Properties

Label 5610.2.a.q
Level 5610
Weight 2
Character orbit 5610.a
Self dual yes
Analytic conductor 44.796
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 5610.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(44.7960755339\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - 4q^{7} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - 4q^{7} - q^{8} + q^{9} - q^{10} + q^{11} + q^{12} + 2q^{13} + 4q^{14} + q^{15} + q^{16} - q^{17} - q^{18} - 4q^{19} + q^{20} - 4q^{21} - q^{22} - q^{24} + q^{25} - 2q^{26} + q^{27} - 4q^{28} - 6q^{29} - q^{30} + 8q^{31} - q^{32} + q^{33} + q^{34} - 4q^{35} + q^{36} - 10q^{37} + 4q^{38} + 2q^{39} - q^{40} + 6q^{41} + 4q^{42} - 4q^{43} + q^{44} + q^{45} + 12q^{47} + q^{48} + 9q^{49} - q^{50} - q^{51} + 2q^{52} + 6q^{53} - q^{54} + q^{55} + 4q^{56} - 4q^{57} + 6q^{58} + 12q^{59} + q^{60} + 2q^{61} - 8q^{62} - 4q^{63} + q^{64} + 2q^{65} - q^{66} + 8q^{67} - q^{68} + 4q^{70} - 12q^{71} - q^{72} + 2q^{73} + 10q^{74} + q^{75} - 4q^{76} - 4q^{77} - 2q^{78} + 8q^{79} + q^{80} + q^{81} - 6q^{82} - 12q^{83} - 4q^{84} - q^{85} + 4q^{86} - 6q^{87} - q^{88} - 6q^{89} - q^{90} - 8q^{91} + 8q^{93} - 12q^{94} - 4q^{95} - q^{96} + 2q^{97} - 9q^{98} + q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 1.00000 −1.00000 −4.00000 −1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5610.2.a.q 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5610.2.a.q 1 1.a even 1 1 trivial

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(11\) \(-1\)
\(17\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5610))\):

\( T_{7} + 4 \)
\( T_{13} - 2 \)
\( T_{19} + 4 \)
\( T_{23} \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( 1 - T \)
$5$ \( 1 - T \)
$7$ \( 1 + 4 T + 7 T^{2} \)
$11$ \( 1 - T \)
$13$ \( 1 - 2 T + 13 T^{2} \)
$17$ \( 1 + T \)
$19$ \( 1 + 4 T + 19 T^{2} \)
$23$ \( 1 + 23 T^{2} \)
$29$ \( 1 + 6 T + 29 T^{2} \)
$31$ \( 1 - 8 T + 31 T^{2} \)
$37$ \( 1 + 10 T + 37 T^{2} \)
$41$ \( 1 - 6 T + 41 T^{2} \)
$43$ \( 1 + 4 T + 43 T^{2} \)
$47$ \( 1 - 12 T + 47 T^{2} \)
$53$ \( 1 - 6 T + 53 T^{2} \)
$59$ \( 1 - 12 T + 59 T^{2} \)
$61$ \( 1 - 2 T + 61 T^{2} \)
$67$ \( 1 - 8 T + 67 T^{2} \)
$71$ \( 1 + 12 T + 71 T^{2} \)
$73$ \( 1 - 2 T + 73 T^{2} \)
$79$ \( 1 - 8 T + 79 T^{2} \)
$83$ \( 1 + 12 T + 83 T^{2} \)
$89$ \( 1 + 6 T + 89 T^{2} \)
$97$ \( 1 - 2 T + 97 T^{2} \)
show more
show less