Properties

Label 5625.2.a.b.1.1
Level $5625$
Weight $2$
Character 5625.1
Self dual yes
Analytic conductor $44.916$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5625 = 3^{2} \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5625.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(44.9158511370\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1875)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 5625.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.61803 q^{2} +0.618034 q^{4} -2.00000 q^{7} +2.23607 q^{8} +O(q^{10})\) \(q-1.61803 q^{2} +0.618034 q^{4} -2.00000 q^{7} +2.23607 q^{8} +3.00000 q^{11} -1.00000 q^{13} +3.23607 q^{14} -4.85410 q^{16} +4.23607 q^{17} -6.70820 q^{19} -4.85410 q^{22} -5.38197 q^{23} +1.61803 q^{26} -1.23607 q^{28} +3.61803 q^{29} +8.70820 q^{31} +3.38197 q^{32} -6.85410 q^{34} -2.00000 q^{37} +10.8541 q^{38} +9.38197 q^{41} -7.38197 q^{43} +1.85410 q^{44} +8.70820 q^{46} +4.76393 q^{47} -3.00000 q^{49} -0.618034 q^{52} -11.2361 q^{53} -4.47214 q^{56} -5.85410 q^{58} -3.94427 q^{59} +8.70820 q^{61} -14.0902 q^{62} +4.23607 q^{64} -13.1803 q^{67} +2.61803 q^{68} -10.0902 q^{71} +15.7082 q^{73} +3.23607 q^{74} -4.14590 q^{76} -6.00000 q^{77} -9.14590 q^{79} -15.1803 q^{82} -9.00000 q^{83} +11.9443 q^{86} +6.70820 q^{88} +11.1803 q^{89} +2.00000 q^{91} -3.32624 q^{92} -7.70820 q^{94} +3.85410 q^{97} +4.85410 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - q^{4} - 4 q^{7} + 6 q^{11} - 2 q^{13} + 2 q^{14} - 3 q^{16} + 4 q^{17} - 3 q^{22} - 13 q^{23} + q^{26} + 2 q^{28} + 5 q^{29} + 4 q^{31} + 9 q^{32} - 7 q^{34} - 4 q^{37} + 15 q^{38} + 21 q^{41} - 17 q^{43} - 3 q^{44} + 4 q^{46} + 14 q^{47} - 6 q^{49} + q^{52} - 18 q^{53} - 5 q^{58} + 10 q^{59} + 4 q^{61} - 17 q^{62} + 4 q^{64} - 4 q^{67} + 3 q^{68} - 9 q^{71} + 18 q^{73} + 2 q^{74} - 15 q^{76} - 12 q^{77} - 25 q^{79} - 8 q^{82} - 18 q^{83} + 6 q^{86} + 4 q^{91} + 9 q^{92} - 2 q^{94} + q^{97} + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61803 −1.14412 −0.572061 0.820211i \(-0.693856\pi\)
−0.572061 + 0.820211i \(0.693856\pi\)
\(3\) 0 0
\(4\) 0.618034 0.309017
\(5\) 0 0
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 2.23607 0.790569
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 3.23607 0.864876
\(15\) 0 0
\(16\) −4.85410 −1.21353
\(17\) 4.23607 1.02740 0.513699 0.857971i \(-0.328275\pi\)
0.513699 + 0.857971i \(0.328275\pi\)
\(18\) 0 0
\(19\) −6.70820 −1.53897 −0.769484 0.638666i \(-0.779486\pi\)
−0.769484 + 0.638666i \(0.779486\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.85410 −1.03490
\(23\) −5.38197 −1.12222 −0.561109 0.827742i \(-0.689625\pi\)
−0.561109 + 0.827742i \(0.689625\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.61803 0.317323
\(27\) 0 0
\(28\) −1.23607 −0.233595
\(29\) 3.61803 0.671852 0.335926 0.941888i \(-0.390951\pi\)
0.335926 + 0.941888i \(0.390951\pi\)
\(30\) 0 0
\(31\) 8.70820 1.56404 0.782020 0.623254i \(-0.214190\pi\)
0.782020 + 0.623254i \(0.214190\pi\)
\(32\) 3.38197 0.597853
\(33\) 0 0
\(34\) −6.85410 −1.17547
\(35\) 0 0
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 10.8541 1.76077
\(39\) 0 0
\(40\) 0 0
\(41\) 9.38197 1.46522 0.732608 0.680650i \(-0.238303\pi\)
0.732608 + 0.680650i \(0.238303\pi\)
\(42\) 0 0
\(43\) −7.38197 −1.12574 −0.562870 0.826546i \(-0.690303\pi\)
−0.562870 + 0.826546i \(0.690303\pi\)
\(44\) 1.85410 0.279516
\(45\) 0 0
\(46\) 8.70820 1.28395
\(47\) 4.76393 0.694891 0.347445 0.937700i \(-0.387049\pi\)
0.347445 + 0.937700i \(0.387049\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) −0.618034 −0.0857059
\(53\) −11.2361 −1.54339 −0.771696 0.635991i \(-0.780591\pi\)
−0.771696 + 0.635991i \(0.780591\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −4.47214 −0.597614
\(57\) 0 0
\(58\) −5.85410 −0.768681
\(59\) −3.94427 −0.513500 −0.256750 0.966478i \(-0.582652\pi\)
−0.256750 + 0.966478i \(0.582652\pi\)
\(60\) 0 0
\(61\) 8.70820 1.11497 0.557486 0.830187i \(-0.311766\pi\)
0.557486 + 0.830187i \(0.311766\pi\)
\(62\) −14.0902 −1.78945
\(63\) 0 0
\(64\) 4.23607 0.529508
\(65\) 0 0
\(66\) 0 0
\(67\) −13.1803 −1.61023 −0.805117 0.593115i \(-0.797898\pi\)
−0.805117 + 0.593115i \(0.797898\pi\)
\(68\) 2.61803 0.317483
\(69\) 0 0
\(70\) 0 0
\(71\) −10.0902 −1.19748 −0.598741 0.800942i \(-0.704332\pi\)
−0.598741 + 0.800942i \(0.704332\pi\)
\(72\) 0 0
\(73\) 15.7082 1.83851 0.919253 0.393667i \(-0.128794\pi\)
0.919253 + 0.393667i \(0.128794\pi\)
\(74\) 3.23607 0.376185
\(75\) 0 0
\(76\) −4.14590 −0.475567
\(77\) −6.00000 −0.683763
\(78\) 0 0
\(79\) −9.14590 −1.02899 −0.514497 0.857492i \(-0.672021\pi\)
−0.514497 + 0.857492i \(0.672021\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −15.1803 −1.67639
\(83\) −9.00000 −0.987878 −0.493939 0.869496i \(-0.664443\pi\)
−0.493939 + 0.869496i \(0.664443\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 11.9443 1.28798
\(87\) 0 0
\(88\) 6.70820 0.715097
\(89\) 11.1803 1.18511 0.592557 0.805529i \(-0.298119\pi\)
0.592557 + 0.805529i \(0.298119\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) −3.32624 −0.346784
\(93\) 0 0
\(94\) −7.70820 −0.795041
\(95\) 0 0
\(96\) 0 0
\(97\) 3.85410 0.391325 0.195662 0.980671i \(-0.437314\pi\)
0.195662 + 0.980671i \(0.437314\pi\)
\(98\) 4.85410 0.490338
\(99\) 0 0
\(100\) 0 0
\(101\) 9.38197 0.933541 0.466770 0.884379i \(-0.345417\pi\)
0.466770 + 0.884379i \(0.345417\pi\)
\(102\) 0 0
\(103\) −14.4164 −1.42049 −0.710245 0.703954i \(-0.751416\pi\)
−0.710245 + 0.703954i \(0.751416\pi\)
\(104\) −2.23607 −0.219265
\(105\) 0 0
\(106\) 18.1803 1.76583
\(107\) 1.14590 0.110778 0.0553891 0.998465i \(-0.482360\pi\)
0.0553891 + 0.998465i \(0.482360\pi\)
\(108\) 0 0
\(109\) −4.14590 −0.397105 −0.198553 0.980090i \(-0.563624\pi\)
−0.198553 + 0.980090i \(0.563624\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 9.70820 0.917339
\(113\) 3.76393 0.354081 0.177040 0.984204i \(-0.443348\pi\)
0.177040 + 0.984204i \(0.443348\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.23607 0.207614
\(117\) 0 0
\(118\) 6.38197 0.587508
\(119\) −8.47214 −0.776639
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) −14.0902 −1.27566
\(123\) 0 0
\(124\) 5.38197 0.483315
\(125\) 0 0
\(126\) 0 0
\(127\) 13.6525 1.21146 0.605731 0.795670i \(-0.292881\pi\)
0.605731 + 0.795670i \(0.292881\pi\)
\(128\) −13.6180 −1.20368
\(129\) 0 0
\(130\) 0 0
\(131\) 14.1803 1.23894 0.619471 0.785020i \(-0.287347\pi\)
0.619471 + 0.785020i \(0.287347\pi\)
\(132\) 0 0
\(133\) 13.4164 1.16335
\(134\) 21.3262 1.84231
\(135\) 0 0
\(136\) 9.47214 0.812229
\(137\) −0.437694 −0.0373947 −0.0186974 0.999825i \(-0.505952\pi\)
−0.0186974 + 0.999825i \(0.505952\pi\)
\(138\) 0 0
\(139\) 13.4164 1.13796 0.568982 0.822350i \(-0.307337\pi\)
0.568982 + 0.822350i \(0.307337\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 16.3262 1.37007
\(143\) −3.00000 −0.250873
\(144\) 0 0
\(145\) 0 0
\(146\) −25.4164 −2.10348
\(147\) 0 0
\(148\) −1.23607 −0.101604
\(149\) 13.0902 1.07239 0.536194 0.844095i \(-0.319861\pi\)
0.536194 + 0.844095i \(0.319861\pi\)
\(150\) 0 0
\(151\) −6.61803 −0.538568 −0.269284 0.963061i \(-0.586787\pi\)
−0.269284 + 0.963061i \(0.586787\pi\)
\(152\) −15.0000 −1.21666
\(153\) 0 0
\(154\) 9.70820 0.782309
\(155\) 0 0
\(156\) 0 0
\(157\) −2.85410 −0.227782 −0.113891 0.993493i \(-0.536331\pi\)
−0.113891 + 0.993493i \(0.536331\pi\)
\(158\) 14.7984 1.17730
\(159\) 0 0
\(160\) 0 0
\(161\) 10.7639 0.848317
\(162\) 0 0
\(163\) 18.2705 1.43106 0.715528 0.698584i \(-0.246186\pi\)
0.715528 + 0.698584i \(0.246186\pi\)
\(164\) 5.79837 0.452777
\(165\) 0 0
\(166\) 14.5623 1.13025
\(167\) −17.7984 −1.37728 −0.688640 0.725104i \(-0.741792\pi\)
−0.688640 + 0.725104i \(0.741792\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) −4.56231 −0.347873
\(173\) −0.909830 −0.0691731 −0.0345865 0.999402i \(-0.511011\pi\)
−0.0345865 + 0.999402i \(0.511011\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −14.5623 −1.09768
\(177\) 0 0
\(178\) −18.0902 −1.35592
\(179\) 15.6525 1.16992 0.584960 0.811062i \(-0.301110\pi\)
0.584960 + 0.811062i \(0.301110\pi\)
\(180\) 0 0
\(181\) −12.4721 −0.927047 −0.463523 0.886085i \(-0.653415\pi\)
−0.463523 + 0.886085i \(0.653415\pi\)
\(182\) −3.23607 −0.239873
\(183\) 0 0
\(184\) −12.0344 −0.887191
\(185\) 0 0
\(186\) 0 0
\(187\) 12.7082 0.929316
\(188\) 2.94427 0.214733
\(189\) 0 0
\(190\) 0 0
\(191\) −17.3262 −1.25368 −0.626841 0.779147i \(-0.715653\pi\)
−0.626841 + 0.779147i \(0.715653\pi\)
\(192\) 0 0
\(193\) −11.0000 −0.791797 −0.395899 0.918294i \(-0.629567\pi\)
−0.395899 + 0.918294i \(0.629567\pi\)
\(194\) −6.23607 −0.447724
\(195\) 0 0
\(196\) −1.85410 −0.132436
\(197\) 0.0901699 0.00642434 0.00321217 0.999995i \(-0.498978\pi\)
0.00321217 + 0.999995i \(0.498978\pi\)
\(198\) 0 0
\(199\) 11.7082 0.829973 0.414986 0.909828i \(-0.363786\pi\)
0.414986 + 0.909828i \(0.363786\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −15.1803 −1.06808
\(203\) −7.23607 −0.507872
\(204\) 0 0
\(205\) 0 0
\(206\) 23.3262 1.62522
\(207\) 0 0
\(208\) 4.85410 0.336571
\(209\) −20.1246 −1.39205
\(210\) 0 0
\(211\) −3.00000 −0.206529 −0.103264 0.994654i \(-0.532929\pi\)
−0.103264 + 0.994654i \(0.532929\pi\)
\(212\) −6.94427 −0.476935
\(213\) 0 0
\(214\) −1.85410 −0.126744
\(215\) 0 0
\(216\) 0 0
\(217\) −17.4164 −1.18230
\(218\) 6.70820 0.454337
\(219\) 0 0
\(220\) 0 0
\(221\) −4.23607 −0.284949
\(222\) 0 0
\(223\) −10.1459 −0.679420 −0.339710 0.940530i \(-0.610329\pi\)
−0.339710 + 0.940530i \(0.610329\pi\)
\(224\) −6.76393 −0.451934
\(225\) 0 0
\(226\) −6.09017 −0.405112
\(227\) −5.76393 −0.382566 −0.191283 0.981535i \(-0.561265\pi\)
−0.191283 + 0.981535i \(0.561265\pi\)
\(228\) 0 0
\(229\) −16.1803 −1.06923 −0.534613 0.845097i \(-0.679543\pi\)
−0.534613 + 0.845097i \(0.679543\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 8.09017 0.531146
\(233\) −10.1803 −0.666936 −0.333468 0.942761i \(-0.608219\pi\)
−0.333468 + 0.942761i \(0.608219\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2.43769 −0.158680
\(237\) 0 0
\(238\) 13.7082 0.888571
\(239\) −21.3820 −1.38308 −0.691542 0.722336i \(-0.743068\pi\)
−0.691542 + 0.722336i \(0.743068\pi\)
\(240\) 0 0
\(241\) 7.32624 0.471924 0.235962 0.971762i \(-0.424176\pi\)
0.235962 + 0.971762i \(0.424176\pi\)
\(242\) 3.23607 0.208022
\(243\) 0 0
\(244\) 5.38197 0.344545
\(245\) 0 0
\(246\) 0 0
\(247\) 6.70820 0.426833
\(248\) 19.4721 1.23648
\(249\) 0 0
\(250\) 0 0
\(251\) 18.9787 1.19793 0.598963 0.800777i \(-0.295580\pi\)
0.598963 + 0.800777i \(0.295580\pi\)
\(252\) 0 0
\(253\) −16.1459 −1.01508
\(254\) −22.0902 −1.38606
\(255\) 0 0
\(256\) 13.5623 0.847644
\(257\) −31.2148 −1.94712 −0.973562 0.228422i \(-0.926644\pi\)
−0.973562 + 0.228422i \(0.926644\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 0 0
\(262\) −22.9443 −1.41750
\(263\) 12.5066 0.771189 0.385594 0.922668i \(-0.373996\pi\)
0.385594 + 0.922668i \(0.373996\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −21.7082 −1.33102
\(267\) 0 0
\(268\) −8.14590 −0.497590
\(269\) 20.5279 1.25161 0.625803 0.779981i \(-0.284771\pi\)
0.625803 + 0.779981i \(0.284771\pi\)
\(270\) 0 0
\(271\) −11.4164 −0.693497 −0.346749 0.937958i \(-0.612714\pi\)
−0.346749 + 0.937958i \(0.612714\pi\)
\(272\) −20.5623 −1.24677
\(273\) 0 0
\(274\) 0.708204 0.0427842
\(275\) 0 0
\(276\) 0 0
\(277\) −13.0557 −0.784443 −0.392221 0.919871i \(-0.628293\pi\)
−0.392221 + 0.919871i \(0.628293\pi\)
\(278\) −21.7082 −1.30197
\(279\) 0 0
\(280\) 0 0
\(281\) 14.1803 0.845928 0.422964 0.906146i \(-0.360990\pi\)
0.422964 + 0.906146i \(0.360990\pi\)
\(282\) 0 0
\(283\) 2.29180 0.136233 0.0681166 0.997677i \(-0.478301\pi\)
0.0681166 + 0.997677i \(0.478301\pi\)
\(284\) −6.23607 −0.370043
\(285\) 0 0
\(286\) 4.85410 0.287029
\(287\) −18.7639 −1.10760
\(288\) 0 0
\(289\) 0.944272 0.0555454
\(290\) 0 0
\(291\) 0 0
\(292\) 9.70820 0.568130
\(293\) 6.32624 0.369583 0.184791 0.982778i \(-0.440839\pi\)
0.184791 + 0.982778i \(0.440839\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.47214 −0.259938
\(297\) 0 0
\(298\) −21.1803 −1.22694
\(299\) 5.38197 0.311247
\(300\) 0 0
\(301\) 14.7639 0.850979
\(302\) 10.7082 0.616188
\(303\) 0 0
\(304\) 32.5623 1.86758
\(305\) 0 0
\(306\) 0 0
\(307\) 8.85410 0.505330 0.252665 0.967554i \(-0.418693\pi\)
0.252665 + 0.967554i \(0.418693\pi\)
\(308\) −3.70820 −0.211295
\(309\) 0 0
\(310\) 0 0
\(311\) 13.5279 0.767095 0.383547 0.923521i \(-0.374702\pi\)
0.383547 + 0.923521i \(0.374702\pi\)
\(312\) 0 0
\(313\) 2.29180 0.129540 0.0647700 0.997900i \(-0.479369\pi\)
0.0647700 + 0.997900i \(0.479369\pi\)
\(314\) 4.61803 0.260611
\(315\) 0 0
\(316\) −5.65248 −0.317977
\(317\) −20.5623 −1.15489 −0.577447 0.816428i \(-0.695951\pi\)
−0.577447 + 0.816428i \(0.695951\pi\)
\(318\) 0 0
\(319\) 10.8541 0.607713
\(320\) 0 0
\(321\) 0 0
\(322\) −17.4164 −0.970578
\(323\) −28.4164 −1.58113
\(324\) 0 0
\(325\) 0 0
\(326\) −29.5623 −1.63730
\(327\) 0 0
\(328\) 20.9787 1.15836
\(329\) −9.52786 −0.525288
\(330\) 0 0
\(331\) −30.6869 −1.68671 −0.843353 0.537360i \(-0.819422\pi\)
−0.843353 + 0.537360i \(0.819422\pi\)
\(332\) −5.56231 −0.305271
\(333\) 0 0
\(334\) 28.7984 1.57578
\(335\) 0 0
\(336\) 0 0
\(337\) −33.1803 −1.80745 −0.903724 0.428115i \(-0.859178\pi\)
−0.903724 + 0.428115i \(0.859178\pi\)
\(338\) 19.4164 1.05611
\(339\) 0 0
\(340\) 0 0
\(341\) 26.1246 1.41473
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) −16.5066 −0.889975
\(345\) 0 0
\(346\) 1.47214 0.0791425
\(347\) −12.2705 −0.658715 −0.329358 0.944205i \(-0.606832\pi\)
−0.329358 + 0.944205i \(0.606832\pi\)
\(348\) 0 0
\(349\) 7.23607 0.387338 0.193669 0.981067i \(-0.437961\pi\)
0.193669 + 0.981067i \(0.437961\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.1459 0.540778
\(353\) 12.3820 0.659026 0.329513 0.944151i \(-0.393116\pi\)
0.329513 + 0.944151i \(0.393116\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.90983 0.366220
\(357\) 0 0
\(358\) −25.3262 −1.33853
\(359\) −23.9443 −1.26373 −0.631865 0.775078i \(-0.717710\pi\)
−0.631865 + 0.775078i \(0.717710\pi\)
\(360\) 0 0
\(361\) 26.0000 1.36842
\(362\) 20.1803 1.06066
\(363\) 0 0
\(364\) 1.23607 0.0647876
\(365\) 0 0
\(366\) 0 0
\(367\) −12.5279 −0.653949 −0.326975 0.945033i \(-0.606029\pi\)
−0.326975 + 0.945033i \(0.606029\pi\)
\(368\) 26.1246 1.36184
\(369\) 0 0
\(370\) 0 0
\(371\) 22.4721 1.16670
\(372\) 0 0
\(373\) 17.4164 0.901787 0.450894 0.892578i \(-0.351105\pi\)
0.450894 + 0.892578i \(0.351105\pi\)
\(374\) −20.5623 −1.06325
\(375\) 0 0
\(376\) 10.6525 0.549359
\(377\) −3.61803 −0.186338
\(378\) 0 0
\(379\) −13.6180 −0.699511 −0.349756 0.936841i \(-0.613735\pi\)
−0.349756 + 0.936841i \(0.613735\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 28.0344 1.43437
\(383\) −5.05573 −0.258336 −0.129168 0.991623i \(-0.541231\pi\)
−0.129168 + 0.991623i \(0.541231\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 17.7984 0.905913
\(387\) 0 0
\(388\) 2.38197 0.120926
\(389\) −0.652476 −0.0330818 −0.0165409 0.999863i \(-0.505265\pi\)
−0.0165409 + 0.999863i \(0.505265\pi\)
\(390\) 0 0
\(391\) −22.7984 −1.15296
\(392\) −6.70820 −0.338815
\(393\) 0 0
\(394\) −0.145898 −0.00735024
\(395\) 0 0
\(396\) 0 0
\(397\) −2.52786 −0.126870 −0.0634349 0.997986i \(-0.520206\pi\)
−0.0634349 + 0.997986i \(0.520206\pi\)
\(398\) −18.9443 −0.949591
\(399\) 0 0
\(400\) 0 0
\(401\) −36.2705 −1.81126 −0.905631 0.424066i \(-0.860603\pi\)
−0.905631 + 0.424066i \(0.860603\pi\)
\(402\) 0 0
\(403\) −8.70820 −0.433787
\(404\) 5.79837 0.288480
\(405\) 0 0
\(406\) 11.7082 0.581068
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) −5.12461 −0.253396 −0.126698 0.991941i \(-0.540438\pi\)
−0.126698 + 0.991941i \(0.540438\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −8.90983 −0.438956
\(413\) 7.88854 0.388170
\(414\) 0 0
\(415\) 0 0
\(416\) −3.38197 −0.165815
\(417\) 0 0
\(418\) 32.5623 1.59267
\(419\) −0.326238 −0.0159378 −0.00796888 0.999968i \(-0.502537\pi\)
−0.00796888 + 0.999968i \(0.502537\pi\)
\(420\) 0 0
\(421\) −30.3607 −1.47969 −0.739844 0.672778i \(-0.765101\pi\)
−0.739844 + 0.672778i \(0.765101\pi\)
\(422\) 4.85410 0.236294
\(423\) 0 0
\(424\) −25.1246 −1.22016
\(425\) 0 0
\(426\) 0 0
\(427\) −17.4164 −0.842839
\(428\) 0.708204 0.0342323
\(429\) 0 0
\(430\) 0 0
\(431\) −29.7639 −1.43368 −0.716839 0.697239i \(-0.754412\pi\)
−0.716839 + 0.697239i \(0.754412\pi\)
\(432\) 0 0
\(433\) 3.47214 0.166860 0.0834301 0.996514i \(-0.473412\pi\)
0.0834301 + 0.996514i \(0.473412\pi\)
\(434\) 28.1803 1.35270
\(435\) 0 0
\(436\) −2.56231 −0.122712
\(437\) 36.1033 1.72706
\(438\) 0 0
\(439\) −32.0344 −1.52892 −0.764460 0.644671i \(-0.776994\pi\)
−0.764460 + 0.644671i \(0.776994\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 6.85410 0.326016
\(443\) 19.4164 0.922501 0.461251 0.887270i \(-0.347401\pi\)
0.461251 + 0.887270i \(0.347401\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 16.4164 0.777339
\(447\) 0 0
\(448\) −8.47214 −0.400271
\(449\) −16.5066 −0.778994 −0.389497 0.921028i \(-0.627351\pi\)
−0.389497 + 0.921028i \(0.627351\pi\)
\(450\) 0 0
\(451\) 28.1459 1.32534
\(452\) 2.32624 0.109417
\(453\) 0 0
\(454\) 9.32624 0.437702
\(455\) 0 0
\(456\) 0 0
\(457\) −9.88854 −0.462567 −0.231283 0.972886i \(-0.574292\pi\)
−0.231283 + 0.972886i \(0.574292\pi\)
\(458\) 26.1803 1.22333
\(459\) 0 0
\(460\) 0 0
\(461\) 19.1803 0.893317 0.446659 0.894704i \(-0.352614\pi\)
0.446659 + 0.894704i \(0.352614\pi\)
\(462\) 0 0
\(463\) −33.6869 −1.56556 −0.782782 0.622296i \(-0.786200\pi\)
−0.782782 + 0.622296i \(0.786200\pi\)
\(464\) −17.5623 −0.815310
\(465\) 0 0
\(466\) 16.4721 0.763057
\(467\) 10.4164 0.482014 0.241007 0.970523i \(-0.422522\pi\)
0.241007 + 0.970523i \(0.422522\pi\)
\(468\) 0 0
\(469\) 26.3607 1.21722
\(470\) 0 0
\(471\) 0 0
\(472\) −8.81966 −0.405958
\(473\) −22.1459 −1.01827
\(474\) 0 0
\(475\) 0 0
\(476\) −5.23607 −0.239995
\(477\) 0 0
\(478\) 34.5967 1.58242
\(479\) −4.79837 −0.219243 −0.109622 0.993973i \(-0.534964\pi\)
−0.109622 + 0.993973i \(0.534964\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) −11.8541 −0.539940
\(483\) 0 0
\(484\) −1.23607 −0.0561849
\(485\) 0 0
\(486\) 0 0
\(487\) 16.6180 0.753035 0.376518 0.926410i \(-0.377121\pi\)
0.376518 + 0.926410i \(0.377121\pi\)
\(488\) 19.4721 0.881462
\(489\) 0 0
\(490\) 0 0
\(491\) −22.3262 −1.00757 −0.503785 0.863829i \(-0.668059\pi\)
−0.503785 + 0.863829i \(0.668059\pi\)
\(492\) 0 0
\(493\) 15.3262 0.690259
\(494\) −10.8541 −0.488349
\(495\) 0 0
\(496\) −42.2705 −1.89800
\(497\) 20.1803 0.905212
\(498\) 0 0
\(499\) −15.0000 −0.671492 −0.335746 0.941953i \(-0.608988\pi\)
−0.335746 + 0.941953i \(0.608988\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −30.7082 −1.37057
\(503\) 3.96556 0.176815 0.0884077 0.996084i \(-0.471822\pi\)
0.0884077 + 0.996084i \(0.471822\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 26.1246 1.16138
\(507\) 0 0
\(508\) 8.43769 0.374362
\(509\) −32.8885 −1.45776 −0.728880 0.684642i \(-0.759959\pi\)
−0.728880 + 0.684642i \(0.759959\pi\)
\(510\) 0 0
\(511\) −31.4164 −1.38978
\(512\) 5.29180 0.233867
\(513\) 0 0
\(514\) 50.5066 2.22775
\(515\) 0 0
\(516\) 0 0
\(517\) 14.2918 0.628552
\(518\) −6.47214 −0.284369
\(519\) 0 0
\(520\) 0 0
\(521\) −40.0902 −1.75638 −0.878191 0.478310i \(-0.841250\pi\)
−0.878191 + 0.478310i \(0.841250\pi\)
\(522\) 0 0
\(523\) 1.56231 0.0683149 0.0341574 0.999416i \(-0.489125\pi\)
0.0341574 + 0.999416i \(0.489125\pi\)
\(524\) 8.76393 0.382854
\(525\) 0 0
\(526\) −20.2361 −0.882334
\(527\) 36.8885 1.60689
\(528\) 0 0
\(529\) 5.96556 0.259372
\(530\) 0 0
\(531\) 0 0
\(532\) 8.29180 0.359495
\(533\) −9.38197 −0.406378
\(534\) 0 0
\(535\) 0 0
\(536\) −29.4721 −1.27300
\(537\) 0 0
\(538\) −33.2148 −1.43199
\(539\) −9.00000 −0.387657
\(540\) 0 0
\(541\) −26.2918 −1.13037 −0.565186 0.824963i \(-0.691196\pi\)
−0.565186 + 0.824963i \(0.691196\pi\)
\(542\) 18.4721 0.793446
\(543\) 0 0
\(544\) 14.3262 0.614232
\(545\) 0 0
\(546\) 0 0
\(547\) 24.7082 1.05645 0.528223 0.849106i \(-0.322858\pi\)
0.528223 + 0.849106i \(0.322858\pi\)
\(548\) −0.270510 −0.0115556
\(549\) 0 0
\(550\) 0 0
\(551\) −24.2705 −1.03396
\(552\) 0 0
\(553\) 18.2918 0.777846
\(554\) 21.1246 0.897499
\(555\) 0 0
\(556\) 8.29180 0.351650
\(557\) 37.6525 1.59539 0.797693 0.603063i \(-0.206053\pi\)
0.797693 + 0.603063i \(0.206053\pi\)
\(558\) 0 0
\(559\) 7.38197 0.312224
\(560\) 0 0
\(561\) 0 0
\(562\) −22.9443 −0.967846
\(563\) −9.00000 −0.379305 −0.189652 0.981851i \(-0.560736\pi\)
−0.189652 + 0.981851i \(0.560736\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −3.70820 −0.155867
\(567\) 0 0
\(568\) −22.5623 −0.946693
\(569\) 10.8541 0.455028 0.227514 0.973775i \(-0.426940\pi\)
0.227514 + 0.973775i \(0.426940\pi\)
\(570\) 0 0
\(571\) −38.1246 −1.59547 −0.797733 0.603011i \(-0.793967\pi\)
−0.797733 + 0.603011i \(0.793967\pi\)
\(572\) −1.85410 −0.0775239
\(573\) 0 0
\(574\) 30.3607 1.26723
\(575\) 0 0
\(576\) 0 0
\(577\) 3.72949 0.155261 0.0776304 0.996982i \(-0.475265\pi\)
0.0776304 + 0.996982i \(0.475265\pi\)
\(578\) −1.52786 −0.0635508
\(579\) 0 0
\(580\) 0 0
\(581\) 18.0000 0.746766
\(582\) 0 0
\(583\) −33.7082 −1.39605
\(584\) 35.1246 1.45347
\(585\) 0 0
\(586\) −10.2361 −0.422848
\(587\) −39.3050 −1.62229 −0.811144 0.584846i \(-0.801155\pi\)
−0.811144 + 0.584846i \(0.801155\pi\)
\(588\) 0 0
\(589\) −58.4164 −2.40701
\(590\) 0 0
\(591\) 0 0
\(592\) 9.70820 0.399005
\(593\) −17.6180 −0.723486 −0.361743 0.932278i \(-0.617818\pi\)
−0.361743 + 0.932278i \(0.617818\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 8.09017 0.331386
\(597\) 0 0
\(598\) −8.70820 −0.356105
\(599\) −39.2705 −1.60455 −0.802275 0.596955i \(-0.796377\pi\)
−0.802275 + 0.596955i \(0.796377\pi\)
\(600\) 0 0
\(601\) −24.7082 −1.00787 −0.503934 0.863742i \(-0.668115\pi\)
−0.503934 + 0.863742i \(0.668115\pi\)
\(602\) −23.8885 −0.973624
\(603\) 0 0
\(604\) −4.09017 −0.166427
\(605\) 0 0
\(606\) 0 0
\(607\) −22.8541 −0.927619 −0.463810 0.885935i \(-0.653518\pi\)
−0.463810 + 0.885935i \(0.653518\pi\)
\(608\) −22.6869 −0.920076
\(609\) 0 0
\(610\) 0 0
\(611\) −4.76393 −0.192728
\(612\) 0 0
\(613\) −5.87539 −0.237305 −0.118652 0.992936i \(-0.537857\pi\)
−0.118652 + 0.992936i \(0.537857\pi\)
\(614\) −14.3262 −0.578160
\(615\) 0 0
\(616\) −13.4164 −0.540562
\(617\) −25.2361 −1.01597 −0.507983 0.861367i \(-0.669609\pi\)
−0.507983 + 0.861367i \(0.669609\pi\)
\(618\) 0 0
\(619\) 34.2705 1.37745 0.688724 0.725024i \(-0.258171\pi\)
0.688724 + 0.725024i \(0.258171\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −21.8885 −0.877651
\(623\) −22.3607 −0.895862
\(624\) 0 0
\(625\) 0 0
\(626\) −3.70820 −0.148210
\(627\) 0 0
\(628\) −1.76393 −0.0703886
\(629\) −8.47214 −0.337806
\(630\) 0 0
\(631\) −10.7639 −0.428505 −0.214253 0.976778i \(-0.568732\pi\)
−0.214253 + 0.976778i \(0.568732\pi\)
\(632\) −20.4508 −0.813491
\(633\) 0 0
\(634\) 33.2705 1.32134
\(635\) 0 0
\(636\) 0 0
\(637\) 3.00000 0.118864
\(638\) −17.5623 −0.695298
\(639\) 0 0
\(640\) 0 0
\(641\) 23.3262 0.921331 0.460666 0.887574i \(-0.347611\pi\)
0.460666 + 0.887574i \(0.347611\pi\)
\(642\) 0 0
\(643\) 5.90983 0.233061 0.116530 0.993187i \(-0.462823\pi\)
0.116530 + 0.993187i \(0.462823\pi\)
\(644\) 6.65248 0.262144
\(645\) 0 0
\(646\) 45.9787 1.80901
\(647\) 19.0344 0.748321 0.374161 0.927364i \(-0.377931\pi\)
0.374161 + 0.927364i \(0.377931\pi\)
\(648\) 0 0
\(649\) −11.8328 −0.464479
\(650\) 0 0
\(651\) 0 0
\(652\) 11.2918 0.442221
\(653\) −29.6525 −1.16039 −0.580196 0.814477i \(-0.697024\pi\)
−0.580196 + 0.814477i \(0.697024\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −45.5410 −1.77808
\(657\) 0 0
\(658\) 15.4164 0.600994
\(659\) 2.23607 0.0871048 0.0435524 0.999051i \(-0.486132\pi\)
0.0435524 + 0.999051i \(0.486132\pi\)
\(660\) 0 0
\(661\) 4.88854 0.190142 0.0950712 0.995470i \(-0.469692\pi\)
0.0950712 + 0.995470i \(0.469692\pi\)
\(662\) 49.6525 1.92980
\(663\) 0 0
\(664\) −20.1246 −0.780986
\(665\) 0 0
\(666\) 0 0
\(667\) −19.4721 −0.753964
\(668\) −11.0000 −0.425603
\(669\) 0 0
\(670\) 0 0
\(671\) 26.1246 1.00853
\(672\) 0 0
\(673\) −46.7771 −1.80312 −0.901562 0.432650i \(-0.857579\pi\)
−0.901562 + 0.432650i \(0.857579\pi\)
\(674\) 53.6869 2.06794
\(675\) 0 0
\(676\) −7.41641 −0.285246
\(677\) 44.8885 1.72521 0.862603 0.505881i \(-0.168832\pi\)
0.862603 + 0.505881i \(0.168832\pi\)
\(678\) 0 0
\(679\) −7.70820 −0.295814
\(680\) 0 0
\(681\) 0 0
\(682\) −42.2705 −1.61862
\(683\) 0.596748 0.0228339 0.0114170 0.999935i \(-0.496366\pi\)
0.0114170 + 0.999935i \(0.496366\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −32.3607 −1.23554
\(687\) 0 0
\(688\) 35.8328 1.36611
\(689\) 11.2361 0.428060
\(690\) 0 0
\(691\) 15.0902 0.574057 0.287029 0.957922i \(-0.407333\pi\)
0.287029 + 0.957922i \(0.407333\pi\)
\(692\) −0.562306 −0.0213757
\(693\) 0 0
\(694\) 19.8541 0.753651
\(695\) 0 0
\(696\) 0 0
\(697\) 39.7426 1.50536
\(698\) −11.7082 −0.443162
\(699\) 0 0
\(700\) 0 0
\(701\) 48.6525 1.83758 0.918789 0.394748i \(-0.129168\pi\)
0.918789 + 0.394748i \(0.129168\pi\)
\(702\) 0 0
\(703\) 13.4164 0.506009
\(704\) 12.7082 0.478958
\(705\) 0 0
\(706\) −20.0344 −0.754006
\(707\) −18.7639 −0.705690
\(708\) 0 0
\(709\) −5.20163 −0.195351 −0.0976756 0.995218i \(-0.531141\pi\)
−0.0976756 + 0.995218i \(0.531141\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 25.0000 0.936915
\(713\) −46.8673 −1.75519
\(714\) 0 0
\(715\) 0 0
\(716\) 9.67376 0.361525
\(717\) 0 0
\(718\) 38.7426 1.44586
\(719\) 35.1246 1.30993 0.654963 0.755661i \(-0.272684\pi\)
0.654963 + 0.755661i \(0.272684\pi\)
\(720\) 0 0
\(721\) 28.8328 1.07379
\(722\) −42.0689 −1.56564
\(723\) 0 0
\(724\) −7.70820 −0.286473
\(725\) 0 0
\(726\) 0 0
\(727\) −14.4377 −0.535464 −0.267732 0.963493i \(-0.586274\pi\)
−0.267732 + 0.963493i \(0.586274\pi\)
\(728\) 4.47214 0.165748
\(729\) 0 0
\(730\) 0 0
\(731\) −31.2705 −1.15658
\(732\) 0 0
\(733\) −10.1459 −0.374747 −0.187374 0.982289i \(-0.559998\pi\)
−0.187374 + 0.982289i \(0.559998\pi\)
\(734\) 20.2705 0.748198
\(735\) 0 0
\(736\) −18.2016 −0.670921
\(737\) −39.5410 −1.45651
\(738\) 0 0
\(739\) −1.70820 −0.0628373 −0.0314186 0.999506i \(-0.510003\pi\)
−0.0314186 + 0.999506i \(0.510003\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −36.3607 −1.33484
\(743\) 16.5279 0.606349 0.303174 0.952935i \(-0.401954\pi\)
0.303174 + 0.952935i \(0.401954\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −28.1803 −1.03176
\(747\) 0 0
\(748\) 7.85410 0.287174
\(749\) −2.29180 −0.0837404
\(750\) 0 0
\(751\) 15.2918 0.558006 0.279003 0.960290i \(-0.409996\pi\)
0.279003 + 0.960290i \(0.409996\pi\)
\(752\) −23.1246 −0.843268
\(753\) 0 0
\(754\) 5.85410 0.213194
\(755\) 0 0
\(756\) 0 0
\(757\) 32.2705 1.17289 0.586446 0.809988i \(-0.300527\pi\)
0.586446 + 0.809988i \(0.300527\pi\)
\(758\) 22.0344 0.800327
\(759\) 0 0
\(760\) 0 0
\(761\) −3.18034 −0.115287 −0.0576436 0.998337i \(-0.518359\pi\)
−0.0576436 + 0.998337i \(0.518359\pi\)
\(762\) 0 0
\(763\) 8.29180 0.300183
\(764\) −10.7082 −0.387409
\(765\) 0 0
\(766\) 8.18034 0.295568
\(767\) 3.94427 0.142419
\(768\) 0 0
\(769\) −36.3050 −1.30919 −0.654595 0.755980i \(-0.727161\pi\)
−0.654595 + 0.755980i \(0.727161\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −6.79837 −0.244679
\(773\) 41.7771 1.50262 0.751309 0.659951i \(-0.229423\pi\)
0.751309 + 0.659951i \(0.229423\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 8.61803 0.309369
\(777\) 0 0
\(778\) 1.05573 0.0378497
\(779\) −62.9361 −2.25492
\(780\) 0 0
\(781\) −30.2705 −1.08316
\(782\) 36.8885 1.31913
\(783\) 0 0
\(784\) 14.5623 0.520082
\(785\) 0 0
\(786\) 0 0
\(787\) 17.1459 0.611185 0.305593 0.952162i \(-0.401145\pi\)
0.305593 + 0.952162i \(0.401145\pi\)
\(788\) 0.0557281 0.00198523
\(789\) 0 0
\(790\) 0 0
\(791\) −7.52786 −0.267660
\(792\) 0 0
\(793\) −8.70820 −0.309237
\(794\) 4.09017 0.145155
\(795\) 0 0
\(796\) 7.23607 0.256476
\(797\) 30.0132 1.06312 0.531560 0.847020i \(-0.321606\pi\)
0.531560 + 0.847020i \(0.321606\pi\)
\(798\) 0 0
\(799\) 20.1803 0.713929
\(800\) 0 0
\(801\) 0 0
\(802\) 58.6869 2.07231
\(803\) 47.1246 1.66299
\(804\) 0 0
\(805\) 0 0
\(806\) 14.0902 0.496305
\(807\) 0 0
\(808\) 20.9787 0.738029
\(809\) 39.9230 1.40362 0.701809 0.712365i \(-0.252376\pi\)
0.701809 + 0.712365i \(0.252376\pi\)
\(810\) 0 0
\(811\) −33.7771 −1.18607 −0.593037 0.805175i \(-0.702071\pi\)
−0.593037 + 0.805175i \(0.702071\pi\)
\(812\) −4.47214 −0.156941
\(813\) 0 0
\(814\) 9.70820 0.340272
\(815\) 0 0
\(816\) 0 0
\(817\) 49.5197 1.73248
\(818\) 8.29180 0.289916
\(819\) 0 0
\(820\) 0 0
\(821\) −5.94427 −0.207457 −0.103728 0.994606i \(-0.533077\pi\)
−0.103728 + 0.994606i \(0.533077\pi\)
\(822\) 0 0
\(823\) −28.5623 −0.995619 −0.497810 0.867286i \(-0.665862\pi\)
−0.497810 + 0.867286i \(0.665862\pi\)
\(824\) −32.2361 −1.12300
\(825\) 0 0
\(826\) −12.7639 −0.444114
\(827\) −48.9787 −1.70316 −0.851578 0.524227i \(-0.824354\pi\)
−0.851578 + 0.524227i \(0.824354\pi\)
\(828\) 0 0
\(829\) −50.1246 −1.74090 −0.870450 0.492257i \(-0.836172\pi\)
−0.870450 + 0.492257i \(0.836172\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −4.23607 −0.146859
\(833\) −12.7082 −0.440313
\(834\) 0 0
\(835\) 0 0
\(836\) −12.4377 −0.430167
\(837\) 0 0
\(838\) 0.527864 0.0182348
\(839\) 3.21478 0.110987 0.0554933 0.998459i \(-0.482327\pi\)
0.0554933 + 0.998459i \(0.482327\pi\)
\(840\) 0 0
\(841\) −15.9098 −0.548615
\(842\) 49.1246 1.69295
\(843\) 0 0
\(844\) −1.85410 −0.0638208
\(845\) 0 0
\(846\) 0 0
\(847\) 4.00000 0.137442
\(848\) 54.5410 1.87295
\(849\) 0 0
\(850\) 0 0
\(851\) 10.7639 0.368983
\(852\) 0 0
\(853\) −20.3951 −0.698316 −0.349158 0.937064i \(-0.613532\pi\)
−0.349158 + 0.937064i \(0.613532\pi\)
\(854\) 28.1803 0.964311
\(855\) 0 0
\(856\) 2.56231 0.0875778
\(857\) −9.05573 −0.309338 −0.154669 0.987966i \(-0.549431\pi\)
−0.154669 + 0.987966i \(0.549431\pi\)
\(858\) 0 0
\(859\) 15.1246 0.516045 0.258023 0.966139i \(-0.416929\pi\)
0.258023 + 0.966139i \(0.416929\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 48.1591 1.64030
\(863\) −13.0689 −0.444870 −0.222435 0.974948i \(-0.571401\pi\)
−0.222435 + 0.974948i \(0.571401\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −5.61803 −0.190909
\(867\) 0 0
\(868\) −10.7639 −0.365352
\(869\) −27.4377 −0.930760
\(870\) 0 0
\(871\) 13.1803 0.446599
\(872\) −9.27051 −0.313939
\(873\) 0 0
\(874\) −58.4164 −1.97596
\(875\) 0 0
\(876\) 0 0
\(877\) 43.1246 1.45621 0.728107 0.685463i \(-0.240400\pi\)
0.728107 + 0.685463i \(0.240400\pi\)
\(878\) 51.8328 1.74927
\(879\) 0 0
\(880\) 0 0
\(881\) −15.0902 −0.508401 −0.254200 0.967152i \(-0.581812\pi\)
−0.254200 + 0.967152i \(0.581812\pi\)
\(882\) 0 0
\(883\) 29.2016 0.982713 0.491356 0.870959i \(-0.336501\pi\)
0.491356 + 0.870959i \(0.336501\pi\)
\(884\) −2.61803 −0.0880540
\(885\) 0 0
\(886\) −31.4164 −1.05545
\(887\) −42.9230 −1.44121 −0.720606 0.693344i \(-0.756136\pi\)
−0.720606 + 0.693344i \(0.756136\pi\)
\(888\) 0 0
\(889\) −27.3050 −0.915779
\(890\) 0 0
\(891\) 0 0
\(892\) −6.27051 −0.209952
\(893\) −31.9574 −1.06941
\(894\) 0 0
\(895\) 0 0
\(896\) 27.2361 0.909893
\(897\) 0 0
\(898\) 26.7082 0.891264
\(899\) 31.5066 1.05080
\(900\) 0 0
\(901\) −47.5967 −1.58568
\(902\) −45.5410 −1.51635
\(903\) 0 0
\(904\) 8.41641 0.279926
\(905\) 0 0
\(906\) 0 0
\(907\) −17.0000 −0.564476 −0.282238 0.959344i \(-0.591077\pi\)
−0.282238 + 0.959344i \(0.591077\pi\)
\(908\) −3.56231 −0.118219
\(909\) 0 0
\(910\) 0 0
\(911\) −14.8885 −0.493279 −0.246640 0.969107i \(-0.579326\pi\)
−0.246640 + 0.969107i \(0.579326\pi\)
\(912\) 0 0
\(913\) −27.0000 −0.893570
\(914\) 16.0000 0.529233
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) −28.3607 −0.936552
\(918\) 0 0
\(919\) −5.00000 −0.164935 −0.0824674 0.996594i \(-0.526280\pi\)
−0.0824674 + 0.996594i \(0.526280\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −31.0344 −1.02206
\(923\) 10.0902 0.332122
\(924\) 0 0
\(925\) 0 0
\(926\) 54.5066 1.79120
\(927\) 0 0
\(928\) 12.2361 0.401669
\(929\) 29.5967 0.971038 0.485519 0.874226i \(-0.338631\pi\)
0.485519 + 0.874226i \(0.338631\pi\)
\(930\) 0 0
\(931\) 20.1246 0.659558
\(932\) −6.29180 −0.206095
\(933\) 0 0
\(934\) −16.8541 −0.551483
\(935\) 0 0
\(936\) 0 0
\(937\) −10.4164 −0.340289 −0.170145 0.985419i \(-0.554423\pi\)
−0.170145 + 0.985419i \(0.554423\pi\)
\(938\) −42.6525 −1.39265
\(939\) 0 0
\(940\) 0 0
\(941\) −57.9787 −1.89005 −0.945026 0.326995i \(-0.893964\pi\)
−0.945026 + 0.326995i \(0.893964\pi\)
\(942\) 0 0
\(943\) −50.4934 −1.64429
\(944\) 19.1459 0.623146
\(945\) 0 0
\(946\) 35.8328 1.16503
\(947\) 23.8328 0.774462 0.387231 0.921983i \(-0.373432\pi\)
0.387231 + 0.921983i \(0.373432\pi\)
\(948\) 0 0
\(949\) −15.7082 −0.509910
\(950\) 0 0
\(951\) 0 0
\(952\) −18.9443 −0.613987
\(953\) 42.0557 1.36232 0.681159 0.732135i \(-0.261476\pi\)
0.681159 + 0.732135i \(0.261476\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −13.2148 −0.427397
\(957\) 0 0
\(958\) 7.76393 0.250841
\(959\) 0.875388 0.0282678
\(960\) 0 0
\(961\) 44.8328 1.44622
\(962\) −3.23607 −0.104335
\(963\) 0 0
\(964\) 4.52786 0.145833
\(965\) 0 0
\(966\) 0 0
\(967\) −35.4164 −1.13891 −0.569457 0.822021i \(-0.692847\pi\)
−0.569457 + 0.822021i \(0.692847\pi\)
\(968\) −4.47214 −0.143740
\(969\) 0 0
\(970\) 0 0
\(971\) −29.8885 −0.959169 −0.479585 0.877496i \(-0.659213\pi\)
−0.479585 + 0.877496i \(0.659213\pi\)
\(972\) 0 0
\(973\) −26.8328 −0.860221
\(974\) −26.8885 −0.861565
\(975\) 0 0
\(976\) −42.2705 −1.35305
\(977\) 37.6525 1.20461 0.602305 0.798266i \(-0.294249\pi\)
0.602305 + 0.798266i \(0.294249\pi\)
\(978\) 0 0
\(979\) 33.5410 1.07198
\(980\) 0 0
\(981\) 0 0
\(982\) 36.1246 1.15278
\(983\) 24.6180 0.785193 0.392597 0.919711i \(-0.371577\pi\)
0.392597 + 0.919711i \(0.371577\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −24.7984 −0.789741
\(987\) 0 0
\(988\) 4.14590 0.131899
\(989\) 39.7295 1.26332
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) 29.4508 0.935065
\(993\) 0 0
\(994\) −32.6525 −1.03567
\(995\) 0 0
\(996\) 0 0
\(997\) −2.93112 −0.0928294 −0.0464147 0.998922i \(-0.514780\pi\)
−0.0464147 + 0.998922i \(0.514780\pi\)
\(998\) 24.2705 0.768270
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5625.2.a.b.1.1 2
3.2 odd 2 1875.2.a.c.1.2 yes 2
5.4 even 2 5625.2.a.g.1.2 2
15.2 even 4 1875.2.b.a.1249.4 4
15.8 even 4 1875.2.b.a.1249.1 4
15.14 odd 2 1875.2.a.b.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1875.2.a.b.1.1 2 15.14 odd 2
1875.2.a.c.1.2 yes 2 3.2 odd 2
1875.2.b.a.1249.1 4 15.8 even 4
1875.2.b.a.1249.4 4 15.2 even 4
5625.2.a.b.1.1 2 1.1 even 1 trivial
5625.2.a.g.1.2 2 5.4 even 2