Properties

Label 5610.2.m
Level 5610
Weight 2
Character orbit m
Rep. character \(\chi_{5610}(1189,\cdot)\)
Character field \(\Q\)
Dimension 176
Sturm bound 2592

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 5610.m (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 85 \)
Character field: \(\Q\)
Sturm bound: \(2592\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(5610, [\chi])\).

Total New Old
Modular forms 1312 176 1136
Cusp forms 1280 176 1104
Eisenstein series 32 0 32

Decomposition of \(S_{2}^{\mathrm{new}}(5610, [\chi])\) into irreducible Hecke orbits

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(5610, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(5610, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(510, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(935, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1870, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2805, [\chi])\)\(^{\oplus 2}\)