Defining parameters
| Level: | \( N \) | \(=\) | \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 5610.db (of order \(16\) and degree \(8\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 187 \) |
| Character field: | \(\Q(\zeta_{16})\) | ||
| Sturm bound: | \(2592\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5610, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 10496 | 1152 | 9344 |
| Cusp forms | 10240 | 1152 | 9088 |
| Eisenstein series | 256 | 0 | 256 |
Decomposition of \(S_{2}^{\mathrm{new}}(5610, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(5610, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5610, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(187, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(374, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(561, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(935, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1122, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1870, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2805, [\chi])\)\(^{\oplus 2}\)