Properties

Label 5610.2.bq
Level 5610
Weight 2
Character orbit bq
Rep. character \(\chi_{5610}(331,\cdot)\)
Character field \(\Q(\zeta_{8})\)
Dimension 480
Sturm bound 2592

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 5610.bq (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Sturm bound: \(2592\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(5610, [\chi])\).

Total New Old
Modular forms 5248 480 4768
Cusp forms 5120 480 4640
Eisenstein series 128 0 128

Decomposition of \(S_{2}^{\mathrm{new}}(5610, [\chi])\) into irreducible Hecke orbits

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(5610, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(5610, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(187, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(374, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(510, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(561, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(935, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1122, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1870, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2805, [\chi])\)\(^{\oplus 2}\)