Properties

Label 5625.2.a.h
Level $5625$
Weight $2$
Character orbit 5625.a
Self dual yes
Analytic conductor $44.916$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5625 = 3^{2} \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5625.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(44.9158511370\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 75)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{4} + ( - 4 \beta + 2) q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{4} + ( - 4 \beta + 2) q^{7} - 3 q^{8} - 2 \beta q^{11} + (\beta - 5) q^{13} + ( - 4 \beta + 2) q^{14} - q^{16} + ( - 3 \beta + 2) q^{17} - 2 \beta q^{19} - 2 \beta q^{22} + ( - 4 \beta + 2) q^{23} + (\beta - 5) q^{26} + (4 \beta - 2) q^{28} + (\beta - 6) q^{29} + (2 \beta + 4) q^{31} + 5 q^{32} + ( - 3 \beta + 2) q^{34} - 5 \beta q^{37} - 2 \beta q^{38} + ( - \beta + 3) q^{41} + (6 \beta - 4) q^{43} + 2 \beta q^{44} + ( - 4 \beta + 2) q^{46} + ( - 2 \beta - 2) q^{47} + 13 q^{49} + ( - \beta + 5) q^{52} + ( - \beta + 3) q^{53} + (12 \beta - 6) q^{56} + (\beta - 6) q^{58} + 4 q^{59} + ( - \beta + 1) q^{61} + (2 \beta + 4) q^{62} + 7 q^{64} + ( - 2 \beta - 2) q^{67} + (3 \beta - 2) q^{68} + ( - 2 \beta + 4) q^{71} + ( - 5 \beta + 5) q^{73} - 5 \beta q^{74} + 2 \beta q^{76} + (4 \beta + 8) q^{77} + ( - \beta + 3) q^{82} + ( - 4 \beta + 10) q^{83} + (6 \beta - 4) q^{86} + 6 \beta q^{88} + ( - \beta - 6) q^{89} + (18 \beta - 14) q^{91} + (4 \beta - 2) q^{92} + ( - 2 \beta - 2) q^{94} + ( - 3 \beta - 4) q^{97} + 13 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 2 q^{4} - 6 q^{8} - 2 q^{11} - 9 q^{13} - 2 q^{16} + q^{17} - 2 q^{19} - 2 q^{22} - 9 q^{26} - 11 q^{29} + 10 q^{31} + 10 q^{32} + q^{34} - 5 q^{37} - 2 q^{38} + 5 q^{41} - 2 q^{43} + 2 q^{44} - 6 q^{47} + 26 q^{49} + 9 q^{52} + 5 q^{53} - 11 q^{58} + 8 q^{59} + q^{61} + 10 q^{62} + 14 q^{64} - 6 q^{67} - q^{68} + 6 q^{71} + 5 q^{73} - 5 q^{74} + 2 q^{76} + 20 q^{77} + 5 q^{82} + 16 q^{83} - 2 q^{86} + 6 q^{88} - 13 q^{89} - 10 q^{91} - 6 q^{94} - 11 q^{97} + 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
1.00000 0 −1.00000 0 0 −4.47214 −3.00000 0 0
1.2 1.00000 0 −1.00000 0 0 4.47214 −3.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5625.2.a.h 2
3.b odd 2 1 1875.2.a.a 2
5.b even 2 1 5625.2.a.a 2
15.d odd 2 1 1875.2.a.d 2
15.e even 4 2 1875.2.b.b 4
25.e even 10 2 225.2.h.a 4
75.h odd 10 2 75.2.g.a 4
75.j odd 10 2 375.2.g.a 4
75.l even 20 4 375.2.i.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.2.g.a 4 75.h odd 10 2
225.2.h.a 4 25.e even 10 2
375.2.g.a 4 75.j odd 10 2
375.2.i.a 8 75.l even 20 4
1875.2.a.a 2 3.b odd 2 1
1875.2.a.d 2 15.d odd 2 1
1875.2.b.b 4 15.e even 4 2
5625.2.a.a 2 5.b even 2 1
5625.2.a.h 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5625))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{7}^{2} - 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 20 \) Copy content Toggle raw display
$11$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} + 9T + 19 \) Copy content Toggle raw display
$17$ \( T^{2} - T - 11 \) Copy content Toggle raw display
$19$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$23$ \( T^{2} - 20 \) Copy content Toggle raw display
$29$ \( T^{2} + 11T + 29 \) Copy content Toggle raw display
$31$ \( T^{2} - 10T + 20 \) Copy content Toggle raw display
$37$ \( T^{2} + 5T - 25 \) Copy content Toggle raw display
$41$ \( T^{2} - 5T + 5 \) Copy content Toggle raw display
$43$ \( T^{2} + 2T - 44 \) Copy content Toggle raw display
$47$ \( T^{2} + 6T + 4 \) Copy content Toggle raw display
$53$ \( T^{2} - 5T + 5 \) Copy content Toggle raw display
$59$ \( (T - 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$67$ \( T^{2} + 6T + 4 \) Copy content Toggle raw display
$71$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$73$ \( T^{2} - 5T - 25 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 16T + 44 \) Copy content Toggle raw display
$89$ \( T^{2} + 13T + 41 \) Copy content Toggle raw display
$97$ \( T^{2} + 11T + 19 \) Copy content Toggle raw display
show more
show less