Properties

Label 5610.2.a.f
Level $5610$
Weight $2$
Character orbit 5610.a
Self dual yes
Analytic conductor $44.796$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5610.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(44.7960755339\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - 3q^{7} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - 3q^{7} - q^{8} + q^{9} - q^{10} - q^{11} - q^{12} - 4q^{13} + 3q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + 4q^{19} + q^{20} + 3q^{21} + q^{22} - q^{23} + q^{24} + q^{25} + 4q^{26} - q^{27} - 3q^{28} - 3q^{29} + q^{30} - 5q^{31} - q^{32} + q^{33} + q^{34} - 3q^{35} + q^{36} - 6q^{37} - 4q^{38} + 4q^{39} - q^{40} + 8q^{41} - 3q^{42} + 13q^{43} - q^{44} + q^{45} + q^{46} - 12q^{47} - q^{48} + 2q^{49} - q^{50} + q^{51} - 4q^{52} - 4q^{53} + q^{54} - q^{55} + 3q^{56} - 4q^{57} + 3q^{58} - 6q^{59} - q^{60} - 10q^{61} + 5q^{62} - 3q^{63} + q^{64} - 4q^{65} - q^{66} + 8q^{67} - q^{68} + q^{69} + 3q^{70} + 14q^{71} - q^{72} - 6q^{73} + 6q^{74} - q^{75} + 4q^{76} + 3q^{77} - 4q^{78} + 4q^{79} + q^{80} + q^{81} - 8q^{82} - 8q^{83} + 3q^{84} - q^{85} - 13q^{86} + 3q^{87} + q^{88} - 4q^{89} - q^{90} + 12q^{91} - q^{92} + 5q^{93} + 12q^{94} + 4q^{95} + q^{96} - q^{97} - 2q^{98} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −1.00000 1.00000 1.00000 1.00000 −3.00000 −1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(5\) \(-1\)
\(11\) \(1\)
\(17\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5610.2.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5610.2.a.f 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5610))\):

\( T_{7} + 3 \)
\( T_{13} + 4 \)
\( T_{19} - 4 \)
\( T_{23} + 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( 1 + T \)
$5$ \( -1 + T \)
$7$ \( 3 + T \)
$11$ \( 1 + T \)
$13$ \( 4 + T \)
$17$ \( 1 + T \)
$19$ \( -4 + T \)
$23$ \( 1 + T \)
$29$ \( 3 + T \)
$31$ \( 5 + T \)
$37$ \( 6 + T \)
$41$ \( -8 + T \)
$43$ \( -13 + T \)
$47$ \( 12 + T \)
$53$ \( 4 + T \)
$59$ \( 6 + T \)
$61$ \( 10 + T \)
$67$ \( -8 + T \)
$71$ \( -14 + T \)
$73$ \( 6 + T \)
$79$ \( -4 + T \)
$83$ \( 8 + T \)
$89$ \( 4 + T \)
$97$ \( 1 + T \)
show more
show less