Properties

Label 5610.2.a.w.1.1
Level $5610$
Weight $2$
Character 5610.1
Self dual yes
Analytic conductor $44.796$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5610,2,Mod(1,5610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.7960755339\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 5610.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} -1.00000 q^{6} -4.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} -1.00000 q^{6} -4.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{10} +1.00000 q^{11} -1.00000 q^{12} +4.00000 q^{13} -4.00000 q^{14} +1.00000 q^{15} +1.00000 q^{16} -1.00000 q^{17} +1.00000 q^{18} +4.00000 q^{19} -1.00000 q^{20} +4.00000 q^{21} +1.00000 q^{22} -8.00000 q^{23} -1.00000 q^{24} +1.00000 q^{25} +4.00000 q^{26} -1.00000 q^{27} -4.00000 q^{28} -4.00000 q^{29} +1.00000 q^{30} +6.00000 q^{31} +1.00000 q^{32} -1.00000 q^{33} -1.00000 q^{34} +4.00000 q^{35} +1.00000 q^{36} +4.00000 q^{37} +4.00000 q^{38} -4.00000 q^{39} -1.00000 q^{40} -10.0000 q^{41} +4.00000 q^{42} +4.00000 q^{43} +1.00000 q^{44} -1.00000 q^{45} -8.00000 q^{46} -2.00000 q^{47} -1.00000 q^{48} +9.00000 q^{49} +1.00000 q^{50} +1.00000 q^{51} +4.00000 q^{52} -4.00000 q^{53} -1.00000 q^{54} -1.00000 q^{55} -4.00000 q^{56} -4.00000 q^{57} -4.00000 q^{58} +4.00000 q^{59} +1.00000 q^{60} -14.0000 q^{61} +6.00000 q^{62} -4.00000 q^{63} +1.00000 q^{64} -4.00000 q^{65} -1.00000 q^{66} -4.00000 q^{67} -1.00000 q^{68} +8.00000 q^{69} +4.00000 q^{70} +12.0000 q^{71} +1.00000 q^{72} +14.0000 q^{73} +4.00000 q^{74} -1.00000 q^{75} +4.00000 q^{76} -4.00000 q^{77} -4.00000 q^{78} +12.0000 q^{79} -1.00000 q^{80} +1.00000 q^{81} -10.0000 q^{82} -4.00000 q^{83} +4.00000 q^{84} +1.00000 q^{85} +4.00000 q^{86} +4.00000 q^{87} +1.00000 q^{88} +2.00000 q^{89} -1.00000 q^{90} -16.0000 q^{91} -8.00000 q^{92} -6.00000 q^{93} -2.00000 q^{94} -4.00000 q^{95} -1.00000 q^{96} -10.0000 q^{97} +9.00000 q^{98} +1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) −1.00000 −0.408248
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −1.00000 −0.316228
\(11\) 1.00000 0.301511
\(12\) −1.00000 −0.288675
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) −4.00000 −1.06904
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 1.00000 0.235702
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) −1.00000 −0.223607
\(21\) 4.00000 0.872872
\(22\) 1.00000 0.213201
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) −1.00000 −0.204124
\(25\) 1.00000 0.200000
\(26\) 4.00000 0.784465
\(27\) −1.00000 −0.192450
\(28\) −4.00000 −0.755929
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 1.00000 0.182574
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.00000 −0.174078
\(34\) −1.00000 −0.171499
\(35\) 4.00000 0.676123
\(36\) 1.00000 0.166667
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 4.00000 0.648886
\(39\) −4.00000 −0.640513
\(40\) −1.00000 −0.158114
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 4.00000 0.617213
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 1.00000 0.150756
\(45\) −1.00000 −0.149071
\(46\) −8.00000 −1.17954
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) −1.00000 −0.144338
\(49\) 9.00000 1.28571
\(50\) 1.00000 0.141421
\(51\) 1.00000 0.140028
\(52\) 4.00000 0.554700
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) −1.00000 −0.136083
\(55\) −1.00000 −0.134840
\(56\) −4.00000 −0.534522
\(57\) −4.00000 −0.529813
\(58\) −4.00000 −0.525226
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 1.00000 0.129099
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 6.00000 0.762001
\(63\) −4.00000 −0.503953
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) −1.00000 −0.123091
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) −1.00000 −0.121268
\(69\) 8.00000 0.963087
\(70\) 4.00000 0.478091
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 1.00000 0.117851
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 4.00000 0.464991
\(75\) −1.00000 −0.115470
\(76\) 4.00000 0.458831
\(77\) −4.00000 −0.455842
\(78\) −4.00000 −0.452911
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.00000 0.111111
\(82\) −10.0000 −1.10432
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 4.00000 0.436436
\(85\) 1.00000 0.108465
\(86\) 4.00000 0.431331
\(87\) 4.00000 0.428845
\(88\) 1.00000 0.106600
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) −1.00000 −0.105409
\(91\) −16.0000 −1.67726
\(92\) −8.00000 −0.834058
\(93\) −6.00000 −0.622171
\(94\) −2.00000 −0.206284
\(95\) −4.00000 −0.410391
\(96\) −1.00000 −0.102062
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 9.00000 0.909137
\(99\) 1.00000 0.100504
\(100\) 1.00000 0.100000
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 1.00000 0.0990148
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 4.00000 0.392232
\(105\) −4.00000 −0.390360
\(106\) −4.00000 −0.388514
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) −1.00000 −0.0953463
\(111\) −4.00000 −0.379663
\(112\) −4.00000 −0.377964
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) −4.00000 −0.374634
\(115\) 8.00000 0.746004
\(116\) −4.00000 −0.371391
\(117\) 4.00000 0.369800
\(118\) 4.00000 0.368230
\(119\) 4.00000 0.366679
\(120\) 1.00000 0.0912871
\(121\) 1.00000 0.0909091
\(122\) −14.0000 −1.26750
\(123\) 10.0000 0.901670
\(124\) 6.00000 0.538816
\(125\) −1.00000 −0.0894427
\(126\) −4.00000 −0.356348
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 1.00000 0.0883883
\(129\) −4.00000 −0.352180
\(130\) −4.00000 −0.350823
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) −1.00000 −0.0870388
\(133\) −16.0000 −1.38738
\(134\) −4.00000 −0.345547
\(135\) 1.00000 0.0860663
\(136\) −1.00000 −0.0857493
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 8.00000 0.681005
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 4.00000 0.338062
\(141\) 2.00000 0.168430
\(142\) 12.0000 1.00702
\(143\) 4.00000 0.334497
\(144\) 1.00000 0.0833333
\(145\) 4.00000 0.332182
\(146\) 14.0000 1.15865
\(147\) −9.00000 −0.742307
\(148\) 4.00000 0.328798
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) −1.00000 −0.0816497
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 4.00000 0.324443
\(153\) −1.00000 −0.0808452
\(154\) −4.00000 −0.322329
\(155\) −6.00000 −0.481932
\(156\) −4.00000 −0.320256
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 12.0000 0.954669
\(159\) 4.00000 0.317221
\(160\) −1.00000 −0.0790569
\(161\) 32.0000 2.52195
\(162\) 1.00000 0.0785674
\(163\) −12.0000 −0.939913 −0.469956 0.882690i \(-0.655730\pi\)
−0.469956 + 0.882690i \(0.655730\pi\)
\(164\) −10.0000 −0.780869
\(165\) 1.00000 0.0778499
\(166\) −4.00000 −0.310460
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) 4.00000 0.308607
\(169\) 3.00000 0.230769
\(170\) 1.00000 0.0766965
\(171\) 4.00000 0.305888
\(172\) 4.00000 0.304997
\(173\) −20.0000 −1.52057 −0.760286 0.649589i \(-0.774941\pi\)
−0.760286 + 0.649589i \(0.774941\pi\)
\(174\) 4.00000 0.303239
\(175\) −4.00000 −0.302372
\(176\) 1.00000 0.0753778
\(177\) −4.00000 −0.300658
\(178\) 2.00000 0.149906
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −1.00000 −0.0745356
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) −16.0000 −1.18600
\(183\) 14.0000 1.03491
\(184\) −8.00000 −0.589768
\(185\) −4.00000 −0.294086
\(186\) −6.00000 −0.439941
\(187\) −1.00000 −0.0731272
\(188\) −2.00000 −0.145865
\(189\) 4.00000 0.290957
\(190\) −4.00000 −0.290191
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) −10.0000 −0.717958
\(195\) 4.00000 0.286446
\(196\) 9.00000 0.642857
\(197\) −24.0000 −1.70993 −0.854965 0.518686i \(-0.826421\pi\)
−0.854965 + 0.518686i \(0.826421\pi\)
\(198\) 1.00000 0.0710669
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) 1.00000 0.0707107
\(201\) 4.00000 0.282138
\(202\) −10.0000 −0.703598
\(203\) 16.0000 1.12298
\(204\) 1.00000 0.0700140
\(205\) 10.0000 0.698430
\(206\) −16.0000 −1.11477
\(207\) −8.00000 −0.556038
\(208\) 4.00000 0.277350
\(209\) 4.00000 0.276686
\(210\) −4.00000 −0.276026
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) −4.00000 −0.274721
\(213\) −12.0000 −0.822226
\(214\) 12.0000 0.820303
\(215\) −4.00000 −0.272798
\(216\) −1.00000 −0.0680414
\(217\) −24.0000 −1.62923
\(218\) −6.00000 −0.406371
\(219\) −14.0000 −0.946032
\(220\) −1.00000 −0.0674200
\(221\) −4.00000 −0.269069
\(222\) −4.00000 −0.268462
\(223\) 20.0000 1.33930 0.669650 0.742677i \(-0.266444\pi\)
0.669650 + 0.742677i \(0.266444\pi\)
\(224\) −4.00000 −0.267261
\(225\) 1.00000 0.0666667
\(226\) −18.0000 −1.19734
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) −4.00000 −0.264906
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 8.00000 0.527504
\(231\) 4.00000 0.263181
\(232\) −4.00000 −0.262613
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 4.00000 0.261488
\(235\) 2.00000 0.130466
\(236\) 4.00000 0.260378
\(237\) −12.0000 −0.779484
\(238\) 4.00000 0.259281
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 1.00000 0.0645497
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 1.00000 0.0642824
\(243\) −1.00000 −0.0641500
\(244\) −14.0000 −0.896258
\(245\) −9.00000 −0.574989
\(246\) 10.0000 0.637577
\(247\) 16.0000 1.01806
\(248\) 6.00000 0.381000
\(249\) 4.00000 0.253490
\(250\) −1.00000 −0.0632456
\(251\) 16.0000 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(252\) −4.00000 −0.251976
\(253\) −8.00000 −0.502956
\(254\) −2.00000 −0.125491
\(255\) −1.00000 −0.0626224
\(256\) 1.00000 0.0625000
\(257\) 10.0000 0.623783 0.311891 0.950118i \(-0.399037\pi\)
0.311891 + 0.950118i \(0.399037\pi\)
\(258\) −4.00000 −0.249029
\(259\) −16.0000 −0.994192
\(260\) −4.00000 −0.248069
\(261\) −4.00000 −0.247594
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) −1.00000 −0.0615457
\(265\) 4.00000 0.245718
\(266\) −16.0000 −0.981023
\(267\) −2.00000 −0.122398
\(268\) −4.00000 −0.244339
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 1.00000 0.0608581
\(271\) 10.0000 0.607457 0.303728 0.952759i \(-0.401768\pi\)
0.303728 + 0.952759i \(0.401768\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 16.0000 0.968364
\(274\) −18.0000 −1.08742
\(275\) 1.00000 0.0603023
\(276\) 8.00000 0.481543
\(277\) −26.0000 −1.56219 −0.781094 0.624413i \(-0.785338\pi\)
−0.781094 + 0.624413i \(0.785338\pi\)
\(278\) −12.0000 −0.719712
\(279\) 6.00000 0.359211
\(280\) 4.00000 0.239046
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) 2.00000 0.119098
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 12.0000 0.712069
\(285\) 4.00000 0.236940
\(286\) 4.00000 0.236525
\(287\) 40.0000 2.36113
\(288\) 1.00000 0.0589256
\(289\) 1.00000 0.0588235
\(290\) 4.00000 0.234888
\(291\) 10.0000 0.586210
\(292\) 14.0000 0.819288
\(293\) 22.0000 1.28525 0.642627 0.766179i \(-0.277845\pi\)
0.642627 + 0.766179i \(0.277845\pi\)
\(294\) −9.00000 −0.524891
\(295\) −4.00000 −0.232889
\(296\) 4.00000 0.232495
\(297\) −1.00000 −0.0580259
\(298\) 6.00000 0.347571
\(299\) −32.0000 −1.85061
\(300\) −1.00000 −0.0577350
\(301\) −16.0000 −0.922225
\(302\) −10.0000 −0.575435
\(303\) 10.0000 0.574485
\(304\) 4.00000 0.229416
\(305\) 14.0000 0.801638
\(306\) −1.00000 −0.0571662
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) −4.00000 −0.227921
\(309\) 16.0000 0.910208
\(310\) −6.00000 −0.340777
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) −4.00000 −0.226455
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) −14.0000 −0.790066
\(315\) 4.00000 0.225374
\(316\) 12.0000 0.675053
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 4.00000 0.224309
\(319\) −4.00000 −0.223957
\(320\) −1.00000 −0.0559017
\(321\) −12.0000 −0.669775
\(322\) 32.0000 1.78329
\(323\) −4.00000 −0.222566
\(324\) 1.00000 0.0555556
\(325\) 4.00000 0.221880
\(326\) −12.0000 −0.664619
\(327\) 6.00000 0.331801
\(328\) −10.0000 −0.552158
\(329\) 8.00000 0.441054
\(330\) 1.00000 0.0550482
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) −4.00000 −0.219529
\(333\) 4.00000 0.219199
\(334\) −2.00000 −0.109435
\(335\) 4.00000 0.218543
\(336\) 4.00000 0.218218
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 3.00000 0.163178
\(339\) 18.0000 0.977626
\(340\) 1.00000 0.0542326
\(341\) 6.00000 0.324918
\(342\) 4.00000 0.216295
\(343\) −8.00000 −0.431959
\(344\) 4.00000 0.215666
\(345\) −8.00000 −0.430706
\(346\) −20.0000 −1.07521
\(347\) 4.00000 0.214731 0.107366 0.994220i \(-0.465758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) 4.00000 0.214423
\(349\) 20.0000 1.07058 0.535288 0.844670i \(-0.320203\pi\)
0.535288 + 0.844670i \(0.320203\pi\)
\(350\) −4.00000 −0.213809
\(351\) −4.00000 −0.213504
\(352\) 1.00000 0.0533002
\(353\) −30.0000 −1.59674 −0.798369 0.602168i \(-0.794304\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) −4.00000 −0.212598
\(355\) −12.0000 −0.636894
\(356\) 2.00000 0.106000
\(357\) −4.00000 −0.211702
\(358\) 0 0
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) −1.00000 −0.0527046
\(361\) −3.00000 −0.157895
\(362\) −16.0000 −0.840941
\(363\) −1.00000 −0.0524864
\(364\) −16.0000 −0.838628
\(365\) −14.0000 −0.732793
\(366\) 14.0000 0.731792
\(367\) 22.0000 1.14839 0.574195 0.818718i \(-0.305315\pi\)
0.574195 + 0.818718i \(0.305315\pi\)
\(368\) −8.00000 −0.417029
\(369\) −10.0000 −0.520579
\(370\) −4.00000 −0.207950
\(371\) 16.0000 0.830679
\(372\) −6.00000 −0.311086
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) −1.00000 −0.0517088
\(375\) 1.00000 0.0516398
\(376\) −2.00000 −0.103142
\(377\) −16.0000 −0.824042
\(378\) 4.00000 0.205738
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) −4.00000 −0.205196
\(381\) 2.00000 0.102463
\(382\) 6.00000 0.306987
\(383\) −14.0000 −0.715367 −0.357683 0.933843i \(-0.616433\pi\)
−0.357683 + 0.933843i \(0.616433\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 4.00000 0.203859
\(386\) −14.0000 −0.712581
\(387\) 4.00000 0.203331
\(388\) −10.0000 −0.507673
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 4.00000 0.202548
\(391\) 8.00000 0.404577
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) −24.0000 −1.20910
\(395\) −12.0000 −0.603786
\(396\) 1.00000 0.0502519
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) −2.00000 −0.100251
\(399\) 16.0000 0.801002
\(400\) 1.00000 0.0500000
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 4.00000 0.199502
\(403\) 24.0000 1.19553
\(404\) −10.0000 −0.497519
\(405\) −1.00000 −0.0496904
\(406\) 16.0000 0.794067
\(407\) 4.00000 0.198273
\(408\) 1.00000 0.0495074
\(409\) 22.0000 1.08783 0.543915 0.839140i \(-0.316941\pi\)
0.543915 + 0.839140i \(0.316941\pi\)
\(410\) 10.0000 0.493865
\(411\) 18.0000 0.887875
\(412\) −16.0000 −0.788263
\(413\) −16.0000 −0.787309
\(414\) −8.00000 −0.393179
\(415\) 4.00000 0.196352
\(416\) 4.00000 0.196116
\(417\) 12.0000 0.587643
\(418\) 4.00000 0.195646
\(419\) −4.00000 −0.195413 −0.0977064 0.995215i \(-0.531151\pi\)
−0.0977064 + 0.995215i \(0.531151\pi\)
\(420\) −4.00000 −0.195180
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) −12.0000 −0.584151
\(423\) −2.00000 −0.0972433
\(424\) −4.00000 −0.194257
\(425\) −1.00000 −0.0485071
\(426\) −12.0000 −0.581402
\(427\) 56.0000 2.71003
\(428\) 12.0000 0.580042
\(429\) −4.00000 −0.193122
\(430\) −4.00000 −0.192897
\(431\) 26.0000 1.25238 0.626188 0.779672i \(-0.284614\pi\)
0.626188 + 0.779672i \(0.284614\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) −24.0000 −1.15204
\(435\) −4.00000 −0.191785
\(436\) −6.00000 −0.287348
\(437\) −32.0000 −1.53077
\(438\) −14.0000 −0.668946
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) −1.00000 −0.0476731
\(441\) 9.00000 0.428571
\(442\) −4.00000 −0.190261
\(443\) 16.0000 0.760183 0.380091 0.924949i \(-0.375893\pi\)
0.380091 + 0.924949i \(0.375893\pi\)
\(444\) −4.00000 −0.189832
\(445\) −2.00000 −0.0948091
\(446\) 20.0000 0.947027
\(447\) −6.00000 −0.283790
\(448\) −4.00000 −0.188982
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 1.00000 0.0471405
\(451\) −10.0000 −0.470882
\(452\) −18.0000 −0.846649
\(453\) 10.0000 0.469841
\(454\) 0 0
\(455\) 16.0000 0.750092
\(456\) −4.00000 −0.187317
\(457\) 38.0000 1.77757 0.888783 0.458329i \(-0.151552\pi\)
0.888783 + 0.458329i \(0.151552\pi\)
\(458\) −14.0000 −0.654177
\(459\) 1.00000 0.0466760
\(460\) 8.00000 0.373002
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 4.00000 0.186097
\(463\) −32.0000 −1.48717 −0.743583 0.668644i \(-0.766875\pi\)
−0.743583 + 0.668644i \(0.766875\pi\)
\(464\) −4.00000 −0.185695
\(465\) 6.00000 0.278243
\(466\) −22.0000 −1.01913
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 4.00000 0.184900
\(469\) 16.0000 0.738811
\(470\) 2.00000 0.0922531
\(471\) 14.0000 0.645086
\(472\) 4.00000 0.184115
\(473\) 4.00000 0.183920
\(474\) −12.0000 −0.551178
\(475\) 4.00000 0.183533
\(476\) 4.00000 0.183340
\(477\) −4.00000 −0.183147
\(478\) −24.0000 −1.09773
\(479\) 38.0000 1.73626 0.868132 0.496333i \(-0.165321\pi\)
0.868132 + 0.496333i \(0.165321\pi\)
\(480\) 1.00000 0.0456435
\(481\) 16.0000 0.729537
\(482\) 18.0000 0.819878
\(483\) −32.0000 −1.45605
\(484\) 1.00000 0.0454545
\(485\) 10.0000 0.454077
\(486\) −1.00000 −0.0453609
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) −14.0000 −0.633750
\(489\) 12.0000 0.542659
\(490\) −9.00000 −0.406579
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 10.0000 0.450835
\(493\) 4.00000 0.180151
\(494\) 16.0000 0.719874
\(495\) −1.00000 −0.0449467
\(496\) 6.00000 0.269408
\(497\) −48.0000 −2.15309
\(498\) 4.00000 0.179244
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 2.00000 0.0893534
\(502\) 16.0000 0.714115
\(503\) −26.0000 −1.15928 −0.579641 0.814872i \(-0.696807\pi\)
−0.579641 + 0.814872i \(0.696807\pi\)
\(504\) −4.00000 −0.178174
\(505\) 10.0000 0.444994
\(506\) −8.00000 −0.355643
\(507\) −3.00000 −0.133235
\(508\) −2.00000 −0.0887357
\(509\) −8.00000 −0.354594 −0.177297 0.984157i \(-0.556735\pi\)
−0.177297 + 0.984157i \(0.556735\pi\)
\(510\) −1.00000 −0.0442807
\(511\) −56.0000 −2.47729
\(512\) 1.00000 0.0441942
\(513\) −4.00000 −0.176604
\(514\) 10.0000 0.441081
\(515\) 16.0000 0.705044
\(516\) −4.00000 −0.176090
\(517\) −2.00000 −0.0879599
\(518\) −16.0000 −0.703000
\(519\) 20.0000 0.877903
\(520\) −4.00000 −0.175412
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) −4.00000 −0.175075
\(523\) −24.0000 −1.04945 −0.524723 0.851273i \(-0.675831\pi\)
−0.524723 + 0.851273i \(0.675831\pi\)
\(524\) 0 0
\(525\) 4.00000 0.174574
\(526\) −12.0000 −0.523225
\(527\) −6.00000 −0.261364
\(528\) −1.00000 −0.0435194
\(529\) 41.0000 1.78261
\(530\) 4.00000 0.173749
\(531\) 4.00000 0.173585
\(532\) −16.0000 −0.693688
\(533\) −40.0000 −1.73259
\(534\) −2.00000 −0.0865485
\(535\) −12.0000 −0.518805
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) 10.0000 0.431131
\(539\) 9.00000 0.387657
\(540\) 1.00000 0.0430331
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 10.0000 0.429537
\(543\) 16.0000 0.686626
\(544\) −1.00000 −0.0428746
\(545\) 6.00000 0.257012
\(546\) 16.0000 0.684737
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) −18.0000 −0.768922
\(549\) −14.0000 −0.597505
\(550\) 1.00000 0.0426401
\(551\) −16.0000 −0.681623
\(552\) 8.00000 0.340503
\(553\) −48.0000 −2.04117
\(554\) −26.0000 −1.10463
\(555\) 4.00000 0.169791
\(556\) −12.0000 −0.508913
\(557\) 26.0000 1.10166 0.550828 0.834619i \(-0.314312\pi\)
0.550828 + 0.834619i \(0.314312\pi\)
\(558\) 6.00000 0.254000
\(559\) 16.0000 0.676728
\(560\) 4.00000 0.169031
\(561\) 1.00000 0.0422200
\(562\) −2.00000 −0.0843649
\(563\) −20.0000 −0.842900 −0.421450 0.906852i \(-0.638479\pi\)
−0.421450 + 0.906852i \(0.638479\pi\)
\(564\) 2.00000 0.0842152
\(565\) 18.0000 0.757266
\(566\) 20.0000 0.840663
\(567\) −4.00000 −0.167984
\(568\) 12.0000 0.503509
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 4.00000 0.167542
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 4.00000 0.167248
\(573\) −6.00000 −0.250654
\(574\) 40.0000 1.66957
\(575\) −8.00000 −0.333623
\(576\) 1.00000 0.0416667
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) 1.00000 0.0415945
\(579\) 14.0000 0.581820
\(580\) 4.00000 0.166091
\(581\) 16.0000 0.663792
\(582\) 10.0000 0.414513
\(583\) −4.00000 −0.165663
\(584\) 14.0000 0.579324
\(585\) −4.00000 −0.165380
\(586\) 22.0000 0.908812
\(587\) −16.0000 −0.660391 −0.330195 0.943913i \(-0.607115\pi\)
−0.330195 + 0.943913i \(0.607115\pi\)
\(588\) −9.00000 −0.371154
\(589\) 24.0000 0.988903
\(590\) −4.00000 −0.164677
\(591\) 24.0000 0.987228
\(592\) 4.00000 0.164399
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) −1.00000 −0.0410305
\(595\) −4.00000 −0.163984
\(596\) 6.00000 0.245770
\(597\) 2.00000 0.0818546
\(598\) −32.0000 −1.30858
\(599\) −42.0000 −1.71607 −0.858037 0.513588i \(-0.828316\pi\)
−0.858037 + 0.513588i \(0.828316\pi\)
\(600\) −1.00000 −0.0408248
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) −16.0000 −0.652111
\(603\) −4.00000 −0.162893
\(604\) −10.0000 −0.406894
\(605\) −1.00000 −0.0406558
\(606\) 10.0000 0.406222
\(607\) 4.00000 0.162355 0.0811775 0.996700i \(-0.474132\pi\)
0.0811775 + 0.996700i \(0.474132\pi\)
\(608\) 4.00000 0.162221
\(609\) −16.0000 −0.648353
\(610\) 14.0000 0.566843
\(611\) −8.00000 −0.323645
\(612\) −1.00000 −0.0404226
\(613\) 12.0000 0.484675 0.242338 0.970192i \(-0.422086\pi\)
0.242338 + 0.970192i \(0.422086\pi\)
\(614\) −8.00000 −0.322854
\(615\) −10.0000 −0.403239
\(616\) −4.00000 −0.161165
\(617\) 42.0000 1.69086 0.845428 0.534089i \(-0.179345\pi\)
0.845428 + 0.534089i \(0.179345\pi\)
\(618\) 16.0000 0.643614
\(619\) 8.00000 0.321547 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(620\) −6.00000 −0.240966
\(621\) 8.00000 0.321029
\(622\) −16.0000 −0.641542
\(623\) −8.00000 −0.320513
\(624\) −4.00000 −0.160128
\(625\) 1.00000 0.0400000
\(626\) −10.0000 −0.399680
\(627\) −4.00000 −0.159745
\(628\) −14.0000 −0.558661
\(629\) −4.00000 −0.159490
\(630\) 4.00000 0.159364
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) 12.0000 0.477334
\(633\) 12.0000 0.476957
\(634\) 18.0000 0.714871
\(635\) 2.00000 0.0793676
\(636\) 4.00000 0.158610
\(637\) 36.0000 1.42637
\(638\) −4.00000 −0.158362
\(639\) 12.0000 0.474713
\(640\) −1.00000 −0.0395285
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) −12.0000 −0.473602
\(643\) −8.00000 −0.315489 −0.157745 0.987480i \(-0.550422\pi\)
−0.157745 + 0.987480i \(0.550422\pi\)
\(644\) 32.0000 1.26098
\(645\) 4.00000 0.157500
\(646\) −4.00000 −0.157378
\(647\) −38.0000 −1.49393 −0.746967 0.664861i \(-0.768491\pi\)
−0.746967 + 0.664861i \(0.768491\pi\)
\(648\) 1.00000 0.0392837
\(649\) 4.00000 0.157014
\(650\) 4.00000 0.156893
\(651\) 24.0000 0.940634
\(652\) −12.0000 −0.469956
\(653\) −26.0000 −1.01746 −0.508729 0.860927i \(-0.669885\pi\)
−0.508729 + 0.860927i \(0.669885\pi\)
\(654\) 6.00000 0.234619
\(655\) 0 0
\(656\) −10.0000 −0.390434
\(657\) 14.0000 0.546192
\(658\) 8.00000 0.311872
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 1.00000 0.0389249
\(661\) −42.0000 −1.63361 −0.816805 0.576913i \(-0.804257\pi\)
−0.816805 + 0.576913i \(0.804257\pi\)
\(662\) −4.00000 −0.155464
\(663\) 4.00000 0.155347
\(664\) −4.00000 −0.155230
\(665\) 16.0000 0.620453
\(666\) 4.00000 0.154997
\(667\) 32.0000 1.23904
\(668\) −2.00000 −0.0773823
\(669\) −20.0000 −0.773245
\(670\) 4.00000 0.154533
\(671\) −14.0000 −0.540464
\(672\) 4.00000 0.154303
\(673\) 2.00000 0.0770943 0.0385472 0.999257i \(-0.487727\pi\)
0.0385472 + 0.999257i \(0.487727\pi\)
\(674\) 18.0000 0.693334
\(675\) −1.00000 −0.0384900
\(676\) 3.00000 0.115385
\(677\) 8.00000 0.307465 0.153732 0.988113i \(-0.450871\pi\)
0.153732 + 0.988113i \(0.450871\pi\)
\(678\) 18.0000 0.691286
\(679\) 40.0000 1.53506
\(680\) 1.00000 0.0383482
\(681\) 0 0
\(682\) 6.00000 0.229752
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 4.00000 0.152944
\(685\) 18.0000 0.687745
\(686\) −8.00000 −0.305441
\(687\) 14.0000 0.534133
\(688\) 4.00000 0.152499
\(689\) −16.0000 −0.609551
\(690\) −8.00000 −0.304555
\(691\) 36.0000 1.36950 0.684752 0.728776i \(-0.259910\pi\)
0.684752 + 0.728776i \(0.259910\pi\)
\(692\) −20.0000 −0.760286
\(693\) −4.00000 −0.151947
\(694\) 4.00000 0.151838
\(695\) 12.0000 0.455186
\(696\) 4.00000 0.151620
\(697\) 10.0000 0.378777
\(698\) 20.0000 0.757011
\(699\) 22.0000 0.832116
\(700\) −4.00000 −0.151186
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) −4.00000 −0.150970
\(703\) 16.0000 0.603451
\(704\) 1.00000 0.0376889
\(705\) −2.00000 −0.0753244
\(706\) −30.0000 −1.12906
\(707\) 40.0000 1.50435
\(708\) −4.00000 −0.150329
\(709\) −28.0000 −1.05156 −0.525781 0.850620i \(-0.676227\pi\)
−0.525781 + 0.850620i \(0.676227\pi\)
\(710\) −12.0000 −0.450352
\(711\) 12.0000 0.450035
\(712\) 2.00000 0.0749532
\(713\) −48.0000 −1.79761
\(714\) −4.00000 −0.149696
\(715\) −4.00000 −0.149592
\(716\) 0 0
\(717\) 24.0000 0.896296
\(718\) −4.00000 −0.149279
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) −1.00000 −0.0372678
\(721\) 64.0000 2.38348
\(722\) −3.00000 −0.111648
\(723\) −18.0000 −0.669427
\(724\) −16.0000 −0.594635
\(725\) −4.00000 −0.148556
\(726\) −1.00000 −0.0371135
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) −16.0000 −0.592999
\(729\) 1.00000 0.0370370
\(730\) −14.0000 −0.518163
\(731\) −4.00000 −0.147945
\(732\) 14.0000 0.517455
\(733\) 44.0000 1.62518 0.812589 0.582838i \(-0.198058\pi\)
0.812589 + 0.582838i \(0.198058\pi\)
\(734\) 22.0000 0.812035
\(735\) 9.00000 0.331970
\(736\) −8.00000 −0.294884
\(737\) −4.00000 −0.147342
\(738\) −10.0000 −0.368105
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) −4.00000 −0.147043
\(741\) −16.0000 −0.587775
\(742\) 16.0000 0.587378
\(743\) −18.0000 −0.660356 −0.330178 0.943919i \(-0.607109\pi\)
−0.330178 + 0.943919i \(0.607109\pi\)
\(744\) −6.00000 −0.219971
\(745\) −6.00000 −0.219823
\(746\) −4.00000 −0.146450
\(747\) −4.00000 −0.146352
\(748\) −1.00000 −0.0365636
\(749\) −48.0000 −1.75388
\(750\) 1.00000 0.0365148
\(751\) −46.0000 −1.67856 −0.839282 0.543696i \(-0.817024\pi\)
−0.839282 + 0.543696i \(0.817024\pi\)
\(752\) −2.00000 −0.0729325
\(753\) −16.0000 −0.583072
\(754\) −16.0000 −0.582686
\(755\) 10.0000 0.363937
\(756\) 4.00000 0.145479
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 4.00000 0.145287
\(759\) 8.00000 0.290382
\(760\) −4.00000 −0.145095
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 2.00000 0.0724524
\(763\) 24.0000 0.868858
\(764\) 6.00000 0.217072
\(765\) 1.00000 0.0361551
\(766\) −14.0000 −0.505841
\(767\) 16.0000 0.577727
\(768\) −1.00000 −0.0360844
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 4.00000 0.144150
\(771\) −10.0000 −0.360141
\(772\) −14.0000 −0.503871
\(773\) −24.0000 −0.863220 −0.431610 0.902060i \(-0.642054\pi\)
−0.431610 + 0.902060i \(0.642054\pi\)
\(774\) 4.00000 0.143777
\(775\) 6.00000 0.215526
\(776\) −10.0000 −0.358979
\(777\) 16.0000 0.573997
\(778\) −24.0000 −0.860442
\(779\) −40.0000 −1.43315
\(780\) 4.00000 0.143223
\(781\) 12.0000 0.429394
\(782\) 8.00000 0.286079
\(783\) 4.00000 0.142948
\(784\) 9.00000 0.321429
\(785\) 14.0000 0.499681
\(786\) 0 0
\(787\) −52.0000 −1.85360 −0.926800 0.375555i \(-0.877452\pi\)
−0.926800 + 0.375555i \(0.877452\pi\)
\(788\) −24.0000 −0.854965
\(789\) 12.0000 0.427211
\(790\) −12.0000 −0.426941
\(791\) 72.0000 2.56003
\(792\) 1.00000 0.0355335
\(793\) −56.0000 −1.98862
\(794\) 8.00000 0.283909
\(795\) −4.00000 −0.141865
\(796\) −2.00000 −0.0708881
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 16.0000 0.566394
\(799\) 2.00000 0.0707549
\(800\) 1.00000 0.0353553
\(801\) 2.00000 0.0706665
\(802\) 18.0000 0.635602
\(803\) 14.0000 0.494049
\(804\) 4.00000 0.141069
\(805\) −32.0000 −1.12785
\(806\) 24.0000 0.845364
\(807\) −10.0000 −0.352017
\(808\) −10.0000 −0.351799
\(809\) −34.0000 −1.19538 −0.597688 0.801729i \(-0.703914\pi\)
−0.597688 + 0.801729i \(0.703914\pi\)
\(810\) −1.00000 −0.0351364
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 16.0000 0.561490
\(813\) −10.0000 −0.350715
\(814\) 4.00000 0.140200
\(815\) 12.0000 0.420342
\(816\) 1.00000 0.0350070
\(817\) 16.0000 0.559769
\(818\) 22.0000 0.769212
\(819\) −16.0000 −0.559085
\(820\) 10.0000 0.349215
\(821\) −48.0000 −1.67521 −0.837606 0.546275i \(-0.816045\pi\)
−0.837606 + 0.546275i \(0.816045\pi\)
\(822\) 18.0000 0.627822
\(823\) −26.0000 −0.906303 −0.453152 0.891434i \(-0.649700\pi\)
−0.453152 + 0.891434i \(0.649700\pi\)
\(824\) −16.0000 −0.557386
\(825\) −1.00000 −0.0348155
\(826\) −16.0000 −0.556711
\(827\) 16.0000 0.556375 0.278187 0.960527i \(-0.410266\pi\)
0.278187 + 0.960527i \(0.410266\pi\)
\(828\) −8.00000 −0.278019
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 4.00000 0.138842
\(831\) 26.0000 0.901930
\(832\) 4.00000 0.138675
\(833\) −9.00000 −0.311832
\(834\) 12.0000 0.415526
\(835\) 2.00000 0.0692129
\(836\) 4.00000 0.138343
\(837\) −6.00000 −0.207390
\(838\) −4.00000 −0.138178
\(839\) 56.0000 1.93333 0.966667 0.256036i \(-0.0824164\pi\)
0.966667 + 0.256036i \(0.0824164\pi\)
\(840\) −4.00000 −0.138013
\(841\) −13.0000 −0.448276
\(842\) 2.00000 0.0689246
\(843\) 2.00000 0.0688837
\(844\) −12.0000 −0.413057
\(845\) −3.00000 −0.103203
\(846\) −2.00000 −0.0687614
\(847\) −4.00000 −0.137442
\(848\) −4.00000 −0.137361
\(849\) −20.0000 −0.686398
\(850\) −1.00000 −0.0342997
\(851\) −32.0000 −1.09695
\(852\) −12.0000 −0.411113
\(853\) −42.0000 −1.43805 −0.719026 0.694983i \(-0.755412\pi\)
−0.719026 + 0.694983i \(0.755412\pi\)
\(854\) 56.0000 1.91628
\(855\) −4.00000 −0.136797
\(856\) 12.0000 0.410152
\(857\) −2.00000 −0.0683187 −0.0341593 0.999416i \(-0.510875\pi\)
−0.0341593 + 0.999416i \(0.510875\pi\)
\(858\) −4.00000 −0.136558
\(859\) −36.0000 −1.22830 −0.614152 0.789188i \(-0.710502\pi\)
−0.614152 + 0.789188i \(0.710502\pi\)
\(860\) −4.00000 −0.136399
\(861\) −40.0000 −1.36320
\(862\) 26.0000 0.885564
\(863\) 26.0000 0.885050 0.442525 0.896756i \(-0.354083\pi\)
0.442525 + 0.896756i \(0.354083\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 20.0000 0.680020
\(866\) 14.0000 0.475739
\(867\) −1.00000 −0.0339618
\(868\) −24.0000 −0.814613
\(869\) 12.0000 0.407072
\(870\) −4.00000 −0.135613
\(871\) −16.0000 −0.542139
\(872\) −6.00000 −0.203186
\(873\) −10.0000 −0.338449
\(874\) −32.0000 −1.08242
\(875\) 4.00000 0.135225
\(876\) −14.0000 −0.473016
\(877\) 10.0000 0.337676 0.168838 0.985644i \(-0.445999\pi\)
0.168838 + 0.985644i \(0.445999\pi\)
\(878\) 24.0000 0.809961
\(879\) −22.0000 −0.742042
\(880\) −1.00000 −0.0337100
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 9.00000 0.303046
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) −4.00000 −0.134535
\(885\) 4.00000 0.134459
\(886\) 16.0000 0.537531
\(887\) −22.0000 −0.738688 −0.369344 0.929293i \(-0.620418\pi\)
−0.369344 + 0.929293i \(0.620418\pi\)
\(888\) −4.00000 −0.134231
\(889\) 8.00000 0.268311
\(890\) −2.00000 −0.0670402
\(891\) 1.00000 0.0335013
\(892\) 20.0000 0.669650
\(893\) −8.00000 −0.267710
\(894\) −6.00000 −0.200670
\(895\) 0 0
\(896\) −4.00000 −0.133631
\(897\) 32.0000 1.06845
\(898\) 10.0000 0.333704
\(899\) −24.0000 −0.800445
\(900\) 1.00000 0.0333333
\(901\) 4.00000 0.133259
\(902\) −10.0000 −0.332964
\(903\) 16.0000 0.532447
\(904\) −18.0000 −0.598671
\(905\) 16.0000 0.531858
\(906\) 10.0000 0.332228
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) 0 0
\(909\) −10.0000 −0.331679
\(910\) 16.0000 0.530395
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) −4.00000 −0.132453
\(913\) −4.00000 −0.132381
\(914\) 38.0000 1.25693
\(915\) −14.0000 −0.462826
\(916\) −14.0000 −0.462573
\(917\) 0 0
\(918\) 1.00000 0.0330049
\(919\) −22.0000 −0.725713 −0.362857 0.931845i \(-0.618198\pi\)
−0.362857 + 0.931845i \(0.618198\pi\)
\(920\) 8.00000 0.263752
\(921\) 8.00000 0.263609
\(922\) −6.00000 −0.197599
\(923\) 48.0000 1.57994
\(924\) 4.00000 0.131590
\(925\) 4.00000 0.131519
\(926\) −32.0000 −1.05159
\(927\) −16.0000 −0.525509
\(928\) −4.00000 −0.131306
\(929\) −50.0000 −1.64045 −0.820223 0.572043i \(-0.806151\pi\)
−0.820223 + 0.572043i \(0.806151\pi\)
\(930\) 6.00000 0.196748
\(931\) 36.0000 1.17985
\(932\) −22.0000 −0.720634
\(933\) 16.0000 0.523816
\(934\) 12.0000 0.392652
\(935\) 1.00000 0.0327035
\(936\) 4.00000 0.130744
\(937\) −30.0000 −0.980057 −0.490029 0.871706i \(-0.663014\pi\)
−0.490029 + 0.871706i \(0.663014\pi\)
\(938\) 16.0000 0.522419
\(939\) 10.0000 0.326338
\(940\) 2.00000 0.0652328
\(941\) 8.00000 0.260793 0.130396 0.991462i \(-0.458375\pi\)
0.130396 + 0.991462i \(0.458375\pi\)
\(942\) 14.0000 0.456145
\(943\) 80.0000 2.60516
\(944\) 4.00000 0.130189
\(945\) −4.00000 −0.130120
\(946\) 4.00000 0.130051
\(947\) 20.0000 0.649913 0.324956 0.945729i \(-0.394650\pi\)
0.324956 + 0.945729i \(0.394650\pi\)
\(948\) −12.0000 −0.389742
\(949\) 56.0000 1.81784
\(950\) 4.00000 0.129777
\(951\) −18.0000 −0.583690
\(952\) 4.00000 0.129641
\(953\) 2.00000 0.0647864 0.0323932 0.999475i \(-0.489687\pi\)
0.0323932 + 0.999475i \(0.489687\pi\)
\(954\) −4.00000 −0.129505
\(955\) −6.00000 −0.194155
\(956\) −24.0000 −0.776215
\(957\) 4.00000 0.129302
\(958\) 38.0000 1.22772
\(959\) 72.0000 2.32500
\(960\) 1.00000 0.0322749
\(961\) 5.00000 0.161290
\(962\) 16.0000 0.515861
\(963\) 12.0000 0.386695
\(964\) 18.0000 0.579741
\(965\) 14.0000 0.450676
\(966\) −32.0000 −1.02958
\(967\) 26.0000 0.836104 0.418052 0.908423i \(-0.362713\pi\)
0.418052 + 0.908423i \(0.362713\pi\)
\(968\) 1.00000 0.0321412
\(969\) 4.00000 0.128499
\(970\) 10.0000 0.321081
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 48.0000 1.53881
\(974\) 26.0000 0.833094
\(975\) −4.00000 −0.128103
\(976\) −14.0000 −0.448129
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) 12.0000 0.383718
\(979\) 2.00000 0.0639203
\(980\) −9.00000 −0.287494
\(981\) −6.00000 −0.191565
\(982\) −20.0000 −0.638226
\(983\) 20.0000 0.637901 0.318950 0.947771i \(-0.396670\pi\)
0.318950 + 0.947771i \(0.396670\pi\)
\(984\) 10.0000 0.318788
\(985\) 24.0000 0.764704
\(986\) 4.00000 0.127386
\(987\) −8.00000 −0.254643
\(988\) 16.0000 0.509028
\(989\) −32.0000 −1.01754
\(990\) −1.00000 −0.0317821
\(991\) −6.00000 −0.190596 −0.0952981 0.995449i \(-0.530380\pi\)
−0.0952981 + 0.995449i \(0.530380\pi\)
\(992\) 6.00000 0.190500
\(993\) 4.00000 0.126936
\(994\) −48.0000 −1.52247
\(995\) 2.00000 0.0634043
\(996\) 4.00000 0.126745
\(997\) 38.0000 1.20347 0.601736 0.798695i \(-0.294476\pi\)
0.601736 + 0.798695i \(0.294476\pi\)
\(998\) 24.0000 0.759707
\(999\) −4.00000 −0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5610.2.a.w.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5610.2.a.w.1.1 1 1.1 even 1 trivial