Properties

Label 5610.2.a.m
Level 5610
Weight 2
Character orbit 5610.a
Self dual Yes
Analytic conductor 44.796
Analytic rank 1
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 5610.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(44.7960755339\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{8} + q^{9} + q^{10} - q^{11} + q^{12} + 4q^{13} - q^{15} + q^{16} + q^{17} - q^{18} - 8q^{19} - q^{20} + q^{22} + 4q^{23} - q^{24} + q^{25} - 4q^{26} + q^{27} + q^{30} - 6q^{31} - q^{32} - q^{33} - q^{34} + q^{36} - 8q^{37} + 8q^{38} + 4q^{39} + q^{40} - 2q^{41} + 4q^{43} - q^{44} - q^{45} - 4q^{46} - 6q^{47} + q^{48} - 7q^{49} - q^{50} + q^{51} + 4q^{52} + 8q^{53} - q^{54} + q^{55} - 8q^{57} + 4q^{59} - q^{60} - 10q^{61} + 6q^{62} + q^{64} - 4q^{65} + q^{66} - 4q^{67} + q^{68} + 4q^{69} + 8q^{71} - q^{72} + 6q^{73} + 8q^{74} + q^{75} - 8q^{76} - 4q^{78} - 8q^{79} - q^{80} + q^{81} + 2q^{82} - 12q^{83} - q^{85} - 4q^{86} + q^{88} - 6q^{89} + q^{90} + 4q^{92} - 6q^{93} + 6q^{94} + 8q^{95} - q^{96} + 10q^{97} + 7q^{98} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 −1.00000 −1.00000 0 −1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)
\(11\) \(1\)
\(17\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5610))\):

\( T_{7} \)
\( T_{13} - 4 \)
\( T_{19} + 8 \)
\( T_{23} - 4 \)