\(67\) 10.1238 1.23682 0.618411 0.785855i \(-0.287777\pi\)
0.618411 + 0.785855i \(0.287777\pi\)
\(68\) −11.3227 −1.37308
\(69\) 0 0
\(70\) 0 0
\(71\) −13.8791 −1.64715 −0.823574 0.567209i \(-0.808023\pi\)
−0.823574 + 0.567209i \(0.808023\pi\)
\(72\) 0 0
\(73\) 11.3814 1.33209 0.666045 0.745912i \(-0.267986\pi\)
0.666045 + 0.745912i \(0.267986\pi\)
\(74\) 0.315305 0.0366534
\(75\) 0 0
\(76\) −8.08332 −0.927220
\(77\) −3.20381 −0.365108
\(78\) 0 0
\(79\) 11.4832 1.29196 0.645979 0.763355i \(-0.276449\pi\)
0.645979 + 0.763355i \(0.276449\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −2.14580 −0.236964
\(83\) −2.83229 −0.310884 −0.155442 0.987845i \(-0.549680\pi\)
−0.155442 + 0.987845i \(0.549680\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.957636 0.103265
\(87\) 0 0
\(88\) 2.49779 0.266265
\(89\) 1.38077 0.146362 0.0731808 0.997319i \(-0.476685\pi\)
0.0731808 + 0.997319i \(0.476685\pi\)
\(90\) 0 0
\(91\) 5.83641 0.611822
\(92\) −3.11318 −0.324571
\(93\) 0 0
\(94\) −0.791979 −0.0816864
\(95\) 0 0
\(96\) 0 0
\(97\) −0.0305081 −0.00309763 −0.00154881 0.999999i \(-0.500493\pi\)
−0.00154881 + 0.999999i \(0.500493\pi\)
\(98\) −1.34375 −0.135739
\(99\) 0 0
\(100\) 0 0
\(101\) 11.2308 1.11750 0.558751 0.829336i \(-0.311281\pi\)
0.558751 + 0.829336i \(0.311281\pi\)
\(102\) 0 0
\(103\) 0.720983 0.0710406 0.0355203 0.999369i \(-0.488691\pi\)
0.0355203 + 0.999369i \(0.488691\pi\)
\(104\) −4.55024 −0.446187
\(105\) 0 0
\(106\) −3.29036 −0.319588
\(107\) 2.11668 0.204627 0.102313 0.994752i \(-0.467376\pi\)
0.102313 + 0.994752i \(0.467376\pi\)
\(108\) 0 0
\(109\) 2.23483 0.214058 0.107029 0.994256i \(-0.465866\pi\)
0.107029 + 0.994256i \(0.465866\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4.53617 0.428628
\(113\) −3.14940 −0.296270 −0.148135 0.988967i \(-0.547327\pi\)
−0.148135 + 0.988967i \(0.547327\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.23566 −0.578967
\(117\) 0 0
\(118\) 1.57748 0.145219
\(119\) 7.28000 0.667357
\(120\) 0 0
\(121\) −4.39659 −0.399690
\(122\) 0.944326 0.0854952
\(123\) 0 0
\(124\) 17.8265 1.60086
\(125\) 0 0
\(126\) 0 0
\(127\) 15.6603 1.38962 0.694812 0.719191i \(-0.255487\pi\)
0.694812 + 0.719191i \(0.255487\pi\)
\(128\) −7.30620 −0.645783
\(129\) 0 0
\(130\) 0 0
\(131\) 14.9564 1.30675 0.653374 0.757036i \(-0.273353\pi\)
0.653374 + 0.757036i \(0.273353\pi\)
\(132\) 0 0
\(133\) 5.19720 0.450655
\(134\) 2.49814 0.215807
\(135\) 0 0
\(136\) −5.67571 −0.486688
\(137\) −10.4946 −0.896611 −0.448305 0.893881i \(-0.647972\pi\)
−0.448305 + 0.893881i \(0.647972\pi\)
\(138\) 0 0
\(139\) 12.4508 1.05606 0.528030 0.849226i \(-0.322931\pi\)
0.528030 + 0.849226i \(0.322931\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.42480 −0.287402
\(143\) −12.0295 −1.00596
\(144\) 0 0
\(145\) 0 0
\(146\) 2.80846 0.232430
\(147\) 0 0
\(148\) −2.47776 −0.203671
\(149\) 17.0680 1.39826 0.699131 0.714994i \(-0.253570\pi\)
0.699131 + 0.714994i \(0.253570\pi\)
\(150\) 0 0
\(151\) −1.57516 −0.128185 −0.0640923 0.997944i \(-0.520415\pi\)
−0.0640923 + 0.997944i \(0.520415\pi\)
\(152\) −4.05190 −0.328652
\(153\) 0 0
\(154\) −0.790569 −0.0637059
\(155\) 0 0
\(156\) 0 0
\(157\) 9.20058 0.734286 0.367143 0.930164i \(-0.380336\pi\)
0.367143 + 0.930164i \(0.380336\pi\)
\(158\) 2.83358 0.225427
\(159\) 0 0
\(160\) 0 0
\(161\) 2.00163 0.157751
\(162\) 0 0
\(163\) 4.58076 0.358793 0.179396 0.983777i \(-0.442586\pi\)
0.179396 + 0.983777i \(0.442586\pi\)
\(164\) 16.8624 1.31673
\(165\) 0 0
\(166\) −0.698893 −0.0542446
\(167\) 0.142531 0.0110294 0.00551469 0.999985i \(-0.498245\pi\)
0.00551469 + 0.999985i \(0.498245\pi\)
\(168\) 0 0
\(169\) 8.91422 0.685709
\(170\) 0 0
\(171\) 0 0
\(172\) −7.52541 −0.573807
\(173\) 24.6228 1.87203 0.936017 0.351954i \(-0.114483\pi\)
0.936017 + 0.351954i \(0.114483\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −9.34955 −0.704749
\(177\) 0 0
\(178\) 0.340718 0.0255379
\(179\) 24.1553 1.80545 0.902726 0.430216i \(-0.141563\pi\)
0.902726 + 0.430216i \(0.141563\pi\)
\(180\) 0 0
\(181\) 1.96805 0.146284 0.0731419 0.997322i \(-0.476697\pi\)
0.0731419 + 0.997322i \(0.476697\pi\)
\(182\) 1.44019 0.106754
\(183\) 0 0
\(184\) −1.56053 −0.115044
\(185\) 0 0
\(186\) 0 0
\(187\) −15.0049 −1.09727
\(188\) 6.22362 0.453904
\(189\) 0 0
\(190\) 0 0
\(191\) 7.76854 0.562112 0.281056 0.959691i \(-0.409315\pi\)
0.281056 + 0.959691i \(0.409315\pi\)
\(192\) 0 0
\(193\) −14.3458 −1.03264 −0.516318 0.856397i \(-0.672698\pi\)
−0.516318 + 0.856397i \(0.672698\pi\)
\(194\) −0.00752814 −0.000540489 0
\(195\) 0 0
\(196\) 10.5596 0.754257
\(197\) 0.163540 0.0116517 0.00582587 0.999983i \(-0.498146\pi\)
0.00582587 + 0.999983i \(0.498146\pi\)
\(198\) 0 0
\(199\) 4.96974 0.352295 0.176148 0.984364i \(-0.443636\pi\)
0.176148 + 0.984364i \(0.443636\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2.77129 0.194987
\(203\) 4.00925 0.281394
\(204\) 0 0
\(205\) 0 0
\(206\) 0.177909 0.0123955
\(207\) 0 0
\(208\) 17.0322 1.18097
\(209\) −10.7120 −0.740966
\(210\) 0 0
\(211\) 3.29381 0.226755 0.113378 0.993552i \(-0.463833\pi\)
0.113378 + 0.993552i \(0.463833\pi\)
\(212\) 25.8567 1.77584
\(213\) 0 0
\(214\) 0.522309 0.0357043
\(215\) 0 0
\(216\) 0 0
\(217\) −11.4616 −0.778064
\(218\) 0.551465 0.0373500
\(219\) 0 0
\(220\) 0 0
\(221\) 27.3346 1.83872
\(222\) 0 0
\(223\) 15.7732 1.05625 0.528127 0.849166i \(-0.322895\pi\)
0.528127 + 0.849166i \(0.322895\pi\)
\(224\) 3.54307 0.236731
\(225\) 0 0
\(226\) −0.777142 −0.0516947
\(227\) 13.5406 0.898721 0.449360 0.893351i \(-0.351652\pi\)
0.449360 + 0.893351i \(0.351652\pi\)
\(228\) 0 0
\(229\) −14.7829 −0.976879 −0.488440 0.872598i \(-0.662434\pi\)
−0.488440 + 0.872598i \(0.662434\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.12573 −0.205214
\(233\) 0.518980 0.0339995 0.0169998 0.999855i \(-0.494589\pi\)
0.0169998 + 0.999855i \(0.494589\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −12.3963 −0.806932
\(237\) 0 0
\(238\) 1.79641 0.116444
\(239\) −8.23032 −0.532375 −0.266188 0.963921i \(-0.585764\pi\)
−0.266188 + 0.963921i \(0.585764\pi\)
\(240\) 0 0
\(241\) −1.28118 −0.0825280 −0.0412640 0.999148i \(-0.513138\pi\)
−0.0412640 + 0.999148i \(0.513138\pi\)
\(242\) −1.08490 −0.0697398
\(243\) 0 0
\(244\) −7.42081 −0.475069
\(245\) 0 0
\(246\) 0 0
\(247\) 19.5142 1.24166
\(248\) 8.93581 0.567424
\(249\) 0 0
\(250\) 0 0
\(251\) −4.63494 −0.292555 −0.146277 0.989244i \(-0.546729\pi\)
−0.146277 + 0.989244i \(0.546729\pi\)
\(252\) 0 0
\(253\) −4.12559 −0.259373
\(254\) 3.86431 0.242469
\(255\) 0 0
\(256\) 11.3481 0.709257
\(257\) −18.3001 −1.14153 −0.570766 0.821113i \(-0.693353\pi\)
−0.570766 + 0.821113i \(0.693353\pi\)
\(258\) 0 0
\(259\) 1.59309 0.0989897
\(260\) 0 0
\(261\) 0 0
\(262\) 3.69063 0.228008
\(263\) 16.6666 1.02771 0.513854 0.857877i \(-0.328217\pi\)
0.513854 + 0.857877i \(0.328217\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.28246 0.0786324
\(267\) 0 0
\(268\) −19.6312 −1.19917
\(269\) −2.63211 −0.160483 −0.0802414 0.996775i \(-0.525569\pi\)
−0.0802414 + 0.996775i \(0.525569\pi\)
\(270\) 0 0
\(271\) 4.56346 0.277210 0.138605 0.990348i \(-0.455738\pi\)
0.138605 + 0.990348i \(0.455738\pi\)
\(272\) 21.2449 1.28816
\(273\) 0 0
\(274\) −2.58963 −0.156445
\(275\) 0 0
\(276\) 0 0
\(277\) −1.25926 −0.0756614 −0.0378307 0.999284i \(-0.512045\pi\)
−0.0378307 + 0.999284i \(0.512045\pi\)
\(278\) 3.07234 0.184266
\(279\) 0 0
\(280\) 0 0
\(281\) −13.4167 −0.800370 −0.400185 0.916434i \(-0.631054\pi\)
−0.400185 + 0.916434i \(0.631054\pi\)
\(282\) 0 0
\(283\) −24.0890 −1.43194 −0.715971 0.698130i \(-0.754016\pi\)
−0.715971 + 0.698130i \(0.754016\pi\)
\(284\) 26.9131 1.59700
\(285\) 0 0
\(286\) −2.96838 −0.175524
\(287\) −10.8417 −0.639966
\(288\) 0 0
\(289\) 17.0956 1.00562
\(290\) 0 0
\(291\) 0 0
\(292\) −22.0697 −1.29153
\(293\) −32.1727 −1.87955 −0.939776 0.341792i \(-0.888966\pi\)
−0.939776 + 0.341792i \(0.888966\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.24202 −0.0721909
\(297\) 0 0
\(298\) 4.21167 0.243976
\(299\) 7.51561 0.434639
\(300\) 0 0
\(301\) 4.83849 0.278886
\(302\) −0.388685 −0.0223663
\(303\) 0 0
\(304\) 15.1668 0.869875
\(305\) 0 0
\(306\) 0 0
\(307\) −20.2962 −1.15837 −0.579183 0.815198i \(-0.696628\pi\)
−0.579183 + 0.815198i \(0.696628\pi\)
\(308\) 6.21254 0.353992
\(309\) 0 0
\(310\) 0 0
\(311\) 18.7224 1.06165 0.530825 0.847481i \(-0.321882\pi\)
0.530825 + 0.847481i \(0.321882\pi\)
\(312\) 0 0
\(313\) −24.8839 −1.40652 −0.703261 0.710932i \(-0.748274\pi\)
−0.703261 + 0.710932i \(0.748274\pi\)
\(314\) 2.27033 0.128122
\(315\) 0 0
\(316\) −22.2671 −1.25262
\(317\) −25.1880 −1.41470 −0.707350 0.706863i \(-0.750110\pi\)
−0.707350 + 0.706863i \(0.750110\pi\)
\(318\) 0 0
\(319\) −8.26351 −0.462668
\(320\) 0 0
\(321\) 0 0
\(322\) 0.493920 0.0275251
\(323\) 24.3409 1.35436
\(324\) 0 0
\(325\) 0 0
\(326\) 1.13034 0.0626039
\(327\) 0 0
\(328\) 8.45253 0.466713
\(329\) −4.00150 −0.220610
\(330\) 0 0
\(331\) 30.4193 1.67199 0.835997 0.548735i \(-0.184890\pi\)
0.835997 + 0.548735i \(0.184890\pi\)
\(332\) 5.49212 0.301419
\(333\) 0 0
\(334\) 0.0351708 0.00192446
\(335\) 0 0
\(336\) 0 0
\(337\) 4.57455 0.249192 0.124596 0.992208i \(-0.460237\pi\)
0.124596 + 0.992208i \(0.460237\pi\)
\(338\) 2.19966 0.119646
\(339\) 0 0
\(340\) 0 0
\(341\) 23.6237 1.27929
\(342\) 0 0
\(343\) −15.5167 −0.837821
\(344\) −3.77224 −0.203385
\(345\) 0 0
\(346\) 6.07589 0.326642
\(347\) −16.8153 −0.902691 −0.451346 0.892349i \(-0.649056\pi\)
−0.451346 + 0.892349i \(0.649056\pi\)
\(348\) 0 0
\(349\) 0.373581 0.0199973 0.00999866 0.999950i \(-0.496817\pi\)
0.00999866 + 0.999950i \(0.496817\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −7.30266 −0.389233
\(353\) −23.9685 −1.27572 −0.637858 0.770154i \(-0.720179\pi\)
−0.637858 + 0.770154i \(0.720179\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −2.67747 −0.141906
\(357\) 0 0
\(358\) 5.96054 0.315024
\(359\) 4.75020 0.250706 0.125353 0.992112i \(-0.459994\pi\)
0.125353 + 0.992112i \(0.459994\pi\)
\(360\) 0 0
\(361\) −1.62302 −0.0854221
\(362\) 0.485633 0.0255243
\(363\) 0 0
\(364\) −11.3174 −0.593195
\(365\) 0 0
\(366\) 0 0
\(367\) 17.3700 0.906706 0.453353 0.891331i \(-0.350228\pi\)
0.453353 + 0.891331i \(0.350228\pi\)
\(368\) 5.84128 0.304498
\(369\) 0 0
\(370\) 0 0
\(371\) −16.6246 −0.863109
\(372\) 0 0
\(373\) −2.10877 −0.109188 −0.0545939 0.998509i \(-0.517386\pi\)
−0.0545939 + 0.998509i \(0.517386\pi\)
\(374\) −3.70260 −0.191457
\(375\) 0 0
\(376\) 3.11969 0.160886
\(377\) 15.0537 0.775305
\(378\) 0 0
\(379\) 12.4090 0.637405 0.318703 0.947855i \(-0.396753\pi\)
0.318703 + 0.947855i \(0.396753\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.91696 0.0980801
\(383\) 33.3056 1.70184 0.850919 0.525297i \(-0.176046\pi\)
0.850919 + 0.525297i \(0.176046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3.53996 −0.180179
\(387\) 0 0
\(388\) 0.0591585 0.00300332
\(389\) 16.9777 0.860802 0.430401 0.902638i \(-0.358372\pi\)
0.430401 + 0.902638i \(0.358372\pi\)
\(390\) 0 0
\(391\) 9.37455 0.474091
\(392\) 5.29317 0.267346
\(393\) 0 0
\(394\) 0.0403549 0.00203305
\(395\) 0 0
\(396\) 0 0
\(397\) 0.866570 0.0434919 0.0217460 0.999764i \(-0.493078\pi\)
0.0217460 + 0.999764i \(0.493078\pi\)
\(398\) 1.22633 0.0614702
\(399\) 0 0
\(400\) 0 0
\(401\) −9.68680 −0.483736 −0.241868 0.970309i \(-0.577760\pi\)
−0.241868 + 0.970309i \(0.577760\pi\)
\(402\) 0 0
\(403\) −43.0354 −2.14375
\(404\) −21.7777 −1.08348
\(405\) 0 0
\(406\) 0.989317 0.0490990
\(407\) −3.28353 −0.162759
\(408\) 0 0
\(409\) 1.51785 0.0750531 0.0375265 0.999296i \(-0.488052\pi\)
0.0375265 + 0.999296i \(0.488052\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.39807 −0.0688778
\(413\) 7.97027 0.392191
\(414\) 0 0
\(415\) 0 0
\(416\) 13.3033 0.652249
\(417\) 0 0
\(418\) −2.64329 −0.129287
\(419\) 30.5620 1.49305 0.746526 0.665356i \(-0.231720\pi\)
0.746526 + 0.665356i \(0.231720\pi\)
\(420\) 0 0
\(421\) −6.97162 −0.339776 −0.169888 0.985463i \(-0.554341\pi\)
−0.169888 + 0.985463i \(0.554341\pi\)
\(422\) 0.812777 0.0395654
\(423\) 0 0
\(424\) 12.9611 0.629445
\(425\) 0 0
\(426\) 0 0
\(427\) 4.77124 0.230897
\(428\) −4.10447 −0.198397
\(429\) 0 0
\(430\) 0 0
\(431\) −10.9472 −0.527310 −0.263655 0.964617i \(-0.584928\pi\)
−0.263655 + 0.964617i \(0.584928\pi\)
\(432\) 0 0
\(433\) −10.4393 −0.501683 −0.250841 0.968028i \(-0.580707\pi\)
−0.250841 + 0.968028i \(0.580707\pi\)
\(434\) −2.82825 −0.135761
\(435\) 0 0
\(436\) −4.33359 −0.207541
\(437\) 6.69250 0.320146
\(438\) 0 0
\(439\) 15.4334 0.736594 0.368297 0.929708i \(-0.379941\pi\)
0.368297 + 0.929708i \(0.379941\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 6.74505 0.320829
\(443\) 18.9105 0.898463 0.449231 0.893415i \(-0.351698\pi\)
0.449231 + 0.893415i \(0.351698\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 3.89218 0.184300
\(447\) 0 0
\(448\) −8.19805 −0.387322
\(449\) 11.4152 0.538714 0.269357 0.963040i \(-0.413189\pi\)
0.269357 + 0.963040i \(0.413189\pi\)
\(450\) 0 0
\(451\) 22.3460 1.05223
\(452\) 6.10703 0.287250
\(453\) 0 0
\(454\) 3.34126 0.156813
\(455\) 0 0
\(456\) 0 0
\(457\) 33.9739 1.58923 0.794616 0.607112i \(-0.207672\pi\)
0.794616 + 0.607112i \(0.207672\pi\)
\(458\) −3.64780 −0.170451
\(459\) 0 0
\(460\) 0 0
\(461\) 24.6907 1.14996 0.574981 0.818167i \(-0.305009\pi\)
0.574981 + 0.818167i \(0.305009\pi\)
\(462\) 0 0
\(463\) 13.6315 0.633510 0.316755 0.948507i \(-0.397407\pi\)
0.316755 + 0.948507i \(0.397407\pi\)
\(464\) 11.7000 0.543160
\(465\) 0 0
\(466\) 0.128063 0.00593241
\(467\) 9.47115 0.438272 0.219136 0.975694i \(-0.429676\pi\)
0.219136 + 0.975694i \(0.429676\pi\)
\(468\) 0 0
\(469\) 12.6220 0.582828
\(470\) 0 0
\(471\) 0 0
\(472\) −6.21386 −0.286016
\(473\) −9.97268 −0.458544
\(474\) 0 0
\(475\) 0 0
\(476\) −14.1167 −0.647039
\(477\) 0 0
\(478\) −2.03091 −0.0928914
\(479\) 25.7286 1.17557 0.587784 0.809018i \(-0.300000\pi\)
0.587784 + 0.809018i \(0.300000\pi\)
\(480\) 0 0
\(481\) 5.98164 0.272739
\(482\) −0.316142 −0.0143999
\(483\) 0 0
\(484\) 8.52546 0.387521
\(485\) 0 0
\(486\) 0 0
\(487\) 28.4046 1.28714 0.643568 0.765389i \(-0.277453\pi\)
0.643568 + 0.765389i \(0.277453\pi\)
\(488\) −3.71980 −0.168388
\(489\) 0 0
\(490\) 0 0
\(491\) 6.10299 0.275424 0.137712 0.990472i \(-0.456025\pi\)
0.137712 + 0.990472i \(0.456025\pi\)
\(492\) 0 0
\(493\) 18.7771 0.845679
\(494\) 4.81530 0.216650
\(495\) 0 0
\(496\) −33.4479 −1.50186
\(497\) −17.3039 −0.776186
\(498\) 0 0
\(499\) −20.3163 −0.909481 −0.454740 0.890624i \(-0.650268\pi\)
−0.454740 + 0.890624i \(0.650268\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −1.14371 −0.0510464
\(503\) 14.6267 0.652171 0.326085 0.945340i \(-0.394270\pi\)
0.326085 + 0.945340i \(0.394270\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −1.01803 −0.0452567
\(507\) 0 0
\(508\) −30.3670 −1.34732
\(509\) 4.30584 0.190853 0.0954265 0.995436i \(-0.469578\pi\)
0.0954265 + 0.995436i \(0.469578\pi\)
\(510\) 0 0
\(511\) 14.1898 0.627721
\(512\) 17.4127 0.769538
\(513\) 0 0
\(514\) −4.51572 −0.199180
\(515\) 0 0
\(516\) 0 0
\(517\) 8.24755 0.362727
\(518\) 0.393109 0.0172722
\(519\) 0 0
\(520\) 0 0
\(521\) 39.6413 1.73672 0.868358 0.495938i \(-0.165176\pi\)
0.868358 + 0.495938i \(0.165176\pi\)
\(522\) 0 0
\(523\) −36.2874 −1.58674 −0.793369 0.608741i \(-0.791675\pi\)
−0.793369 + 0.608741i \(0.791675\pi\)
\(524\) −29.0021 −1.26696
\(525\) 0 0
\(526\) 4.11264 0.179320
\(527\) −53.6799 −2.33833
\(528\) 0 0
\(529\) −20.4225 −0.887934
\(530\) 0 0
\(531\) 0 0
\(532\) −10.0779 −0.436934
\(533\) −40.7079 −1.76325
\(534\) 0 0
\(535\) 0 0
\(536\) −9.84046 −0.425043
\(537\) 0 0
\(538\) −0.649497 −0.0280018
\(539\) 13.9936 0.602747
\(540\) 0 0
\(541\) −38.6044 −1.65973 −0.829866 0.557962i \(-0.811583\pi\)
−0.829866 + 0.557962i \(0.811583\pi\)
\(542\) 1.12607 0.0483690
\(543\) 0 0
\(544\) 16.5938 0.711453
\(545\) 0 0
\(546\) 0 0
\(547\) −10.3620 −0.443047 −0.221524 0.975155i \(-0.571103\pi\)
−0.221524 + 0.975155i \(0.571103\pi\)
\(548\) 20.3501 0.869313
\(549\) 0 0
\(550\) 0 0
\(551\) 13.4050 0.571073
\(552\) 0 0
\(553\) 14.3167 0.608810
\(554\) −0.310733 −0.0132018
\(555\) 0 0
\(556\) −24.1434 −1.02391
\(557\) 12.6830 0.537398 0.268699 0.963224i \(-0.413406\pi\)
0.268699 + 0.963224i \(0.413406\pi\)
\(558\) 0 0
\(559\) 18.1673 0.768396
\(560\) 0 0
\(561\) 0 0
\(562\) −3.31068 −0.139653
\(563\) 13.0892 0.551645 0.275823 0.961209i \(-0.411050\pi\)
0.275823 + 0.961209i \(0.411050\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −5.94417 −0.249852
\(567\) 0 0
\(568\) 13.4906 0.566055
\(569\) 2.58803 0.108496 0.0542478 0.998528i \(-0.482724\pi\)
0.0542478 + 0.998528i \(0.482724\pi\)
\(570\) 0 0
\(571\) −10.5754 −0.442568 −0.221284 0.975209i \(-0.571025\pi\)
−0.221284 + 0.975209i \(0.571025\pi\)
\(572\) 23.3265 0.975330
\(573\) 0 0
\(574\) −2.67529 −0.111665
\(575\) 0 0
\(576\) 0 0
\(577\) 0.0142904 0.000594917 0 0.000297458 1.00000i \(-0.499905\pi\)
0.000297458 1.00000i \(0.499905\pi\)
\(578\) 4.21849 0.175466
\(579\) 0 0
\(580\) 0 0
\(581\) −3.53118 −0.146498
\(582\) 0 0
\(583\) 34.2653 1.41912
\(584\) −11.0628 −0.457783
\(585\) 0 0
\(586\) −7.93891 −0.327953
\(587\) −22.6389 −0.934408 −0.467204 0.884149i \(-0.654739\pi\)
−0.467204 + 0.884149i \(0.654739\pi\)
\(588\) 0 0
\(589\) −38.3222 −1.57904
\(590\) 0 0
\(591\) 0 0
\(592\) 4.64905 0.191075
\(593\) 12.7423 0.523264 0.261632 0.965168i \(-0.415739\pi\)
0.261632 + 0.965168i \(0.415739\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −33.0967 −1.35569
\(597\) 0 0
\(598\) 1.85454 0.0758380
\(599\) 6.83599 0.279311 0.139656 0.990200i \(-0.455400\pi\)
0.139656 + 0.990200i \(0.455400\pi\)
\(600\) 0 0
\(601\) 31.8422 1.29887 0.649435 0.760417i \(-0.275005\pi\)
0.649435 + 0.760417i \(0.275005\pi\)
\(602\) 1.19394 0.0486614
\(603\) 0 0
\(604\) 3.05441 0.124282
\(605\) 0 0
\(606\) 0 0
\(607\) −27.7763 −1.12741 −0.563703 0.825977i \(-0.690624\pi\)
−0.563703 + 0.825977i \(0.690624\pi\)
\(608\) 11.8463 0.480432
\(609\) 0 0
\(610\) 0 0
\(611\) −15.0246 −0.607831
\(612\) 0 0
\(613\) 3.61694 0.146087 0.0730433 0.997329i \(-0.476729\pi\)
0.0730433 + 0.997329i \(0.476729\pi\)
\(614\) −5.00827 −0.202117
\(615\) 0 0
\(616\) 3.11414 0.125472
\(617\) 44.6425 1.79724 0.898621 0.438727i \(-0.144570\pi\)
0.898621 + 0.438727i \(0.144570\pi\)
\(618\) 0 0
\(619\) 20.5085 0.824307 0.412153 0.911115i \(-0.364777\pi\)
0.412153 + 0.911115i \(0.364777\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 4.61992 0.185242
\(623\) 1.72149 0.0689701
\(624\) 0 0
\(625\) 0 0
\(626\) −6.14033 −0.245417
\(627\) 0 0
\(628\) −17.8409 −0.711931
\(629\) 7.46116 0.297496
\(630\) 0 0
\(631\) −37.7357 −1.50223 −0.751117 0.660169i \(-0.770485\pi\)
−0.751117 + 0.660169i \(0.770485\pi\)
\(632\) −11.1618 −0.443991
\(633\) 0 0
\(634\) −6.21537 −0.246844
\(635\) 0 0
\(636\) 0 0
\(637\) −25.4922 −1.01004
\(638\) −2.03909 −0.0807285
\(639\) 0 0
\(640\) 0 0
\(641\) 9.18606 0.362828 0.181414 0.983407i \(-0.441933\pi\)
0.181414 + 0.983407i \(0.441933\pi\)
\(642\) 0 0
\(643\) −3.42111 −0.134915 −0.0674577 0.997722i \(-0.521489\pi\)
−0.0674577 + 0.997722i \(0.521489\pi\)
\(644\) −3.88138 −0.152948
\(645\) 0 0
\(646\) 6.00633 0.236316
\(647\) 3.26735 0.128453 0.0642264 0.997935i \(-0.479542\pi\)
0.0642264 + 0.997935i \(0.479542\pi\)
\(648\) 0 0
\(649\) −16.4276 −0.644840
\(650\) 0 0
\(651\) 0 0
\(652\) −8.88259 −0.347869
\(653\) 12.6362 0.494494 0.247247 0.968952i \(-0.420474\pi\)
0.247247 + 0.968952i \(0.420474\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −31.6390 −1.23529
\(657\) 0 0
\(658\) −0.987407 −0.0384931
\(659\) 9.14896 0.356393 0.178197 0.983995i \(-0.442974\pi\)
0.178197 + 0.983995i \(0.442974\pi\)
\(660\) 0 0
\(661\) 6.39083 0.248574 0.124287 0.992246i \(-0.460336\pi\)
0.124287 + 0.992246i \(0.460336\pi\)
\(662\) 7.50622 0.291738
\(663\) 0 0
\(664\) 2.75302 0.106838
\(665\) 0 0
\(666\) 0 0
\(667\) 5.16276 0.199903
\(668\) −0.276383 −0.0106936
\(669\) 0 0
\(670\) 0 0
\(671\) −9.83407 −0.379640
\(672\) 0 0
\(673\) 33.7063 1.29928 0.649641 0.760241i \(-0.274919\pi\)
0.649641 + 0.760241i \(0.274919\pi\)
\(674\) 1.12881 0.0434802
\(675\) 0 0
\(676\) −17.2857 −0.664833
\(677\) 9.20340 0.353715 0.176858 0.984236i \(-0.443407\pi\)
0.176858 + 0.984236i \(0.443407\pi\)
\(678\) 0 0
\(679\) −0.0380362 −0.00145970
\(680\) 0 0
\(681\) 0 0
\(682\) 5.82935 0.223217
\(683\) 27.2216 1.04161 0.520803 0.853677i \(-0.325633\pi\)
0.520803 + 0.853677i \(0.325633\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −3.82887 −0.146187
\(687\) 0 0
\(688\) 14.1200 0.538320
\(689\) −62.4213 −2.37806
\(690\) 0 0
\(691\) 29.8238 1.13455 0.567276 0.823528i \(-0.307997\pi\)
0.567276 + 0.823528i \(0.307997\pi\)
\(692\) −47.7463 −1.81504
\(693\) 0 0
\(694\) −4.14932 −0.157506
\(695\) 0 0
\(696\) 0 0
\(697\) −50.7767 −1.92331
\(698\) 0.0921844 0.00348923
\(699\) 0 0
\(700\) 0 0
\(701\) 19.1081 0.721704 0.360852 0.932623i \(-0.382486\pi\)
0.360852 + 0.932623i \(0.382486\pi\)
\(702\) 0 0
\(703\) 5.32653 0.200894
\(704\) 16.8971 0.636834
\(705\) 0 0
\(706\) −5.91445 −0.222593
\(707\) 14.0020 0.526601
\(708\) 0 0
\(709\) 14.5146 0.545107 0.272553 0.962141i \(-0.412132\pi\)
0.272553 + 0.962141i \(0.412132\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.34213 −0.0502983
\(713\) −14.7592 −0.552738
\(714\) 0 0
\(715\) 0 0
\(716\) −46.8398 −1.75048
\(717\) 0 0
\(718\) 1.17215 0.0437444
\(719\) −34.7507 −1.29598 −0.647992 0.761647i \(-0.724391\pi\)
−0.647992 + 0.761647i \(0.724391\pi\)
\(720\) 0 0
\(721\) 0.898892 0.0334765
\(722\) −0.400494 −0.0149049
\(723\) 0 0
\(724\) −3.81626 −0.141830
\(725\) 0 0
\(726\) 0 0
\(727\) −42.6279 −1.58098 −0.790490 0.612475i \(-0.790174\pi\)
−0.790490 + 0.612475i \(0.790174\pi\)
\(728\) −5.67305 −0.210257
\(729\) 0 0
\(730\) 0 0
\(731\) 22.6609 0.838143
\(732\) 0 0
\(733\) −1.96230 −0.0724793 −0.0362397 0.999343i \(-0.511538\pi\)
−0.0362397 + 0.999343i \(0.511538\pi\)
\(734\) 4.28620 0.158207
\(735\) 0 0
\(736\) 4.56245 0.168174
\(737\) −26.0153 −0.958286
\(738\) 0 0
\(739\) 12.3601 0.454672 0.227336 0.973816i \(-0.426998\pi\)
0.227336 + 0.973816i \(0.426998\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −4.10228 −0.150599
\(743\) 8.63742 0.316876 0.158438 0.987369i \(-0.449354\pi\)
0.158438 + 0.987369i \(0.449354\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.520357 −0.0190516
\(747\) 0 0
\(748\) 29.0962 1.06386
\(749\) 2.63898 0.0964264
\(750\) 0 0
\(751\) −24.3654 −0.889105 −0.444552 0.895753i \(-0.646637\pi\)
−0.444552 + 0.895753i \(0.646637\pi\)
\(752\) −11.6774 −0.425832
\(753\) 0 0
\(754\) 3.71463 0.135279
\(755\) 0 0
\(756\) 0 0
\(757\) 5.18352 0.188398 0.0941991 0.995553i \(-0.469971\pi\)
0.0941991 + 0.995553i \(0.469971\pi\)
\(758\) 3.06202 0.111218
\(759\) 0 0
\(760\) 0 0
\(761\) −31.2636 −1.13331 −0.566653 0.823957i \(-0.691762\pi\)
−0.566653 + 0.823957i \(0.691762\pi\)
\(762\) 0 0
\(763\) 2.78630 0.100871
\(764\) −15.0641 −0.544999
\(765\) 0 0
\(766\) 8.21846 0.296945
\(767\) 29.9263 1.08058
\(768\) 0 0
\(769\) −44.1891 −1.59350 −0.796750 0.604309i \(-0.793449\pi\)
−0.796750 + 0.604309i \(0.793449\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 27.8182 1.00120
\(773\) −21.5881 −0.776471 −0.388236 0.921560i \(-0.626915\pi\)
−0.388236 + 0.921560i \(0.626915\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.0296542 0.00106452
\(777\) 0 0
\(778\) 4.18939 0.150197
\(779\) −36.2496 −1.29878
\(780\) 0 0
\(781\) 35.6653 1.27621
\(782\) 2.31325 0.0827218
\(783\) 0 0
\(784\) −19.8131 −0.707610
\(785\) 0 0
\(786\) 0 0
\(787\) −14.4212 −0.514059 −0.257029 0.966404i \(-0.582744\pi\)
−0.257029 + 0.966404i \(0.582744\pi\)
\(788\) −0.317122 −0.0112970
\(789\) 0 0
\(790\) 0 0
\(791\) −3.92654 −0.139612
\(792\) 0 0
\(793\) 17.9148 0.636173
\(794\) 0.213834 0.00758868
\(795\) 0 0
\(796\) −9.63687 −0.341570
\(797\) −39.4567 −1.39763 −0.698814 0.715304i \(-0.746288\pi\)
−0.698814 + 0.715304i \(0.746288\pi\)
\(798\) 0 0
\(799\) −18.7409 −0.663004
\(800\) 0 0
\(801\) 0 0
\(802\) −2.39031 −0.0844046
\(803\) −29.2469 −1.03210
\(804\) 0 0
\(805\) 0 0
\(806\) −10.6194 −0.374051
\(807\) 0 0
\(808\) −10.9164 −0.384038
\(809\) 5.96204 0.209614 0.104807 0.994493i \(-0.466577\pi\)
0.104807 + 0.994493i \(0.466577\pi\)
\(810\) 0 0
\(811\) −39.1764 −1.37567 −0.687835 0.725867i \(-0.741439\pi\)
−0.687835 + 0.725867i \(0.741439\pi\)
\(812\) −7.77437 −0.272827
\(813\) 0 0
\(814\) −0.810242 −0.0283990
\(815\) 0 0
\(816\) 0 0
\(817\) 16.1776 0.565984
\(818\) 0.374544 0.0130956
\(819\) 0 0
\(820\) 0 0
\(821\) −20.6329 −0.720092 −0.360046 0.932934i \(-0.617239\pi\)
−0.360046 + 0.932934i \(0.617239\pi\)
\(822\) 0 0
\(823\) −39.0162 −1.36002 −0.680009 0.733203i \(-0.738024\pi\)
−0.680009 + 0.733203i \(0.738024\pi\)
\(824\) −0.700803 −0.0244136
\(825\) 0 0
\(826\) 1.96673 0.0684314
\(827\) 19.5976 0.681474 0.340737 0.940159i \(-0.389323\pi\)
0.340737 + 0.940159i \(0.389323\pi\)
\(828\) 0 0
\(829\) −8.67511 −0.301299 −0.150650 0.988587i \(-0.548136\pi\)
−0.150650 + 0.988587i \(0.548136\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −30.7816 −1.06716
\(833\) −31.7976 −1.10172
\(834\) 0 0
\(835\) 0 0
\(836\) 20.7718 0.718407
\(837\) 0 0
\(838\) 7.54145 0.260515
\(839\) 3.85921 0.133235 0.0666173 0.997779i \(-0.478779\pi\)
0.0666173 + 0.997779i \(0.478779\pi\)
\(840\) 0 0
\(841\) −18.6591 −0.643416
\(842\) −1.72031 −0.0592858
\(843\) 0 0
\(844\) −6.38706 −0.219852
\(845\) 0 0
\(846\) 0 0
\(847\) −5.48148 −0.188346
\(848\) −48.5151 −1.66601
\(849\) 0 0
\(850\) 0 0
\(851\) 2.05144 0.0703224
\(852\) 0 0
\(853\) 29.7898 1.01998 0.509991 0.860180i \(-0.329649\pi\)
0.509991 + 0.860180i \(0.329649\pi\)
\(854\) 1.17735 0.0402880
\(855\) 0 0
\(856\) −2.05743 −0.0703216
\(857\) 36.2041 1.23671 0.618354 0.785899i \(-0.287800\pi\)
0.618354 + 0.785899i \(0.287800\pi\)
\(858\) 0 0
\(859\) −37.6533 −1.28471 −0.642357 0.766406i \(-0.722043\pi\)
−0.642357 + 0.766406i \(0.722043\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −2.70133 −0.0920077
\(863\) −2.49913 −0.0850715 −0.0425357 0.999095i \(-0.513544\pi\)
−0.0425357 + 0.999095i \(0.513544\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2.57600 −0.0875361
\(867\) 0 0
\(868\) 22.2253 0.754376
\(869\) −29.5084 −1.00100
\(870\) 0 0
\(871\) 47.3923 1.60583
\(872\) −2.17228 −0.0735628
\(873\) 0 0
\(874\) 1.65143 0.0558606
\(875\) 0 0
\(876\) 0 0
\(877\) 32.4491 1.09573 0.547864 0.836567i \(-0.315441\pi\)
0.547864 + 0.836567i \(0.315441\pi\)
\(878\) 3.80832 0.128525
\(879\) 0 0
\(880\) 0 0
\(881\) 33.2625 1.12064 0.560321 0.828275i \(-0.310678\pi\)
0.560321 + 0.828275i \(0.310678\pi\)
\(882\) 0 0
\(883\) 10.9730 0.369269 0.184635 0.982807i \(-0.440890\pi\)
0.184635 + 0.982807i \(0.440890\pi\)
\(884\) −53.0047 −1.78274
\(885\) 0 0
\(886\) 4.66632 0.156768
\(887\) −26.0052 −0.873168 −0.436584 0.899664i \(-0.643812\pi\)
−0.436584 + 0.899664i \(0.643812\pi\)
\(888\) 0 0
\(889\) 19.5246 0.654834
\(890\) 0 0
\(891\) 0 0
\(892\) −30.5860 −1.02410
\(893\) −13.3791 −0.447715
\(894\) 0 0
\(895\) 0 0
\(896\) −9.10907 −0.304313
\(897\) 0 0
\(898\) 2.81679 0.0939975
\(899\) −29.5626 −0.985969
\(900\) 0 0
\(901\) −77.8608 −2.59392
\(902\) 5.51408 0.183599
\(903\) 0 0
\(904\) 3.06125 0.101816
\(905\) 0 0
\(906\) 0 0
\(907\) 55.0108 1.82660 0.913302 0.407283i \(-0.133524\pi\)
0.913302 + 0.407283i \(0.133524\pi\)
\(908\) −26.2567 −0.871359
\(909\) 0 0
\(910\) 0 0
\(911\) 12.1075 0.401139 0.200569 0.979679i \(-0.435721\pi\)
0.200569 + 0.979679i \(0.435721\pi\)
\(912\) 0 0
\(913\) 7.27817 0.240872
\(914\) 8.38337 0.277297
\(915\) 0 0
\(916\) 28.6656 0.947138
\(917\) 18.6470 0.615779
\(918\) 0 0
\(919\) 5.97191 0.196995 0.0984975 0.995137i \(-0.468596\pi\)
0.0984975 + 0.995137i \(0.468596\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 6.09266 0.200651
\(923\) −64.9718 −2.13857
\(924\) 0 0
\(925\) 0 0
\(926\) 3.36370 0.110538
\(927\) 0 0
\(928\) 9.13854 0.299987
\(929\) −46.8756 −1.53794 −0.768970 0.639285i \(-0.779230\pi\)
−0.768970 + 0.639285i \(0.779230\pi\)
\(930\) 0 0
\(931\) −22.7003 −0.743973
\(932\) −1.00636 −0.0329644
\(933\) 0 0
\(934\) 2.33709 0.0764719
\(935\) 0 0
\(936\) 0 0
\(937\) 19.4335 0.634864 0.317432 0.948281i \(-0.397179\pi\)
0.317432 + 0.948281i \(0.397179\pi\)
\(938\) 3.11458 0.101695
\(939\) 0 0
\(940\) 0 0
\(941\) −21.7097 −0.707717 −0.353858 0.935299i \(-0.615130\pi\)
−0.353858 + 0.935299i \(0.615130\pi\)
\(942\) 0 0
\(943\) −13.9610 −0.454633
\(944\) 23.2593 0.757026
\(945\) 0 0
\(946\) −2.46085 −0.0800091
\(947\) −6.31560 −0.205229 −0.102615 0.994721i \(-0.532721\pi\)
−0.102615 + 0.994721i \(0.532721\pi\)
\(948\) 0 0
\(949\) 53.2792 1.72952
\(950\) 0 0
\(951\) 0 0
\(952\) −7.07624 −0.229342
\(953\) 21.8017 0.706227 0.353114 0.935580i \(-0.385123\pi\)
0.353114 + 0.935580i \(0.385123\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 15.9595 0.516167
\(957\) 0 0
\(958\) 6.34876 0.205119
\(959\) −13.0842 −0.422510
\(960\) 0 0
\(961\) 53.5134 1.72624
\(962\) 1.47602 0.0475889
\(963\) 0 0
\(964\) 2.48435 0.0800154
\(965\) 0 0
\(966\) 0 0
\(967\) 7.01268 0.225513 0.112756 0.993623i \(-0.464032\pi\)
0.112756 + 0.993623i \(0.464032\pi\)
\(968\) 4.27353 0.137356
\(969\) 0 0
\(970\) 0 0
\(971\) −7.41028 −0.237807 −0.118904 0.992906i \(-0.537938\pi\)
−0.118904 + 0.992906i \(0.537938\pi\)
\(972\) 0 0
\(973\) 15.5231 0.497647
\(974\) 7.00909 0.224586
\(975\) 0 0
\(976\) 13.9237 0.445688
\(977\) 39.2585 1.25599 0.627995 0.778217i \(-0.283876\pi\)
0.627995 + 0.778217i \(0.283876\pi\)
\(978\) 0 0
\(979\) −3.54819 −0.113401
\(980\) 0 0
\(981\) 0 0
\(982\) 1.50597 0.0480573
\(983\) −18.3827 −0.586317 −0.293159 0.956064i \(-0.594706\pi\)
−0.293159 + 0.956064i \(0.594706\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 4.63343 0.147558
\(987\) 0 0
\(988\) −37.8401 −1.20385
\(989\) 6.23059 0.198121
\(990\) 0 0
\(991\) 52.4658 1.66663 0.833316 0.552797i \(-0.186440\pi\)
0.833316 + 0.552797i \(0.186440\pi\)
\(992\) −26.1252 −0.829476
\(993\) 0 0
\(994\) −4.26989 −0.135433
\(995\) 0 0
\(996\) 0 0
\(997\) 36.3720 1.15191 0.575956 0.817480i \(-0.304630\pi\)
0.575956 + 0.817480i \(0.304630\pi\)
\(998\) −5.01322 −0.158691
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5625.2.a.q.1.4 6
3.2 odd 2 1875.2.a.k.1.3 6
5.4 even 2 5625.2.a.p.1.3 6
15.2 even 4 1875.2.b.f.1249.5 12
15.8 even 4 1875.2.b.f.1249.8 12
15.14 odd 2 1875.2.a.j.1.4 6
25.9 even 10 225.2.h.d.181.2 12
25.14 even 10 225.2.h.d.46.2 12
75.2 even 20 375.2.i.d.274.3 24
75.11 odd 10 375.2.g.c.226.2 12
75.14 odd 10 75.2.g.c.46.2 yes 12
75.23 even 20 375.2.i.d.274.4 24
75.38 even 20 375.2.i.d.349.3 24
75.41 odd 10 375.2.g.c.151.2 12
75.59 odd 10 75.2.g.c.31.2 12
75.62 even 20 375.2.i.d.349.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.2.g.c.31.2 12 75.59 odd 10
75.2.g.c.46.2 yes 12 75.14 odd 10
225.2.h.d.46.2 12 25.14 even 10
225.2.h.d.181.2 12 25.9 even 10
375.2.g.c.151.2 12 75.41 odd 10
375.2.g.c.226.2 12 75.11 odd 10
375.2.i.d.274.3 24 75.2 even 20
375.2.i.d.274.4 24 75.23 even 20
375.2.i.d.349.3 24 75.38 even 20
375.2.i.d.349.4 24 75.62 even 20
1875.2.a.j.1.4 6 15.14 odd 2
1875.2.a.k.1.3 6 3.2 odd 2
1875.2.b.f.1249.5 12 15.2 even 4
1875.2.b.f.1249.8 12 15.8 even 4
5625.2.a.p.1.3 6 5.4 even 2
5625.2.a.q.1.4 6 1.1 even 1 trivial